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Abstract. Let Cφ be a composition operator on the Bergman space A2 of the unit disc. A well-known
problem asks whether the condition

∫
D

( 1−|z|2
1−|φ(z)|2

)p
dλ(z) < ∞ is equivalent to the membership of Cφ in

the Schatten class Cp, 1 < p < ∞. This was settled in the negative for the case 2 < p < ∞ in [3]. When
2 < p < ∞, this condition is not sufficient for Cφ ∈ Cp. In this paper we take up the case 1 < p < 2. We
show that when 1 < p < 2, this condition is not necessary for Cφ ∈ Cp.

1. INTRODUCTION

Let D be the unit disk in the complex plane C and H(D) be the class of functions analytic in
D. Let dA be the area measure on D normalized in such a way that A(D) = 1. We write dλ for
the Möbius-invariant measure on D, i.e., dλ(z) = (1− |z|2)−2dA(z).

Recall that the Bergman space A2 is defined by

A2 = {f : f ∈ H(D), ∥f∥2A2 =

∫
D

|f(z)|2dA(z) < ∞}.

The Hardy space H2 is the Hilbert space of analytic functions f on D such that

∥f∥2H2 = sup
0<r<1

∫ 2π

0

|f(reiθ)|2 dθ
2π

< ∞.

Given an analytic function φ : D → D, we have the composition operator Cφ on A2 or H2 defined
by the formula Cφ(f) = f ◦ φ. Recall that such a Cφ is always bounded [5].

Let H be a separable Hilbert space. For any 1 ≤ p < ∞, the Schatten p-class Cp consists of
bounded linear operators T on H satisfying the condition ∥T∥p < ∞, where the p-norm is defined
by the formula

∥T∥p = {tr (|T |p)}1/p = {tr ((T ∗T )p/2)}1/p.

The membership of composition operator Cφ in the Schatten class Cp has been a constant source of
fascination for operator theorists. In the case of the Bergman space A2, Luecking and Zhu showed
that Cφ ∈ Cp if and only if the function z 7→ {log(1/|z|)}−2Nφ,2(z) belongs to Lp/2(D, dλ), where
Nφ,2 is a counting function associated with φ [2].

On the other hand, it would be more desirable to obtain a criterion for the membership Cφ ∈ Cp
in which φ appears in a more explicit way. One such approach involves the Berezin transform. Let
kz be the normalized reproducing kernel for A2. Recall that for T ∈ B(A2), the Berezin transform
of T is the function

z 7→ ⟨Tkz, kz⟩
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on D. It is known (see [6]) that Cφ ∈ Cp if and only if∫
D

⟨C∗
φCφkz, kz⟩p/2dλ(z) < ∞. (1.1)

In view of this, one naturally considers the condition∫
D

⟨CφC
∗
φkz, kz⟩p/2dλ(z) < ∞. (1.2)

Compared with (1.1), (1.2) appears more desirable because, by an easy calculation,

⟨CφC
∗
φkz, kz⟩ =

(
1− |z|2

1− |φ(z)|2

)2

,

which involves φ in a very direct way. Thus the following problem arose:

Problem 1.1. [1] [2] [5] Let φ : D → D be an analytic function. Is it true that for 1 < p < ∞,
the composition operator Cφ : A2 → A2 is in the Schatten class Cp if and only if∫

D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) < ∞? (1.3)

It is trivial that Cφ ∈ C2 if and only if∫
D

(
1− |z|2

1− |φ(z)|2

)2

dλ(z) < ∞.

In [3], it was shown that when 2 < p < ∞, (1.3) is not sufficient for the membership Cφ ∈ Cp.
That is, for each 2 < p < ∞, there is an analytic φ : D → D such that∫

D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) < ∞

and Cφ ̸∈ Cp. In this paper we settle the remaining case, the case 1 < p < 2. We will show that
when 1 < p < 2, (1.3) is not necessary for the membership Cφ ∈ Cp. Here is our main result.

Theorem 1.1. For each 1 < p < 2, there exists an analytic function φ : D → D such that the
composition operator Cφ : A2 → A2 belongs to the Schatten class Cp, and yet∫

D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) = ∞. (1.4)

Together with the result in [3], Theorem 1.1 completes the contrast between (1.1) and (1.2).
From the view point of operator theory, it is truly amazing that there is such a sharp contrast.

