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The flow inside a rotating annulus tilted with respect to gravity is characterized
experimentally and theoretically. As in the case of a tilted rotating cylinder the flow is
forced by the free surface, maintained flat by gravity. It leads to resonances of global
inertial modes (Kelvin modes) when the height of fluid is a multiple of half the wavelength
of the mode. The divergence of the mode is saturated by viscous effects at the resonance.
The maximum amplitude scales as the Ekman number to the power −1/2 when surface
Ekman pumping is dominant, and to the power −1 when volumic damping is dominant.
An analytical prediction is given with no fitting parameter, in excellent agreement with
experimental results. At lower Ekman numbers, the flow destabilizes with respect to a
triadic resonance instability, as already observed by Xu & Harlander (Phys. Rev. Fluids,
2020). We provide here a linear stability analysis leading to the viscous threshold of the
instability for small tilt angles. For large tilt angles, a centrifugal instability is observed due
to the acceleration of the flow by the inner cylinder. Finally, the features of the turbulent
flow and its mixing efficiency are characterized experimentally. We underline the potential
interest of this configuration for bioreactors.

Key words: rotating flows, parametric instability, turbulent mixing

1. Introduction

Large-scale bioreactors used in industry suffer from severe limitations due to slow cell
growth (Garcia-Ochoa & Gomez 2009). This problem is due to a lack of good blending,
transfer and mixing of the gases and nutrients necessary for cell life. This is why,
generally, an additional convective stirring is performed by introducing bubbles or using
rotating blades. These methods partially solve the problem but also create a strong
shear that inhibits the growth of many cells and can even be lethal for fragile cells
(Cherry & Papoutsakis 1986; Doran 1999). Recently, a soft mixer consisting of a tilted
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rotating cylinder (Meunier 2020) was proposed as a suitable bioreactor for the culture
of microalgae. This set-up creates a flow similar to precessing flows, which are known
to create an efficient mixing (Goto, Shimizu & Kawahara 2014). But the soft mixer is
simpler since the forcing of the flow is due to the free surface, which remains flat by
gravity. The free surface can also create an efficient mixing in a rotating sphere (Watanabe
& Goto 2022). However, the cylindrical and spherical geometries limit the amount of light
(necessary for photosynthesis) that can be brought inside the photobioreactor. The use of
a cylindrical annulus instead of a cylinder is thus an excellent solution to increase the
illumination which can enter through both the inner and the outer cylinders.

From a physical point of view, the soft mixer is a cylinder rotating around its own axis,
tilted with respect to gravity. Thompson (1970) showed that the free surface generates a
flow that can be resonant for specific heights of fluids. In fact, this excitation is a particular
case of the forcing by a tilted cover rotating at a different velocity than the rotating cylinder,
as studied by McEwan (1970). This type of forcing is very similar to the case of precessing
flows, which have been largely studied due to their application to the precession of the
Earth (Le Bars, Cébron & Le Gal 2015) and for their abilities to drive a dynamo (Giesecke
et al. 2018).

In a precessing cylinder, the flow becomes highly energetic and turbulent due to the
resonance of global inertial modes, also called Kelvin modes (Kelvin 1880), which are the
equivalent of inertial waves in the cylindrical geometry. These modes are resonant when
the height of the cylinder is equal to an odd multiple of the half-wavelength of the inertial
mode (Manasseh 1992, 1994). The inertial modes are saturated at low Ekman number by
surface Ekman pumping (Gans 1970; Meunier et al. 2008) leading to an amplitude scaling
as the square root of the Ekman number. The nonlinear saturation is harder to describe
analytically because the inviscid nonlinear interaction of the inertial mode with itself does
not generate any geostrophic mode (i.e. axisymmetric and axially invariant), as stated by
Greenspan (1969). However, the viscous and nonlinear interaction of the inertial mode
with itself leads to a spin-down of the fluid which detunes the resonance and creates a
nonlinear saturation (Albrecht et al. 2021; Gao et al. 2021).

The nonlinear interactions can also trigger triadic instabilities (Kerswell 1999), in which
the forced inertial mode can couple with two free inertial modes that grow simultaneously
(Lagrange et al. 2008). The viscous growth rate can be predicted analytically, in excellent
agreement with the experimental results (Lagrange et al. 2011) and the numerical results
(Albrecht et al. 2015; Giesecke et al. 2015; Albrecht et al. 2018; Lopez & Marques 2018).
The transition to a fully turbulent flow depends on the parameters of the precession and
is strongly related to the mean axisymmetric flow (Pizzi et al. 2021). This transition may
even by subcritical with a relaminarization after a probability distribution of lifetime as in
pipe flows (Heraulta et al. 2015).

Despite the numerous works on precessing cylinders, there are very few studies on
precessing annuli, although Lin, Noir & Jackson (2014) showed that the global inertial
modes and the triadic resonance instabilities are very similar. Recently, Xu & Harlander
(2020) studied experimentally the case of a rotating annulus tilted with respect to gravity.
As in the cylinder, they found a resonance of the forced Kelvin mode for specific heights
of fluid. The flow then destabilizes at low Ekman number thanks to a triadic resonance at
small tilt angles and thanks to a shear instability at larger tilt angles.

The goal of this paper is to characterize this flow and its mixing properties. The
experimental apparatus to study the flow is described in § 2. Experimental and theoretical
characterization of the forced flow and of the instabilities are done in §§ 3 and 4,
respectively. Finally we address preliminary results on mixing (§ 5) inside this new soft
mixer.
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Figure 1. Experimental set-up of a tilted rotating annulus.

2. Materials and methods

2.1. Experimental set-up
We are interested in studying a mixer formed by an annular cavity (see figure 1), with
outer radius R = 9 cm and inner radius equal to Ri = 3 and 5 cm. The peripheral walls and
the bottom are made in polymethylmethacrylate (PMMA) for visualization. The annulus
rotates around its own axis, defined as the z-axis, with angular velocity Ω measured with
an accuracy of 0.1 r.p.m. thanks to a direct current (DC) brushless motor with a reduction
of 3.7. The axis of rotation is tilted at an angle α with respect to gravity g, α varying from
0.5◦ to 10◦ with an accuracy of 0.1◦. In addition, the annulus is filled with water (with
kinematic viscosity ν, known within 1 % thanks to temperature measurement) at a height
H, which is measured before the cylinder is tilted. A blob of dye, characterized by the
molecular diffusivity in water κ , is introduced to study the mixing properties of the flow.

2.2. Non-dimensional parameters
The system is characterized by six non-dimensional parameters.

(i) The aspect ratio ri = Ri/R is the parameter characterizing the flow geometry. Two
different values ri = 0.33; 0.56 are used in the experiments to observe how the flow
depends on the confinement.

(ii) The non-dimensional height h = H/R is the parameter that can be tuned to select
the different resonances of the flow (see § 3). In the experiment, we consider values
0.5 ≤ h ≤ 2 to excite four different resonances.

(iii) The tilting angle α is the parameter describing the intensity of the forcing applied
by the free surface. In the experiment, we consider values 1◦ ≤ α ≤ 10◦.

(iv) The Ekman number

E = ν

ΩR2 (2.1)

quantifies the ratio of the viscous term over the Coriolis force. In the experiment, it
is varied from E = 10−5 to E = 10−3.

(v) The Froude number

Fr = Ω2R
g

(2.2)
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is defined as the square of the ratio of inertial velocity to surface gravity wave speed.
This parameter is chosen to be small (Fr � 10−1) to neglect the curvature of the free
surface in the theory.

(vi) The Schmidt number

Sc = ν

κ
(2.3)

is defined as the ratio of the viscous diffusion rate and molecular diffusion rate. In
the experiment, where we used rhodamine B, we have a value of Sc = 2.3 × 103

such that the dye streaks are much thinner than the coherent structures of the flow.

2.3. Measurement techniques
The flow was characterized using three different methods, particle visualization
(Gauthier, Gondret & Rabaud 1998), laser induced fluorescence and particle image
velocimetry (PIV).

Particle visualizations are made with a vertical laser sheet and introducing flat mica
particles (average diameter of 50 μm) in the fluid to qualitatively underline the coherent
structures of the flow. This allowed us to observe the presence and the onset time of
instabilities.

