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Categorification of the Colored Jones
Polynomial and Rasmussen
Invariant of Links

Anna Beliakova and Stephan Wehrli

Abstract. We define a family of formal Khovanov brackets of a colored link depending on two param-

eters. The isomorphism classes of these brackets are invariants of framed colored links. The Bar-Natan

functors applied to these brackets produce Khovanov and Lee homology theories categorifying the

colored Jones polynomial. Further, we study conditions under which framed colored link cobordisms

induce chain transformations between our formal brackets. We conjecture that for special choice of

parameters, Khovanov and Lee homology theories of colored links are functorial (up to sign). Fi-

nally, we extend the Rasmussen invariant to links and give examples where this invariant is a stronger

obstruction to sliceness than the multivariable Levine–Tristram signature.

1 Introduction

Khovanov [7] constructed a bigraded chain complex whose Euler characteristic is the

Jones polynomial and whose chain equivalence class is a link invariant. In particu-

lar, the bigraded homology group, known as Khovanov homology, is a link invari-

ant. Bar-Natan and the second author showed that Khovanov homology is strictly

stronger than the Jones polynomial [2, 13]. Furthermore, Khovanov homology is

functorial with respect to link cobordisms smoothly embedded in R4.

Lee modified Khovanov’s construction and made it more accessible for calcula-

tions [9]. The generators of Lee homology are known explicitly. The middle topo-

logical degree of the two generators of Lee homology is a new knot invariant intro-

duced by Rasmussen [11]. Rasmussen used it to give a combinatorial proof of the

Milnor conjecture. Note that this conjecture was previously accessible only via gauge

theory: instanton Donaldson invariants, Seiberg–Witten theory, or Ozsváth–Szabó

knot Floer homology. Viewing Khovanov theory as a combinatorial counterpart of

the knot Floer homology of Ozsváth and Szabó, one can expect that the categorifi-

cation of quantum 3-manifold invariants will provide a combinatorial approach to

Heegaard Floer homology.

The first step in this direction is a categorification of the colored Jones polyno-

mial. Khovanov [8] made two proposals for such a homology theory, based on two
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natural normalizations of the colored Jones polynomial. Unfortunately, the first ho-

mology theory categorifying the colored Jones polynomial is defined over Z/2Z and

the second one for the reduced Jones polynomial works for knots only. In this paper,

we develop both Lee and Khovanov homology theories of colored links over Z[1/2].

To do this, we explore the ideas of Bar-Natan [3], who regards these theories as just

different functors applied to the formal Khovanov bracket. A similar approach to

constructing new homology theories over Z/2Z for colored links was independently

proposed by Mackaay and Turner [10].

1.1 Main Results

Let n = {n1, n2, . . . , nl} be a finite sequence of natural numbers. Let Ln be an ori-

ented framed colored link of l components, where ni is the color of the i-th compo-

nent, and Dn is its diagram in blackboard framing.

In Section 2 we define the formal Khovanov bracket [[Dn]]α,β of the colored link Ln

as an object of Kom(Mat(Kob/h)). Here Kom(Mat(Kob/h)) is the category of formal

complexes over a “matrix extension” of the category Kob/h, where Bar-Natan’s formal

brackets of links belong (see Section 2).

Kob/h is itself a homotopy category of complexes, so we may think of [[Dn]]α,β as

a “complex of complexes”. The subscripts α and β are two integer parameters which

enter in the definition of the differential of [[Dn]]α,β .

We show the following.

Theorem 1 For any α and β, the isomorphism class of the complex [[Dn]]α,β is an

invariant of the colored framed oriented link Ln.

Let A be the category of Z[1/2]-modules. By applying the Khovanov functor

FKh and the Lee functor FLee to the formal bracket, we get homology theories over

Kom/h(A).

Corollary 2 The total graded Euler characteristic of FKh([[Dn]]1,0) is equal to the

colored Jones polynomial of Ln.

The precise definition of the total graded Euler characteristic will be given in Sub-

section 3.3. Note that Khovanov’s [8] categorification of the colored Jones polyno-

mial is a variant of FKh([[Dn]]1,0) with coefficients in Z/2Z.

In Section 4 we study movie presentations of framed cobordisms, where by a

framed cobordism we mean a compact smooth oriented surface which is properly

embedded in R3× I and equipped with a trivialization of its normal bundle in R3× I,

and which connects a framed link in R3×{0} to a framed link in R3×{1}. We extend

the Carter–Saito movie moves [4] to the setting of framed cobordisms.

Theorem 3 Two movies present isotopic framed cobordisms if and only if there is a

sequence of modified Carter–Saito moves, shown in Figure 4, and additional moves,

depicted in Figure 5, that take one movie to the other.
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A colored framed cobordism is a framed cobordism together with a coloring of

its connectivity components by natural numbers. Colored framed cobordisms have

movie presentations whose stills are colored framed link diagrams. Let CCCob
4
f be the

category whose objects are colored framed link diagrams and whose morphisms are

movie presentations of colored framed cobordisms. In Sections 4 and 5 we show that

FKh([[Dn]]0,1) and FLee([[Dn]]1,1) extend to functors FKh ◦ Kh0,1 and FLee ◦ Kh1,1,

respectively, from CCCob
4
f to the category of complexes over A. More precisely, we have

the following.

Theorem 4 The functors FKh◦Kh0,1 and FLee◦Kh1,1 from CCCob
4
f to Kom(Kom/h(A))

are well defined.

Let Cob4
f /i be the quotient of CCCob

4
f by framed Carter–Saito movie moves, and

Kom/h(Kom/h(A))/± be the projectivization of Kom/h(Kom/h(A)), where each mor-

phism is identified with its negative. We expect the following.

Conjecture 5 The functors FKh◦Kh0,1 and FLee◦Kh1,1 descend to functors Cob4
f /i →

Kom/h(Kom/h(A))/±.

Finally, we extend the definition of the Rasmussen invariant to links and study its

properties. We show that in some cases the Rasmussen invariant of links is a stronger

obstruction to sliceness than the multivariable Levine–Tristram signature defined by

Cimasoni and Florens [5].

Another interesting application of the Rasmussen invariant of links was found by

Baader [1]. He used the Rasmussen invariant to define a quasimorphism on the braid

group and to estimate the torsion length for alternating braids.

1.2 Plan of the Paper

In Section 2 we recall the Bar-Natan construction. Then we define the formal Kho-

vanov bracket of colored links. In Section 4 we study framed cobordisms and their

movie presentations. Further, we construct maps between our formal brackets in-

duced by colored framed link cobordisms. The last section is devoted to the Ras-

mussen invariant of links.

2 Bar-Natan’s Construction

Bar-Natan [3] defined the formal Khovanov bracket [[·]] for any link (or tangle) in

such a way that the Khovanov and Lee homology theories can be reconstructed from

[[·]]. In this section we briefly recall Bar-Natan’s construction.

2.1 Formal Khovanov Bracket

Suppose we have a generic diagram D of an oriented link L in S3 with c crossings.

There is a cube of resolutions associated with D (cf. [2]). The vertices of the cube
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Figure 1: The cube of resolutions for the trefoil.

correspond to the configurations of circles obtained after smoothing of all crossings

in D. For any crossing, two different smoothings are allowed: the 0-smoothing and

the 1-smoothing. Therefore, we have 2c vertices. After numbering the crossings of D,

we can label the vertices of the cube by c-letter strings of 0’s and 1’s, specifying the

smoothing chosen at each crossing. The cube is skewered along its main diagonal,

from 00 · · · 0 to 11 · · · 1. The number of 1 in the labeling of a vertex is equal to its

“height” k. The cube is displayed in such a way that the vertices of height k project

down to the point r := k − c− (see Figure 1).

