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A universal scaling for the length scales of
shock-induced separation
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Experiments of transitional shock wave–boundary layer interactions (SBLIs) over 6◦ and
10◦ compression ramps were performed at Mach number 1.65. The unit Reynolds number
was varied by a factor of two between 5.6 million per metre and 11 million per metre.
Schlieren flow visualization was performed, and mean flow measurements were made
using Pitot probes. Free interaction theory was verified from pressure measurements for
all operating conditions. A new non-dimensional parameter was developed for scaling the
strength of the imposed shock, which was based on the pressure required to separate a
boundary layer. The validity of this new scaling was supported by the reconciliation of
large discrepancies in a diverse collection of experimental results on the length scales
of transitional interactions. This non-dimensional scaling was also applied to turbulent
interactions, where different models were used to determine the pressure required to
separate a turbulent boundary layer. Finally, a direct comparison between transitional and
turbulent SBLIs was made, which revealed new insights into the evolution of length scales
based on the state of the boundary layer.
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1. Introduction

A shock wave–boundary layer interaction (SBLI) is a classical flow phenomenon of
high-speed aerodynamics. One encounters SBLIs in various applications, such as engine
inlets, transonic wings, rocket nozzles and compressors, hence they have received a lot of
attention over the past 70 years (Délery, Marvin & Reshotko 1986; Dolling 2001).

While small imposed flow deflections tended only to thicken the boundary layer,
stronger flow deflections resulted in boundary layer separation. It was understood that
one of the important mechanisms of SBLIs was the upstream propagation of the incident
pressure rise through the subsonic channel of the boundary layer (Lees 1949). Given how
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often SBLIs were encountered in practical applications, there began many investigations
with the objective of developing a model to predict the length of the separated region.

However, this length scale was dependent on many parameters, such as Mach number,
Reynolds number, imposed flow deflection, and more importantly, the type of upstream
boundary layer. In fact, SBLIs can be classified into three types, depending on the location
of boundary layer transition (Gadd, Holder & Regan 1954).

(i) Laminar interactions, where the boundary layer remained laminar throughout the
interaction.

(ii) Transitional interactions, where transition to turbulence was initiated at some point
along the interaction. Recent studies have shown that this type of SBLI may be
further divided into several sub-categories, depending on the exact location of the
boundary layer transition (Doerffer et al. 2020).

(iii) Turbulent interactions, where the boundary layer was ‘fully’ turbulent before the
interaction.

The length of interaction L (formally defined as the streamwise distance between
the imposed (inviscid) shock location at the wall and the mean location of boundary
layer separation at the wall) for laminar interactions was much longer compared to
turbulent interactions. Even when scaled with their respective boundary layer thicknesses,
the measurements highlighted that L/δ∗ ≈ O(101) for turbulent interactions, and
L/δ∗ ≈ O(102) for laminar interactions, for equivalent Mach numbers, Reynolds numbers
and flow deflections.

Additionally, the flow deflection (or equivalently the pressure rise) required to separate
a laminar boundary layer was much lower when compared to turbulent boundary layers
(Liepmann, Roshko & Dhawan 1952). This meant that it was difficult to make a fair
comparison between the different types of SBLIs.

When comparing the same types of SBLIs, free interaction theory (first proposed by
Oswatitsch & Wieghardt (1948) and later formalized by Chapman, Kuehn & Larson
(1958)) showed that the non-dimensional pressure rise at separation was independent
of the imposed flow deflection, and was rather a function of only the upstream Mach
and Reynolds numbers. This meant that the coefficient of free interaction was different
depending on the type of upstream boundary layer (Babinsky & Harvey 2011).

Further, the length of interaction was found to be dependent on the type of geometrical
configuration; while a small compilation of oblique shock reflection experiments did show
the same linear relationship between the length scales and the imposed shock strength
(Dupont, Haddad & Debieve 2006), the length scales from compression ramp experiments
were approximately 2–4 times smaller for equivalent shock strengths.

The pioneering work of Souverein, Bakker & Dupont (2013) was able to develop scaling
laws for both the length of interaction and the shock strength, to collapse most of the
experimental measurements of turbulent SBLIs. The length of interaction was shown to be
a direct consequence of the mass flow deficit between the outgoing and incoming boundary
layers. This scaling was a common formulation for both oblique shock reflections and
compression ramps.

Moreover, it was shown that the pressure needed to separate a turbulent boundary
layer was mainly dependent on the dynamic pressure of the free-stream, and only a weak
effect of the Reynolds number was reported (see figure 8(a), p. 522, of Souverein et al.
2013). Hence an inviscid shock strength was developed that was a type of overall pressure
difference across the interaction, expressed in non-dimensional form. This scaling was able
to successfully clear the ambiguities associated with the length scales of turbulent SBLIs
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between various wind tunnel facilities over a large range of Mach numbers, Reynolds
numbers, flow deflections and geometrical configurations. However, later studies showed
that the Reynolds number did affect the pressure required to separate turbulent boundary
layers, mainly at high Reynolds numbers (Touré & Schülein 2020, 2023; Xie et al. 2021).

In contrast to turbulent SBLIs, the Reynolds number was found to have a significant
effect on transitional interactions. Large differences (approximately 50 %) were reported
between the length scales from the low Reynolds number wind tunnel of the IUSTI
laboratory (Diop, Piponniau & Dupont 2016, 2019) and the high Reynolds number wind
tunnel of TU Delft (Giepman, Schrijer & Van Oudheusden 2018), for the same imposed
shock strength.

A possible explanation was also the difference in free-stream noise of the two wind
tunnels, which could have affected the transition process of the separated laminar
boundary layer, and indirectly affected the length scales of the interaction. The wind
tunnel of the IUSTI laboratory was found to have approximately four times lower turbulent
intensities compared to the experimental facilities of TU Delft (comparing mass-flux
fluctuations from Diop et al. (2019) and Giepman, Schrijer & Van Oudheusden (2015)). On
a similar note, numerical studies of oblique shock reflections showed that the amplitude of
inflow perturbations had a significant influence on the length of interaction (Larchevêque
2016), similar to what was observed for low-speed laminar separation bubbles (Marxen &
Henningson 2011). Hence transition of the laminar boundary layer also played a significant
role in affecting the length scales in such types of interactions.

Hence it was clear that the length scales of transitional SBLIs were sensitive to more
parameters compared to turbulent SBLIs. Consequently, a thorough search of the literature
did not yield any scaling laws or comprehensive compilation for laminar and transitional
SBLIs that accounted for the effects of the Reynolds number.

The main aim of the current paper is to investigate the length scales of transitional SBLIs
with the hope of reconciling the discrepancies between different wind tunnel facilities. It
is well known that length scales of such interactions have a complicated relationship with
the transition of the boundary layer. The effect of the Reynolds number and receptivity
of the boundary layer to free-stream disturbances is not very well understood. As several
experimental facilities have examined the length scales of transitional SBLIs, the current
work explores whether a scaling can be developed that consolidates all these results.
Finally, an effort is made to develop common scaling laws for laminar, transitional and
turbulent SBLIs.

Experiments studying transitional SBLIs were performed with two compression ramps,
and comparisons were drawn with previous experiments from the IUSTI laboratory. The
paper is organized as follows. Section 2 describes the experimental facilities of the IUSTI
laboratory along with the geometrical models and the flow measurement techniques that
were used. Sections 3.1 and 3.2 verify and validate the canonical nature of the upstream
laminar boundary layer as well as the compression ramp SBLIs, respectively. The length
of interaction is addressed in § 3.3, initially focusing on the effect of flow deflection and
Reynolds number, and then moving on to the compilation of experimental data. Section 3.4
extends the scaling to turbulent SBLIs, and comparisons are drawn between different types
of interactions. Section 4 summarizes the results, providing conclusions and perspectives.

2. Experimental methodology

The experiments were performed at the IUSTI laboratory of Aix-Marseille University
and CNRS. The supersonic wind tunnel was a closed-loop system that could be

1000 A5-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.864


N. Mahalingesh, S. Piponniau and P. Dupont

pt (atm) M Reu (×106) (m−1) Rec (×106) σρu (%) σu (%) σp (%)

0.4 1.64 5.61 0.65 0.07 0.04 0.16
0.6 1.64 8.37 0.96 0.06 0.03 0.13
0.8 1.65 11.01 1.27 0.05 0.03 0.11

Table 1. Operating conditions of the experiments.

operated continuously for several hours without significant drift in free-stream properties
(±1 K h−1 and ±0.5 mbar).