The PIV measurements are obtained using a double pulsed yttrium-aluminium-garnet
laser (YAG) of 150 mJ per pulse at 532 nm with a frequency of 10 Hz and with a time
between pulses varying from 0.1 ms to 100 ms. The laser sheet is normal to the axis of
the annulus and has a thickness close to 5 mm. It is reflected with two vertical mirrors
in order to prevent the shade made by the inner cylinder. The images are acquired by a
4 megapixel camera, positioned below the annulus to decrease the distortion caused by the
water, synchronized with the pulsing of the laser. Since the camera is fixed, it does not
rotate with the experiment; the images of the second laser pulse are rotated, to remove the
solid body rotation and measure the velocity in the annulus frame. The time interval could
thus be enlarged in order to increase the accuracy of the velocity field measurements. In the
end, vortices of the order of 1 % of the solid body rotation can be detected. The images are
processed by a cross-correlating algorithm optimized for large velocity gradients (Meunier
& Leweke 2003).

Furthermore, using the temporal Fourier transform of the vorticity field filtered by the
acquisition frequency, it is possible to measure the frequencies of the observed motions.
Finally, the amplitudes of motion are measured by taking the scalar product of the
experimental velocity field with the theoretical modes (see (B2)).

Laser induced fluorescence was made by inserting a blob of rhodamine B at the free
surface and illuminating with a continuous 532 nm and 100 mW diode to create a laser
sheet. The laser sheet is made parallel to the bottom thanks to a large spherical lens with
a diameter of 20 cm, in order to have a uniform intensity in the annulus. The intensity I
recorded by the camera is calibrated for each experiment as a function of the concentration
by placing inside the annulus test tubes of rhodamine at a known concentration. The data
are fitted, with an accuracy of 10 %, by the empirical law (see figure 2)

c(I)
c0

= Γ
I − I0

1 − I/Isat
, (2.4)

where I0 and Isat are the intensity of background and saturation of dye, respectively, with
the empirical parameter Γ .
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Figure 2. Calibration between the intensity I measured by the camera and the normalized concentration of

rhodamine c/c0.

3. Forced mode

Using R and Ω−1 as length and time scales, we define the non-dimensional variables r =
r∗/R, t = Ωt∗ and z = z∗/R from the dimensional variables (r∗, z∗, t∗). We use cylindrical
coordinates for the position (r, θ, z) and for the velocity u = (u, v, w).

For small Froude number (defined in (2.2)), the free surface is horizontal and motionless
in the laboratory frame. In the reference frame rotating with the annulus, it is thus located
at a height

ζ(r, θ) = h − αr cos(θ + t). (3.1)

This position oscillates at a non-dimensional frequency 	 = 1 because the free surface
rotates at angular velocity −Ω (in dimensional units) in the rotating frame. The normal
velocity w = dζ/dt of the free surface generates a forcing excitation with azimuthal
wavenumber m = 1:

w(z = ζ ) = αr sin(θ + t). (3.2)

The flow is made by a constructive interference of inertial waves which lead to global
Kelvin modes (Kelvin 1880), as shown by Thompson (1970) for a cylinder and by Xu &
Harlander (2020) for an annulus. The annular modes can be derived by considering the
linearized Navier–Stokes (N–S) equations in the frame of the annulus

∂tu + 2ẑ ∧ u = −∇p + E∇2u,

∇ · u = 0,

}
(3.3)

where we have introduced the reduced pressure p = P − ρgz + ρr2Ω2/2.
This equation is solved in the limit of E → 0 by deriving the equation for pressure.

The easiest way to derive it is to take the divergence and curl of the equation, with the
incompressibility condition and assuming that (u, p) → (u, p)ei	 t, which combined give
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the Poincaré equation (Greenspan 1968)

∇2p(r, θ, z) − 4
	 2 ∂2

z p(r, θ, z) = 0. (3.4)

By decomposing the pressure in Fourier mode in z and θ is it possible to show that the
previous equation becomes the Bessel equation

d2

dr2 p(r) + 1
r

d
dr

p(r) +
[

k2
(

4
	 2 − 1

)
− m2

r2

]
p(r) = 0, (3.5)

where m is the azimuthal wavenumber and k is the axial wavenumber.
The general solution with m = 1 and frequency 	 = 1 is given by (see Lin et al. 2014)

u =
∞∑

j=1

Re

⎡
⎣Aj

⎛
⎝uj(r) cos(kjz)

vj(r) cos(kjz)
wj(r) sin(kjz)

⎞
⎠ ei(θ+t)

⎤
⎦ , p =

∞∑
j=1

Re
[
Ajpj(r) cos(kjz)ei(θ+t)

]
,

(3.6a,b)
with

pj(r) = cJ
j J1(

√
3kjr) + cY

j Y1(
√

3kjr),

uj(r) = − i
3

(
∂rpj + 2

r
pj

)

= − i
3r

[
cJ

j

(
J1(

√
3kjr)+

√
3kjJ0(

√
3kjr)
)

+ cY
j

(
Y1(

√
3kjr)+

√
3kjY0(

√
3kjr)
)]

,

vj(r) = 1
3

(
2∂rpj + 1

r
pj

)

= − 1
3r

[
cJ

j

(
J1(

√
3kjr) + 2

√
3kjrJ0(

√
3kjr)

)
+ cY

j

(
Y1(

√
3kjr) + 2

√
3kjrY0(

√
3kjr)

)]
,

wj(r) = −ikjpj = −ikj

(
cJ

j J1(
√

3kjr) + cY
j Y1(

√
3kjr)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

where J and Y are Bessel functions of the first and second kind, and Re means the real
part.

The ratio cJ
j /cY

j of coefficients of the real solution is found from the boundary condition
at r = 1:

u(r = 1) = 0, ∀ θ, z. (3.8)

We choose (although this is valid within a multiplicative constant)

cJ
j = Y1(

√
3kj) + kj

√
3Y0(

√
3kj), cY

j = −
[
J1(

√
3kj) + kj

√
3J0(

√
3kj)
]
. (3.9a,b)

In general, the slip boundary condition at r = ri,

u(r = ri) = 0, ∀ θ, z, (3.10)

gives the dispersion relation between the axial wavenumber k and the frequency of the
modes 	 . In our case, the forcing frequency is equal to 	 = 1, which fixes discrete values
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j 1 2 3 4 j 1 2 3 4

kj 2.406 5.245 8.024 10.776 kj 3.928 8.089 12.200 16.299
hj 1.306 0.599 0.392 0.292 hj 0.800 0.388 0.258 0.193

(a) (b)

Table 1. Numerical values of the first four resonance wavenumbers and height of the jth Kelvin mode given
by the dispersion relation in (3.11), for ri = 0.333 (a) and ri = 0.556 (b).
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Figure 3. Structure of the first Kelvin mode (3.6a,b) with azimuthal wavenumber m = 1. (b) Visualization
of the velocity field in two sections parallel to the z-axis showing the meridional recirculation. Two sections
normal to the z-axis are shown for z = 0.13 ≡ zlaser in (a) and for z = 1.18 ≡ h1 − zlaser in (c). The amplitude
A1 is given by the viscous theory (3.17) for ri = 0.333, E = 4.1 × 10−4, h = 1.31 and α = 3◦.

of the axial wavenumber kj thanks to the dispersion relation

cJ
j

[
J1(

√
3kjri) + kj

√
3

ri
J0(

√
3kjri)

]
+ cY

j

[
Y1(

√
3kjri) + kj

√
3

ri
Y0(

√
3kjri)

]
= 0.

(3.11)
Numerical values for ri = 0.333 and ri = 0.556 are given in table 1.

The structure of the first Kelvin mode is shown in figure 3. It exhibits a global flow
towards negative x in the upper part of the cylinder (see figure 3a) and a global flow
towards positive x in the lower part of the cylinder (see figure 3a). This is due to the choice
of the height h = 1.306 corresponding to half a wavelength of this Kelvin mode. This
creates a meridional recirculation observed in figure 3(b).

