This is a ``preproof'' accepted article for *Canadian Mathematical Bulletin* This version may be subject to change during the production process. DOI: 10.4153/S0008439525000220

SCHATTEN CLASS COMPOSITION OPERATORS

QINGHUA HU AND JINGBO XIA

Abstract. Let C_{φ} be a composition operator on the Bergman space A^2 of the unit disc. A well-known problem asks whether the condition $\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^p d\lambda(z) < \infty$ is equivalent to the membership of C_{φ} in the Schatten class C_p , $1 . This was settled in the negative for the case <math>2 in [3]. When <math>2 , this condition is not sufficient for <math>C_{\varphi} \in C_p$. In this paper we take up the case $1 . We show that when <math>1 , this condition is not necessary for <math>C_{\varphi} \in C_p$.

1. INTRODUCTION

Let D be the unit disk in the complex plane C and H(D) be the class of functions analytic in D. Let dA be the area measure on D normalized in such a way that A(D) = 1. We write $d\lambda$ for the Möbius-invariant measure on D, i.e., $d\lambda(z) = (1 - |z|^2)^{-2} dA(z)$.

Recall that the Bergman space A^2 is defined by

$$A^{2} = \{ f : f \in H(D), \ \|f\|_{A^{2}}^{2} = \int_{D} |f(z)|^{2} dA(z) < \infty \}.$$

The Hardy space H^2 is the Hilbert space of analytic functions f on D such that

$$||f||_{H^2}^2 = \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty.$$

Given an analytic function $\varphi : D \to D$, we have the composition operator C_{φ} on A^2 or H^2 defined by the formula $C_{\varphi}(f) = f \circ \varphi$. Recall that such a C_{φ} is always bounded [5].

Let *H* be a separable Hilbert space. For any $1 \le p < \infty$, the Schatten *p*-class C_p consists of bounded linear operators *T* on *H* satisfying the condition $||T||_p < \infty$, where the *p*-norm is defined by the formula

$$||T||_p = \{ \operatorname{tr} (|T|^p) \}^{1/p} = \{ \operatorname{tr} ((T^*T)^{p/2}) \}^{1/p}.$$

The membership of composition operator C_{φ} in the Schatten class \mathcal{C}_p has been a constant source of fascination for operator theorists. In the case of the Bergman space A^2 , Luccking and Zhu showed that $C_{\varphi} \in \mathcal{C}_p$ if and only if the function $z \mapsto \{\log(1/|z|)\}^{-2}N_{\varphi,2}(z)$ belongs to $L^{p/2}(D, d\lambda)$, where $N_{\varphi,2}$ is a counting function associated with φ [2].

On the other hand, it would be more desirable to obtain a criterion for the membership $C_{\varphi} \in C_p$ in which φ appears in a more explicit way. One such approach involves the *Berezin transform*. Let k_z be the normalized reproducing kernel for A^2 . Recall that for $T \in \mathcal{B}(A^2)$, the Berezin transform of T is the function

$$z \mapsto \langle Tk_z, k_z \rangle$$

Keywords. Composition operator, Bergman space, Schatten class.

²⁰²⁰ Mathematics Subject Classification. Primary 47B10, 47B33, 47B38.

on D. It is known (see [6]) that $C_{\varphi} \in \mathcal{C}_p$ if and only if

$$\int_{D} \langle C_{\varphi}^{*} C_{\varphi} k_{z}, k_{z} \rangle^{p/2} d\lambda(z) < \infty.$$
(1.1)

In view of this, one naturally considers the condition

$$\int_{D} \langle C_{\varphi} C_{\varphi}^* k_z, k_z \rangle^{p/2} d\lambda(z) < \infty.$$
(1.2)

Compared with (1.1), (1.2) appears more desirable because, by an easy calculation,

$$\langle C_{\varphi}C_{\varphi}^*k_z, k_z \rangle = \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^2$$

which involves φ in a very direct way. Thus the following problem arose:

Problem 1.1. [1] [2] [5] Let $\varphi : D \to D$ be an analytic function. Is it true that for $1 , the composition operator <math>C_{\varphi} : A^2 \to A^2$ is in the Schatten class C_p if and only if

$$\int_{D} \left(\frac{1 - |z|^2}{1 - |\varphi(z)|^2} \right)^p d\lambda(z) < \infty?$$
(1.3)