Experiments were performed in the S8 test section, where a symmetric
converging–diverging nozzle accelerated the flow to Mach number M = 1.65,
corresponding to free-stream velocity u∞ = 464 m s−1. The total temperature was
maintained at ambient conditions (approximately 295 K, depending on weather
conditions), while the total pressure (pt) of the free-stream could be varied from 0.15 atm
to 0.9 atm. This resulted in a range of unit Reynolds numbers (Reu) from 2.1 × 106 m−1

to 12.4 × 106 m−1 for the free-stream. Most of the current experiments were performed
for free-stream total pressures 0.4 atm, 0.6 atm and 0.8 atm (see table 1).

The free-stream noise at the exit of the nozzle was measured using the classical
single sensor hot-wire anemometer. The streamline amplifier from Dantec Dynamics was
operated in the symmetric bridge configuration. A platinum and tungsten wire of 2.5 µm
diameter was used. The constant temperature anemometer had an effective bandwidth
in the range 100–150 kHz, depending on the unit Reynolds number. Sensitivity of the
anemometer to fluctuations of total temperature was reduced by operating at a high
overheat ratio 0.8, and sensitivity to fluctuations of Mach number was negligible as the
free-stream Mach number was greater than 1.4 (Morkovin 1956). Hence fluctuations
of hot-wire voltage (e) were directly related to the fluctuations of mass-flux through
the King’s law coefficient Fc (Dupont 1990). Additionally, fluctuations of velocity and
pressure were determined from fluctuations of mass-flux, considering isentropic and
non-rotational flow in the potential region (Morkovin 1956), as follows:

σρu = (ρu)rms

(ρu)mean
= 1

Fc
× erms

emean
, (2.1a)

σu = urms

umean
= 1

Fc
× 1

M2 − 1
× erms

emean
, (2.1b)

σp = prms

pmean
= 1

Fc
× γ M2

M2 − 1
× erms

emean
. (2.1c)

Table 1 shows the measured turbulence intensities in terms of non-dimensional
fluctuations (root mean square, r.m.s.) of mass-flux, velocity and pressure. The free-stream
noise was found to have low turbulence intensities under all operating conditions. This
ensured that the laminar boundary layer would not undergo bypass transition (Laufer
1961).

Downstream of the nozzle, the test section was 105 mm in height and 170 mm in
spanwise width. The two geometric models were similar in construction, with a sharp
leading edge, total length 280 mm, and spanning the entire width of the test section.
The location of the corner of the ramp (xc) was 115 mm from the leading edge for both
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ϕ xc (mm) xa (mm)

6◦ 115 175
10◦ 115 150

Table 2. Differences between ramp geometries in figure 1(b).

Roof

Floor25 mm

105 mm

35 mm

xc

xa

ϕ

(b)(a)

Figure 1. (a) Picture and (b) schematic of compression ramp geometry (differences between ramp geometries
are described in table 2).

geometries (table 2). The Reynolds number based on the location of the corner (Rec) is
shown in table 1 for different total pressures of the free-stream. The two models were
placed at height 25 mm from the floor, using supports near the spanwise edges of the
wind tunnel (figure 1). These supports prevented any ‘leakage’ between the main flow
over the models and the secondary flow underneath the models. It is to be noted here that
the adiabatic wall temperature for these models nearly reached ambient conditions (total
temperature of the free-stream), considering a recovery factor r ≈ Pr1/2 ≈ 0.84 for a fully
laminar boundary layer, and r ≈ Pr1/3 ≈ 0.89 for a fully turbulent boundary layer (Mack
1954), where Pr is the Prandtl number. It is important to note that from here on, the entire
geometry of the ramp on the flat plate is referred to as a ‘compression ramp’ for simplicity.

The flow deflections (ϕ) of the two compression ramps were chosen such that direct
comparisons could be drawn with the oblique shock reflection experiments by Diop (2017).
In particular, the ramp angles were chosen to be twice that of the imposed flow deflection
in the oblique shock reflection experiments, so that the overall pressure rise across the
interaction was the same between the two configurations (Délery et al. 1986). The oblique
shock reflection experiments were performed in the same wind tunnel facility (but in the
other test section (S7) of the IUSTI laboratory), at similar Mach and Reynolds numbers.
Similar to experiments of Diop (2017), the floor of the wind tunnel was modified to have
additional depth 10 mm to alleviate choking of the secondary flow underneath the models.

The boundary layers on the side walls of the test section were ‘tripped’ and hence
turbulent in nature. The onset of separation for a turbulent boundary layer at this Mach
number was estimated to be a 14◦ ramp (or 7◦ oblique shock reflection). Hence these side
wall boundary layers were not separated, but only decelerated. The ‘edge/corner’ effect of
this decelerated side wall boundary layer on the main transitional SBLI on the ramp was
expected to be minimal.

Flow visualization was performed using Schlieren measurements from a conical set-up
involving a parabolic mirror and continuous illumination. Vertical gradients of density

1000 A5-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.864


N. Mahalingesh, S. Piponniau and P. Dupont

1.2

1.0

0.8

0.6

0.4

u/u∞

0.2

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

y/δ99

Figure 2. Boundary layer velocity profiles at different Reynolds numbers. Solid black line indicates Blasius
boundary layer; circles indicate Rex = 0.65 × 106; crosses indicate Rex = 0.96 × 106; squares indicate Rex =
1.27 × 106.

in the flow were visualized by placing the knife edge horizontally. Images of the mean
flow were acquired with a classical full-frame digital SLR camera (Nikon D700), having a
12-bit CMOS sensor with pixel size 8.45 µm, and resolution 4526 × 2832 pixels, and the
exposure time of the camera was set to 150 µs.

A classical Pitot probe was used to make measurements of the mean flow field. The tip
of the probe was 0.3 mm in height with an opening 0.15 mm in height, which measured
the mean stagnation pressure of the flow (downstream of the shock wave of the probe).
Given that the total pressure upstream of the nozzle was measured, flow properties such
as Mach number, pressure, temperature, velocity and density (upstream of this shock
wave around the probe) were determined using the Rayleigh Pitot formula and standard
compressible flow equations (NACA, Ames Research Staff 1953). For Pitot measurements
made inside the laminar boundary layer, it was assumed that the static pressure and the
total temperature were constant.

3. Results

3.1. Upstream boundary layer
The boundary layer velocity profiles were measured at different streamwise locations on a
simple flat plate geometry at the same Mach number. The geometry and set-up of the flat
plate was identical for both the compression ramps.

Measurements using the Pitot probe were made every 0.05 mm in the wall-normal
coordinate and are shown in figure 2 in similarity coordinates, with streamwise velocity
scaled with the free-stream velocity (u∞), and wall-normal distance scaled with the
thickness of the boundary layer (δ99). The figure also shows the theoretical compressible
Blasius boundary layer profile, obtained by solving the compressible boundary layer
equations for the same Mach number.

Measurements of the boundary layer profile made at different Reynolds numbers
exhibited a clear linear region and agreed very well with the theoretical Blasius profiles,
thus validating the canonical nature of the laminar boundary layer for the Reynolds
numbers (i.e. Rec) considered in the current experiments (table 1). The nature of the
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Length scales of SBLIs

Corner

LE

shock Mach wave

Reattachment

shock

Figure 3. Schlieren visualization for ϕ = 6◦ and Rec = 0.65 × 106.

boundary layer was expected to be the same over both compression ramps, given the
similarity of the geometrical models. Hence it was concluded that both compression ramps
were interacting with a canonical laminar boundary layer.

3.2. Spatial organization
Figure 3 shows the Schlieren visualization of the transitional SBLI for the 6◦ compression
ramp. The sensitivity of the Schlieren system was increased so that small density gradients
may be observed more clearly. The shock wave from the leading edge of the model
(annotated as ‘LE shock’ in figure 3) was weak (�M ≈ 0.1, based on Pitot measurements).
Additionally, a Mach wave was seen originating from the ceiling of the test section,
upstream of the leading edge. This Mach wave was due to a very small structural
discontinuity between the end of the diverging section of the nozzle and the start of the
test section. This Mach wave did not have a significant effect on the mean flow field of the
interaction, based on Pitot probe and hot-wire measurements. The secondary flow (under
the ramps) appeared to maintain supersonic conditions, indicating that the flow was not
choked.