Two vertices of the cube are connected by an edge if their labelings differ by one

letter. The edges are directed (from the vertex where this letter is 0 to the vertex where

it is 1). The edges correspond to cobordisms from the tail configuration of circles to

the head configuration (compare Figure 1).

Bar-Natan proposed to interpret the cube of resolutions denoted [[D]] as a com-

plex, where all smoothings are considered as spaces and all cobordisms as maps.

The r-th chain space [[D]]r of the complex [[D]] is a formal direct sum of the c!
k!(c−k)!

“spaces” at height k in the cube and the sum of “maps” with tails at height k defines

the r-th differential.

More precisely, [[D]] is considered as an object of Kom(Mat(Cob3)). Here Cob3

is the additive category whose objects are circle configurations (smoothings) and

morphisms are 2-cobordisms between such smoothings. For any additive category

C, Mat(C) is the category whose objects are formal direct sums of objects of C and

whose composition law is modeled on the matrix multiplication. Kom(C) is the ca-

tegory of complexes over C, where objects are chains of finite length and morphisms

are chain transformations.

Let us impose some local relations in Cob3: (S) any cobordism containing a closed
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2 = +

Figure 2: The neck cutting relation.

sphere as a connected component is set to be zero; (T) any closed torus can be re-

moved from a cobordism at cost of the factor 2; (4Tu) the four tube relation defined

in [3]. The neck cutting relation drawn below is a special form of the 4Tu. If 2 is

invertible, we can use this relation to cut any tube inside a cobordism.

We denote the quotient of Cob3 by these relations Cob3
/l and consider [[D]] as an

object of Kom(Mat(Cob3
/l). We set Kob := Kom(Mat(Cob3

/l).

Theorem 2.1 (Bar-Natan) The homotopy type of [[D]] is an invariant of L.

Bar-Natan constructed explicit homotopies between complexes related by the

three Reidemeister moves [3].

2.2 Topological Grading

A pre-additive category C is called graded if it has the following additional proper-

ties. Its morphism sets are graded Abelian groups, and the degree is additive un-

der composition of morphisms. Moreover, there is a Z-action (m,O) 7→ O{m}

on the objects O of C, which shifts the gradings of the morphisms, but such that

Mor(O1{m1},O2{m2}) = Mor(O1,O2) as plain Abelian groups.

Bar-Natan [3] observed that Cob3
/l can be transformed into a graded category by

introducing artificial objects O{m} for every m ∈ Z and every object O ∈ Obj(Cob3
/l),

and by defining the degree of a cobordism S ∈ Mor(Cob3
/l) to be its Euler characte-

ristic. In what follows, we will denote by Cob3
/l this graded category, and we will refer

to its grading as the topological grading. Note that the topological grading of Cob3
/l

induces topological gradings on Mat(Cob3
/l) and Kom(Mat(Cob3

/l)).

2.3 Functoriality

A link cobordism is a compact oriented surface which is smoothly and properly em-

bedded in R3 × I and connects a link in R3 × {0} to a link in R3 × {1}. Splitting

cobordisms into pieces by planes R3 × {t}, 0 ≤ t ≤ 1, and projecting down to the

plane, we can view them as a sequence of link diagrams or a movie of diagrams. Al-

tering t , we can assume that any two consecutive diagrams in the movie differ by one

of the following transformations — a Reidemeister move, a cap or a cup, or a saddle.

It was shown in [4] that two such movies present isotopic cobordisms if and only if

they can be related by a finite sequence of Carter–Saito movie moves.
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Let Cob4 be the category whose objects are oriented link diagrams, and whose

morphisms are movie presentations of cobordisms between links described by such

diagrams. Let Cob4
/i be the quotient of Cob4 by Carter–Saito movie moves.

The formal Khovanov bracket descends to a functor from Kh: Cob4 → Kob. On

the objects, Kh(D) is defined as the complex Khr(D) := [[D]]{r + c+ − c−}, whose

differentials are the same as those of [[D]]. Note that all differentials in Kh(D) are of

topological degree zero. Moreover, it follows from the proof of Theorem 2.1 that the

graded homotopy type of Kh(D) is a link invariant (cf. [3, Theorem 3]).

On the generating morphisms Kh is defined as follows. For the Reidemeister

moves we take the chain homotopies constructed in [3] for the proof of Theorem 2.1.

For the cup, cap or the saddle, we take the natural chain transformations given by the

corresponding cobordisms.

Let Kob/h be the category Kob modulo homotopies, i.e., it has the same objects

as Kob, but homotopic morphisms in Kob are identified. Let Kob/±h be the projec-

tivization of Kob/h.

Theorem 2.2 (Bar-Natan) Kh descends to a functor Kh : Cob4
/i → Kob/±h.

By the Carter–Saito theorem [4], movie presentations of isotopic cobordisms are

related by 15 movie moves. Bar-Natan proved that the morphisms in Kob induced

by these movies moves are homotopic up to signs.

2.4 Khovanov and Lee’s Theories

Any functor from Cob3
/l to an Abelian category A extends to a functor F : Kob →

Kom(A) providing a homology theory. If in addition A is graded, and F is degree-

respecting, then the homology is a graded invariant of a link.

2.4.1 Khovanov Functor

Let O ∈ Obj(Cob3
/l) and Z(2) = Z[1/2]. We put

FKh(O) := Z(2) ⊗Z Mor(∅,O)/Relg>1

where by Relg>1 all cobordisms of genus greater than 1 are set to be zero. With a circle,

FKh associates the Z(2)-module of rank 2 generated by v+ := and by v− := 1
2

.

The neck cutting relation allows identification of the differentials in this theory with

the ones given by Khovanov [7] (cf. [3, Exercise 9.3]). With the natural choice of

grading on Z(2)-modules (deg(v+) = 1, deg(v−) = −1), the functor FKh is degree-

respecting.

Hence FKh(Kh(D)) is a complex in the category of graded Z(2)-modules. We define

its graded Euler characteristic χ(FKh(Kh(D))) ∈ Z[q, q−1] by

χ(FKh(Kh(D))) :=
∑

r, j

(−1)rq j dimQ (Mr, j(D) ⊗Z(2)
Q),
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where Mr, j(D) denotes the homogeneous component of degree j of the graded

Z(2)-module FKh(Khr(D)). It was shown in [7] that χ(FKh(Kh(D))) is equal to the

Jones polynomial of the link represented by the diagram D.

2.4.2 Lee’s Functor

Let us put FLee(O) := Z(2) ⊗Z Mor(∅,O)/( = 8) where the relation sets the

morphism given by the genus 3 surface without boundary to be 8. Here the same

rank 2 module is associated with the circle. But the differentials ∆ and m are given

by Lee’s formulas [9]:

∆ :

{

a 7→ a ⊗ a,

b 7→ b ⊗ b,
m2 :

{

a ⊗ a 7→ 2a, b ⊗ b 7→ −2b,

a ⊗ b 7→ 0, b ⊗ a 7→ 0,

where a := v+ + v− and b := v+ − v−. The Lee functor is not degree-respecting.

3 Formal Khovanov Bracket of a Colored Link

The aim of this section is to define the formal Khovanov bracket of a colored link.

Our first approach is inspired by Khovanov [8]. Its modifications are necessary in

order to get functoriality with respect to colored framed link cobordisms.

3.1 Colored Jones Polynomial

Let n = {n1, n2, . . . , nl} be a finite sequence of natural numbers. Let Ln be an ori-

ented framed l component link, whose i-th component is colored by the (ni + 1)-di-

mensional irreducible representation of sl2. Let J(Ln) be the Jones polynomial of

n-cable of L. When forming the m-cable of a component K , we orient the strands by

alternating the original and the opposite directions. More precisely, let us enumerate

the strands from left to right by 1 to m. Then strand 1 is oriented in the same way as

K , strand 2 is oppositely oriented, etc.