It is trivial that $C_{\varphi} \in \mathcal{C}_2$ if and only if

$$\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^2 d\lambda(z) < \infty.$$

In [3], it was shown that when $2 , (1.3) is not sufficient for the membership <math>C_{\varphi} \in C_p$. That is, for each $2 , there is an analytic <math>\varphi : D \to D$ such that

$$\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^p d\lambda(z) < \infty$$

and $C_{\varphi} \notin C_p$. In this paper we settle the remaining case, the case $1 . We will show that when <math>1 , (1.3) is not necessary for the membership <math>C_{\varphi} \in C_p$. Here is our main result.

Theorem 1.1. For each $1 , there exists an analytic function <math>\varphi : D \to D$ such that the composition operator $C_{\varphi} : A^2 \to A^2$ belongs to the Schatten class C_p , and yet

$$\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^p d\lambda(z) = \infty.$$
(1.4)

Together with the result in [3], Theorem 1.1 completes the contrast between (1.1) and (1.2). From the view point of operator theory, it is truly amazing that there is such a sharp contrast.

It will be interesting to consider what happens in the case of the Hardy space. Let k_z^{Har} denote the normalized reproducing kernel for the Hardy space H^2 . By an easy calculation,

$$\langle C_{\varphi}C_{\varphi}^{*}k_{z}^{\mathrm{Har}},k_{z}^{\mathrm{Har}}\rangle=\frac{1-|z|^{2}}{1-|\varphi(z)|^{2}}$$

Thus the Hardy-space equivalent of condition (1.3) is

$$\int_{D} \left(\frac{1 - |z|^2}{1 - |\varphi(z)|^2} \right)^{p/2} d\lambda(z) < \infty.$$

$$(1.5)$$

Recently, Yang and Yuan showed for each $2 , there is an analytic <math>\varphi : D \to D$ such that

$$\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^{p/2} d\lambda(z) < \infty$$

and such that the composition operator $C_{\varphi}: H^2 \to H^2$ does not belong to $\mathcal{C}_p(H^2)$ [4]. This settles the entire Hardy-space case. This is because (1.5) holds only if p > 2. For every $p \leq 2$, we have

$$\int_D (1 - |z|^2)^{p/2} d\lambda(z) = \infty.$$

The remainder of the paper consists of the proof of Theorem 1.1.

2. The proof of Theorem 1.1

The proof of Theorem 1.1 begins with a construction adapted from [3]. For n = 1, 2, ..., define

$$T_n = \left(2^{-(n+1)}, 2^{-n}\right]$$
 and $S_n = \left((4/3)2^{-(n+1)}, (5/3)2^{-(n+1)}\right]$

That is, S_n is the middle third of T_n . Denote $t_n = (4/3)2^{-(n+1)}$, the left end-point of S_n , $n \in \mathbb{N}$. Let $1 be given. We choose an <math>\epsilon$ such that

$$0 < \epsilon < 1/p$$

and such that $p\epsilon$ is a rational number. Thus $p^{-1} > (p-1)\epsilon$, and $\lim_{k\to\infty} 2^{-(p^{-1}-(p-1)\epsilon)k} = 0$. We can choose a strictly increasing sequence $k(1) < \ldots < k(n) < \ldots$ of positive integers such that

$$2^{-(p^{-1}+\epsilon)k(n)} \cdot 2 \cdot 2^{p\epsilon k(n)} = 2^{-(p^{-1}-(p-1)\epsilon)k(n)+1} \le (1/3)2^{-(n+1)} = |S_n|$$
(2.1)

for every n and such that every $p \in k(n)$ is an integer. Note the difference between the choice of k(n) in this paper and the choice in [3].