Looking closely near the corner, it was seen that the boundary layer separated upstream
of the corner, and subsequently reattached downstream of the corner. A separation
bubble was visible between the points of separation and reattachment (identified by the
small bright white region). Separation of the boundary layer was not characterized by
a distinct shock wave, but rather weak compression waves that could not be seen by
Schlieren imaging. However, stronger compression waves were observed at reattachment,
that coalesced further away from the wall, and merged into a shock wave. The Schlieren
visualization of the interaction involving the 10◦ compression ramp was similar and is not
shown here to avoid repetition.

An illustration of the compression ramp SBLI is shown in figure 4, where C represents
the corner of the ramp, with S and R representing separation and reattachment of the
boundary layer (BL), respectively. The recirculating region was long and thin, shown by
the grey region between the points S and R. Such large aspect ratios of the separated region
was also found by previous studies (Giepman et al. 2018; Diop et al. 2019; Threadgill,
Little & Wernz 2021). Far downstream of reattachment, the boundary layer was expected
to be fully turbulent. The streamwise distance between the points S and C was referred to
as the length of interaction (L).

Figure 5 shows the evolution of the static pressure coefficient over the interaction for the
two compression ramps, determined from Pitot pressure measurements. Given the weak
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Compression waves

S C R

Reattachment shock

Laminar BL
Turbulent BL

L

Separated shear layer

Figure 4. Illustration of the SBLI over the compression ramp.
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0.3

0.2

0.1

0

0.4

0.3

0.2

0.1

0

–1.0 –0.5 0 0.5 1.0

X ∗

cp

X ∗
1.5 2.0 –1.0 –0.5 0 0.5 1.0 1.5 2.0

(b)(a)

Figure 5. Comparison of Pitot pressure evolution with inviscid pressure rise (for symbols, see table 3; solid
black line represents the inviscid pressure step), for (a) 6◦ ramp, and (b) 10◦ ramp.

ϕ

Rec 6◦ 10◦

0.24 �
0.33 �
0.65 • •
0.96 � �
1.27 � �
1.43 �

Table 3. Meanings of symbols for the current transitional SBLI experiments (Reynolds number (Rec) shown
in millions).

nature of the leading edge shock wave, and the nearly isentropic nature of the compression
waves associated with separation of the laminar boundary layer (Chapman et al. 1958;
Giepman et al. 2018), the Rayleigh Pitot formula together with standard compressible
flow equations was used to determine the static pressure of the flow. Measurements were
made outside the boundary layer at a constant height from the wall, for every 1 mm along
the streamwise coordinate. The height of the measurements was chosen such that there
was minimal probe interaction effect on the flow. This was chosen to be y = 5 mm and
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–1.0
–0.5

0

0.5

1.0

1.5

2.0

–0.8 –0.6 –0.4 –0.2 0

X ∗

F

0.2 0.4 0.6 0.8 1.0

Figure 6. Pressure evolution across separation represented through the coefficient of free interaction (for
symbols, see table 3; dashed black line corresponds to Fs = 0.8, and dotted black line corresponds to
Fp = 1.5).

y = 14 mm for the 6◦ and 10◦ compression ramps, respectively. It is to be noted that
all wall-normal and streamwise coordinates were measured with the leading edge of the
model as origin. The streamwise coordinate was normalized according to (3.1), where xs
corresponded to the mean location of separation, and xc was the location of the corner:

X∗ = x − xs

xc − xs
. (3.1)

The mean location of separation was associated with the inflection point in the
streamwise pressure evolution. This inflection point was determined by identifying the
peak in the streamwise gradient of the pressure (Larchevêque 2016; Sansica, Sandham
& Hu 2016). This inflection point outside the boundary layer was projected to the wall
following the inviscid shock wave angle of separation (which was determined based on
the pressure ratio at separation). Thus the mean location of separation was determined at
the wall up to an accuracy ±1 mm.

The measurements showed a classical two-step pressure rise, characteristic of separated
SBLIs, for all the operating conditions of the current experiments. Comparisons were also
made with the inviscid pressure rise for each compression ramp, and reasonable agreement
was found in both cases, with a small undershoot by the experiments. This was due to
the non-trivial loss of total pressure across the reattachment shock, which was not taken
into account in the data analyses. Additionally, it was observed that the reattachment
compression was abrupt (corresponding to a focused shock wave) for the 10◦ ramp, as
opposed to a smooth and gradual compression at reattachment for the 6◦ ramp.

The non-dimensional pressure rise at separation was identical for both compression
ramps, owing to the free interaction process of the boundary layer (Chapman et al. 1958).
Figure 6 shows the evolution of the pressure across separation in terms of the coefficient
of free interaction

F = p − p1

q

√
(M2 − 1)1/2

2cf
, (3.2)
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0.4

0.3

0.2

0.1

cp

0

70 80 90 100 110 120 130

x (mm)

70 80 90 100 110 120 130

x (mm)

0.4

0.3

0.2

0.1

0

(b)(a)

Figure 7. Comparison of non-dimensional pressure evolution, projected to the wall (for symbols, see table 3;
solid black line represents the inviscid pressure step), for (a) 6◦ ramp, and (b) 10◦ ramp.

where p1 is the static pressure of the free-stream, q is the dynamic pressure of the
free-stream, and cf is the skin-friction coefficient. The theoretical skin-friction coefficient
from an equivalent (attached) Blasius boundary layer was used to determine this
coefficient. It is to be noted here that the theory of free interaction proposed another
scaling for the streamwise coordinate based on the extent of the pressure rise at separation.
This scaling was not used here as it was not possible to determine this streamwise
length accurately and confidently. Hence figure 6 uses the scaling based on the length
of interaction (see (3.1)). Nevertheless, the measurements confirmed the process of free
interaction; Fs ≈ 0.8 was reached at the mean location of separation, and the pressure
reached Fp ≈ 1.5 asymptotically downstream of separation, agreeing with standard values
reported by various experiments in the literature (Babinsky & Harvey 2011). This
confirmed the canonical nature of the current compression ramp SBLIs.

The flow deflection at separation (corresponding to the pressure rise at separation)
was found to be 1.3◦ ≤ ϕs ≤ 1.7◦. It was observed that this flow deflection at separation
decreased slightly with increasing Reynolds number, following the predictions of free
interaction theory (Chapman et al. 1958). However, the exact difference in these flow
deflections was within the uncertainty of the measurements, hence this result could not
be concluded with confidence. Nevertheless, the global organization of the mean flow
field was similar for the two compression ramps for all the Reynolds numbers considered
in these experiments.

3.3. Length of interaction
Additionally, Pitot probe measurements provided quantitative insight into the upstream
influence of the SBLI through the length of interaction, which was defined as the
streamwise distance between the corner of the ramp and the mean location of boundary
layer separation (measured at the wall). Figure 5 shows that the global organization of the
mean flow was similar for both ramp geometries. However, it does not show how the length
of interaction changed with Reynolds number as well as imposed flow deflection. Figure 7
compares the pressure evolution over the interaction between the two ramps, similar to
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Length scales of SBLIs

ϕ

Rec 6◦ 10◦

0.24 34.8
0.33 27.2
0.65 22.1 26.0
0.96 19.2 20.7
1.27 16.2 19.0
1.43 14.3

Table 4. Absolute lengths of interactions shown in millimetres (Reynolds number Rec shown in millions).
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Figure 8. Comparison of non-dimensional lengths of interaction between both compression ramps (for
symbols, see table 3): (a) Reynolds number effect, and (b) shock strength effect.

figure 5. But instead of using the non-dimensional streamwise coordinate, the streamwise
coordinate was projected to the wall (using the local Mach characteristic angles), and is
shown in absolute units of millimetres. It was assumed that flow information propagated
along characteristic lines in the potential region of supersonic flows (Agostini et al. 2012).
As these measurements were made at different heights for the two ramps, this procedure
was chosen to make a fair comparison using absolute coordinates. It is also important to
note that data markers are shown for only every fifth measurement point (corresponding
to 5 mm between data markers, whereas measurements were made every 1 mm) to reduce
clutter in figure 7.

It was observed that the length of interaction decreased when the Reynolds number
was increased, for both the ramps. And comparing between the two ramps, the length
of interaction was larger for higher ramp angles (table 4). Additionally, it was observed
that on the 6◦ ramp, the locations of both separation (corresponding to the first pressure
rise) and reattachment (corresponding to the second pressure rise) moved when the
Reynolds number was changed. However, only the location of separation moved and the
reattachment point was nearly fixed at approximately the same location on the 10◦ ramp.