It will be interesting to consider what happens in the case of the Hardy space. Let kHar
z denote

the normalized reproducing kernel for the Hardy space H2. By an easy calculation,

⟨CφC
∗
φk

Har
z , kHar

z ⟩ = 1− |z|2

1− |φ(z)|2
.

Thus the Hardy-space equivalent of condition (1.3) is∫
D

(
1− |z|2

1− |φ(z)|2

)p/2

dλ(z) < ∞. (1.5)
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Recently, Yang and Yuan showed for each 2 < p < ∞, there is an analytic φ : D → D such that∫
D

(
1− |z|2

1− |φ(z)|2

)p/2

dλ(z) < ∞

and such that the composition operator Cφ : H2 → H2 does not belong to Cp(H2) [4]. This settles
the entire Hardy-space case. This is because (1.5) holds only if p > 2. For every p ≤ 2, we have∫

D

(1− |z|2)p/2dλ(z) = ∞.

The remainder of the paper consists of the proof of Theorem 1.1.

2. THE PROOF OF THEOREM 1.1

The proof of Theorem 1.1 begins with a construction adapted from [3]. For n = 1, 2, . . ., define

Tn =
(
2−(n+1), 2−n

]
and Sn =

(
(4/3)2−(n+1), (5/3)2−(n+1)

]
.

That is, Sn is the middle third of Tn. Denote tn = (4/3)2−(n+1), the left end-point of Sn, n ∈ N.
Let 1 < p < 2 be given. We choose an ϵ such that

0 < ϵ < 1/p

and such that pϵ is a rational number. Thus p−1 > (p − 1)ϵ, and limk→∞ 2−(p−1−(p−1)ϵ)k = 0. We
can choose a strictly increasing sequence k(1) < . . . < k(n) < . . . of positive integers such that

2−(p−1+ϵ)k(n) · 2 · 2pϵk(n) = 2−(p−1−(p−1)ϵ)k(n)+1 ≤ (1/3)2−(n+1) = |Sn| (2.1)

for every n and such that every pϵk(n) is an integer. Note the difference between the choice of
k(n) in this paper and the choice in [3].

For integers n ≥ 1 and 1 ≤ j ≤ 2pϵk(n), define the intervals

Jn,j = (an,j, cn,j) =
(
tn + 2−(p−1+ϵ)k(n) · 2 · (j − 1), tn + 2−(p−1+ϵ)k(n) · 2 · j

)
,

In,j = (an,j, bn,j) =
(
tn + 2−(p−1+ϵ)k(n) · 2 · (j − 1), tn + 2−(p−1+ϵ)k(n) · (2j − 1)

)
.

It is easy to check that In,j is the left half of Jn,j and the Jn,j’s are pairwise disjoint. (2.1) ensures
that

2pϵk(n)⋃
j=1

Jn,j ⊂ Sn.

We denote the length of the interval In,j by ρn. That is,

ρn = |In,j| = bn,j − an,j = 2−(p−1+ϵ)k(n).

We now define a measurable function u on the unit circle T = {w ∈ C : |w| = 1} as follows:

u(eit) = 2−k(n) if t ∈
2pϵk(n)⋃
j=1

In,j, n ≥ 1,

u(eit) = 1 if t ∈ (−π, π] \
{ ∞⋃

n=1

2pϵk(n)⋃
j=1

In,j

}
.
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The harmonic extension of u to D will be denoted by the same symbol. Finally, define

h(z) =
1

2π

∫ π

−π

eit + z

eit − z
u(eit)dt,

φ(z) = exp(−h(z)), z ∈ D. (2.2)

Obviously, Re{h(z)} = u(z) > 0, and consequently

|φ(z)| = e−Re{h(z)} = e−u(z) < 1

for every z ∈ D. This implies φ(D) ⊂ D.
For z ∈ D and eit ∈ T, let P (z, eit) = 1−|z|2

|eit−z|2 be the Poisson kernel. It was shown in [3, p.
2508] that if 1/2 ≤ r < 1 and |θ − t| ≤ 5, then there exist constants 0 < α < β < ∞ such that

α(1− r)

(1− r)2 + (θ − t)2
≤ 1

2π
P (reiθ, eit) ≤ β(1− r)

(1− r)2 + (θ − t)2
. (2.3)

For any n ∈ N and 1 ≤ j ≤ 2pϵk(n), define

Gn,j = {reiθ : θ ∈ In,j, 0 < 1− r ≤ ρn}. (2.4)