For integers $n\geq 1$ and $1\leq j\leq 2^{p\epsilon k(n)},$ define the intervals

$$J_{n,j} = (a_{n,j}, c_{n,j}) = \left(t_n + 2^{-(p^{-1} + \epsilon)k(n)} \cdot 2 \cdot (j - 1), \ t_n + 2^{-(p^{-1} + \epsilon)k(n)} \cdot 2 \cdot j\right),$$

$$I_{n,j} = (a_{n,j}, b_{n,j}) = \left(t_n + 2^{-(p^{-1} + \epsilon)k(n)} \cdot 2 \cdot (j - 1), \ t_n + 2^{-(p^{-1} + \epsilon)k(n)} \cdot (2j - 1)\right).$$

It is easy to check that $I_{n,j}$ is the left half of $J_{n,j}$ and the $J_{n,j}$'s are pairwise disjoint. (2.1) ensures that

$$\bigcup_{j=1}^{2^{p\epsilon k(n)}} J_{n,j} \subset S_n.$$

We denote the length of the interval $I_{n,j}$ by ρ_n . That is,

$$\rho_n = |I_{n,j}| = b_{n,j} - a_{n,j} = 2^{-(p^{-1} + \epsilon)k(n)}.$$

We now define a measurable function u on the unit circle $\mathbf{T} = \{w \in \mathbf{C} : |w| = 1\}$ as follows:

$$u(e^{it}) = 2^{-k(n)} \quad \text{if} \quad t \in \bigcup_{j=1}^{2^{pek(n)}} I_{n,j}, \ n \ge 1,$$
$$u(e^{it}) = 1 \quad \text{if} \quad t \in (-\pi, \pi] \setminus \Big\{ \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{pek(n)}} I_{n,j} \Big\}.$$

anck(n)

The harmonic extension of u to D will be denoted by the same symbol. Finally, define

$$h(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} u(e^{it}) dt,$$

$$\varphi(z) = \exp(-h(z)), \quad z \in D.$$
(2.2)

Obviously, $\operatorname{Re}\{h(z)\} = u(z) > 0$, and consequently

$$|\varphi(z)| = e^{-\operatorname{Re}\{h(z)\}} = e^{-u(z)} < 1$$

for every $z \in D$. This implies $\varphi(D) \subset D$.

For $z \in D$ and $e^{it} \in \mathbf{T}$, let $P(z, e^{it}) = \frac{1-|z|^2}{|e^{it}-z|^2}$ be the Poisson kernel. It was shown in [3, p. 2508] that if $1/2 \le r < 1$ and $|\theta - t| \le 5$, then there exist constants $0 < \alpha < \beta < \infty$ such that

$$\frac{\alpha(1-r)}{(1-r)^2 + (\theta-t)^2} \le \frac{1}{2\pi} P(re^{i\theta}, e^{it}) \le \frac{\beta(1-r)}{(1-r)^2 + (\theta-t)^2}.$$
(2.3)

For any $n \in \mathbf{N}$ and $1 \leq j \leq 2^{p \epsilon k(n)}$, define

$$G_{n,j} = \{ re^{i\theta} : \theta \in I_{n,j}, \ 0 < 1 - r \le \rho_n \}.$$
(2.4)

Given such a pair of n, j, we have

$$G_{n,j} = \bigcup_{\nu=0}^{k(n)} G_{n,j}^{\nu},$$

where

$$G_{n,j}^{0} = \{ re^{i\theta} : \theta \in I_{n,j}, \ 0 < 1 - r \le \rho_n \cdot 2^{-k(n)} \},\$$
$$G_{n,j}^{\nu} = \{ re^{i\theta} : \theta \in I_{n,j}, \ \rho_n \cdot 2^{-k(n)} \cdot 2^{\nu-1} < 1 - r \le \rho_n \cdot 2^{-k(n)} \cdot 2^{\nu} \}$$

for $1 \le \nu \le k(n)$. By [3, (2.6) and (2.7)], there is a constant 0 < c < 1 independent of n, j such that

$$u(z) \ge c2^{-k(n)+\nu}$$
 if $z \in G_{n,j}^{\nu}, \ 0 \le \nu \le k(n).$ (2.5)

Recalling [3, (2.10)], we have

$$A(G_{n,j}^{\nu}) \le \rho_n^2 \cdot 2^{-k(n)} \cdot 2^{\nu}, \quad 0 \le \nu \le k(n).$$
(2.6)

The following two lemmas are quoted from [3, Lemma 7] and [3, Lemma 5], respectively.