Figure 8 highlights the evolution of the length of interaction (L) normalized by the
compressible displacement thickness (δ∗) at separation (the theoretical compressible
displacement thickness for an attached Blasius boundary layer was used). The uncertainty
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(b)(a)

ϕ

ϕ

Figure 9. Schematic of SBLI: (a) oblique shock reflection, and (b) compression ramp.

in the determination of the length of interaction derived mainly from the determination
of the mean location of separation, which was approximated to be accurate up to ±1 mm.
Therefore, an uncertainty in the experimental determination of the length of interaction
was found to be between 6 % and 14 %, with larger uncertainty for shorter lengths of
interaction. The symbols used in figure 7 are repeated in figure 8 for consistency. Here, the
shock strength was defined as the non-dimensional inviscid pressure rise imposed by the
ramp:

cp3 = p3 − p1

q
= 2

γ M2

(
p3

p1
− 1

)
, (3.3)

where p3 is the theoretical inviscid pressure downstream of the reattachment (figure 9). A
clear trend of the length of interaction was not observed for increasing Reynolds numbers
(figure 8a). Nevertheless, the length scales for different Reynolds numbers fell on a vertical
line for each ramp (figure 8b). However, it is important to note that the maximum variation
of length scales (approximately 8 %) for this range of Reynolds number was within the
uncertainty of experimental measurements. Therefore, a quantitative effect of Reynolds
number could not be determined confidently from the current experiments.

Further, for comparisons to be made between different geometries (e.g. oblique shock
reflections and compression ramps), there was a need to utilize a common length scaling
for both geometries. As the current experiments were made so that a direct comparison
could be made with oblique shock reflection experiments of Diop (2017), an effective
scaling for the length of interaction was necessary. Souverein et al. (2013) developed a
common length scaling for turbulent SBLIs, based on the mass flow deficit between the
outgoing (ṁout) and incoming (ṁin) boundary layers:

L∗ = L
δ∗ G3(M, ϕ) = L

δ∗

(
sin(β) sin(ϕ)

sin(β − ϕ)

)
=

(
ṁout

ṁin
− 1

)
, (3.4)

where δ∗ was the compressible displacement thickness of the boundary layer at the mean
location of separation, β was the inviscid shock wave angle, and ϕ was the imposed flow
deflection (figure 9). This scaling was a common formulation for both oblique shock
reflections and compression ramps. Although this scaling was developed for turbulent
SBLIs, it should also be applicable to transitional SBLIs, given that this formulation
was based on the mass conservation of the mean flow (Souverein et al. 2013). Further,
(3.4) shows that the ṁout term could be affected by the mean velocity profile of the
boundary layer at reattachment, and this provided a possible physical explanation for how
the transitional state of the boundary layer at reattachment could have affected the length
of interaction.

Figure 10 compares the length of interaction between the current experiments
on compression ramps and oblique shock reflection experiments from Diop (2017).
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Figure 10. Comparison of lengths of interaction between compression ramps and oblique shock reflections
(for symbols, see tables 3 and 5): (a) classical normalization, and (b) mass-balance normalization.

ϕ

Rei 3◦ 3.5◦ 4◦ 4.5◦ 5◦ 5.5◦ 6◦

0.62 � � �
0.92 � � � � �
1.24 ✶ ✶ ✶ ✶ ✶

Table 5. Legend of symbols for transitional SBLI experiments of Diop (2017) (Reynolds number Rei shown
in millions).

The meanings of the symbols used in this figure can be found in table 5. Here, Rei refers to
the Reynolds number based on the location of the inviscid shock at the wall (impingement
shock for the oblique shock reflection, and location of the corner for compression ramps).
This common notation of Reynolds number will be used from here onwards to avoid
confusion.

It was observed that the classical normalization (L/δ∗) resulted in nearly half the
interaction lengths for the compression ramps compared to the oblique shock reflections
(figure 10a). The use of ‘mass-balance’ length scaling (L∗) rectified this disagreement.
Further, length scales for equivalent shock strengths nearly collapsed on each other, and
the same linear relationship was obtained between the non-dimensional shock strength
and the non-dimensional length of interaction (figure 10b), confirming that such a length
scaling based on the mass-balance approach was also valid for transitional SBLIs.

However, the effect of Reynolds number on the length of interaction of transitional
SBLIs was still not clear, as the oblique shock reflection experiments of Diop (2017) was
performed for nearly the same range of Reynolds numbers as the current experiments. This
again suggested that a variation of Reynolds number by a factor of two (as in the current
experiments and the experiments of Diop 2017) was not enough to confidently determine
its effect, and a much larger variation of Reynolds number was required.

1000 A5-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.864


N. Mahalingesh, S. Piponniau and P. Dupont

Hence an attempt was made to compile a number of experimental measurements of
the lengths of interaction for transitional SBLIs. In particular, experiments of oblique
shock reflections and compression ramps were collected. The current data set was limited
to the supersonic regime and excluded hypersonic experiments. It was believed that
the non-adiabatic wall conditions in hypersonic experiments might locally influence the
pressure required to separate the boundary layer. Due to the complexity of this effect,
hypersonic experiments were excluded in the current compilation. In general, transitional
SBLIs with wall heat transfer effects were excluded from this compilation.

Therefore, this compilation was not meant to be exhaustive, and also did not include
the length scales reported from the transitional SBLI experiments by Liepmann et al.
(1952), Gadd et al. (1954), Gadd (1958), Lewis, Kubota & Lees (1968), Roberts (1970)
and Polivanov, Sidorenko & Maslov (2015), as the published information was not enough
to determine L∗. Nevertheless, to the authors’ knowledge, such a compilation was made
for the first time for transitional SBLIs, which included a collection of independent
experiments performed over the past 70 years, in different wind tunnel facilities, and with
a wide range of operating conditions:

1.6 ≤ M ≤ 4.0,

0.11 ≤ Rei(×106) ≤ 2.5,

1.2 ≤ p3/p1 ≤ 8.3.

⎫⎬
⎭ (3.5)

In addition to the mass-balance scaling, Souverein et al. (2013) also proposed a
non-dimensional separation criterion to classify the shock strength:

S∗
e = p3 − p1

(�p)sep
= k

2
γ M2

(
p3

p1
− 1

)
. (3.6)

Here, a constant (k) was chosen to take into account the weak effect of Reynolds number
as well as expressing the separation state of the boundary layer. In particular, the constant
was chosen as k = 3 for Reθ ≤ 104, and k = 2.5 for Reθ > 104, so that S∗

e = 1 at the onset
of separation, with S∗

e < 1 corresponding to incipiently separated interactions, and S∗
e >

1 corresponding to fully separated interactions. This was similar to the shock strength
scaling used here (comparing (3.3) and (3.6)), but with an additional parameter (k).

If such a separation criterion had to be used for transitional SBLIs, then this constant
had to be modified from what was typically used for turbulent SBLIs. In particular,
the value of this constant had to be increased, as the pressure difference required to
separate a laminar boundary layer ((�p)sep) was much smaller compared to turbulent
boundary layers. Giepman et al. (2018) estimated that the onset of separation for a laminar
boundary layer was ϕ ≈ 1◦ from oblique shock reflection experiments. The value k ≈ 9
was approximated for transitional SBLIs using this estimation. Given that the onset of
separation of a laminar boundary layer was not studied extensively for different Mach and
Reynolds numbers, the choice of this constant was intended to be a first estimate (obtained
purely from curve fitting), and thus did not have a physical basis for all Mach and Reynolds
numbers.

Figure 11 shows the compilation of the experiments using the scaling (L∗ and S∗
e )

proposed by Souverein et al. (2013). The symbols used in this compilation are shown in
table 6. It was observed that different trends were exhibited in the data, and this variety in
the trends was greater than the uncertainty associated with the measurement techniques.
It is to be noted here that the data points with large values of L∗ and S∗

e correspond to
the high Mach number (M > 3) experiments of Chapman et al. (1958), Pate (1964) and
Threadgill et al. (2021), where large flow deflections could be imposed.
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Figure 11. Length of interaction based on the mass-balance scaling by Souverein et al. (2013) with k = 9 (for
symbols, see tables 3, 5 and 6).