The vorticity of the Kelvin mode can be calculated using the Kelvin modes property
ω = −2i∂zu,

ωz =
∞∑

j=1

Re
[
−2k2

j Ajpj(r) cos(kjz)ei(θ+t)
]
. (3.12)

Near the free surface, the global flow creates an outer lobe of negative vorticity for y
positive and an outer lobe of positive vorticity for y negative. The axial antisymmetry is
simply due to the azimuthal wavenumber m = 1. Additional small lobes of vorticity with
opposite sign are located close to the inner cylinder.
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ri = 0.33 ri = 0.56

F −i0.493 cos(2.406h) −i0.222 cos(3.928h)

T i1.080 cos(2.406h) i1.117 cos(3.928h)

B −3.286 + i2.225 −5.546 + i3.756
Ce −6.110(1 + i)[h/2 + 0.104 sin(4.811h)] −14.788(1 + i)[h/2 + 0.064 sin(7.855h)]
Ci −21.965(1 + i)[h/2 + 0.104 sin(4.811h)] −27.776(1 + i)[h/2 + 0.064 sin(7.855h)]
V −86.551h − 5.490 sin(4.811h) −377.867h − 13.660 sin(7.855h)

Table 2. Numerical values of the viscous correction terms, for ri = 0.33 and ri = 0.56 as a function of h.

The amplitude of the modes must be set in order to fulfil the boundary condition at the
free surface (3.2). This boundary condition is also valid at z = h rather than at z = ζ at
first order in α. Multiplying by rū and integrating on r gives (to find the amplitude we use
the orthogonality rules

∫ 1
ri

wi(r)wj(r)r dr ∝ δij)

Aj = αF
T sin(kjh)

, (3.13)

with

F =
∫ 1

ri

r2
[
cJ

j J1(
√

3kjr) + cY
j Y1(

√
3kjr)

]
dr (3.14)

and

T = kj

∫ 1

ri

r
[
cJ

j J1(
√

3kjr) + cY
j Y1(

√
3kjr)

]2
dr. (3.15)

It is interesting to note that the term F can be integrated analytically as given in (A16).
Numerical values of T and F are given in table 2. This theory is similar to the one given
in Xu & Harlander (2020) except that we give analytical predictions of the amplitudes
whereas they calculated the amplitudes numerically by fitting the theoretical solution with
five modes to the top boundary condition (3.2).

From this expression it is clear that the amplitude diverges when sin(kjh) = 0, i.e. for
kj = nπ/h. It means that the jth Kelvin mode is resonant when the height of fluid h is an
integer multiple of the half-wavelength (see table 1), i.e. when h = nhj with

hj = π/kj. (3.16)

In that case, the axial velocity of the mode vanishes at z = h and is thus unable to
contribute to fulfil the boundary condition (3.2) unless its amplitude is infinite. This is
similar to the resonance of a string excited by an oscillation of its end when the end is
located at the node of a mode.

This inviscid prediction is plotted in figure 4(a) as a green dashed line. It clearly exhibits
a divergence at h = h1. Outside the resonance (for h < 0.8), the theoretical value is close
(within 20 %) but slightly larger than the experimental value. Here, the experimental value
is measured by projecting the total velocity field at zlaser = 0.13 onto the inviscid Kelvin
mode (see Meunier et al. (2008) for further details).

Obviously, the experimental amplitude does not diverge at the resonance because of
viscous and nonlinear effects. As a first step, we have calculated the saturation due to the
Ekman pumping and volumetric damping. It can be accounted for analytically by doing an
analysis similar to the case of a cylinder (Gans 1970; Meunier et al. 2008; Meunier 2020).
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Figure 4. Amplitude of the first mode of the first resonance A1/α for ri = 0.333. It is plotted as a function
of h for E = 4.1 × 10−4 (a) and as a function of E for h = h1 (b). Experimental measurements are obtained
at α = 3◦ (black symbols) and at α = 1◦ (blue symbols). Experimental data are represented by ◦ for stable
experiments and + for unstable experiments. The dashed green line corresponds to the inviscid theory (3.13)
and the black solid line corresponds to the viscous theory (3.17). In (b) the dashed orange line is the viscous
amplitude neglecting the volumic term (i.e. with V = 0).

As shown in Appendix A, the Ekman pumping ũ has a simple expression as a function
of the z-derivative and the normal derivative of the normal velocity (A1). The amplitude
is then found by a solvability condition including the Ekman pumping at the bottom, the
inner and the outer cylinders (see Appendix A). It leads to an analytic expression for the
amplitude

Aj = αF

T sin(kjh) + √
E (B + Ce + Ci) + EV

, (3.17)

where F is the forcing term, (B + Ce + Ci) describes the surface Ekman pumping term
(bottom, external and internal cylinder) and V is the volumetric term (see table 2 for
reference values).

This theoretical amplitude is shown in figure 4(a) as a black solid line. It is in excellent
agreement with the experiment around the resonance, with no fitting parameter. It should
be noted that viscous corrections lead to a small shift of the maximum amplitude to
h = 1.1h1 due to the imaginary part of B + Ce + Ci.

When varying the Ekman number (figure 4b), the scaling of the amplitudes change
from A1 ∝ E−1/2, at small E where the surface term is dominant, to A1 ∝ E−1 when
the volumetric term becomes dominant. There is again a good agreement between the
experimental and numerical values.

Finally, we would like to note the fact that the free surface in the experiment cannot be
considered completely clean and that the presence of contaminants changes the boundary
condition on the free surface. However, it should be noted that in the extreme case
of a no-slip boundary (where a liquid surface covered by a rigid layer of non-mobile
surfactants) the amplitude of the flow is altered by a maximum of 15 % in absolute value.
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Figure 5. Axial vorticity ωz and velocity field at z = 0.13 for α = 3◦, E = 4.1 × 10−4 and ri = 0.33. The
experimental PIV measurement (a) is compared with a direct numerical simulation (DNS) obtained with the
finite element code Comsol (b).

We have, therefore, consciously not accounted for surface contamination in the present
analysis of the flow, but do acknowledge that it may need to be in other particular cases.

Figure 5 shows a comparison of the velocity and vorticity fields obtained experimentally
and numerically (using a finite element code). They exhibit the same structures and
amplitudes, with a mean flow towards positive x. This is in fair agreement with the
theoretical prediction of figure 3(c) despite a larger vorticity by a factor of two. The main
difference with theory is due to the presence of the Ekman layer.

To conclude, we have given an analytic solution for the forced mode with no fitting
parameter, in good agreement with the observation in experimental and numerical
results.

4. Instabilities of the flow

As in a tilted cylinder and in precessing containers, the flow becomes unstable when E
decreases. This can be addressed experimentally by using PIV and visualizations.

4.1. Onset time of the instability
The experimental protocol consisted in getting the solid body rotation without tilt, and
then tilting the annulus smoothly within a few seconds. Particle visualizations exhibited
periodic coherent structures appearing in the laser sheet after a time depending on the
height of fluid and on the Ekman number. This onset time tonset is plotted as a function of
h in figure 6 for the two aspect ratios ri = 0.33 and ri = 0.56. The Ekman number E was
chosen small enough for an instability to appear.

Because the instabilities are triggered from the amplitudes Aj of the forced mode, the
instability occurs faster when the height of water is near the resonant heights hj. Indeed,
experiments at ri = 0.56 show that tonset reaches its minimum value at the first and second
resonances of the first Kelvin mode. In between these two resonances, the onset time is
10 times larger. For ri = 0.33, the flow is strongly unstable, but the onset time saturates at
1/0.017 which correspond to the time needed for the forced mode to grow.

In the following we will focus only on the resonant heights.
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Figure 6. Inverse of the onset time tonset as a function of the height h for E = 3.6 × 10−5, α = 3◦ and
ri = 0.56 (a) and ri = 0.33 (b). Red dashed lines represent the theoretical values of the resonances, while
experimental data are indicated by ◦ for a triadic instability and � for a centrifugal instability.