Given such a pair of n, j, we have

Gn,j =

k(n)⋃
ν=0

Gν
n,j,

where

G0
n,j = {reiθ : θ ∈ In,j, 0 < 1− r ≤ ρn · 2−k(n)},

Gν
n,j = {reiθ : θ ∈ In,j, ρn · 2−k(n) · 2ν−1 < 1− r ≤ ρn · 2−k(n) · 2ν}

for 1 ≤ ν ≤ k(n). By [3, (2.6) and (2.7)], there is a constant 0 < c < 1 independent of n, j such
that

u(z) ≥ c2−k(n)+ν if z ∈ Gν
n,j, 0 ≤ ν ≤ k(n). (2.5)

Recalling [3, (2.10)], we have

A(Gν
n,j) ≤ ρ2n · 2−k(n) · 2ν , 0 ≤ ν ≤ k(n). (2.6)

The following two lemmas are quoted from [3, Lemma 7] and [3, Lemma 5], respectively.

Lemma 2.1. There is a c1 > 0 such that

u(z) ≥ c1 for every z ∈ D
∖{ ∞⋃

n=1

2pϵk(n)⋃
j=1

Gn,j

}
where Gn,j is defined by (2.4).

Lemma 2.2. For any n ≥ 1 and 1 ≤ j ≤ 2pϵk(n), let Bn,j be the middle third of In,j . That
is, Bn,j = (3−1(bn,j + 2an,j), 3−1(2bn,j + an,j)), where an,j < bn,j are the end-points of In,j .
Furthermore, for such n and j, define

En,j = {reit : t ∈ Bn,j, 0 < 1− r ≤ ρn · 2−k(n)}.

Then supz∈En,j
u(z) ≤ (1 + 6β)2−k(n), where β is the constant that appears in (2.3).
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We need one more lemma:

Lemma 2.3. There is a c3 > 0 such that∫
En,j

(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) ≥ c32

−pϵk(n)

for all n ≥ 1 and 1 ≤ j ≤ 2pϵk(n).

Proof. Denote φn,j = inf{|φ(z)| : z ∈ En,j}, n ≥ 1 and 1 ≤ j ≤ 2pϵk(n). Then φn,j ≥ e−C2−k(n)

by Lemma 2.2. Writing σ = sup0<x≤C(1− e−x)/x, we have

1

1− |φ(z)|
≥ 1

1− φn,j

≥ 1

σC2−k(n)
=

2k(n)

σC
for z ∈ En,j.

Let c2 = 2−2(σC)−p. Then∫
En,j

(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) ≥ c22

pk(n)

∫
En,j

(1− |z|)p−2dA(z)

≥ c32
pk(n) · (ρn2−k(n))p−1 · ρn = c32

−pϵk(n).

This completes the proof. □

Proof of Theorem 1.1: We must show that the analytic function φ : D → D defined by (2.2)
has the property that Cφ ∈ Cp and satisfies (1.4). Let us first verify Cφ ∈ Cp.

To show that Cφ ∈ Cp, we need the following inequality: For any 0 < ρ < 1 and 0 < x < 1,
using Hölder’s inequality with conjugate exponents 1/ρ and 1/(1− ρ), we have

∞∑
l=0

(l + 1)ρxl =
∞∑
l=0

(l + 1)ρ · xlρ · xl(1−ρ)

≤
{ ∞∑

l=0

(
(l + 1)ρxlρ

)1/ρ}ρ

·
{ ∞∑

l=0

(
xl(1−ρ)

)1/(1−ρ)
}1−ρ

=
( 1

(1− x)2

)ρ( 1

1− x

)1−ρ

=
1

(1− x)ρ+1
. (2.7)

Let el(z) = (l + 1)1/2zl, l = 0, 1, 2, . . .. Recall that {el : l ≥ 0} is the standard orthonormal
basis for the Bergman space A2. Because 1 < p < 2 and ∥el∥ = 1, it follows that

⟨(C∗
φCφ)

p/2el, el⟩ ≤ {⟨C∗
φCφel, el⟩}p/2 = ∥Cφel∥pA2 = (l + 1)p/2∥φl∥pA2

= (l + 1)p/2
{∫

D

|φ(z)|2ldA(z)
}p/2

.