Symbol Literature M Rei (×106) ϕ p3/p1

Oblique shock reflections◦ Barry, Shapiro & Neumann (1951) 2.1 0.11–1.20 3.0◦–7.0◦ 1.4–2.1
♦ Chapman et al. (1958) 2.4 0.18 4.0◦ 1.6

Hakkinen et al. (1959) 2.0 0.30–0.44 2.7◦–8.4◦ 1.3–2.4• Degrez, Boccadoro & Wendt (1987) 2.2 0.11 3.8◦ 1.5
� Skebe, Greber & Hingst (1987) 2.0–3.0 0.52–0.62 4.5◦–5.5◦ 1.6–2.2
� Bur & Garnier (2016) 1.6 0.61–1.09 3.0◦ 1.3
★ Giepman et al. (2018) 1.7 1.8–2.5 2.0◦–5.0◦ 1.2–1.6

Diop (2017) 1.7 0.62–1.24 3.0◦–6.0◦ 1.4–1.8

Compression ramps
	 Chapman et al. (1958) 2.6 0.33 25◦ 4.3
� Pate (1964) 3.0 0.28–0.77 25◦ 4.9
✶ Nielsen, Lynes & Goodwin (1965) 2.6 0.21 10◦ 1.9
� Gray (1967) 3.0 0.19–1.03 7.5◦–15◦ 1.7–2.8
� Sfeir (1969) 2.7 0.14 9◦–11◦ 1.8–2.1
✶ Baroth & Holt (1983) 2.4 0.21 10◦ 1.8
� Threadgill et al. (2021) 4.0 0.11–0.25 15◦–28◦ 3.7–8.3

Current experiments 1.65 0.65–1.27 6◦–10◦ 1.3–1.6

Table 6. Meanings of symbols for the compilation of transitional SBLIs. (The symbols for the experiments of
Diop (2017) and the current experiments can be found in table 5.)

One of the possible reasons why this scaling did not collapse the data set of transitional
SBLIs was due to the inability of the shock strength scaling to take into account the effect
of Reynolds number. This was clear when looking at experiments where the Reynolds
number was varied while keeping the shock strength constant. Such data points fell on a
straight vertical line, with smaller lengths for higher Reynolds numbers (e.g. length scales
reported by Threadgill et al. 2021). Hence this compilation highlighted that there was a
need for the shock strength parameter to consider the change in Reynolds number.

In order to introduce Reynolds number in the shock strength scaling, the concept of
free interaction theory by Chapman et al. (1958) was revisited. The main idea behind this

1000 A5-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

86
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.864


N. Mahalingesh, S. Piponniau and P. Dupont

formulation was that the non-dimensional pressure rise at separation showed universal
behaviour for all SBLIs (apart from the constant being different for turbulent and laminar
boundary layers). This universal behaviour has been proven many times for a number
of experiments for different Mach numbers, Reynolds numbers and shock strengths
(Babinsky & Harvey 2011). Moreover, this universal behaviour was also verified for the
current set of experiments (figure 6).

The initial idea of Souverein et al. (2013) for the non-dimensional shock strength
scaling was to compare the overall increase in pressure across the interaction with the
pressure rise across separation (�p/(�p)sep). Such a scaling did indeed collapse a subset
of experimental data, in which the pressure rise needed to separate the boundary layer was
explicitly reported (see p. 519, figure 7, of Souverein et al. 2013). However, to include other
experimental data that did not measure the pressure rise needed to separate, (�p)sep was
replaced by a constant (see (3.6)).

The current compilation showed that Reynolds number had a significant effect on the
pressure rise at separation for transitional SBLIs, and this behaviour could be described
universally by free interaction theory (see (3.2)). If the pressure required to separate a
boundary layer was approximated as the plateau pressure i.e. (�p)sep ≈ p2 − p1, then free
interaction theory can be rewritten as

(�p)sep

q
= Fp

√
2cf

(M2 − 1)1/2 , (3.7)

where Fp = 1.5 was the value of the free interaction coefficient at plateau for laminar
boundary layers (Babinsky & Harvey 2011). As the extent of the plateau in laminar and
transitional SBLIs was quite large, the uncertainty in the determination of this coefficient
at plateau would be lower than in determining the exact value needed to separate a laminar
boundary layer (Giepman et al. 2018). Consequently, the expression �p/(�p)sep was
elaborated using (3.7) as follows:

S∗
d = p3 − p1

(�p)sep
= 1

Fp

√
(M2 − 1)1/2

2cf

2
γ M2

(
p3

p1
− 1

)
. (3.8)

The subscript d in S∗
d corresponded to expression being based on the difference in

pressure. This expression was similar to (3.6), with an additional term (similar to k)
that introduced the effect of Reynolds number through the skin-friction coefficient (cf ).
However, the skin-friction coefficient was not reported by most of the experiments in
this compilation due to its measurement complexity. Hence the theoretical skin-friction
coefficient for a compressible Blasius boundary layer (at the mean location of separation)
was used. This was done to remain consistent across all data sets. The compilation of the
experimental data using the new shock strength scaling is shown in figure 12.

This new scaling did improve some of the problems found in the previous scaling,
in particular, different Reynolds numbers resulted in different separation criteria, and
consequently the length scales did not fall on vertical lines (compare figures 11 and 12).
Nevertheless, there was still a large amount of scatter among the data points, hence proving
that this was not the right scaling either.

Another way to scale the shock strength parameter was to compare the ratio of pressures,
as opposed to comparing the pressure differences:

S∗
r = p3/p1

( p/p1)sep
= p3

p1

[
1 + γ M2

2
Fp

√
2 cf

(M2 − 1)1/2

]−1

, (3.9)
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Figure 12. Compilation of length scales for a modified shock strength parameter, S∗

d (for symbols, see
tables 3, 5 and 6).
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Figure 13. Compilation of length scales for different non-dimensional shock strengths S∗

r (for symbols, see
tables 3, 5 and 6).

where ( p/p1)sep is again obtained from the free interaction theory of Chapman et al.
(1958), by rewriting (3.7). The subscript r in S∗

r corresponded to the expression being
based on the ratio of pressures. This latest scaling seemed to collapse most of the data
set, as shown in figure 13. The effect of Reynolds number appeared to be well captured by
this new scaling as the data points did not fall on a vertical line as in the previous scaling
(figure 11), and instead of the different trends observed in figure 12, nearly the same linear
relationship (i.e. same slope) was obtained for most of the data points from the compilation
in figure 13.

The non-dimensional nature of this scaling automatically adjusted the shock strength;
for low shock strengths with no separation, the imposed adverse pressure ratio is lower
than the pressure ratio required to separate the boundary layer, hence S∗

r < 1. For incipient
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interactions involving intermittent separation, the imposed pressure ratio is close to the
pressure ratio required to separate the boundary layer (S∗

r ≈ 1). And finally, S∗
r > 1

corresponded to a typical separated SBLI. No empirical constant had to be adjusted for
this auto-scaling, compared to (3.6).

Additionally, when the plateau pressure between separation and reattachment was
approximated as p2, this separation criterion could be rewritten as

S∗
r = p3/p1

( p/p1)sep
≈ p3/p1

p2/p1
≈ p3

p2
. (3.10)

It is well known that separated SBLIs are characterized by a two-step pressure rise over
the interaction, and the overall pressure rise (p3/p1) across the interaction can be expressed
as the combination of these two pressure jumps:

p3

p1
= p2

p1
× p3

p2
. (3.11)

The first pressure rise (p2/p1) at separation exhibited universal behaviour according
to free interaction theory (Chapman et al. 1958). The second pressure rise (p3/p2) at
reattachment did not show universal behaviour. The collapse of the experimental data
in figure 13 suggested that the non-dimensional length of interaction was a function of
only the second pressure rise (p3/p2), given that the first pressure rise at separation was
universal. This could be a possible physical explanation as to why only this separation
criterion was able to collapse the experimental data set.

It is important to note that as a consequence of this non-dimensional scaling, both the
horizontal (S∗

r ) and vertical (L∗) axes of figure 13 were functions of Reynolds numbers:

δ∗ ∝
√

xs

Reu
, cf ∝ 1√

Reu xs
, (3.12a,b)

L∗ ≈ L

√
Reu

xs
G3(M, ϕ), S∗

r ≈ (Reu xs)
1/4 f (M, ϕ). (3.12c,d)

Here, δ∗ introduced a Reynolds number term through the Blasius reference length scale
in L∗, while (cf )

−1/2 introduced a Reynolds number term in S∗
r , where Reu is the unit

Reynolds number, and xs is the mean location of separation of the boundary layer at
the wall. Given that the Reynolds number was present on both axes, but with different
exponents for the non-dimensional length (L∗) and non-dimensional shock strength (S∗

r ),
it was clear that Reynolds number played an important role to collapse the compilation.