4.2. Triadic instability
Figure 7 shows the experimental vorticity fields of the instability at midheight and quarter
height for ri = 0.33 and h = h1. The vorticity fields have been extracted from the mean
forced mode by calculating the temporal Fourier component at the frequency −9.58 in the
laboratory frame of reference. The instability exhibits a ring of alternate vortices with an
azimuthal wavenumber m′ = 9 at quarter height and an azimuthal wavenumber m′′ = 10
at midheight. Although these PIV measurements have been done separately, the difference
in azimuthal wavenumber is not due to randomness since it always gives the same result.
Xu & Harlander (2020) have actually shown that the two modes are present at the same
time. However, the Kelvin modes have an axial vorticity proportional to cos(kz) (such that
w ∼ sin(kz) vanishes at z = 0). If the first mode has an axial wavenumber k′ = π/h1, it
will not be visible at midheight. Similarly, if the second mode has an axial wavenumber
k′′ = 2π/h1 it will not be visible at quarter height. This explains the simultaneous presence
of the two modes and their separate measurements in two well-chosen sections.

Theoretically, the first Kelvin modes with (m′, k′) = (9, π/h1) and (m′′, k′′) =
(10, 2π/h1) have frequencies 	 ′ = −0.348 and 	 ′′ = 0.649 which give almost the same
frequency (equal to −9.348 and −9.351) in the laboratory frame of reference (obtained
by adding −m′Ω or −m′′Ω with Ω = 1 from dimensionalization), very close to the
experimental frequency −9.58. To conclude, the modes seem to respect the following
conditions:

k′′ − k′ = k1, (4.1)

where k1 = π/h1 is the axial wavenumber of the forced resonant mode;

m′′ − m′ = m, (4.2)

where m = 1 is the azimuthal wavenumber of the forced resonant mode;

	 ′′ − 	 ′ = 	, (4.3)

where 	 = 1 is the frequency of the forced resonant mode. This is fulfilled theoretically
only for modes m′ = 9 and m′′ = 10. These conditions are exactly similar to the case of

973 A34-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.754


S. Scollo, C. Nobili, E. Villermaux and P. Meunier

1.0

0.5

0y

x x

–0.5

–1.0

–1.0 –0.5 0 0.5

5

ωz ωz

4

3

2

1

0

–1

–2

–3

–4

–5

8

6

4

2

0

–2

–4

–6

–8

1.0 –1.0 –0.5 0 0.5 1.0

1.0

0.5

0

–0.5

–1.0

(b)(a)

Figure 7. Vorticity field at the resonance, filtered at the frequency −9.58 in the laboratory frame of reference
and averaged over one rotation. For E = 10−4, ri = 0.33, α = 1◦ and two different positions of the laser sheet:
hlaser = 0.25 (a) and hlaser = 0.5 (b). The position of the laser sheet is chosen in order to separate the two free
modes (respectively, at the nodes of m′ and m′′ mode) thus revealing the azimuthal wavenumbers m′ = 9 (a)
and m′′ = 10 (b).

precessing cylinders (Lagrange et al. 2011; Albrecht et al. 2015) and of tilted cylinders
(Meunier 2020) where modes of azimuthal wavenumbers m′ = 5 and m′′ = 6 were
observed. The higher azimuthal wavenumbers in the annulus probably come from the
radial confinement. Moreover, it should be noted that theoretically these conclusions can
also be drawn with arguments of symmetry of the problem (Marques & Lopez 2015).

These conditions indicate that a triadic resonance between the three modes is possible:
the forced mode may feed simultaneously the two free modes by nonlinear interactions,
leading to a triadic resonance instability. Although the theory has been done for a
precessing cylinder (Lagrange et al. 2011) and for a tilted cylinder (Meunier 2020), it
has never been done for an annulus despite experimental evidences for a precessing
annulus (Lin et al. 2014) and a tilted annulus (Xu & Harlander 2020). We derive here
the linear stability analysis for the annulus. Assuming that the amplitudes A′ and A′′ of
the two modes have a temporal variation of the first order (proportional to A1 ∝ α/

√
E)

and considering only the first-order terms in these amplitudes, it is possible to derive the
amplitude equations (see Appendix B)

∂tA′ = N′Ā1A′′ − D′A′,
∂tA′′ = N′′A1A′ − D′′A′′,

}
(4.4)

where N′ and N′′, defined in Appendix B, are analytic coefficients describing the nonlinear
interaction of the forced mode and the free ones, and Ā1 is the complex conjugate of the
amplitude A1 defined in (3.17). They are given by integrals in Appendix B which can
be calculated analytically in the case of a small gap using an asymptotic expansion (see
Appendix C).

The parameters

D′ =
√

Es′ + Ev′ + i�k′q′, D′′ =
√

Es′′ + Ev′′ + i�k′′q′′, (4.5a,b)

are also analytical (see Appendix B for definition of the coefficients and numerical values).
The first two terms describe the viscous corrections, with s for the Ekman damping on the
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Figure 8. Stability diagram in the parameter space α and E, for ri = 0.33 and h = h1. Colour symbols
represent unstable experiments (red for triadic instability and green for centrifugal instability) and black
symbols represent stable experiments. The experiments are visualized using PIV

�
and particle visualizations

◦. The black solid line corresponds to the theoretical threshold of (4.7) with coefficients given in table 3 for the
most unstable modes (m′, m′′) = (9, 10).

edges and v for the volumetric damping. The last term is the detuning effect, due to the
fact that the free modes are not exactly resonant with the forced mode.

The set of equations is exactly similar to (4.13a,b) in Lagrange et al. (2011) and can be
easily integrated with an exponential solution of the type A′, A′′ ∝ eσ t leading to a growth
rate σ satisfying

(
σ + D′) (σ + D′′) = |A1|2 N′N′′. (4.6)

The flow is stable if Re(σ ) < 0 which leads to the threshold tilt angle (in degrees) as

α(E) = 180
π

1

|A1/α|√N′N′′

√√√√D′
ReD′′

Re

(
1 +
(
D′

Im − D′′
Im
)2(

D′
Re + D′′

Re
)2
)

, (4.7)

where DRe and DIm are real and imaginary parts of the viscous correction.
This stability curve is plotted in figures 8–9 for the two different aspect ratios. It is

in excellent agreement with the experimental data for ri = 0.333 with an accuracy of
approximately 10 %. It should be noted that there are no fitting parameters in this viscous
theory since all coefficients can be computed analytically. The agreement is not as good
for ri = 0.56 but still correct with an error smaller than 30 %. The effect of the detuning
is very small for ri = 0.56 and invisible for ri = 0.33.

The scaling of the threshold curves can be explained asymptotically. First, we consider
only the surface damping of the forced Kelvin mode (which is valid for E � 10−3, see
figure 4b). It leads to a scaling of the forcing amplitude as A1 ∼ F/

√
ES (where S = (B +

Ce + Ci)). Then, (4.7) has three different scalings depending whether the detuning, the
surface damping of the free modes or the volumic damping of the free modes is dominant
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Figure 9. Stability diagram in the parameter space α and E, for ri = 0.55 and h = h1 (a) and h = 2h1 (b).
Red symbols represent unstable experiments and black symbols represent stable experiments. The theoretical
triadic resonance critical curves of (4.7) with the coefficients given in table 3 are shown in black with detuning
and in blue without detuning for the most unstable modes (m′, m′′) = (17, 18).

(see also Lagrange et al. 2011)

α(E) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1/2
∣∣∣∣ SF
∣∣∣∣
√

|�k′q′�k′′q′′|
N′N′′ , for E � E(1)

c ,

E
∣∣∣∣ SF
∣∣∣∣
√√√√s′

Res′′
Re

N′N′′

[
1 +
(

s′
Im − s′′

Im
s′

Re + s′′
Re

)2
]
, for E(1)

c � E � E(2)
c

E3/2
∣∣∣∣ SF
∣∣∣∣
√

v′v′′

N′N′′ , for E � E(2)
c ,

, (4.8)

where E(i)
c are the critical values given by the formulae

E(1)
c =

∣∣∣∣∣∣
|�k′q′�k′′q′′|

s′
Res′′

Re

[
1 +
(

s′
Im − s′′

Im
s′

Re + s′′
Re

)2
]−1
∣∣∣∣∣∣ , (4.9)

E(2)
c =

∣∣∣∣∣s
′
Res′′

Re
v′v′′

[
1 +
(

s′
Im − s′′

Im
s′

Re + s′′
Re

)2
]∣∣∣∣∣ . (4.10)

In the experiments, the Ekman number is always close to E(2)
c such that the scaling

exponent is between 1 and 3/2.

