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Abstract

Sparse matrix factorizations of transfer matrices for the interactions round a face model
are reviewed. The sparse factors of a more general Ising model containing first, second
and third nearest neighbour interactions are also presented. For both models the factori-
zations are achieved by considering the required auxiliary spin sets as a hierarchy of
interacting spins.

1. Introduction

The study of lattice models in statistical mechanics has grown at an unprece-
dented rate since the introduction of the transfer matrix by Kramers and Wannier
[8] some 45 years ago. In one dimension, each application of the transfer matrix
can be thought of as representing a transfer to the next spin along the chain.
Similarly in two dimensions each application adds a row to the lattice while in
three dimensions the transfer matrix builds the system up plane by plane.

The transfer matrix formalism has led to the exact solution of several two-di-
mensional lattice models [4]. In the absence of exact solutions however, the
transfer matrix formalism can still be applied to yield numerical results. Arguably
the most powerful numerical method in two dimensions is the application of
phenomenological renormalization to finite lattices which are infinite in one
direction but finite in the other direction, i.e. to a strip of width n. Interest is
focussed on the leading eigenvalues (A, > A, > ...) of the transfer matrix in
terms of which the free energy per site f, and the correlation length §, are
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defined by [4]

fy = =n(,), )

g;l = m(ko/)ﬁ)-

Given f, and £, finite-size scaling can then be used to extract critical exponents
and map out the phase boundaries of the bulk system (infinite in both directions)
(for recent reviews of this technique see Barber [1] and Nightingale [11]).

One way of easing the computational effort involved in obtaining the leading
eigenvalues is to factor the transfer matrix into a product of sparse matrices.
Explicit factorizations have been given in the past for the general Interactions
Round a Face (IRF) Ising model [3). Nightingale [10] considererd the row to row
transfer matrix while Baxter [3] introduced a factorization of the diagonal to
diagonal transfer matrix.

The IRF model contains first and second nearest neighbour interactions. It is
the purpose of this paper to review the factorizations of this model and to
introduce a factorization of a transfer matrix for a model containing first, second
and third nearest neighbour interactions. The factorization is achieved in each
case with the introduction of auxiliary sets of spin variables. For the latter model,
the explicit structure for each of the sparse factors of the transfer matrix is also
presented.
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2. Interactions round a face
Consider a square lattice of N = mn sites where m and n are both even. With
each site associate a spin 0; = + 1. To each face assign a Boltzmann weight factor
w(o,, 0;, 0, 0;) where i, j, k, | are the four sites round a face as in Figure 1. The
partition function is
Z,=Y 11 w(o,,0,,0,,0,), )
{o} (yjkl)
where the summation is over all configurations of the spins and the product is
over all faces of the lattice. In representing the evaluation of (2) as an eigenvalue
problem we are at liberty to choose a direction in which to run a transfer matrix.
2.1 Diagonal to diagonal transfer matrix

With the square lattice now drawn diagonally as in Figure 2, the combined
Boltzmann weight of the shaded faces is

n/2
V(e|o’) = I—[l w(02j—1’021’02j+1’02,j)8(02j—1’02,j—1) (3)
J=
and for the row above
n/2
W(°'|°") = 1—[1 W(02’1’02,1+1’02,j+2’o£,j+1)8(02,1702”j)’ (4)
Je

where we impose periodic boundary conditions (o, ., = ¢,). With m the number
of such diagonal rows, equation (2) can be written as

Z, = Trace(VW)™?, (5)
where we have applied periodic boundary conditions also in the vertical direction
(row m is followed by row 1). Since each set of spins o on a row has 2"
configurations, V and W are both 2”7 X 2" matrices.

To find factors of the matrices V and W, we introduce n — 2 auxiliary sets of
spins v# and w” where

v ={vf,...,07}, (6a)
wl={wf,...,wl}, (6b)

FIGURE 2
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with p =1,...,n/2 — 1. At this point it is convenient to consider Figure 3 in
which the elements V(o |g’) are represented as a hierarchy of interacting spin sets
vP. All spins connected with solid lines interact through delta functions. Spins
connected with dashed lines interact via a Boltzmann weight factor. With Figure
2 in mind, Figure 3 can be interpreted as a schematic illustration of