Now that an effective scaling was found for the shock strength, a more detailed
comparison was made between different transitional SBLI experiments. Looking closely
at figure 13, it was observed that certain data sets from different wind tunnels exhibited the
same slope, while being offset with respect to each other, along the vertical axis. Figure 14
shows the ‘zoom’ of the data points in the lower left corner of figure 13, to highlight the
low Mach number experiments (i.e. the regime of the current experiments). In fact, nearly
parallel lines could be drawn, where each line corresponded to a subset from different
wind tunnel facilities (parallel dashed red lines in figure 14).

One of the major contributing factors for this nearly constant offset could be a difference
in free-stream turbulence intensities across different wind tunnel facilities. The problem
of background aerodynamic noise was found to be a major limitation in the study of
high-speed laminar boundary layers since the very beginning of experiments in supersonic
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Figure 14. Subset of the compilation from figure 13 (for symbols, see tables 3, 5 and 6).

wind tunnels (Laufer 1954). Similar to low-speed flows, high free-stream turbulence
intensities were linked to a rapid transition scenario that bypassed the linear growth of
modes predicted by stability theory (Morkovin 1959).

Even if the free-stream turbulence intensities were low enough for the growth of linear
and modal mechanisms (i.e. not high enough to trigger bypass transition) of the laminar
boundary layer, they could still accelerate the natural transitional mechanisms (Laufer
1961). The influence of free-stream turbulence intensity on the transitional mechanisms
of a laminar boundary layer is a complex topic; in particular, the effect of amplitude and
spectral content of the free-stream noise on the transition process (through receptivity),
is not very well understood. Nevertheless, a qualitative understanding of this effect of
free-stream noise on the transitional mechanisms of the laminar boundary layer is well
known. A review of supersonic wind tunnels by Pate & Schueler (1969) provided strong
evidence linking the noise radiated by turbulent boundary layers on the tunnel walls to
lower transition Reynolds numbers.

As discussed in § 1, the free-stream noise of the TST-27 wind tunnel at TU Delft was
reported to be nearly four times higher (in terms of r.m.s. of mass-flux fluctuations) when
compared to the current experimental facility at the IUSTI laboratory (Giepman et al.
2015). While this free-stream noise was not high enough to trigger bypass transition of
the boundary layer, it might have accelerated the transitional mechanisms of the laminar
boundary layer, causing the separated boundary layer to reattach ‘earlier’, leading to
a shorter length of interaction, and subsequently an offset in figure 14. Based on this
qualitative understanding, perhaps the lower length scales of other experiments were
possibly a consequence of higher free-stream noise of the wind tunnels. However, other
wind tunnel facilities in this compilation have not reported their amplitude and spectral
content of the free-stream noise, hence it was not possible to conclude its quantitative
effect on the length scales of the interaction.

In order to understand the effect of noise radiated by side wall boundary layers in
wind tunnels, NASA developed the so-called ‘quiet’ wind tunnel, which ensured that
the boundary layers on all the tunnel walls were laminar. Experiments performed in
this low-disturbance tunnel reported transition Reynolds numbers of O(107), one order
of magnitude higher than conventional ‘noisy’ wind tunnels (Chen, Malik & Beckwith
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1989; Schneider 2004). Schneider (2015) further highlighted that quiet tunnels were more
representative of actual flight conditions, and emphasized the necessity to develop quiet
wind tunnels to study the transition process, particularly at hypersonic speeds, where
the boundary layer transitional mechanisms were more complex. Unfortunately, none of
the experiments in this compilation were made in quiet wind tunnels. It would be very
interesting to compare the length scales for laminar and transitional SBLIs from such
facilities to the current compilation.

Another important factor to consider was leading edge bluntness. Potter & Whitfield
(1962) showed that the bluntness of the leading edge had a significant effect on the
transition process of the laminar boundary layer. It was found that the transition Reynolds
number increased for increasing ‘bluntness’ of the leading edge, even when bluntness
had a negligible effect on the mean pressure distribution. This delay or acceleration of
the transition process (corresponding to a blunt or sharp leading edge, respectively) of
the boundary layer could have affected the length scales of interaction, and consequently
played a role in the observed offset in length scales in this compilation. Therefore, it could
be speculated that model with ‘blunt’ leading edges delayed transition and corresponded
to larger lengths of interaction. However, given that the degree of bluntness of the leading
edge was not reported by many of the authors in this compilation of experimental data, it
was difficult to determine what kind of effect this had on the transition process of their
respective boundary layers.

Moreover, Lusher & Sandham (2020) showed that the lateral walls of the wind tunnel
test section could dramatically change the length of interaction for transitional SBLIs. This
confinement effect was particularly significant when the spanwise width of the test section
was small compared to the length of the separated region. The current compilation in
figure 14 contained experiments with a wide variety of test section sizes. The effect of this
finite size of the test section and deviation from nominally two-dimensional interaction
is a complicated relationship between the laminar boundary layer and the turbulent
boundary layer on the side walls. This topic of three-dimensional effects in nominally
two-dimensional SBLIs has received relatively more attention for turbulent interactions,
with investigations from Dussauge, Dupont & Debiève (2006), Burton & Babinsky (2012),
Wang et al. (2015) and Xiang & Babinsky (2019), to cite a few.

Also, Threadgill et al. (2021) showed that when the geometry did not span the entire
width of the test section, ‘spillage’ of the flow in the spanwise direction reduced the
length of interaction, compared to when end-plates were used. This could have been a
contributing factor on the smaller length scales reported by the experiments of Degrez
et al. (1987), where the flat plate did not span the entire width of the test section. However,
it is important to note that such effects can both increase or decrease the length scales of the
interaction, depending on the secondary flow conditions underneath the main geometry.
In fact, an overpressure underneath the geometry could restrict spillage and increase the
length of interaction as well.

Additionally, figure 14 showed that some data points exhibited a different slope (shown
as dashed blue lines) compared to the rest of the compilation (shown as a solid red line).
The slope of this deviant subset of data was found to be reduced by 47 % (when compared
to the slope of the red lines in figure 14). To understand this deviation, comparisons were
made with individual experimental data sets in figure 15.

The current experiments were compared with one of the first parametric studies on
transitional SBLIs from Barry et al. (1951) in figure 15(a). It was observed that at low
Reynolds numbers (i.e. Rei = 0.11 × 106), the same slope was observed (compared to
the current experiments), albeit with an offset (possibly due to a combination of factors
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Figure 15. Reynolds number effect (for symbols, see tables 3, 5 and 6). (a) Comparison with the experiments
of Barry et al. (1951) (symbol ◦) for different Reynolds numbers (solid black line for Rei = 0.11 × 106, dashed
black line for Rei = 0.25 × 106, dotted black line for Rei = 0.6 × 106, dashed dotted black line for Rei =
1.2 × 106). (b) Comparison with the experiments of Giepman et al. (2018) (symbol 
) for a constant Reynolds
number (solid black line for Rei = 1.8 × 106, 2◦ ≤ ϕ ≤ 5◦) and increasing Reynolds number (solid blue line
for ϕ = 3◦, 1.8 ≤ Rei(×106) ≤ 2.5).

mentioned before). However, as the Reynolds number was increased (i.e. Rei ≥ 0.6 × 106),
this slope reduced and the offset also increased (the change in offset is clearer at higher S∗

r ).
It is important to note here that the Reynolds number was changed by changing the
total pressure of the free-stream, while the inviscid shock impingement location was kept
constant.

Similarly, comparisons were made with the more recent parametric studies of Giepman
et al. (2018) in figure 15(b). At ‘low’ Reynolds numbers (i.e. Rei = 1.8 × 106), when
the imposed flow deflection was increased, the measured length scales were offset with
respect to the current experiments, and the slope was slightly lower. However, as the
Reynolds number was increased (i.e. Rei > 1.8 × 106, corresponding to the solid blue line
in figure 15b), the offset increased as well (in this case the Reynolds number was increased
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by moving the shock impingement location further downstream, while keeping the same
total pressure of the free-stream).

Moreover, it is also imperative to note that there was an order of magnitude difference
in Reynolds numbers between the experiments of Barry et al. (1951) and Giepman et al.
(2018). Hence the lowest Reynolds number of Giepman et al. (2018) was still higher
than the highest Reynolds number of Barry et al. (1951), while the offsets for both of
these experiments were nearly the same, possibly suggesting that the free-stream noise of
Giepman et al. (2018) was much lower than that of Barry et al. (1951).