The colored Jones polynomial is given by the following formula.

Jn(L) =

⌊n/2⌋
∑

k=0

(−1)|k|
(

n − k

k

)

J(Ln−2k),

where |k| =
∑

i ki , and

(

n − k

k

)

=

l
∏

i=1

(

ni − ki

ki

)

.
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Figure 3: The graph Γ4,3.

3.2 The Graph Γn

The binomial coefficient
(

n−k
k

)

equals the number of ways to select k pairs of neigh-

bors from n dots placed on a line, such that each dot appears in at most one pair.

Analogously,
(

n−k
k

)

is the number of ways to select k pairs of neighbors on l lines.

We will call these choices k-pairings.

Let Γn be the graph whose vertices correspond to k-pairings. Two vertices of Γn

are connected by an edge if the corresponding pairings can be related to each other

by adding/removing one pair of neighboring points. The height of a vertex labeled

by a k-pairing is equal |k|. The edges are directed towards increasing heights (see

Figure 3).

3.3 Colored Khovanov Bracket, First Approach

Let Ln be an oriented framed colored link as above and let Dn be its generic diagram

in blackboard framing. Given Γn as above, we associate it with the formal Khovanov

bracket [[Dn]] of Ln regarded as an element of Kom(Mat(Kob/h)). The construction

goes as follows.
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At each vertex of Γn labeled by a k-pairing we put the complex Kh(Dn−2k) ∈

Obj(Kob/h) defined in Subsection 2.3.

With an edge e of Γn connecting k- and k ′-pairings we associate a morphism

Kh(e) : Kh(Dn−2k) → Kh(Dn−2k ′

) given by gluing an annulus between the strands

of the cable which form a pair in k ′, but not in k. According to the definition of

Γn there is only one such pair. Note that we view the complexes Kh(Dn−2k) and

Kh(Dn−2k ′

) as objects of the homotopy category Kob/h, so that Kh(e) is a homotopy

class of chain transformations. By Theorem 2.2 this homotopy class is well defined

up to sign. The sign of Kh(e) depends on the choice of the movie presentation for

the annulus. We call this choice satisfactory if all squares of Γn anticommute. Note

that by Theorem 2.2 the squares of Γn commute up to sign, because the cobordisms

given by gluing of annuli in a different order are isotopic.

Given a satisfactory choice of signs, the result is a complex in Kom(Mat(Kob/h)),

which we denote [[Dn]]. The i-th chain of [[Dn]] is a formal direct sum of com-

plexes at height i, i.e., [[Dn]]i :=
⊕

|k|=i

⊕

s∈k Kh(Dn−2k), where the notation s ∈ k

means that s is a k-pairing. The i-th differential di : [[Dn]]i → [[Dn]]i+1 is the formal

sum of all morphisms Kh(e) corresponding to edges with tails at height i. Because

the Euler characteristic of an annulus is zero, all Kh(e) have topological degree zero,

and therefore [[Dn]] inherits a topological grading from the topological gradings of

the complexes Kh(Dn−2k). Besides the topological grading, [[Dn]] has two homo-

logical gradings, one corresponding to the differential di and one to the differentials

of the complexes Kh(Dn−2k). Note however that [[Dn]] is not a bicomplex, because

the chain transformations Kh(e) are considered up to homotopy. It is an interesting

problem whether one can construct a bicomplex, possibly by choosing suitable rep-

resentatives for the homotopy classes Kh(e). If such a bicomplex exists, there should

be a spectral sequence whose E2 term is determined by [[Dn]] and which converges to

the homology of the total complex of that bicomplex.

We do not know how to form a bicomplex, but we can define a total graded Euler

characteristic as follows. Let [[Dn]]i,r ∈ Obj(Mat(Cob3
/l)) be the formal direct sum

[[Dn]]i,r :=
⊕

|k|=i

⊕

s∈k Khr(Dn−2k), where Khr(Dn−2k) denotes the r-th chain of

the complex Kh(Dn−2k). The functor FKh maps [[Dn]]i,r to a graded Z(2)-module

whose j-th homogeneous component we denote Mi,r, j(Dn). The total graded Euler

characteristic of FKh([[Dn]]) is defined by

χ(FKh([[Dn]])) :=
∑

i,r, j

(−1)i+rq j dimQ (Mi,r, j(Dn) ⊗Z(2)
Q).

To complete this subsection, we prove the following lemma, which shows that our

construction of the colored Khovanov bracket is well defined.

Lemma 3.1 For any graph Γn there exists a satisfactory choice of signs making all

squares anticommutative. Complexes defined with different satisfactory sign choices are

isomorphic.

https://doi.org/10.4153/CJM-2008-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-053-1


Categorification of the Colored Jones Polynomial 1249

Proof Let us first show that we can make all squares commutative. We define a

1-cochain ζ ∈ C1(Γn,Z/2Z) as follows. For any square s ⊂ Γn, we put ζ(s) = 1 if s

is anticommutative and ζ(s) = 0 otherwise. We extend ζ by linearity to Γn. Now we

multiply any map Kh(e) by (−1)ζ(e).

Note that ζ is well defined, because there are no squares which are commutative

and anticommutative simultaneously. In other words, the composition of maps in-

duced by gluing of annuli is never zero. Indeed, let κ : Kh(Dn−2k) → Kh(Dn−2k ′′

)

be a map induced by gluing |k|− |k ′′| annuli. Let κ̄ : Kh(Dn−2k ′′

) → Kh(Dn−2k) de-

note the map induced by the same annuli “turned upside down”. In the composition

κκ̄, every annulus of κ is glued with the corresponding annulus of κ̄, such that the

result is a torus. Hence κκ̄ is induced by the union of Dn−2k ′ ′

× [0, 1] with a collec-

tion of |k| − |k′ ′| tori. After isotopy, we can assume that these tori lie in R3 × {1/2}.

In R3 × {1/2}, the tori may be linked with Dn−2k ′ ′

× {1/2}, but if we consider

2|k|−|k ′′|κκ̄ instead of κκ̄, we can apply the neck cutting relation to obtain unlinked

tori. It follows from the (T) relation that 2|k|−|k ′′|κκ̄ is equal to 4|k|−|k ′′| times the

identity morphism of Kh(Dn−2k ′′

), and hence κ is nonzero.

Given a complex with all squares commutative, we can make them anticommuta-

tive as follows. We multiply Kh(e) with (−1) to the power number of pairings to the

right and above of the unique pairing in k ′ \ k. These signs are shown in Figure 3.

Given two satisfactory sign choices, the corresponding 1-cochains ζ and ζ ′ coin-

cide on all squares, i.e., ζ − ζ ′ = δγ with γ ∈ C0(Γn,Z/2Z). For any edge e with

boundary s − s′, we have ζ(e) − ζ ′(e) = γ(s) − γ(s′). Therefore, (−1)γ times the

identity map defines an isomorphism between the corresponding complexes.

Remark. Lemma 3.1 shows that the categorification of the colored Jones polynomial

in [8] can be defined over integers.

3.4 Colored Khovanov Bracket

In the following, we work with coefficients in Z(2) = Z[1/2]. That is, we replace the

category Cob3 of Section 2.1 by the category which has the same objects as Cob3 but

whose morphisms are formal Z(2) linear combinations of cobordisms.

Let us generalize the definition of [[Dn]] as follows. As before, we put Kh(Dn−2k)

at vertices of Γn labeled by k-pairings. But we modify the maps associated to edges

of Γn. With an edge e connecting k-pairings and k ′-pairings we associate the map

Kh′(e) := Kh(e)◦(α1+βX(e)), where 1 denotes the identity morphism of Kh(Dn−2k)

and X(e) is the endomorphism of Kh(Dn−2k) defined below. Given a satisfactory

choice of signs, the result is a complex in Kom(Mat(Kob/h)), which we denote

[[Dn]]α,β . We have [[Dn]]1,0 = [[Dn]]. The functors FKh and FLee can be applied

to [[ · ]]α,β to obtain homology theories. If β is nonzero, then the topological degree

of derivatives is not zero anymore.