Lemma 2.1. There is a $c_1 > 0$ such that

$$u(z) \ge c_1 \quad \text{for every} \quad z \in D \setminus \left\{ \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{p \in k(n)}} G_{n,j} \right\}$$

where $G_{n,j}$ is defined by (2.4).

Lemma 2.2. For any $n \ge 1$ and $1 \le j \le 2^{p \in k(n)}$, let $B_{n,j}$ be the middle third of $I_{n,j}$. That is, $B_{n,j} = (3^{-1}(b_{n,j} + 2a_{n,j}), 3^{-1}(2b_{n,j} + a_{n,j}))$, where $a_{n,j} < b_{n,j}$ are the end-points of $I_{n,j}$. Furthermore, for such n and j, define

$$E_{n,j} = \{ re^{it} : t \in B_{n,j}, \ 0 < 1 - r \le \rho_n \cdot 2^{-k(n)} \}.$$

Then $\sup_{z \in E_{n,j}} u(z) \le (1+6\beta)2^{-k(n)}$, where β is the constant that appears in (2.3).

We need one more lemma:

Lemma 2.3. There is a $c_3 > 0$ such that

$$\int_{E_{n,j}} \frac{(1-|z|^2)^{p-2}}{(1-|\varphi(z)|^2)^p} dA(z) \ge c_3 2^{-p\epsilon k(n)}$$

for all $n \ge 1$ and $1 \le j \le 2^{p \in k(n)}$.

Proof. Denote $\varphi_{n,j} = \inf\{|\varphi(z)| : z \in E_{n,j}\}, n \ge 1 \text{ and } 1 \le j \le 2^{p \in k(n)}$. Then $\varphi_{n,j} \ge e^{-C2^{-k(n)}}$ by Lemma 2.2. Writing $\sigma = \sup_{0 \le x \le C} (1 - e^{-x})/x$, we have

$$\frac{1}{1 - |\varphi(z)|} \ge \frac{1}{1 - \varphi_{n,j}} \ge \frac{1}{\sigma C 2^{-k(n)}} = \frac{2^{k(n)}}{\sigma C} \quad \text{for } z \in E_{n,j}.$$

Let $c_2 = 2^{-2} (\sigma C)^{-p}$. Then

$$\int_{E_{n,j}} \frac{(1-|z|^2)^{p-2}}{(1-|\varphi(z)|^2)^p} dA(z) \ge c_2 2^{pk(n)} \int_{E_{n,j}} (1-|z|)^{p-2} dA(z)$$
$$\ge c_3 2^{pk(n)} \cdot (\rho_n 2^{-k(n)})^{p-1} \cdot \rho_n = c_3 2^{-p\epsilon k(n)}.$$

This completes the proof.

Proof of Theorem 1.1: We must show that the analytic function $\varphi : D \to D$ defined by (2.2) has the property that $C_{\varphi} \in C_p$ and satisfies (1.4). Let us first verify $C_{\varphi} \in C_p$.

To show that $C_{\varphi} \in C_p$, we need the following inequality: For any $0 < \rho < 1$ and 0 < x < 1, using Hölder's inequality with conjugate exponents $1/\rho$ and $1/(1-\rho)$, we have

$$\sum_{l=0}^{\infty} (l+1)^{\rho} x^{l} = \sum_{l=0}^{\infty} (l+1)^{\rho} \cdot x^{l\rho} \cdot x^{l(1-\rho)}$$

$$\leq \left\{ \sum_{l=0}^{\infty} \left((l+1)^{\rho} x^{l\rho} \right)^{1/\rho} \right\}^{\rho} \cdot \left\{ \sum_{l=0}^{\infty} \left(x^{l(1-\rho)} \right)^{1/(1-\rho)} \right\}^{1-\rho}$$

$$= \left(\frac{1}{(1-x)^{2}} \right)^{\rho} \left(\frac{1}{1-x} \right)^{1-\rho}$$

$$= \frac{1}{(1-x)^{\rho+1}}.$$
(2.7)