In essence, figure 15 suggested that when the free-stream noise was ‘high’, the
transitional mechanisms of the laminar boundary layer were possibly accelerated, which
could have changed the relationship between Reynolds number and the length of
interaction. The modelling of this modified relationship would require insight into the
complex interplay between free-stream noise, receptivity (for both the attached and
separated boundary layers) and Reynolds number.

Moreover, the state of the boundary layer at separation was not qualified by many
experiments in the compilation, and if the boundary layer was already transitional at
separation, then it would lead to an accelerated transition process over the separated shear
layer, and consequently lead to a shorter length of interaction. In such cases, the pressure
required to separate such boundary layers might not be the same as a canonical laminar
boundary layer, and hence would affect the normalized shock strength parameter (S∗

r ).
Hence it seems that while the non-dimensional scaling S∗

r was the right one for comparing
different transitional SBLIs, different models might be needed to predict the pressure
required to separate laminar boundary layer at high free-stream noise or high Reynolds
numbers.

In the context of the current compilation of transitional SBLIs, it seems that there might
be multiple sub-categories of interactions under the general term of transitional SBLIs.
The difference between these sub-categories can be attributed to the extent to which
boundary layer transitional mechanisms have an impact on the length of interaction. The
experimental results from the European TFAST project also reported several differences
in the mean flow properties of transitional SBLIs across different studies (Doerffer et al.
2020). Based on these findings, the following three sub-categories of transitional SBLIs
are proposed within the context of the current compilation.

(i) Weakly transitional, corresponding to transitional SBLIs with low free-stream noise
and/or relatively low Reynolds numbers. Given that the current experiments and
the experiments of Diop (2017) from the IUSTI laboratory exhibit the highest
non-dimensional length scales (at the same normalized shock strength) compared
to the rest of the data in figure 14, it could be classified as weakly transitional. It
seems that the influence of boundary layer transitional mechanisms on the length of
interaction was minimal. This sub-category may be generally defined as: interactions
where the boundary layer was laminar at separation, and became transitional near the
vicinity of reattachment.

(ii) Moderately transitional, where the acceleration of boundary layer transitional
mechanisms (through either free-stream noise or high Reynolds number) introduced
a small (but significant) offset in the length of interaction. This corresponded to
the data sets highlighted by the dashed red lines in figure 14. It is important to
note that although an offset was observed in these length scales, the same slope
(between L∗ and S∗

r ) was obtained as ‘weakly transitional’ interactions, and hence
referred to as moderately transitional interactions. A more general definition of
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this sub-category may be: interactions where the boundary layer was laminar at
separation, and became turbulent near the vicinity of reattachment.

(iii) Strongly transitional, where the acceleration of boundary layer transitional
mechanisms introduced an offset in the length of interaction, and changed the slope
(between L∗ and S∗

r ) compared to other transitional SBLIs. This corresponded to the
set of ‘deviant’ experiments highlighted by the dashed blue lines in figure 14. This
sub-category may be generally defined as: interactions where the boundary layer
was transitional near the vicinity of separation, underwent rapid transition over the
separated shear layer, and became turbulent at reattachment.

Further experiments detailing the transitional state of the boundary layer along the
interaction are needed to confirm this subdivision of transitional SBLIs. Additionally, a
detailed parametric study on the influence of free-stream noise and high Reynolds number
on transitional SBLIs is apparent.

3.4. Universal scaling
Notwithstanding the nonlinear effects of the transition process, it seemed that the new
separation criterion scaling S∗

r was able to capture the relationship between the length of
interaction and the imposed adverse pressure gradient, for transitional SBLIs. Building on
these results, an attempt was made to extend this scaling for turbulent SBLIs as well.

However, it seems that there were several models that predict the pressure required
to separate a turbulent boundary layer. In addition to laminar boundary layers, the free
interaction theory of Chapman et al. (1958), also predicted the increase of pressure
following the separation of a turbulent boundary layer:

(
p
p1

)
sep

= 1 + γ M2

2
Fp

√
2cf

(M2 − 1)1/2 , (3.13)

with the constant Fp being different between laminar and turbulent boundary layers, taking
values 1.5 and 6, respectively. However, Babinsky & Harvey (2011) highlighted that this
was not a universal law for all Reynolds numbers. While at low Reynolds numbers, the
shock strength required to separate a turbulent boundary layer decreased as Reynolds
number was increased, this trend was reversed for Reδ > 105, and eventually the Reynolds
number dependence became very weak at much higher Reynolds numbers. This was due
to the fact that the turbulent boundary layer becomes fuller at higher Reynolds number,
consequently more resistant to separation.

Zukoski (1967) modelled the pressure required to separate a turbulent boundary layer as
a function of only Mach number: (

p
p1

)
sep

= 1 + M
2

. (3.14)

Similarly, Souverein et al. (2013) expressed the pressure difference required to separate
a turbulent boundary layer as a function of only the dynamic pressure of the free-stream
(see (3.6)). This could be rewritten as(

p
p1

)
sep

≈ 1 + γ M2

2
1
k
, (3.15)
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where the empirical constant k had a weak dependence on Reynolds number. This
expression is similar to (3.13), where the empirical constant k was modelled using the
skin-friction coefficient.

More recently, Xie et al. (2021) aimed to improve free interaction theory by proposing
that the coefficient of free interaction (Fp) in (3.13) could be modelled as

Fp = 2.348 ln(3.872 + H∗
sep) − 0.492√

H1.2
i − 1

, (3.16)

where Hi was the incompressible shape factor of the upstream boundary layer, and H∗
sep

was the non-dimensional height of the separation bubble (normalized by the displacement
thickness of the upstream boundary layer). Therefore, this expression required knowledge
about the shape of the separation bubble, making it an a posteriori analysis.

In contrast to free interaction theory, Touré & Schülein (2023) proposed that the plateau
pressure (pp) was dependent on both Reynolds number as well as the strength of the
imposed shock:

pp

p1
= 1 + M

2
tanh(1.7c∗

p), (3.17a)

c∗
p = k∗cp3 =

(
Reδ

2 × 105

)−0.27(cp3 )1.41

cp3, (3.17b)

where the empirical scaling factor k∗ aimed to capture the nonlinear effects of the Reynolds
number, and cp3 was the overall pressure applied over the interaction (see (3.3)). This
expression for the pressure ratio at plateau has not been tested for a wide range of
experimental data, and the effectiveness of this scaling remains to be seen. Further, while
the use of this empirical scaling factor k∗ was able to collapse the experimental data
sets of Settles, Bogdonoff & Vas (1976) and Touré & Schülein (2020), different slopes
(i.e. different power-law relationships) were obtained for each data set. Moreover, the
relationship between L∗ and c∗

p was different for oblique shock reflections and compression
ramps. Nevertheless, the unique experimental set-up of Touré & Schülein (2020) using
blunt shock generators enabled them to reach much higher shock strengths compared to
conventional oblique shock reflections on turbulent boundary layers. It was shown that the
effect of Reynolds number was more pronounced at such high shock strengths.

Therefore, it seems that there are several ways to determine the pressure required to
separate a turbulent boundary layer, and a universal expression might not exist that works
for all Reynolds numbers and shock strengths. Additionally, there exist other expressions
proposed for non-adiabatic wall conditions by Morgan et al. (2013), Jaunet, Debieve &
Dupont (2014) and Zuo et al. (2022). This would further change the onset of separation,
hence this additional complexity was not included in the current analysis. This also means
that hypersonic SBLIs were not included as wall heat transfer effects become significant.