V(o|o) = ¥ Uy(o|v)U (v'|v?) --- U, (v*/*7|0") (7

)
with
U(s|t) = 8(sy, 1) -+ 8(sin, tm)W(s, 21,80 8,41, £)8(S, s tii1) -0 8(5,,1,),
(8)
where s = {sy,...,5,}and t = {1,,...,¢,}.
Thus V can be written as a product of n/2 matrices
V=UYU,  --U,. 9)

In a similar manner we write

W(a'lo”) = L Uy(o'|w)Us(w!|w?) - Uy(w"/2~H]e”),  (10)
{(w#}

where the hierarchy is similar to that in Figure 3. Thus
W=UW - U, (11)
with U, given by (8). Baxter [3] calls these factors face transfer matrices. It is

precisely these U, that appear in the corner transfer matrix formalism (see e.g. [4]).
From the definition (8) one can easily prove the following commutation relation

UU, = UY, for |i — j|> 1. (12)
Thus the order in (9) and (11) is irrelevant.
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In conclusion, for the square lattice drawn diagonally, we have seen that not
only can one write down transfer matrices for the IRF model connecting adjacent
rows of interacting spins, but that these transfer matrices themselves can be
constructed from local transfer matrices that can be thought of as connecting the
faces within a row. This is true also for the row to row transfer matrix.

2.2 Row to row transfer matrix

Now consider the arrangement shown in Figure 4 where again we emply

periodic boundary conditions with m rows and »n columns. The combined

Boltzmann weight of the faces shown is
n

S(o19) = TT w(0,1001,/.5/11)- (13)
)=
Here S is 2" X 2" and the partition function (2) is given by
Z, = Trace(S)™. (14)

To factor S we introduce n — 1 sets of auxiliary spin variables, each containing
n + 2 elements [11]. Denote these by

o= {uf,..ul,}, (15)
c‘.1 02 0‘5 cn 1 0;1
01 02 03 0'n 1 0-n
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where now p = 1,...,n — 1. Here we draw the hierarchy of interacting spins as
in Figure 5. Again we consider it in conjunction with the corresponding row of
faces in Figure 4. We can immediately write down the following sum rule

S(olo’) = Y. P(o|u')Q(u'|u?) - - Qu" 2|u" )R(u""!|o’), (16)

{v?}
where
P(o|u') = 8(ol,u}) 8(on,ui,)w(ol,oz,u},ﬂ,u},”), (17)
Q(u?|ur*l) = 8(u{’,u{’“)8(u§,uf“)

- 8(ul g uit)wlug, ug, uptl ubty),  (18)
R(u"'1a’) =8(usiY0y) -~ 8(urid o )w(uf Y ui Y af,00).  (19)
Finally we write
S = PQ" 'R, (20)
where Pis 2" X 2"*2 Qis2"*2 x 2"*2 and Ris 2"*2 x 2",

Note that the factors U, in the diagonal to diagonal transfer matrix are each
different, whereas for the row to row transfer matrix there are n-2 identical
matrices Q. Of the two factorizations for the IRF model, (20) is the more
favourable for the numerical evaluation of leading eigenvalues. Nightingale ([9],
[10]) used this factorization to compute the leading eigenvalues of the transfer
matrix for strips of width up to n = 16. He was thus able to sucessfully estimate
the bulk critical behaviour for the various special cases of the IRF model that are
of physical interest.

FIGURE 6
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3. Interactions round a wedge

To include third nearest neighbour interactions we need to construct a diagonal
to diagonal transfer matrix. Consider then a typical wedge i, k,/,m,n,0,p
shown in Figure 6 with associated Boltzmann weight factor
w(e;, 0,04, 0, 0,,0,,0,,0,). The transfer matrix between spin sets ¢ and ¢’ in
Figure 7 can then be written as a product of the Boltzmann weights of the

{overlapping) wcdgcs
n/2
’ — ! I ’ !’ ’
T(o|o’) = 1_11 w(62j—1’02_1’02j+1’021—2’02j—1’62j702j+1’02j+2)‘ (21)
j=

Again we impose periodic boundary conditions with m diagonal rows and n
columns. The partition function (2) becomes

Z, = Trace(T)”. (22)