Let $e_l(z) = (l+1)^{1/2} z^l$, l = 0, 1, 2, ... Recall that $\{e_l : l \ge 0\}$ is the standard orthonormal basis for the Bergman space A^2 . Because $1 and <math>||e_l|| = 1$, it follows that

$$\langle (C_{\varphi}^* C_{\varphi})^{p/2} e_l, e_l \rangle \leq \{ \langle C_{\varphi}^* C_{\varphi} e_l, e_l \rangle \}^{p/2} = \| C_{\varphi} e_l \|_{A^2}^p = (l+1)^{p/2} \| \varphi^l \|_{A^2}^p$$

$$= (l+1)^{p/2} \Big\{ \int_D |\varphi(z)|^{2l} dA(z) \Big\}^{p/2}.$$

Let

$$G = \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{p \in k(n)}} G_{n,j},$$

where $G_{n,j}$ is given by (2.4). For $z \in D \setminus G$, Lemma 2.1 implies that

$$|\varphi(z)| = e^{-\operatorname{Re}(h(z))} = e^{-u(z)} \le e^{-c_1}.$$
(2.8)

We have

$$\begin{aligned} \operatorname{tr}\left((C_{\varphi}^{*}C_{\varphi})^{p/2}\right) &= \sum_{l=0}^{\infty} \langle (C_{\varphi}^{*}C_{\varphi})^{p/2}e_{l}, e_{l} \rangle \leq \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \int_{D} |\varphi(z)|^{2l} dA(z) \Big\}^{p/2} \\ &= \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \int_{D\setminus G} |\varphi(z)|^{2l} dA(z) + \int_{G} |\varphi(z)|^{2l} dA(z) \Big\}^{p/2} \\ &\leq I+J, \end{aligned}$$

where

$$\begin{split} I &= \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \int_{D \setminus G} |\varphi(z)|^{2l} dA(z) \Big\}^{p/2} \quad \text{and} \\ J &= \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \int_{G} |\varphi(z)|^{2l} dA(z) \Big\}^{p/2}. \end{split}$$

Applying (2.8), we obtain

$$I = \sum_{l=0}^{\infty} (l+1)^{p/2} \left\{ \int_{D\backslash G} |\varphi(z)|^{2l} dA(z) \right\}^{p/2} \le \sum_{l=0}^{\infty} (l+1)^{p/2} \left\{ (e^{-c_1})^{2l} \int_{D\backslash G} dA(z) \right\}^{p/2}$$
$$\le \sum_{l=0}^{\infty} (l+1)^{p/2} \left\{ (e^{-c_1})^{2l} \right\}^{p/2} = \sum_{l=0}^{\infty} (l+1)^{p/2} (e^{-pc_1})^l \le \frac{1}{(1-e^{-pc_1})^{(p/2)+1}},$$

where the last \leq follows from the condition p/2 < 1 and (2.7).

Next we show that $J < \infty$. Note that

$$\left(\sum_{n} a_{n}\right)^{s} \le \sum_{n} a_{n}^{s}$$

if $s \leq 1$ and $a_n \geq 0$. Applying (2.5), (2.6) and (2.7), we obtain

$$\begin{split} J &= \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \sum_{n=1}^{\infty} \sum_{j=1}^{2^{p \in k(n)}} \sum_{\nu=0}^{k(n)} \int_{G_{n,j}^{\nu}} |\varphi(z)|^{2l} dA(z) \Big\}^{p/2} \\ &\leq \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \sum_{n=1}^{\infty} \sum_{j=1}^{2^{p \in k(n)}} \sum_{\nu=0}^{k(n)} (e^{-c2^{-k(n)+\nu}})^{2l} \rho_n^2 2^{-k(n)+\nu} \Big\}^{p/2} \\ &= \sum_{l=0}^{\infty} (l+1)^{p/2} \Big\{ \sum_{n=1}^{\infty} 2^{p \in k(n)} \sum_{\nu=0}^{k(n)} (e^{-c2^{-k(n)+\nu}})^{2l} \rho_n^2 2^{-k(n)+\nu} \Big\}^{p/2} \\ &\leq \sum_{l=0}^{\infty} (l+1)^{p/2} \sum_{n=1}^{\infty} \sum_{\nu=0}^{k(n)} e^{-C_1 l 2^{-k(n)+\nu}} \cdot \rho_n^p \cdot 2^{(p^2/2) \in k(n)} \cdot (2^{-k(n)+\nu})^{p/2} \\ &= \sum_{n=1}^{\infty} \sum_{\nu=0}^{k(n)} \left(\sum_{l=0}^{\infty} (l+1)^{p/2} e^{-C_1 l 2^{-k(n)+\nu}} \right) \rho_n^p \cdot 2^{(p^2/2) \in k(n)} \cdot (2^{-k(n)+\nu})^{p/2} \end{split}$$