The map X(e) is defined as follows. Assume e is an edge between a k-pairing and
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a k ′-pairing, and let Ci and Ci+1 be the two strands of the cable of L which form a

pair in the k ′-pairing but not in the k-pairing. Let us choose a point P on Ci which

is not a crossing of Dn−2k. Let G be the region of Dn−2k which lies next to P and

between the two components Ci and Ci+1. Color the regions of Dn−2k in a chessboard

fashion, such that the unbounded region is colored white, and put σ(G) := +1 if G

is black and σ(G) := −1 if G is white. Define a cobordism H(P) from Dn−2k to

itself as follows: H(P) is the identity cobordism outside a small neighborhood of

P, and it is a composition of two saddle moves near P. The first saddle splits off a

small circle from Ci . The second saddle merges the small circle in Ci again. Define

X(e) := (σ(G)/2) Kh(H(P)), where Kh: Cob4 → Kob/h is the functor discussed in

Subsection 2.3. We claim that X(e) is independent of the choice of the point P on Ci .

Indeed, moving the point P past a crossing of Dn−2k changes the sign of both σ(G)

and Kh(H(P)). It is easy to see that FLee(H(P)) = −FLee(H(P ′)) if P ′ is obtained

from P by moving past a crossing. Moreover, the colors of regions next to P and

P ′ are different. If Ci belongs to the cable of a component K of L, we also use the

notation X(K, i) for X(e).

Proof of Theorem 1 Let Dn and D ′
n be two diagrams representing isotopic colored

framed links. Then Dn−2k and D ′n−2k represent isotopic links, and hence by The-

orem 2.1 the complexes Kh(Dn−2k) and Kh(D ′n−2k) are isomorphic as objects of

Obj(Kob/h). The isotopy between the links represented by Dn−2k and D ′n−2k ex-

tends to an isotopy between the annuli appearing in the definition of the differentials

of [[Dn]] and [[D ′
n]]. Using Theorem 2.2 and Lemma 3.1, it easily follows that [[Dn]]

and [[D ′
n]] are isomorphic.

Proof of Corollary 2 The total graded Euler characteristic of FKh([[Dn]]) is

χ(FKh([[Dn]])) =
∑

i,r, j

(−1)i+rq j dimQ (Mi,r, j(Dn)
⊗

Z(2)

Q)

=
∑

i

(−1)i
∑

|k|=i

∑

s∈k

χ(FKh(Kh(Dn−2k)))

=

⌊n/2⌋
∑

k=0

(−1)|k|
(

cn − k

k

)

χ(FKh(Kh(Dn−2k))).

Taking into account that χ(FKh(Kh(Dn−2k))) = J(Ln−2k), we get the result.

4 Framed Cobordisms

4.1 Framings for Submanifolds of Codimension 2

Let M be a smooth oriented n-manifold and N ⊂ M a compact smooth oriented

submanifold of M. By a framing of N we mean a trivialization of its normal bundle
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νN in M. Note that a smooth ambient isotopy between submanifolds induces an iso-

morphism between their normal bundles. Hence it makes sense to compare framings

of ambient isotopic submanifolds. Given a trivialization f : νN |∂N → ∂N × R2, we

define a relative framing of N, relative to f , as a trivialization of νN which restricts

to f on ∂N. Relative isomorphism classes of oriented 2-plane bundles over N which

are trivialized over ∂N, correspond to homotopy classes of maps from (N, ∂N) to

(BSO(2), p0), where p0 is an arbitrary basepoint in BSO(2). Since BSO(2) is a K(Z, 2)

space, we have [N, ∂N; BSO(2), p0] = H2(N, ∂N) = Hn−4(N). Then N admits a

relative framing if and only if (νN , f ) corresponds to the zero class in Hn−4(N). In

that case, the set of all relative framings is an affine space over [N, ∂N; SO(2), 1] =

H1(N, ∂N) = Hn−3(N).

We are mainly interested in the case where N is connected and n = 4. In this

case the obstruction for the existence of relative framings is an integer e(νN , f ) ∈

H0(N) = Z which we call the relative Euler number of νN . The relative Euler number

can be described explicitly as follows: let s be the zero section of νN and s′ a generic

section such that f (s′(x)) = (x, e1) for x ∈ ∂N where e1 denotes the first basis vector

of R2. Then e(νN , f ) = s · s′ where s · s′ denotes the algebraic intersection number of

the surfaces s and s′ in the total space of νN . Now N has a tubular neighborhood in M

which is diffeomorphic to the total space of νN . Therefore, the relative Euler number

e(νN , f ) can be computed as a “relative self-intersection number” of N in M.

4.2 Framings for Links and Link Cobordisms

Let K = N be a knot in R3. We can specify a framing of K by a vector field on K

which is nowhere tangent to K . If the vectors are sufficiently short, their tips trace

out a knot K ′ parallel to K . Recall that the framing coefficient n( f ) is defined as the

linking number of K and K ′.

Let us give an alternative description of the framing coefficient. Let S ⊂ R3×I be a

connected cobordism between the empty link and the framed knot K , i.e., ∂S = K ⊂

R3×{1}. We assume that S is parallel to the I direction in a neighborhood of ∂S, such

that the restriction νS|∂S coincides with the normal bundle of ∂S in R3 ×{1}. Then it

makes sense to consider the relative Euler number e(νS, f ) where f is the framing of

K . We claim that e(νS, f ) = n( f ). We only prove that e(νS, f ) is independent of the

choice of S: let S, S1 be two cobordisms from the empty link to K and let S̄1 denote the

cobordism S1 “turned upside down”. The composition of S and S̄1 is a closed surface

F := S∪ S̄1. Consider small perturbations S ′ and S ′
1 of S and S1 with ∂S ′ = ∂S ′

1 = K ′

and let F ′ := S ′ ∪ S̄ ′
1. We have e(νS, f ) − e(νS1

, f ) = S · S ′ + S̄1 · S̄ ′
1 = F · F ′ = 0,

where we have used that F has self-intersection number zero because H2(R3× I) = 0.

Hence e(νS, f ) is independent of S.

Now let S be a cobordism connecting two framed knots (K0, f0) and (K1, f1).

Choose cobordisms S0 and S1 from the empty link to K0 and K1, respectively. By
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considering small perturbations S ′, S ′
0, S

′
1 as above, we obtain

0 = S0 · S ′
0 + S · S ′ + S̄1 · S̄ ′

1 = n( f0) + e(νS, f0 ∪ f1) − n( f1).

Hence S admits a relative framing if and only if e(νS, f0 ∪ f1) = 0 if and only if

n( f0) = n( f1).

Let us also consider the case of framed links. If L is a link of |L| components in

R3, a framing of L can be described by an |L|-tuple (n( f1), . . . , n( f|L|)) ∈ Z|L| where

fi denotes the restriction of the framing to the i-th component. We define the total

framing coefficient as n( f ) := n( f1)+· · ·+n( f|L|)+
∑

i 6= j lk(Li , L j). It is easy to see that

n( f ) = e(νS, f ) for any connected cobordism S from the empty link to L. Arguing

as above, we conclude that two framed links may be connected by a relatively framed

cobordism if and only if their total framing coefficients agree.

If the set of relative framings of S is non-empty, it is an affine space over H1(S).