4.3. Centrifugal instability
For large tilt angles the flow exhibited an instability different to the triadic resonance
instability studied above. For ri = 0.33, this instability was found at tilt angles larger than
3◦, as shown by the green symbols of figure 8. In this case, the particle visualizations and
the PIV measurements highlighted the presence of small toroidal vortices of alternate sign

973 A34-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.754


Resonances and instabilities in a tilted rotating annulus

0.8 30

25

20

15

10

5

0

–5

–10

–15

–20

–25

1.0

0.8

0.6

z

x r

〈v〉
θ

0.4

0.2

0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.4 0.6 0.8 1.0

ωθ (b)(a)

Figure 10. (a) Instantaneous PIV measurements of the meridional velocity and the toroidal vorticity for E =
3.6 × 10−4 during the onset of the instability. (b) Azimuthally averaged tangential velocity in the frame of
reference of the laboratory at α = 5◦, h = h1 = 1.31, ri = 0.33 and z = 0.33 for E = 7.3 × 10−4 in green,
E = 3.6 × 10−4 in red and E = 2.2 × 10−4 in blue. The black line corresponds to the solid body rotation of
the annulus.

close to the inner cylinder (see figure 10a). This structure is reminiscent of a centrifugal
instability (Rayleigh 1917; Taylor 1923) occurring in Taylor–Couette flows.

For an axisymmetric flow, it is well known that the centrifugal instability occurs when
the Rayleigh discriminant becomes negative

d
dr

(
r2v2

θ

)
< 0. (4.11)

In our case, the forced mode is not exactly axisymmetric, but we can use the azimuthal
average of the velocity 〈v〉θ to define a Rayleigh discriminant. In the limit of vanishing
tilt angles, the solid body azimuthal profile is equal to r. This prediction is plotted as a
black line in figure 10(b). For large Ekman number (i.e. when the resonant Kelvin mode
is strongly damped), the experimental value is close to this prediction. However, when the
Ekman number decreases, the experimental value decreases because the resonant Kelvin
mode decelerates the solid body rotation by self-nonlinear interaction (Albrecht et al.
2021; Gao et al. 2021). The value of vθ is thus a decreasing function of r close to the inner
cylinder (between r = 0.33 and r = 0.4) leading to a negative Rayleigh discriminant. We
can thus expect a centrifugal instability close to the inner cylinder, which is consistent with
the alternate toroidal vortices observed in the PIV measurements. It should be noted that
the value of vθ was not measured by PIV on the inner cylinder but it must be equal to ri
for a no-slip boundary condition.

4.4. Turbulent flow regime
When the Ekman number E is decreased further below the threshold, the flow becomes
more and more turbulent. As found for a cylinder (Lopez & Marques 2016), the amplitude
of the free modes first become time dependent. Then other azimuthal Fourier modes
appear. It leads to smaller structures that can be observed (see figure 11a), although
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Figure 11. Turbulent fluctuations characterized by (a,d) the axial vorticity, (b,e) the strain rate and (c, f ) the
horizontal divergence. (a–c) Examples of instantaneous fields are shown for α = 3◦ and E = 6.9 × 10−5. (d–f )
The root mean square (r.m.s.). values are plotted for α = 1.5◦ in black, α = 3◦ in red and α = 10◦ in blue. The
solid lines correspond to the stable forced mode with the forced Kelvin mode at an amplitude given by (3.17).
Here ri = 0.33; h = h1.

superimposed to the vorticity of the forced mode (positive on one side and negative on
the other side). The maximal vorticity is close to three.

Figure 11(b) shows the strain rate s defined as the largest eigenvalue of the horizontal
symmetric velocity gradient tensor

Bij = 1
2

[
∂iuj + ∂jui

]
, i, j = 1, 2. (4.12)

The small-scale structures of strain are smaller than their vortical counterparts with a
maximum shear of the order of one.

Finally, figure 11(c) shows the two-dimensional (2-D) divergence ∂xu + ∂yv of the flow
which exhibits again small-scale structures with a maximum value close to two.

In order to measure quantitatively the turbulent fluctuations, we have calculated the
r.m.s. value of the vorticity (see figure 11d). It increases when the Ekman number
decreases and saturates at a value close to one. These experimental values are larger by
a factor of two than the theoretical prediction in the stable case. However, it was already
observed for the forced mode that the vorticity maximum was larger in the experiments
and the DNS than in the theory (see figures 5 and 3).

The r.m.s. value of the strain rate is plotted in figure 11(e). It also increases when the
Ekman number decreases and saturates at a value close to 0.5. These experimental values
are again larger by a factor of two than the theoretical prediction in the stable case.

Finally, the r.m.s. value of the 2-D divergence is plotted in figure 11( f ). Again, it
increases when the Ekman number decreases and saturates at a value close to 0.5.
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Figure 12. (a) Example of observed pattern of the injected dye inside the fluid after one rotation. (b) Temporal
evolution of the variance of concentration crms/c0 for h = h1 = 1.306 in red and h = 1.57 in blue, both with
ri = 0.33, α = 3◦ and E = 2.1 × 10−5. The two black lines are exponential fits c0e−t/τ with τ = 8 for h = h1
and τ = 170 for h = 1.57.

The values found here for an annulus are larger by a factor of almost three than for
a tilted cylinder. This is possibly due to the radial confinement, which creates smaller
structures and thus increases the velocity gradients. Fortunately, these values are still one
order of magnitude smaller than for a Rushton turbine, consisting of six vertical blades and
a rotating horizontal disk (Nagata 1975) at the same angular velocity. This tilted annulus
is thus possibly a good soft mixer if the mixing is sufficiently fast.

5. Mixing

To study quantitatively the mixing properties of this flow, we injected a blob of dye
inside the fluid while the annulus is tilted. The dye is stretched and folded by the flow,
leading to thin streaks of dye (see figure 12a). When the distance between two streaks is
smaller than the diffusive thickness, the concentration becomes uniform if the streaks are
homogeneously spread over the whole volume.

5.1. Variance of concentration
The efficiency of the mixing can be measured quantitatively by calculating the variance of
the concentration

crms

c0
=
√

〈c2〉 − 〈c〉2

c0
. (5.1)

Indeed, the variance decreases with time and eventually vanishes when the dye
concentration is uniform. The variance is plotted in figure 12(b) for two different heights
of fluid. It is clear that the variance decays much faster at the resonant height h = h1 (red
symbols) than at a height only 15 % larger (blue symbols). This highlights the fact that this
flow is very sensitive to the height of the fluid due to the resonance of the forced Kelvin
mode.

973 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

75
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.754


S. Scollo, C. Nobili, E. Villermaux and P. Meunier

103

102

101

0 0.5 1.0 1.5

h1
h1 2h1

2.0 2.5

103

102

0 0.5 1.0 1.5
h h

2.0 2.5

τ

(b)(a)

Figure 13. Decaying time τ of the concentration variance as a function of h for (a) ri = 0.33 and (b) ri = 0.56.
The red dashed lines indicate the theoretical resonance heights of the first mode. Here E = 2.1 × 10−5; α = 3◦.

Figure 12(b) also indicates that the concentration variance decreases exponentially
with time. This is classical in turbulent flows and it can be explained by looking at
a single lamella subject (Villermaux 2019) to a straining field γ . The length in the
direction of the strain is proportional to eγ t, which by conservation of mass leads to
an exponential contraction of the thickness as e−γ t at early stages. When the thickness
reaches the Batchelor scale

√
κ/γ (Batchelor 1959), the lamella fades away. The thickness

remains constant and the maximum concentration c must decay as e−γ t for mass
conservation. The concentration variance is thus proportional to the length times the
maximal amplitude squared, which decreases as e−γ t. The characteristic time of mixing
can thus be characterized empirically by the decay rate of crms/c0, which is fitted by e−t/τ

for each experiment. In order to get a systematic picture of the efficiency of mixing,
the time τ has been measured for different heights of fluids h, tilt angles α and Ekman
numbers.

5.2. Decaying time as a function of h
A set of experiments is conducted at an Ekman number E = 2.1 × 10−5 sufficiently low
for the instability to occur at the resonance (see figure 13). As explained above, the mixing
is much more efficient at the resonance of the forced Kelvin mode (h = h1) than outside
of the resonance. For an aspect ratio ri = 0.33, the decaying time τ decreases by a factor
of 20 at h = h1 compared with its average value outside of the resonance. This band of
fast mixing has a width approximately equal to 20 % of the resonant height. The faster
decaying time is approximately equal to 10, which means that the variance decays by a
factor e in less than two rotation periods.