$$\leq \sum_{n=1}^{\infty} \sum_{\nu=0}^{k(n)} \frac{\rho_n^p \cdot 2^{(p^2/2)\epsilon k(n)} \cdot (2^{-k(n)+\nu})^{p/2}}{(1-e^{-C_1 2^{-k(n)+\nu}})^{(p/2)+1}}.$$

Let $\delta = \inf_{0 < x \le C_1} x^{-1} (1 - e^{-x})$. Continuing with the above, we obtain

$$J \leq \sum_{n=1}^{\infty} \sum_{\nu=0}^{k(n)} \frac{\rho_n^p \cdot 2^{(p^2/2)\epsilon k(n)} \cdot (2^{-k(n)+\nu})^{p/2}}{(\delta C_1 2^{-k(n)+\nu})^{(p/2)+1}}$$
$$= \frac{1}{(\delta C_1)^{(p/2)+1}} \sum_{n=1}^{\infty} \sum_{\nu=0}^{k(n)} \frac{\rho_n^p \cdot 2^{(p^2/2)\epsilon k(n)}}{2^{-k(n)+\nu}}$$
$$\leq \frac{2}{(\delta C_1)^{(p/2)+1}} \sum_{n=1}^{\infty} \frac{2^{-(1+p\epsilon)k(n)} \cdot 2^{(p^2/2)\epsilon k(n)}}{2^{-k(n)}}$$
$$= \frac{2}{(\delta C_1)^{(p/2)+1}} \sum_{n=1}^{\infty} 2^{-(1-(p/2))p\epsilon k(n)} < \infty,$$

where the last step again uses the condition p/2 < 1. Therefore

$$\operatorname{tr}\left((C_{\varphi}^{*}C_{\varphi})^{p/2}\right) \leq I + J < \infty$$

This implies that $C_{\varphi} \in \mathcal{C}_p$.

It remains to verify that

$$\int_D \left(\frac{1-|z|^2}{1-|\varphi(z)|^2}\right)^p d\lambda(z) = \infty.$$

Obviously,

$$\int_{D} \left(\frac{1 - |z|^2}{1 - |\varphi(z)|^2} \right)^p d\lambda(z) \ge \sum_{n=1}^{\infty} \sum_{j=1}^{2^{p \in k(n)}} \int_{E_{n,j}} \frac{(1 - |z|^2)^{p-2}}{(1 - |\varphi(z)|^2)^p} dA(z).$$

Applying Lemma 2.3, we have

$$\int_{D} \left(\frac{1 - |z|^2}{1 - |\varphi(z)|^2} \right)^p d\lambda(z) \ge \sum_{n=1}^{\infty} \sum_{j=1}^{2^{p\epsilon k(n)}} c_3 2^{-p\epsilon k(n)} = c_3 \sum_{n=1}^{\infty} 2^{p\epsilon k(n)} \cdot 2^{-p\epsilon k(n)} = \infty.$$

This completes the proof.

REFERENCES

- [1] D. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987), 345-368.
- [2] D. Luecking and K. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114 (1992), 1127-1145.
- [3] J. Xia, On a proposed characterization of Schatten-class composition operators, Proc. Amer. Math. Soc. 131 (2003), 2505-2514.
- [4] W. Yang and C. Yuan, Schatten class composition operators on the Hardy space, Proc. Roy. Soc. Edinburgh Sect. A 154 (2024), 1364-1377.
- [5] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.
- [6] K. Zhu, Schatten class composition operators on weighted Bergman spaces of the disk, J. Operator Theory 46 (2001), 173-181.

QINGHUA HU AND JINGBO XIA

Qinghua Hu

School of Mathematical Sciences, Qufu Normal University, Qufu 273100, Shandong, China E-mail: hqhmath@sina.com

Jingbo Xia

College of Data Science, Jiaxing University, Jiaxing 314001, China

and

8

Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260, USA E-mail: jxia@acsu.buffalo.edu