FIGURE 7
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In this case Figure 8 suggests introducing

sP={sf,...,sP. .}, (23a)
t={ty--slns3}s (23pb)
with p = 1,..., n/2 — 2. Equation (21) can then be written as
T(o|o’) = Y, A(o]|s)B(s'|s?) --- C(s"?2|t)D(t|o’), (24)
{sP}.t

where

A(o|s') = 6(01’5{)8("3&5)

'S(Un’sn 1)W(°1’°2,°3,S,1,+4’srlns;lx+1,5,1,+2, n+3) (25)

B(s?|s?) = 8(sf,sf)8(sf,59) -~ 8(sb,5,5741)
8(sP, st a)w(sE, s, 58,57 1,50, sy, 80008 si.a),  (26)

C(s"1t) = 8(s{,1,)8(s4, 12) =+ 85743, 80s1)

857 vas ara)W(S3, 55, 84, by 1o s Lus1s Lasas Lass)s (27)
D(t|0’) = 8(14,07) -+~ 8(1,43,0,)w(t5,13,11,0,_3,0,_1,0,,0],07), (28)

in whichq = p + 1and r = n/2 — 2. The final result is

T = AB"/273CD. (29)

3.1 Structure of A,B,Cand D

Nightingale [10] has given the explicit structure of the factors P, Q and R,
defined in (17), (18) and (19), of the row to row transfer matrix for the IRF
model. Here we consider the factors A, B, C and D of the more general model.
The structure of these matrices can be readily written down once an ordering of
the possible configurations is decided upon. Most convenient for numerical
purposes is the unique identification of a given spin configuration with the binary
representation of an integer. This ordering of states, along with the labelling
scheme adopted for the Boltzmann weights, is outlined in Appendix A where we
assume the model possess spin reversal symmetry, i.e., the Boltzmann weights
remain unchanged on reversing the sign of the spins.

The transfer matrix T can be written in block form

T, T,
(v 1) (30)
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where both T, and T, are square matrices of order 2"~!. In this representation the
© 2" X 2"*4 matrix A, defined via equation (25), assumes the form

A0
A= ( 0 Al) (31)
with
{ P \
1,_13 W aO (1]

0 1,_,9®a,
A 1,_,®a, 0 . (32)

0 1, ;®a,

Here 1,, is the 2™ X 2™ identity matrix, a,, a,, a, and a, are row matrices of
length 32 defined as

a, = (W, oW, 16W, W, 17 " " W, 15W, 31). (33)
The 2"*4 x 27** matrix B, defined via equation (26), assumes the form
B, 0
B= ( 0 B:) (34)
with
1,_,®b, 0
0 1,_,®b,
1,_,®b, 0
0 1,_,®b,
B, = 1,_,9b, 0 ‘ (35)
0 1,_,® b
1,_4® b 0
0 1, ,8b,

Each of the 16 X 64 matrices b, is defined as

Wio Ow,0w,0w,0 0
b Owo0w,0wa,0w,, (36)
o 0 Wi2g O W, 90w, 300w,5 0 '

0 W,28 0 W; 20 0w, 59 0 Wi

The 2"*4 x 2"*3 matrix C, defined via equation (27), assumes the form

C= (i‘ ({?)1) (37)
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with

1,_.®c¢, 0
0 1,_,®¢

1,_,®c¢, 0
0 1,_,® ¢

C= 1, .9c¢, 0 ’ (38)

0 1,_,9®¢s

1,_,®c¢c 0
0 1, ,®¢,

where the 16 X 32 matrices ¢, are defined by

woOw,0 0
- 0 W1 0 W3 (39)
' 0 W28 0w, 30 '

0 Wi 29 0 Wi

Finally, the 2"*3 x 2" matrix D, defined via equation (28) can be seen to take

the form
D, D,
D= (D2 D1) (40)
in which
1,_s®e, 0
0 1,_,8f,
0 0
0 0
1, ;®e, 0
0 0
D, 1, s®e¢, 0 (41)
0 1,_,8f,
0 0
0 0
1,_;®¢ 0
0 1, 01,
0 0
0 0
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and

0 0

0 0

0 1':—5 ® go
14_,®h, 0

0 0

0 0

0 1;_5© g,
14_,®h, 0

DZ - 0 0 y (42)