For a larger aspect ratio ri = 0.56 (see figure 13b), the decaying time also has two
minima at the resonances of the first Kelvin mode (h = h1 and h = 2h1). It also seems
to have another weaker minimum around h = 1.2, which could correspond to the third
resonance of the second Kelvin mode (h = 3h2 = 1.16). For this aspect ratio ri = 0.56, the
decaying time τ at the resonance is generally larger by a factor of two than for ri = 0.33.
It may come from the weaker unstable flow due to the larger Ekman damping (see § 4). It
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Figure 14. Decaying time τ of the concentration variance as a function of E for (a) ri = 0.33 and h = h1,
(b) ri = 0.56 and h = h1 and (c) ri = 0.56 and h = 2h1. The symbols display different angles α = 1◦ (+, red),
α = 3◦ (+, blue) and α = 10◦ (+, green). The vertical dashed lines are positioned at the critical E value for
the various experiments passing from stable (on the right-hand side) to unstable (on the left-hand side).

may also come from the narrow shape of the annulus, which prevents an efficient advection
of the dye from the top to the bottom.

5.3. Decaying time as a function of E
The effect of the Ekman number is then studied for various tilt angles α and at the resonant
heights (see figure 14). For all experiments, the decaying time τ increases with the Ekman
number. For example for ri = 0.33, h = h1 and α = 3◦ (see figure 14a), the decaying time
increases rapidly from τ ∼ 10 to τ = 100 when the Ekman number increases by factor of
five from E = 2 × 10−5 to E ∼ 10−4. The decaying time then seems to saturate when the
Ekman number increases further. It should be noted that the flow becomes unstable at a
critical value E = 3 × 10−4 for these parameters. It means that the Ekman number must be
at least 5 to 10 times smaller than the critical Ekman number for the flow to be sufficiently
turbulent to create an efficient mixing. This behaviour is quantitatively similar to the case
of a tilted cylinder (Meunier 2020), where it was shown that it mixes as fast as using a
Rushton turbine with a mixing time τ ∼ 10. For a larger tilt angle α = 10◦, the decaying
time τ evolves similarly than for α = 3◦ but it is 10 times faster. This result is expected
since the amplitude of the turbulent fluctuations increases with α. At Ekman numbers
smaller than 10−4 the decaying time seems to reach a plateau although experimental
limitations prevent the study of smaller Ekman numbers.

Changing the aspect ratio from ri = 0.33 to ri = 0.56 does not change the behaviour of
the results. But it leads to a decrease in efficiency as already observed in figure 13, with
an increase by a factor of at least two in the decaying time. Finally, changing the height
of the water from h = h1 to h = 2h1 further increases the decaying time by a factor of
approximately two.

To conclude, the mixing is as efficient as in a tilted cylinder or using a Rushton turbine
for a moderate aspect ratio ri = 0.33 but slightly weaker for a large aspect ratio ri = 0.56.

6. Conclusion

The flow inside a rotating annulus tilted with respect to gravity has been characterized
theoretically and experimentally. At low Froude numbers the free surface remains
horizontal, which creates an anticlockwise forcing of azimuthal wavenumber m = 1 in
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the frame rotating with the annulus. As already observed by Xu & Harlander (2020), it
excites global inertial modes which can become resonant if the height of fluid is equal to
a multiple of the half-wavelength of the mode. Indeed, the excitation is then located at
the node of the mode, such that the mode must have an infinite amplitude to satisfy the
boundary condition imposed by the free surface.

The linear and viscous theory used for the cylinder (Meunier 2020) can be extended
to the case of the annular cavity. The forced mode has been described analytically with
no fitting parameter and is in excellent agreement with the experiments. At low Ekman
numbers, the flow becomes unstable thanks to a triadic resonance instability where the
forced mode triggers two free global modes of azimuthal wavenumbers m = 9 and m = 10,
as already observed experimentally by Xu & Harlander (2020). We have developed a linear
stability analysis which predicts the viscous threshold of the instability. It is in excellent
agreement with the experiments despite the lack of fitting parameters. As far as we know,
it is the first time that such an analysis has been done in a rotating annulus. The annular
geometry also generates a different type of instability which seems to be related to a
centrifugal instability. Indeed, at large tilt angles, the solid body rotation is slowed down
by the forced Kelvin mode. The inner cylinder tends to accelerate the fluid, leading to a
centrifugally unstable forced mode in a narrow region around the inner cylinder.

The mixing efficiency of this flow is then characterized experimentally by injecting
small blobs of dye. The characteristic mixing time (defined as the decaying time of the
variance of concentration) is as fast as in a tilted cylinder or using a Rushton turbine at the
same angular velocity for a moderate aspect ratio ri = 0.33 (between the inner and outer
radius). The mixing time is slightly slower for a larger aspect ratio ri = 0.56. Since the
shear is slightly larger (by a factor of two) in a tilted annulus than in a tilted cylinder, it
seems that this annular mixer is not as smooth as a tilted cylinder. However, the shear is
still an order of magnitude smaller than using a Rushton turbine for the same characteristic
mixing time.

This annular mixer is thus an excellent candidate for large photobioreactors which
are used for example for the growth of microalgae. Indeed, it allows for a simultaneous
illumination from the outer and the inner cylinders. It thus increases the total amount of
light delivered to the photobioreactor while remaining below the maximum intensity that
creates photobleaching of the microalgae. This geometry is especially efficient for large
concentrations of microalgae since the light is strongly attenuated after a few centimetres.
For such concentrations, a cylindrical photobioreactor would be limited to diameters of the
order of 10 to 20 cm, corresponding to volumes of the order of 5 to 50 l. With an annular
photobioreactor, it is possible to reach volumes of the order of 600 litres with inner and
outer radii equal to 50 and 70 cm, respectively (for h = 2h1).
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Appendix A. Amplitude viscous correction

We have seen that the amplitudes in the linear theory are divergent. This is obviously
a non-physical behaviour. In fact the viscous effects saturate the resonance at a finite
value of the amplitude (for details, see Kerswell & Barenghi 1995). This effect due to
the Ekman pumping (Greenspan 1968) near the walls where there is the Ekman boundary
layer (Ekman 1905). In the layer, of depth ∝ √

E, there is an additional motion due to the
viscous damping of order

√
E:

ũ · n̂ =
√

E
[
−δ− + δ+

2
(n̂ · ∇)(ub · n̂) + δ− − δ+

	
∂z(n̂ · ub)

]
, (A1)

where we have defined

δ+ =

⎧⎪⎪⎨
⎪⎪⎩

1 − i√
2(	 − f )

, for 	 > f

1 + i√
2|	 − f | , for 	 < f

, δ− =

⎧⎪⎪⎨
⎪⎪⎩

1 − i√
2(	 + f )

, for 	 + f > 0

1 + i√
2|	 + f | , for 	 + f < 0

(A2a,b)

and f = 2 cos(n̂·Ω̂).
To see that we consider the solubility condition, obtained by multiplying the N–S

equation with the complex conjugate of the jth mode ūj = (ūj cos(kjz), v̄j cos(kjz), w̄j sin
(kjz))e−i(θ+t) and integrating over the cylinder excluding Ekman boundary layers (Ṽ)∫∫∫

Ṽ

ūj ·
[
iu + 2ẑ ∧ u + ∇p − E∇2u

]
d3r = 0. (A3)

To find a better expression we consider the scalar product of u and the N–S equation
for ūj

− iu · ūj + 2u · ẑ ∧ ūj = −u · ∇p̄j, (A4)

the symmetry 2u · ẑ ∧ ūj = −2ūj · ẑ ∧ u and the incompressibility condition to have (the
surface integrals are carried out by considering n oriented towards the inside of the annular
cavity) ∮

∂Ṽ

(
p̄ju + pūj

) · n dΣ − E
∫∫∫

Ṽ

ūj · ∇2u d3x = 0. (A5)

First consider the top surface (free surface) we have from the first term (∝ p̄ju)