The action of H1(S) can be seen as follows: let c be an oriented simple closed curve

on S representing an element of H1(S). Consider a tubular neighborhood U of c,

diffeomorphic to c × [0, 2π]. Let χc be the map from S to SO(2) which is trivial

on the complement of U and maps a point (θ, ϕ) ∈ U = c × [0, 2π] to rotation

by ϕ. Then c acts on framings by sending the framing given by a vector field v(z)

to the framing given by the vector field χc(z)v(z). In this context, the Poincaré dual

PD−1[c] ∈ H1(S, ∂S) has the following interpretation: let c ′ be a properly embedded

simple curve on S representing an element of H1(S, ∂S). The restriction χc|c ′ is a

closed curve in SO(2) whose class in π1(SO(2), 1) = Z is given by [χc|c ′] = c · c ′ =

〈PD−1[c], [c ′]〉.

4.3 Link Diagrams with Marked Points

Let L be a link and D a diagram of L. We may use D to specify a framing on L, namely

the framing given by the vector field on L which is everywhere perpendicular to the

plane of D. This framing is called the blackboard framing. It allows us to view link

diagrams as diagrams of framed links. The blackboard framing is invariant under the

second and the third Reidemeister moves, but not under the first Reidemeister move.

It is easy to see that two link diagrams describe isotopic framed links if and only they

differ by a sequence of the following moves: the second and third Reidmeister moves

together with the modified first Reidemeister move R1 ′ shown here:

R1’
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A link diagram with marked points is a link diagram D together with a finite col-

lection of distinct points, lying on the interiors of the edges of D, and labeled with +

or −. If D is a link diagram with marked points, the writhe, wr(D), is the difference

between the numbers of positive and negative crossings in D. The twist, tw(D), is

the difference between the numbers of positive and negative marked points. A link

diagram with marked points determines a framing fD of L as follows: fD is given by a

vector field which is perpendicular to the drawing plane, except in a small neighbor-

hood of the marked points, where it twists around the link, such that each positive

point contributes +1 to n( fD) and each negative point contributes −1 to n( fD). Thus

we have n( fD) = F · L ′ = wr(D) + tw(D).

MR1

The marked first Reidemeister move MR1, shown above, leaves n( fD) unchanged.

It follows that two diagrams with marked points describe isotopic framed links if

and only if they are related by a finite sequence of the following moves: marked first

Reidemeister move MR1, Reidemeister moves R2 and R3, creation/annihilation of a

pair of nearby oppositely marked points, and sliding a marked point past a crossing.

4.4 Movie Presentations for Framed Cobordisms

In this subsection, we discuss movie presentations for framed link cobordisms.

Let S be an unframed cobordism, presented as a sequence of link diagrams. If there

are two consecutive link diagrams differing by an R1 move, we introduce marked

points in the movie presentation, such that every R1 move becomes an MR1 move.

The result is a movie of link diagrams with marked points, describing a movie of

framed links. The framings of these links determine a well-defined framing of S. We

claim that every framing of S arises in this way. To prove this claim, it would be suf-

ficient to check that it is true for elementary cobordisms (caps, cups and saddles).

However, we give a different proof. The marked points in the movie presentation

trace out curves on the cobordism S (note that these curves may have local extrema

corresponding to annihilation and creation of marked points). We can orient these

curves consistently by declaring that positive points “move” in the negative I direc-

tion and negative points move in the positive I direction. Conversely, if c is an ori-

ented simple closed curve on S, we can think of c as consisting of lines traced out by

marked points. We can insert these marked points into a given movie presentation

of S (see Figure 6).

Thus, c acts on movie presentations of S by insertion of marked points. This action

induces an action on the framings of S which are described by the movie presenta-
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−

−

−

−
−

−

−

−

MM8

MM7

MM1 MM2

−

−

−

−

−
MM12

MM13

+

+ + + +

+ +
− + −

+ −

Figure 4: Modified Carter–Saito moves for framed cobordisms. These moves are obtained

by inserting marked points into the original Carter–Saito moves, in such a way that each R1

move becomes an MR1 move. The modified moves MM3–MM6, MM9–MM11, MM14 and

MM15 are not displayed because they are identical with the corresponding original Carter–

Saito moves. When lifting an R1 move to an MR1 move, one has two possibilities where to

insert the marked point (one can place the marked point on either of the two sides of the curl).

Only one possibility is shown above.
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+ −
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−

−

−

+−

−

−

+

+ −

+−

+

Figure 5: Additional movie moves for framed cobordisms.

tions. It is easy to see that the action on the framings coincides with the action of

H1(S) discussed at the end of Subsection 4.2. Since H1(S) acts transitively, it follows

that every framing of S can be described by a movie presentation. Moreover, two ori-

ented simple closed curves induce equivalent actions on framings if and only if they

are homologous.

Proof of Theorem 3 The local movie moves which are sufficient to relate any two

homologous curves traced out by marked points on a cobordism are shown in Fig-

ure 5. These movie moves, together with the modified Carter–Saito movie moves

shown in Figure 4, are sufficient to relate any two movie presentations of isotopic

framed cobordisms.

We can transform a link diagram with marked points into a link diagram without

marked points by inserting a left-twist curl for each point marked with a + and a

right-twist curl for each point marked with a −. Under this substitution, sliding a

marked point past a crossing becomes a composition of the second and the third Rei-

demeister move. The MR1 move and the creation/annihilation of a pair of oppositely
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−

−

−

−

+

+

+

+
c

S

Figure 6: Inserting an oriented curve c into a movie.

marked points become the modified first Reidemeister move R1 ′.

We can transform a movie presentation without marked points into a movie pre-

sentation with marked points as follows: we replace each R1 ′ move by a composition

of two opposite MR1 moves. The two opposite MR1 moves create a pair of oppositely

marked points. We annihilate this pair immediately after its creation. The resulting

movie presentation with marked points differs from the original movie presenta-

tion only locally. Since we already know movie moves for movie presentations with

marked points, we can define movie moves for movie presentations without marked

points simply by replacing marked points with curls.

5 Colored Framed Cobordisms

Let CCCob
4
f be the category of colored framed movie presentations. The objects are di-

agrams of colored links and the morphisms movie presentations of colored framed

links, i.e., sequences of colored framed link diagrams, where between two consec-

utive diagrams one of the following transformations occurs: R1 ′, R2 or R3 move,

a saddle, a cap or a cup. Note that here we need to distinguish between two sad-

dle moves: a “splitting” saddle which splits one colored component into two of the

same color, and a “merging” saddle which merges two components of the same color

into one component. The merging saddle cannot be applied to components colored

differently.

We are interested in a construction of a functor

Khα,β : CCCob
4
f → Kom(Mat(Kobh)).

For the objects we put Khα,β(Dn) = [[Dn]]α,β . The rest of this section is devoted to

the definition of chain transformations corresponding to cap and cup, and saddles.

The Reidemeister moves induce chain homotopies defined in [3].
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We introduce the following notation. Let Dn be a colored link diagram, and let s

be a k-pairing of the n-cable of D. Then we set Ds := Dn−2k, where the strands of

Dn−2k correspond to the dots which are not contained in a pair of s.

5.1 Cup and Cap

Consider two diagrams D and D0 which are related by a cap cobordism. Assume

that D0 is the disjoint union of D with a trivial component K . Let n0 be a color-

ing of D0 and let n denote the induced coloring of D. Let n denote the restriction

of n0 to K . Let s be a pairing of the n-cable of D and let s0 be a pairing of the

n0-cable of D0. We define a morphism ιs0,s : Kh(Ds) → Kh(Ds0

0 ) as follows: ιs0,s is

nonzero only if the restriction of s0 to K is the empty pairing (no pairs) and if s0

agrees with s on all other components. In this case, we define ιs0,s as the composi-

tion of the following two morphisms: the morphism induced by a union of n caps

whose boundaries are the n strands of the n-cable of K , and the endomorphism ϕ

of Kh(Ds0

0 ) given by ϕ :=
∑n

j=1 A j ◦ B j , where A j denotes the composition of all

morphisms (α1 − βX(K, i))/2 for 1 ≤ i ≤ j, and B j denotes the composition of all

morphisms (α1 + βX(K, i))/2 for j < i ≤ n.