Let

G =
∞⋃
n=1

2pϵk(n)⋃
j=1

Gn,j,
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where Gn,j is given by (2.4). For z ∈ D\G, Lemma 2.1 implies that

|φ(z)| = e−Re(h(z)) = e−u(z) ≤ e−c1 . (2.8)

We have

tr ((Cφ
∗Cφ)

p/2) =
∞∑
l=0

⟨(C∗
φCφ)

p/2el, el⟩ ≤
∞∑
l=0

(l + 1)p/2
{∫

D

|φ(z)|2ldA(z)
}p/2

=
∞∑
l=0

(l + 1)p/2
{∫

D\G
|φ(z)|2ldA(z) +

∫
G

|φ(z)|2ldA(z)
}p/2

≤ I + J,

where

I =
∞∑
l=0

(l + 1)p/2
{∫

D\G
|φ(z)|2ldA(z)

}p/2

and

J =
∞∑
l=0

(l + 1)p/2
{∫

G

|φ(z)|2ldA(z)
}p/2

.

Applying (2.8), we obtain

I =
∞∑
l=0

(l + 1)p/2
{∫

D\G
|φ(z)|2ldA(z)

}p/2

≤
∞∑
l=0

(l + 1)p/2
{
(e−c1)2l

∫
D\G

dA(z)
}p/2

≤
∞∑
l=0

(l + 1)p/2
{
(e−c1)2l

}p/2
=

∞∑
l=0

(l + 1)p/2(e−pc1)l ≤ 1

(1− e−pc1)(p/2)+1
,

where the last ≤ follows from the condition p/2 < 1 and (2.7).
Next we show that J < ∞. Note that(∑

n

an

)s

≤
∑
n

asn

if s ≤ 1 and an ≥ 0. Applying (2.5), (2.6) and (2.7), we obtain

J =
∞∑
l=0

(l + 1)p/2
{ ∞∑

n=1

2pϵk(n)∑
j=1

k(n)∑
ν=0

∫
Gν

n,j

|φ(z)|2ldA(z)
}p/2

≤
∞∑
l=0

(l + 1)p/2
{ ∞∑

n=1

2pϵk(n)∑
j=1

k(n)∑
ν=0

(e−c2−k(n)+ν

)2lρ2n2
−k(n)+ν

}p/2

=
∞∑
l=0

(l + 1)p/2
{ ∞∑

n=1

2pϵk(n)
k(n)∑
ν=0

(e−c2−k(n)+ν

)2lρ2n2
−k(n)+ν

}p/2

≤
∞∑
l=0

(l + 1)p/2
∞∑
n=1

k(n)∑
ν=0

e−C1l2−k(n)+ν · ρpn · 2(p
2/2)ϵk(n) · (2−k(n)+ν)p/2

=
∞∑
n=1

k(n)∑
ν=0

( ∞∑
l=0

(l + 1)p/2e−C1l2−k(n)+ν

)
ρpn · 2(p

2/2)ϵk(n) · (2−k(n)+ν)p/2
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≤
∞∑
n=1

k(n)∑
ν=0

ρpn · 2(p
2/2)ϵk(n) · (2−k(n)+ν)p/2

(1− e−C12−k(n)+ν )(p/2)+1
.

Let δ = inf0<x≤C1 x
−1(1− e−x). Continuing with the above, we obtain

J ≤
∞∑
n=1

k(n)∑
ν=0

ρpn · 2(p
2/2)ϵk(n) · (2−k(n)+ν)p/2

(δC12−k(n)+ν)(p/2)+1

=
1

(δC1)(p/2)+1

∞∑
n=1

k(n)∑
ν=0

ρpn · 2(p
2/2)ϵk(n)

2−k(n)+ν

≤ 2

(δC1)(p/2)+1

∞∑
n=1

2−(1+pϵ)k(n) · 2(p2/2)ϵk(n)

2−k(n)

=
2

(δC1)(p/2)+1

∞∑
n=1

2−(1−(p/2))pϵk(n) < ∞,

where the last step again uses the condition p/2 < 1. Therefore

tr ((Cφ
∗Cφ)

p/2) ≤ I + J < ∞.

This implies that Cφ ∈ Cp.
It remains to verify that ∫

D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) = ∞.

Obviously, ∫
D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) ≥
∞∑
n=1

2pϵk(n)∑
j=1

∫
En,j

(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z).

Applying Lemma 2.3, we have∫
D

(
1− |z|2

1− |φ(z)|2

)p

dλ(z) ≥
∞∑
n=1

2pϵk(n)∑
j=1

c32
−pϵk(n) = c3

∞∑
n=1

2pϵk(n) · 2−pϵk(n) = ∞.

This completes the proof.
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