0 0

0 1n_s®g,
14_,®h, 0

0 0

0 0

0 11_® g
17_. ® hq 0

where we further define 14 as the 2™ X 2™ matrix in which all elements, except
those along the anti-diagonal, vanish. The 8 X 8 matrices e f,g, and h, are

defined by
wi,O wl,l
Wia 0 W5 0
e’ - . . N f.’ = . )
0 Wi 0 Wi 2s
w1,28 wt,29
(43)
0 W5 0 W 5
w1,6 w1,7
gl = > hl =
Wi 26 0 W; 27 0
W, 30 Wi

(44)
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As for Nightingale’s factorization of the IRF model, the matrices T, and T, can
also be factored. Inserting the block forms (31), (34), (37) and (40) into equation
(29) and comparing the result with (30) leads to

T, = A,B}/?73C,D,, (45)
T, = A,B}/>73C,D,, (46)

which form the starting point for the leading eigenvalue computations [2].

For numerical purposes, Nightingale [10] has emphasized the significant reduc-
tion in the number of elementary arithmetic operations resulting from the use of
sparse matrix representations in eigenvalue computations. To see this, consider
the direct calculation of T,p from the vector @. This requires 2"~! x 27!
multiplications. When the factorization given in equation (45) is used (by succes-
sively generating D, ¢, C,D, ¢, etc.), the number of multiplications needed can be
reduced to that of the number of non-zero matrix elements appearing in the
sparse factors. From equations (32), (35), (38), (41) and (45) this number is seen
to be (32n-124) x 2"~ 1,

4. Summary and conclusion

For each of the cases considered the formulation of the transfer matrix as a
product of sparse factors has been achieved by viewing the auxiliary spin sets
required as a hierarchy of interacting spins. The majority of these spins interact
through delta functions, giving rise to the sparse nature of the factors. Each factor
of the transfer matrix can be thought of as arising from the fundamental units
(faces or wedges) in a given row. The use of the sparse matrix representation leads
to a significant reduction in the number of elementary operations required in
computing the leading eigenvalues of the transfer matrix.

The prime motivation in seeking the factorization (29) for the general IRW
model has been to study [2] the critical behaviour of a two-dimensional Ising
model containing isotropic first and third nearest neighbour interactions. Even
though the dominant factor B in the factorization (29) for the transfer matrix of
the general model is sixteen times larger than the corresponding matrix Q in
equation (20) for the IRF model, leading eigenvalues have been computed [2] for
strips of width up to and including n = 16.

One can also achieve a sparse matrix factorization with the original helical or
screw boundary conditions of Kramers and Wannier [8]. Domb [5] showed that
the transfer matrix, T, for n such columns could be written in the form

T=A""!B
and pointed out that B corresponds to an end effect which, at least on physical

grounds, becomes neglibible as n — co. (This T, A and B are not be confused
with those of the previous section.) In this spirit Gartenhaus [7] and Fuchs and
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Gartenhaus [6] have considered the extent to which the matrix A is capable of
yielding the critical properties of the system under consideration. When combined
with the techniques of finite-size scaling, the scheme was seen to be effective.

For the more general models considered in this paper, the matrices P and R for
the IRF model and matrices A, C and D for the IRW model can all be considered
as end effects arising from the periodic boundary conditions. To what extent the
utilization of the matrices Q and B in any approximation scheme for larger lattice
sizes would be successful is clearly a question for further consideration.
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Appendix A: Ordering of states

Invoke the one to one correspondence between an N-dimensional spin set

6 = {0y,...,0y) and the integers 0,1,...,2" — 1. Define
1
n = 5(1 - °N)s
1
n2=5(1 _oN—l)a (Al)
. :
ny= 5(1 - 0,),
with
N
p(e)=Y n2'71 (A2)
i=1
Order the states according to spin reversal:
p(o) if p(e) <2V71 -1
q(e) = No1 : (A3)
p(-0) +2 otherwise
For example, for N = 2 we order the statesas + +, + —, — —, — +:
o plo) 4(o)
+ + 0 0
+ — 1 1
- - 3 2
-+ 2 3
Label the 28 = 256 Boltzmann weights as
w, , = w(0;,0;,0,,0,,0,,0,,0,,0,) (A4)
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with
r= p(oi’aj’ok)a

s = p(o),0,,9,,0,,0,).
For example w,, = w;4, when spin reversal symmetry is allowed, though this
reduction in notation has not been used explicitly in writing down the structure of
the factors A, B, C and D.
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