Now let D and D0 be two link diagrams related by a cup cobordism. Assume that

D is the disjoint union of D0 with a trivial component K . Let n be a coloring of D

and let n0 denote the induced coloring of D0. Let n denote the restriction of n to

K . Let s be a pairing of the n-cable of D and let s0 be a pairing of the n0-cable of

D0. We define a morphism ǫs0,s : Kh(Ds) → Kh(Ds0

0 ) as follows: ǫs0,s is nonzero only

if the restriction of s to K is the empty pairing and if s agrees with s0 on all other

components. In this case, we define ǫs0,s as the composition of the following two

morphisms: the endomorphism ϕ defined as above and the morphism induced by n

cups whose boundaries are the n strands of the n-cable of K .

5.2 Merging Saddle

Consider two diagrams D and D0 which are related by a saddle merging two compo-

nents K1 and K2 of D into a single component K of D0. Let n be a coloring of D, such

that K1 and K2 have the same color n. Let n0 be the induced coloring of D0. Consider

a pairing s of the n-cable of D, and let s1 and s2 denote the restrictions of s to K1 and

K2, respectively. Let s1s2 denote the union of s1 and s2, i.e., the pairing which consists

of all pairs which are contained in either s1 or s2.

Let γ, δ ∈ Z. Given a pairing s0 of the n0-cable of D0, the morphism

ψs0,s
γ,δ : Kh(Ds) −→ Kh(Ds0)

is nonzero only if the following is satisfied:

• s1 and s2 have no common dot (meaning that there is no dot which belongs to a

pair both in s1 and in s2),
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• s0 is the pairing which restricts to s1s2 on K and which agrees with s on all other

components.

If the above conditions are satisfied, we put ψs0,s
γ,δ := ψ3ψ2ψ1, where ψ1, ψ2 and ψ3

are defined as follows.

• ψ1 is the endomorphism of Kh(Ds) defined by ψ1 := X1 ◦ X2, where X1 is the

composition of all (γ1 + δX(K1, i))/2 such that the dots numbered i and i + 1

form a pair in s2, and X2 is the composition of all (γ1 + δX(K2, i))/2 such that the

dots numbered i and i + 1 form a pair in s1.
• Let s′ be the pairing of n which restricts to s1s2 on both K1 and K2 and which agrees

with the pairing s on all other components of D. Then ψ2 : Kh(Ds) → Kh(Ds ′

) is

the morphism induced by attaching annuli to the strands of K s1

1 and K s2

2 according

to the following rule. If the two dots numbered i and i + 1 form a pair in s2, we

attach an annulus to the strands numbered i and i + 1 in K s1

1 . Similarly, if the two

dots numbered i and i + 1 form a pair in s1, we attach an annulus to the strands

numbered i and i + 1 in K s2

2 .
• ψ3 : Kh(Ds ′

) → Kh(Ds0) is the morphism obtained by merging each strand of

K s1s2

1 with the corresponding strand of K s1s2

2 by a saddle cobordism.

Note that our definition of the morphism ψs0,s
γ,δ mimics the definition of the map ψ

in [8]. Khovanov’s map ψ corresponds to our morphism ψs0,s
0,2 , with the difference

that we work with the Khovanov bracket whereas Khovanov worked with Khovanov

homology over Z/2Z coefficients. Note that FKh(ψs0,s
0,δ ) is graded of degree −n (where

n is the color of the components involved in the saddle move, see above). We denote

by ψγ,δ the collection of all morphisms ψs0,s
γ,δ .

5.3 Splitting Saddle

Suppose the diagrams D and D0 are related by a saddle which splits a component K

of D into two components K1 and K2 of D0. Let n be a coloring of D, and let n0 be

the induced coloring of D0. Consider a pairing s of the n-cable of D which restricts

to a k-pairing s on K .

Let γ, δ ∈ Z. Given a pairing s0 of the n0-cable of D0, the morphism

ψ̄s0,s
γ,δ : Kh(Ds) −→ Kh(Ds0

0 )

is zero unless s0 has the following properties:

• the restrictions s1 and s2 of s0 to K1 and K2 have no common dot,
• the union of s1 and s2 is equal to s,
• s0 agrees with s on all components of D0 other than K1 and K2.

For an s0 with these properties, we define ψ̄s0,s
γ,δ := 2kψ̄1ψ̄2ψ̄3, where ψ̄1, ψ̄2, and ψ̄3

are the morphisms obtained by turning the morphisms ψ1, ψ2, and ψ3 of Subsection

5.2 upside down.
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Note that ψ̄s0,s
0,δ is graded of degree −n, where n is the color of the components

involved in the saddle move. We denote by ψ̄γ,δ the collection of all morphisms ψ̄s0,s
γ,δ .

5.4 Chain Transformations Induced by Saddles

Consider two diagrams D and D0 which are related by a merging saddle. Assume we

are given a collection of morphisms ψ = {ψs0,s} as in Subsection 5.2 (we drop the

subscripts γ, δ to simplify the notation). We wish to have a criterion under which ψ

induces a chain transformation from [[Dn]]α,β to [[D0,n0
]]α,β .

Let d and d0 denote the differentials of [[Dn]]α,β and [[D0,n0
]]α,β , respectively. Both

d0ψ and ψd increase the height (the homological degree) by one. Let s be a pairing

of the n-cable of D, and let s′0 be a pairing of the n0-cable of D0 whose height is one

larger than the height of s. Let (d0ψ)s ′

0 ,s denote the “restriction” of d0ψ to Kh(Ds) and

Kh(D
s ′

0

0 ), and let (ψd)s ′

0 ,s denote the “restriction” of ψd to Kh(Ds) and Kh(D
s ′

0

0 ). As-

sume that at least one of the morphisms (d0ψ)s ′

0 ,s and (ψd)s ′

0 ,s is nonzero. This is only

possible if the restrictions of s to the two components involved in the saddle move

have no common dot. Moreover, all pairs of the pairing s0 (defined as in Subsection

5.2) must also be pairs of s′0. Therefore, s′0 must contain a unique pair π which is not

contained in s0. We assume that π belongs to the component of D0 which is involved

in the saddle move (for otherwise (d0ψ)s ′

0 ,s = ±(ψd)s ′

0 ,s is trivially satisfied). Then

we are in the situation of (7), where the pair in the lower right corner is the pair π,

and where we have omitted all dots corresponding to strands on which (d0ψ)s ′

0 ,s and

(ψd)s ′

0 ,s agree already by definition.

s’  ,s’’ψ 0

s’  ,s’ψ 0

d0

d’

d’’

s  ,sψ 0

Figure 7

Lemma 5.1 Assume that d0ψ
s0,s = ±(ψs ′

0 ,s
′

d ′ + ψs ′

0 ,s
′ ′

d ′ ′) for all squares as in Fig-

ure 7. Then there is a 0-cochain γ ∈ C0(Γn,Z/2Z) such that the morphisms

(−1)γ(s)ψs0,s determine a chain transformation from [[Dn]]α,β to [[D0,n0
]]α,β .
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Proof Consider the subgraph Γ ′
n of Γn whose vertices are precisely those n-pairings

s whose restrictions to the two components involved in the saddle move have no

common dot. Let f : Γ ′
n → Γn0

be the map which maps a pairing/vertex s to the

induced pairing/vertex s0. Note that every edge e0 of Γn0
appears as the lower edge of

a square as in Figure 7. Define a 1-cochain ζ ∈ C1(Γn0
,Z/2Z) by setting ζ(e0) := 0 if

d0ψ
s0,s = +(ψs ′

0 ,s
′

d ′ + ψs ′

0 ,s
′′

d ′ ′) and ζ(e0) := 1 if d0ψ
s0,s = −(ψs ′

0 ,s
′

d ′ + ψs ′

0 ,s
′ ′

d ′ ′).