−
∫ 2π

0

∫ 1

ri

dθr dr
[
p̄j(r, z = h)e−i(θ+t) (αr sin(θ + t))

]
≡ −αF, (A6)

and the second term (∝ pūj)

−
∫ 2π

0

∫ 1

ri

dθr dr
[
p(r, z = h)w̄j(r, z = h)e−i(θ+t)

]
≡ Aj sin(kjh)T. (A7)

The bottom contribution comes only from the first term∫ 2π

0

∫ 1

ri

dθr dr
[
p̄j(r, z = 0)e−i(θ+t)ũ · n̂

]
, (A8)
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and using the expression of the Ekman pumping (A1)∫ 2π

0

∫ 1

ri

dθr dr

[
p̄j(r, z = 0)e−i(θ+t)

(√
E

2
(−3δ+ + δ−) ∂zw|z=0

)]
≡ Aj

√
EB, (A9)

where δ+ = (1 + i)/2 and δ− = (1 − i)/
√

6.
The same happens for the inner and outer cylinders,∫ 2π

0

∫ h

0
dθ dz

[
p̄j(r = 1, z)e−i(θ+t) (−δ∂ru|r=1)

]
≡ Aj

√
ECe, (A10)

∫ 2π

0

∫ h

0
dθ dz

[
p̄j(r = ri, z)e−i(θ+t) (− δ∂ru|r=ri)

]
≡ Aj

√
ECi, (A11)

where δ = (1 − i)/
√

2.
Finally, the last term (volume integral) has an easy analytical expression∫∫∫

Ṽ

ūj · ∇2u d3x = −4k2
j

∫∫∫
Ṽ

ūj · u d3x ≡ AjEV. (A12)

With these definitions we can write the equation for viscous amplitude at the resonance

Aj = αF

T sin(kjh) + √
E (B + Ce + Ci) + EV

. (A13)

All the corrections calculated are ∝ E and in the limit E → 0 we have the inviscid
theory (see (3.13)) and from the definition it is easy to prove it.

These coefficients can be given analytically as

Ce =
2
√

2h(1 + i)(1 + k2
j )

π

[
1 + sinc(2hkj)

]
(A14)

with sinc(x) = sin(x)/x,

Ci =
√

2h(1 + i)(1 + k2
j r2

i )c
J
j

[
cJ

j J1(
√

3kjri) + cY
j Y1(

√
3kjri)

]
r2

i

[
Y1(

√
3kjri) + √

3kjriY0(
√

3kjri)
] [

1 + sinc(2hkj)
]
, (A15)

F = 2iπ
cJ

j

[
J2(

√
3kj) − r2

i J2(
√

3kjri)
]

+ cY
j

[
Y2(

√
3kj) − r2

i Y2(
√

3kjri)
]

√
3kj

cos(kjh),

(A16)

T = 2iπkj cos(kjh)I, (A17)

B = iπk2
j

(
1 − i√

6
− 3

1 + i√
2

)
I, (A18)

with

I =
∫ 1

r=ri

[
cJ

j J1(
√

3kjr) + cY
j Y1(

√
3kjr)

]2
dr. (A19)
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Appendix B. Amplitude equations for triadic instability

This result is achieved by doing a linear stability analysis, thanks to the fact that we have
the small parameters α and E, of the complete N–S equation. To perform the linear stability
analysis a perturbation is added to the forced Kelvin mode

u = uf + A′u′ + A′′u′′, (B1)

where uf is the forced Kelvin mode given in (3.6a,b) and u′, u′′ are the two free Kelvin
modes triggered by the forced mode.

In general, the free Kelvin modes are defined by (Xu & Harlander 2020)

u′ = Re

⎡
⎣A′
⎛
⎝u′(r) cos(k′z)

v′(r) cos(k′z)
w′(r) sin(k′z)

⎞
⎠ exp(i(m′θ + 	 ′t))

⎤
⎦ , (B2)

where

p′(r) = c′JJm′

(√
4

	 ′2 − 1k′r

)
+ c′YYm′

(√
4

	 ′2 − 1k′r

)
,

u′(r) = − i
4 − 	 ′2

(
	 ′∂rp′ + 2m′

r
p′
)

,

v′(r) = 1
4 − 	 ′2

(
2∂rp′ + 	 ′m′

r
p′
)

,

w′(r) = −i
k′

	 ′ p
′,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

and

c′J = 1
2

√
4

ω′2 − 1k′	 ′
[

Ym′−1

(√
4

ω′2 − 1k′
)

− Ym′+1

(√
4

ω′2 − 1k′
)]

+ 2m′Ym′

(√
4

ω′2 − 1k′
)

,

c′Y = 1
2

√
4

ω′2 − 1k′	 ′
[

Jm′+1

(√
4

ω′2 − 1k′
)

− Jm′−1

(√
4

ω′2 − 1k′
)]

− 2m′Jm
′
(√

4
ω′2 − 1k′

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B4)

At the resonance of the jth forced Kelvin mode the amplitude scales as Aj ∼ αE−1/2 and
is taken as the parameter for the analysis. Assuming a small dependence in time on A′ and
A′′ (∂tA′ ∼ Aj) and that the two free modes are not exactly resonant (k′ = k′

res + �k′ with
�k ∼ O(Aj)), we find the evolution equation (Lagrange et al. 2011)

∂tA′ = N′ĀjA′′ − D′A′,
∂tA′′ = N′′AjA′ − D′′A′′,

}
(B5)
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where the nonlinear terms are (we want to stress the fact that this result is different from
the one found in Lagrange et al. (2011) because we use a different basis)

N′ =
−i
(

k′′

	 ′′ − k
)

Icoupling∫ 1

ri

(
|u′|2 + |v′|2 + |w′|2

)
r dr

, (B6)

N′′ =
i
(

k − ±k′

	 ′

)
Icoupling∫ 1

ri

(
|u′′|2 + |v′′|2 + |w′′|2

)
r dr

, (B7)

with

Icoupling =
∫ 1

ri

∣∣∣∣∣∣
u′′ u′ u

−v′′ v′ v

−w′′ ±w′ w

∣∣∣∣∣∣ r dr, (B8)

where |.| is the determinant and the plus sign corresponds to the case k′′ = |k + k′| and the
minus sign corresponds to the case k′′ = |k − k′|.

These formulae can be linked to the values found in the literature in the case of the
cylinder taking the limit ri → 0. In this limit the coefficient cY vanishes such that the
solution (3.7) is equivalent to the classical solution in a cylinder (Meunier 2020) except
that it is cJ/2 times larger. It should be noted that the boundary condition u = 0 at r = ri
virtually disappears when ri tends to 0 since this boundary condition creates a perturbation
of the flow only in a small region of size ri, that disappears when ri tends to 0. The Kelvin
modes of an annulus with very small ri are thus exactly the same as the Kelvin modes of a
cylinder.

The nonlinear coefficients given by Meunier (2020) are related to our coefficient by the
relation

N′
Meu = limri→0

i2cJ
5

cJ
6cJ

1
N′,

N′′
Meu = limri→0

−i2cJ
6

cJ
5cJ

1
N′′,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B9)

due to the observation cY � cJ for ri → 0.
The dispersion relation gives the resonance for m′ = 5 and m′′ = 6 with resonant height

h = 1.99, same value of the cylinder, and nonlinear coefficient

N′
Meu = −1.26,

N′′
Meu = −1.95,

}
(B10)

that gives a value of the growth rate with an error of 2 %.
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ri = 0.33 h = h1 ri = 0.56 h = h1 ri = 0.56 h = 2h1

N′ 1.574i 2.249i 2.249i
N′′ −1.990i −3.142i −3.142i
s′ 0.351 + 0.591i −0.828 − 0.721i −0.211 − 0.563i
s′′ 1.297 + 0.163i −1.771 + 0.060i −1.147 − 0.231i
v′ 191.071 517.223 517.223
v′′ 219.945 583.887 583.887
q′ 0.332 0.332i 0.332i
q′′ −0.596 −0.590i −0.590i
�k′ 0.012 −0.039 −0.039
�k′′ −0.012 0.039 0.039

Table 3. Numerical values of the viscous terms for the triadic resonance, for ri = 0.33 (m′ = 9, m′′ = 10)
and ri = 0.56 (m′ = 17, m′′ = 18) at the resonance h = h1 and h = 2h1.