Since f maps squares of Γ ′
n to squares of Γn0

, and since all squares of Γ ′
n and Γn0

anticommute, the 1-cochain f ∗ζ ∈ C1(Γ ′
n,Z/2Z) maps all squares of Γ ′

n to zero.

Hence f ∗ζ = δγ ′ for a 0-cochain γ ′ ∈ C0(Γ ′
n,Z/2Z). Now the 0-cochain γ ∈

C0(Γn,Z/2Z) in the statement of the lemma is an arbitrary extension of γ ′.

Now assume D and D0 are related by a splitting saddle and assume we are given a

collection of morphisms ψ̄ = {ψ̄s0,s} as in Subsection 5.3. Let s be a pairing of the

n-cable of D and let s′0 be a pairing of the n0-cable of D0, such that at least one of the

morphisms (d0ψ̄)s ′

0 ,s and (ψ̄d)s ′

0 ,s is nonzero. Let K be the component of D which is

involved in the saddle and let s be the restriction of s to K . Similarly, let K1 and K2 be

the components of D0 which are involved in the saddle and let s′1 and s′2 denote the

restrictions of s′0 to K1 and K2. Then every pair of s must also appear in the union

s′1 ∪ s′2 (where we regard s′1 and s′2 as sets of pairs). If s′1 and s′2 have a common pair,

we are in the situation of Figure 8, where s′0 is the pairing in the lower right corner.

ψ’
ψ’’

d’0

d’’0

0

Figure 8

Now assume that s′1 and s′2 have no common pair. Let s1 and s2 denote the inter-

sections s1 := s ∩ s′1 and s2 := s ∩ s′2. Let s0 denote the pairing of the n0-cable of D0

which restricts to s1 and s2 on the components K1 and K2 and which agrees with s on

all other components of D0. Then every pair of s0 is also be a pair of s′0, and there is

a unique pair π of s′0 which is not contained in s0. We assume that π belongs K1 or

K2 (for otherwise (d0ψ̄)s ′

0 ,s = ±(ψ̄d)s ′

0 ,s is trivially satisfied). If π is disjoint from all

pairs of s1 ∪ s2, we are in the situation of Figure 9, where π is the pair in the lower

right corner.
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d0

s’  ,s’ψ 0s  ,sψ 0 s’  ,s’ψ 0s  ,sψ 0

d0

d d

Figure 9

It is also possible that π has a common dot with a pair of s1 ∪ s2. Examples of this

case are shown in Figure 10.

d0
d0

s  ,sψ 0
s  ,sψ 0

0 0

Figure 10

Lemma 5.2 Assume that the squares of Figure 9 commute, up to sign, and assume

d0ψ̄
s0,s = 0 for all squares as in Figure 10. Then there is a 0-cochain γ ∈ C0(Γn0

,Z/2Z)

such that the morphisms (−1)γ(s0)ψ̄s0,s determine a chain transformation from [[Dn]]α,β
to [[D0,n0

]]α,β .

Proof The proof is analogous to the proof of Lemma 5.1 (although now we musto

consider a map f going from a subgraph Γ ′
n0

of Γn0
to Γn). Note that the morphisms

d ′
0ψ̄

′ and d ′ ′
0 ψ̄

′ of Figure 8 cancel automatically if the squares of Figure 9 commute.

To see this, observe that the morphisms ψ̄ ′ and ψ̄ ′ ′ of Figure 8 also appear in the

squares of Figure 9. Moreover, the lower edges of the squares in Figures 8 and 9 form

a square of Γn0
. Now use that the squares of Γn0

anticommute.
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6 Towards Functoriality

Throughout this section let A be the category of Z(2)-modules. Recall that

FLee,FKh : Cob3
/l → A

extend to the functors FLee,FKh : Kom(Mat(Kob/h)) → Kom(Kom/h(A)). The iso-

morphism classes of FLee([[Dn]]α,β) and FKh([[Dn]]α,β) are invariants of a colored

link.

Theorem 6.1 For α = β = 1, the maps FLee(ψs0,s
1,1 ) and FLee(ψ̄s0,s

1,1 ) induce chain

transformations.

Before we prove the theorem, let us introduce a new relation in Cob3, called the

genus reduction relation. Consider a cobordism C ′ obtained from a cobordism C

by attaching two small handles to a disk of C. The genus reduction relation asserts

that C ′ = 4C. Now let us assume that 2 is invertible and that the relations (S),

(T) and (4Tu) hold. Then the genus reduction relation becomes equivalent to the

relation = 8, i.e., to the defining relation for Lee’s functor. As a consequence,

FLee(Kh(H(P)))2/4 is the identity map, for H(P) defined as in Subsection 3.4.

Proof of Theorem 6.1 Assume α = β = 1 and assume that the genus reduction re-

lation holds. We have to show that under this assumption, the morphisms ψs0,s
1,1 and

ψ̄s0,s
1,1 satisfy the conditions of Lemmas 5.1 and 5.2, respectively. We start by prov-

ing d0ψ̄
s0,s
1,1 = 0 for the left square of Figure 10 (the proof for the right square is

analogous). We assume that the three dots in the lower left corner of the square are

numbered from bottom to top with i to i + 2. Consider the diagram Dn0

0 of the n0-

cable of D0. Let li , li+1, and li+2 be three parallel edges of Dn0

0 , belonging to the strands

Ci , Ci+1, and Ci+2, respectively. Let Gi denote the region of Dn0

0 which lies between

li and li+1, and let Gi+1 denote the region which lies between li+1 and li+2. Choose a

point Pi on li and a point Pi+1 on li+1. Observe that on Ci+2, the map ψ̄s0,s
1,1 is induced

by a saddle cobordism. On Ci and Ci+1, it is induced by an annulus postcomposed

with (1 + (σ(Gi)/2) Kh(H(Pi))). We can replace Kh(H(Pi)) by Kh(H(Pi+1)) because

we can move the point Pi across the annulus. For α = β = 1, the map d0 is given

by (1 + (σ(Gi+1)/2) Kh(H(Pi+1))), postcomposed with an annulus. Since Gi and Gi+1

are neighbors, σ(Gi+1) = −σ(Gi). Summarizing, we see that d0ψ̄
s0,s
1,1 factors through

(1−(σ(Gi)/2) Kh(H(Pi+1)))(1+(σ(Gi)/2) Kh(H(Pi+1))) = 1−Kh(H(Pi+1))2/4 = 0.

To show that the squares of Figures 7 and 9 commute (up to sign), apply iso-

topies, the neck cutting relation and the genus reduction relation to the cobordisms

corresponding to (d0ψ1,1)s ′

0 ,s, (ψ1,1d)s ′

0 ,s, (d0ψ̄1,1)s ′

0 ,s, and (ψ̄1,1d)s ′

0 ,s. Use the fact

that (σ(G)/2) Kh(H(P)) is independent of the choice of the point P on Ci , and that

Kh(H(P)) commutes with morphisms induced by cobordisms which agree with the

identity cobordism in a neighborhood of P. The details are left to the reader.
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Theorem 6.2 For α = 0, β = 1, the maps FKh(ψs0,s
0,1 ) and FKh(ψ̄s0,s

0,1 ) induce chain

transformations.

Proof Let us first show that FKh(d0ψ̄
s0,s
0,1 ) = 0 for the left square of Figure 10 (the

proof for the right square is analogous). By the same arguments as in the previous

proof, FKh(d0ψ̄
s0,s
1,1 ) factors through FKh(Kh(H(Pi+1)) Kh(H(Pi+1))) = 0, because the

genus of the composition is bigger than one.

To show that the squares of Figures 7 and 9 commute (up to sign), we must pro-

ceed as in the previous proof, replacing the genus reduction relation by the relation

setting all cobordisms of genus bigger than one to zero. An illustration in the case of

the unknot is given in Figure 11.

P

Figure 11: Commutativity of the diagrams of Figure 9. The filled regions are annuli of genus 1.

Applying the neck cutting relation to the red line, and removing components of genus 2, we

get one half of the two genus 1 annuli, shown on the right.

Proof of Theorem 4 From Theorems 6.1 and 6.2 we know that saddles induce chain

transformations. It remains to show that the morphisms associated to cups and caps

do this also. The case of cups is easy, so we only discuss the case of caps. Let D and D0

be two link diagrams which are related by a cap cobordism. Let K be the component

of D0 which is not contained in D. To show that ιs0,s : Kh(Ds) → Kh(Ds0

0 ) induces a

chain transformation, we write the differential of [[D0,n0
]]α,β as a sum d0 = d ′

0 + d ′ ′
0 ,

where d ′
0 is the sum of all morphisms Kh(e) which increase the number of pairs on K ,

and d ′ ′
0 is the sum of all morphisms Kh(e) which increase the number of pairs on one

of the other components of D0. It is easy to see that d ′′
0 commutes with ι. For α = 0,

β = 1, FKh(d ′
0)FKh(ι) = 0, because the genus of the composition is bigger than one.

To complete the proof, we show that for α = 1 and β = 1, FLee(d ′
0)FLee(ι) = 0. Note

that d ′
0 =

∑n
i=1 Kh(ei), where Kh(ei) is the morphism (1 + X(K, i)) composed with
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an annulus glued to the strands i and i + 1 of the n-cable of K . As in the proof of

Theorem 6.1, we can replace X(K, i) by −X(K, i + 1). Recall that ιs0,s is given by a

union of cap cobordisms composed with the morphism ϕ =
∑n

j=0 A j ◦ B j . Using

the genus reduction relation, we obtain FLee((1 + X(K, i)) ◦ A j) = 0 for i ≤ j and

FLee((1 − X(K, i + 1)) ◦ B j) = 0 for i ≥ j. Therefore FLee(Kh(ei) ◦ A j ◦ B j) = 0 for

all i, j, and hence FLee(d ′
0)FLee(ι) = 0.

Remark. We do not know how to extend the original colored Khovanov bracket

[[Dn]] to a functor from the category CCCob
4
f to the category Kom(Kom/h(A)). For

this bracket, the morphisms ψs0,s
0,2 induce chain transformations (cf. [8]), but there is

no choice of γ, δ for which the morphisms ψ̄s0,s
γ,δ induce chain transformations.

7 The Rasmussen Invariant for Links

7.1 Definition

By Lee’s theorem [9], the homology of FLee([[L]]) has rank 2|L|, where |L| is the num-

ber of components of L. The generators of Lee homology are in bijection with the

orientations of L. Hence, Lee homology of a knot has two generators. In particular,

the graded module associated with the Lee homology of a knot has two homogeneous

generators, whose topological degrees we denote by smax and smin. The Rasmussen in-

variant s(K) of a knot K is

s(K) :=
smax + smin

2
.

Let us extend the Rasmussen construction to links. Let L be an oriented link. Let

so and sō be the generators of the Lee homology corresponding to the orientation of

L and the opposite orientation, respectively. Then by [11, Lemma 3.5], the filtered

topological degrees of so + sō and so − sō differ by 2 modulo 4. Further, we can

show that they differ by exactly 2. Indeed, a genus 1 cylinder cobordism induces an

automorphism of FLee([[L]]) of topological degree −2, which interchanges so +sō and

so − sō. The Rasmussen invariant s(L) of a link L is

s(L) :=
deg(so + sō) + deg(so − sō)

2
.

Note that s(L) = min(deg(so + sō), deg(so − sō)) + 1 and that the Rasmussen

invariant of the n-component unlink is 1 − n.

7.2 Properties

Let S be a smooth oriented cobordism from L1 to L2 such that every connected com-

ponent of S has boundary in L1. We will always assume that the orientations of L1

and L2 coincide with ones induced by S, in the sense that ∂S = −L1 ∐ L2. Then the

Rasmussen estimate generalizes to

(7.1) |s(L2) − s(L1)| ≤ −χ(S)
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where χ(S) is the Euler characteristic of S. Indeed, arguing as in [11] we obtain the

estimate s(L2) ≥ s(L1) + χ(S). By reflecting S ⊂ R3 × [0, 1] along R3 × {1/2}, we

obtain a cobordism from L2 to L1 with the same Euler characteristic as S. This gives

us the estimate s(L1) ≥ s(L2) + χ(S).

Lemma 7.1 Let L̄ be the mirror image of L and let # and ∐ denote the connected sum

and the disjoint union, respectively. Then

s(L1 ∐ L2) = s(L1) + s(L2) − 1,(7.2)

s(L1) + s(L2) − 2 ≤ s(L1 # L2) ≤ s(L1) + s(L2),(7.3)

−2|L| + 2 ≤ s(L) + s(L̄) ≤ 2.(7.4)

Note that the first inequality of (7.4) becomes an equality if L is an unlink.

Proof of Lemma 7.1 Let o1, o2 and o denote the orientations of L1, L2 and L1 ∐ L2,

respectively.

The filtered modules FLee([[L1∐L2]]) and FLee([[L1]])⊗FLee([[L2]]) are isomorphic

by an isomorphism which sends so to so1
⊗ so2

. Hence (7.2) follows from deg(so) =

min(deg(so + sō), deg(so − sō)) = s(L1 ∐ L2) − 1 and deg(soi
) = min(deg(soi

+

sōi
), deg(soi

− sōi
)) = s(Li) − 1 (cf. [11, Corollary 3.6]). Equation (7.3) follows from

(7.1) and (7.2) because L1∐L2 and L1#L2 are related by a saddle cobordism. Similarly,

(7.4) can be deduced from (7.1) and (7.2) because there is a cobordism, consisting of

|L| saddle cobordisms, which connects L ∐ L̄ to the |L|-component unlink.

7.3 Obstructions to Sliceness

The notion of sliceness admits different generalizations to links. We say that an ori-

ented link L is slice in the weak sense if there exists an oriented smooth connected

surface P ⊂ B4 of genus zero, such that ∂P = L. And L is slice in the strong sense

if every component bounds a disk in B4 and all these disks are disjoint. Recently,

Cimasoni and Florens [5] unified different notions of sliceness by introducing col-

ored links.

The Rasmussen invariant of links is an obstruction to sliceness.

Lemma 7.2 Let L be slice in the weak sense. Then |s(L)| ≤ |L| − 1.

Proof If L is slice in the weak sense, then there exists an oriented genus 0 cobordism

from L to the unknot. Applying (7.1) to this cobordism we get the result.

The multivariable Levine–Tristram signature defined in [5] is also an obstruction

to sliceness. However, for knots with the trivial Alexander polynomial, the Levine–

Tristram signature is constant and equal to the ordinary signature. Therefore, for

a disjoint union of such knots the Rasmussen link invariant is often a better ob-

struction than the multivariable signature. Using the Shumakovitch list of knots
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with the trivial Alexander polynomial, but nontrivial Rasmussen invariant [12] and

Knotscape [6], one can easily construct examples, e.g., the multivariable signature

of K15n28998
∐ K15n40132

∐ K13n1496
vanishes identically, however s(K15n28998

∐ K15n40132
∐

K13n1496
) = 4 > 3 − 1. Hence this split link is not slice in the weak sense. Similarly,

the Rasmussen invariant, but not the signature, is an obstruction to sliceness for the

following split links: K15n113775
∐ K14n7708

, K15n58433
∐ K15n58501

, etc.
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