The other term

D′ = s′√E + v′E + i�k′q′, (B11)

describes the viscous corrections

s′ =

k′
[
−
(

1
2

(
δ′+ + δ′−

)+ 1
	 ′
(
δ′+ − δ′−

))]

×
∫ 1

ri

p′w′r dr − δ′

2h

[(
p′∂ru′)∣∣

(r=ri)
+ ( p′∂ru′) ∣∣

(r=ri)

]
∫ 1

ri

(
|u′|2 + |v′|2 + |w′|2

)
r dr

, (B12)

v′ = 4k′2

	 ′2 (B13)

and the detuning effect

q′ = −ik′

∫ 1

ri

w′p′r dr

∫ 1

ri

(
|u′|2 + |v′|2 + |w′|2

)
r dr

. (B14)

The numerical values of the correction terms used for comparison with the experiments
are given in table 3.

Appendix C. Small gap limit

We want to study the solution in the small gap limit (ri → 1 or ε → 0, where ε = 1 − ri
is the gap). In this limit we can rewrite the pressure equation (3.5) with the rescaling r̃ =
(r − 1)/ε. In this variable the term r−1∂r is subdominant with respect to ∂2

r , so under the
assumption of large wavenumber k and m (which are of order ε−1) the equation becomes
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(when coming back to the variable r)

(∂2
r + λ2)p(r) = 0, λ =

√
k2
(

4
	 2 − 1

)
− m2. (C1a,b)

Adding the boundary conditions u(1) = u(1 − ε) gives the solution

p(r) = c
(

cos[λ(r − 1)] − 2m
	λ

sin[λ(r − 1)]
)

, sin(λε) = 0. (C2a,b)

We want to connect this solution with the forced mode in (3.7) by having the same
amplitude in the limit of small ε. Taking the asymptotic formula for Jm and Ym, in (B4)
and (B3), we can show that the two relations are equal if c = 2	/π.

Finally, using the relationships between flow and pressure, we find the complete solution

p = 2
πλ

(	λ cos[λ(r − 1)] − 2m sin[λ(r − 1)]) ,

u = 2i(λ2	 2 + 4m2)

πλ(4 − 	 2)
sin[λ(r − 1)],

v = − 2
πλ(4 − 	 2)

[
mλ(4 − 	 2) cos[λ(r − 1)] + 2	(λ2 + m2) sin[λ(r − 1)]

]
,

w = −i
2k

πλ	
(	λ cos[λ(r − 1)] − 2m sin[λ(r − 1)]) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(C3)

For the forced mode, m = 1 and 	 = 1, the dispersion relation (C1a,b) gives the
asymptotic axial wavenumber kj = jπ/

√
3ε, so the forced mode is resonant when h is

a multiple of half-wavelength hj = π/kj.
Assuming

	 ′′ − 	 ′ = 1,

m′′ − m′ = 1,

}
(C4)

we have the triadic resonant instability, with nonlinear coefficient N′ and N′′ given by
(B6)–(B7). Assuming the case k′′ = |k + k′| for simplicity of description (at the end of
the subsection we give the change in all the equations in the case k′′ = |k − k′|), these
identities can be calculated for small ε, by changing r dr → dr in all integrals, and are

N′ =
i
(

k′′

	 ′′ − k
)

π2λ′2	 ′2

16k′2(k′2 + m′2)ε
Icoupling, (C5)

N′′ =
−i
(

k − k′

	 ′

)
π2λ′′2	 ′′2

16k′′2(k′′2 + m′′2)ε
Icoupling, (C6)

where Icoupling can be also calculated analytically.
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λ′′ λ′ λ k′′ k′ k m′ 	 ′′ 	 ′ ε2σ

2π/ε π/ε π/ε 2π/
√

3ε π/
√

3ε π/
√

3ε 9/ε 0.628 −0.374 0.702
3π/ε π/ε 2π/ε 4π/

√
3ε 2π/

√
3ε 2π/

√
3ε 6.5/ε 0.604 −0.393 0.659

3π/ε 2π/ε π/ε 2π/
√

3ε π/
√

3ε π/
√

3ε 19/ε 0.647 −0.370 2.733
4π/ε 2π/ε 2π/ε 4π/

√
3ε 2π/

√
3ε 2π/

√
3ε 18/ε 0.628 −0.374 2.806

π/ε π/ε 2π/ε 4π/
√

3ε 2π/
√

3ε 2π/
√

3ε 20/ε 0.675 −0.353 2.406
π/ε π/ε π/ε 2π/

√
3ε π/

√
3ε π/

√
3ε 10/ε 0.654 −0.341 0.306

2π/ε 2π/ε 2π/ε 4π/
√

3ε 2π/
√

3ε 2π/
√

3ε 20/ε 0.654 −0.341 0.613
3π/ε 3π/ε 3π/ε 6π/

√
3ε 3π/

√
3ε 3π/

√
3ε 30/ε 0.654 −0.341 0.919

4π/ε 4π/ε 4π/ε 8π/
√

3ε 4π/
√

3ε 4π/
√

3ε 40/ε 0.654 −0.341 1.225
2π/ε 2π/ε π/ε 2π/

√
3ε π/

√
3ε π/

√
3ε 10/ε 0.654 −0.341 0.190

2π/ε 2π/ε 3π/ε 6π/
√

3ε 3π/
√

3ε 3π/
√

3ε 7.7/ε 0.571 −0.426 0.038
4π/ε 4π/ε π/ε 2π/

√
3ε π/

√
3ε π/

√
3ε 20/ε 0.675 −0.341 0.607

4π/ε 4π/ε 3π/ε 6π/
√

3ε 3π/
√

3ε 3π/
√

3ε 20/ε 0.624 −0.341 0.347

Table 4. Examples of growth rate in the asymptotic theory for h = π/k. All of them shows that for ε � 0.01
the value of ε2σ becomes constant. The table shows some different cases in the triad of λ satisfying the
condition (C4) and k′′ = k + k′.

If λ′′ + λ′ + λ is an odd multiple of the fundamental wavelength π/ε:

Icoupling = −16
π3(λ− λ′ − λ′′)(λ+ λ′ − λ′′)(λ− λ′ + λ′′)(λ+ λ′ + λ′′)

×
[
(k′m′′ − k′′m′)

(
(−λ2 + λ′2 + λ′′2) + 8k′k′′

	 ′	 ′′

)
(k2 + m2)

	

+ (k′′m − km′′)
(

(λ2 − λ′2 + λ′′2) + 8kk′′

		 ′′

)
(k′2 + m′2)

	 ′

+ (k′m − km′)
(

(λ2 + λ′2 − λ′′2) + 8kk′

		 ′

)
(k′′2 + m′′2)

	 ′′

]
. (C7)

Then if λ′′ + λ′ + λ is an even multiple of the fundamental wavelength π/ε, Icoupling = 0
unless λ′′ = |λ± λ′|; in that case

Icoupling = −4ε

π3

[
(k′k′′ + m′m′′)

(
k′′

	 ′′λ′′
+ k′

	 ′(±λ′)
)

(k2 + m2)

λ

− (kk′′ + mm′′)
(

k′′

	 ′′λ′′
+ k

	λ

)
(k′2 + m′2)

(±λ′)

− (kk′ + mm′)
(

k′

	 ′(±λ′) − k
	λ

)
(k′′2 + m′′2)
λ′′

]
, (C8)

where the plus sign corresponds to the case λ′′ = |λ+ λ′| and the minus sign corresponds
to the case λ′′ = |λ− λ′|. In the case of k′′ = |k − k′| all the equations written before are
valid under the transformation k′− > −k′.

Some examples from the above formulae are given in table 4.
The interesting case for comparing asymptotic and exact theory is λ′′ = λ′ = λ = π/ε;

we can plot the numerical values of the growth rate as a function of ε of the exact and
asymptotic theory, as shown in figure 15.
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100

10–1

ε2σ

ε
10–4 10–3 10–2 10–1 100

Figure 15. Comparison of asymptotic (blue) and exact theory (red) in growth rate values. It can be seen that
the exact theory is asymptotically equivalent to the case where λ′′ = λ′ = λ = π/ε.
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