Hence it seems that while the same scaling law (expressed as the overall pressure ratio
compared to the pressure ratio required to separate the boundary layer) could be used for
turbulent SBLIs, different models have to be used for the pressure required to separate the
boundary layer depending on each case. Touré & Schülein (2020) showed that the scaling
proposed by Souverein et al. (2013) was not adequate to account for the Reynolds number
effect observed at very large shock strengths. And as the exponents in the power scaling in
(3.17) was optimized to account for these effects, it was appropriate to use this scaling for
the large shock strength experiments of Touré & Schülein (2020).
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While c∗
p (see (3.17)) was derived from the expression of S∗

e (see (3.6)), the
empirical parameter k∗ (see (3.17)) was not adjusted such that c∗

p ≈ 1 at the onset of
separation, where L∗ ≈ 1.8 from the compilation of Souverein et al. (2013). Therefore, a
proportionality factor of approximately 2.25 was introduced to the expression for c∗

p such
that L∗ < 1.8 corresponded to attached SBLIs, and L∗ > 1.8 corresponded to separated
SBLIs. Now the pressure ratio required to separate a turbulent boundary layer could be
derived from the power-law scaling of Touré & Schülein (2020) as

�p
(�p)sep

≈ 2.25c∗
p = 2.25k∗cp3 = 2.25k∗ 2

γ M2

(
p3

p1
− 1

)
, (3.18a)

(
p
p1

)
sep

= 1 + γ M2

2
1

2.25k∗ . (3.18b)

Hence the normalized shock strength based on this power-law scaling was written as

S∗
r = p3/p1

( p/p1)sep
= p3

p1

[
1 + γ M2

2
1

2.25k∗

]−1

. (3.19)

This expression was used to represent the data set of Touré & Schülein (2020)
corresponding to relatively large shock strengths. However, Touré & Schülein (2023)
mentioned that this scaling was not meant for low Reynolds number experiments, and
further did not provide a better collapse at lower shock strengths (figure 14(b) in Touré
& Schülein 2020). Therefore, for the compilation of experimental data at relatively lower
shock strengths made by Souverein et al. (2013), the pressure ratio required to separate a
turbulent boundary layer was modelled purely on the dynamic pressure of the free-stream
(see (3.15)), and the resulting normalized shock strength was written as

S∗
r = p3/p1

( p/p1)sep
= p3

p1

[
1 + γ M2

2
1
k

]−1

. (3.20)

It can be seen that (3.19) and (3.20) are very similar, with the main difference being
the use of different empirical parameters, k∗ and k, respectively. The compilation made
by Souverein et al. (2013) was revisited in figure 16 using this new scaling (S∗

r ). The data
points are plotted with the same symbols as used by Souverein et al. (2013), with the
addition of the experimental data set of Touré & Schülein (2020) (represented by the +
symbol). The unique experimental set-up of Touré & Schülein (2020) was used to study
stationary and moving shock generators, and the data included here correspond only to
the stationary shock generator cases. It is important to note here that the compilation of
experimental data made by Souverein et al. (2013) uses (3.20), while the experimental data
set of Touré & Schülein (2020) uses (3.19). Hence different models were used to predict the
pressure required to separate a turbulent boundary layer, but the same normalized shock
strength (S∗

r ) was used.
It was clear that this new shock strength scaling did indeed work for turbulent SBLIs

as well. Regardless of the use of different models for the separation criterion, figure 16
showed a smooth continuation of the length scales between the relatively low shock
strength experiments (1 ≤ S∗

r ≤ 1.5) and the relatively high shock strength experiments
of Touré & Schülein (2020) (1.5 ≤ S∗

r ≤ 3). As opposed to the power-law relationship
proposed by Souverein et al. (2013), a first-order (linear) polynomial fit was made in the
current analysis, where two different slopes were identified, depending on whether the
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Figure 16. Comparison of length scales of turbulent SBLIs using different separation criteria, where +
indicates Touré & Schülein (2020), and other symbols are taken from Souverein et al. (2013).

Weakly transitional Moderately transitional Strongly transitional Turbulent

S∗
r < 1 (2.6, −1.4, 0.63)

S∗
r > 1 (28.7, −28.1, 0.97) (23.6, −27.0, 0.99) (15.1, −16.8, 0.99) (12.6, −11.5, 0.99)

Table 7. Parameters (a, b, R2) corresponding to the slope, intercept, and coefficient of determination
respectively, of first-order polynomial fit L∗ = a S∗

r + b.

interaction was attached (S∗
r < 1) or separated (S∗

r > 1). This best fit line was based on
the whole data set, including both the low and high shock strength experiments. The slope
was nearly five times higher when a mean separation was found, when compared to an
incipient separation (table 7). The best fit for separated turbulent SBLIs (S∗

r > 1) was
found with coefficient of determination R2 = 0.99, while the best fit for attached turbulent
SBLIs (S∗

r < 1) was found with a lower coefficient of determination 0.63. This low value
was possibly due to the large uncertainty in the experimental measurement of an attached
length of interaction when the Reynolds number was varied.

Due to the universality of this scaling of the normalized shock strength (see (3.10)),
transitional and turbulent SBLIs can now be compared directly, and figure 17 shows this
comparison. The black and white symbols correspond to turbulent SBLI experiments
(taken from figure 16), and the coloured symbols correspond to the current experiments
and the experiments of Diop (2017) on transitional SBLIs (refer to tables 3 and 5). To the
authors’ knowledge, this is the first time such a direct comparison has been made between
transitional and turbulent SBLIs.

The range of normalized shock strength (S∗
r ) corresponding to transitional SBLIs was

very high compared to most of the turbulent SBLIs from compilation of Souverein et al.
(2013). This was mostly due to the fact that the pressure ratio required to separate a laminar
boundary layer was much lower compared to a turbulent boundary layer, resulting in large
separation criteria for transitional SBLIs. For a ‘conventional’ turbulent SBLI at S∗

r > 1.2,
significant corner and/or three-dimensional effects have been reported (Dupont et al. 2005;
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Figure 17. Comparison of turbulent and transitional SBLI length scales (see Souverein et al. (2013) for black
and white symbols, and tables 3 and 5 for coloured symbols).

Dussauge et al. 2006; Dussauge & Piponniau 2008; Burton & Babinsky 2012; Wang et al.
2015; Xiang & Babinsky 2019). Moreover, large flow deflections probably resulted in a
Mach stem over the turbulent SBLI, which could have saturated the imposed pressure jump
across the interaction, and possibly resulted in an ‘unstart’ of the test section. However, the
unique experimental set-up of Touré & Schülein (2020), utilizing a blunt shock generator,
was able to reach higher normalized shock strengths. Thus these experiments were key to
making equivalent and ‘fair’ comparisons between transitional and turbulent SBLIs.

Figure 17 shows that the L∗ scaling was able to reconcile large differences (nearly one
order of magnitude) in the aspect ratios of the length scales (L/δ∗) between the different
types of SBLIs, through the inviscid term G3, and as L∗ = (L/δ∗) × G3, it follows that:

(L/δ∗)tran � (L/δ∗)turb

(G3)tran � (G3)turb

}
(L∗)tran

(L∗)turb
≈ O(1). (3.21)

However, it was clear from figure 14 that most of the other ‘sub-category’ transitional
SBLIs had lower length scales compared to the current experiments, hence would have
non-dimensional length scales (L∗) closer to those of turbulent SBLIs. This is highlighted
in figure 18, where the data points are represented by their respective trend lines, to avoid
clutter. Weakly transitional SBLIs from the current experiments are shown using a solid
red line, moderately transitional SBLIs are shown in dashed red lines, strongly transitional
interactions are shown using dashed blue lines, and turbulent SBLIs are shown using a
solid blue line.

It was observed that some of the data sets of transitional SBLIs that were believed to
be strongly affected by boundary layer transition (by either high free-stream noise of the
wind tunnel or high Reynolds number) had lower length scales compared to turbulent
SBLIs (dashed blue lines in figure 18). This suggested that the separation criterion for
these data points was incorrectly modelled (by assuming a canonical laminar boundary
layer). The use of a separation criterion based on the actual state of the boundary layer at
separation might possibly have shifted these data points to the left, and changed the slope,
possibly aligning with the evolution of turbulent SBLIs. However, this information was
not reported in those studies.
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Figure 18. Comparison of turbulent and transitional SBLI length scales (solid red line for weakly transitional
SBLIs, dashed red lines for moderately transitional SBLIs, dashed blue lines for strongly transitional SBLIs,
solid blue line for turbulent SBLIs.)

Similarly, table 7 compares the slopes of the three types of SBLIs observed in figure 18.
It was observed that the slope of the current experiments of weakly transitional SBLIs, was
more than twice that of turbulent SBLIs, while the transitional SBLIs that deviated away
from the rest of the compilation exhibited slopes similar to those of turbulent SBLIs, again
suggesting that this subset of transitional SBLIs possibly involved a laminar boundary
layer that was strongly affected by its transition process. Figure 18 suggested that the
relationship between L∗ and S∗

r was strongly dependent on the state of the boundary
layer in the interaction (in particular, the state of the boundary layer at reattachment
for transitional SBLIs). The slope decreased as the interactions changed from weakly
transitional to strongly transitional, and further reduced for a turbulent interaction. This
indicated that the ‘type’ of interaction may be determined by documenting the mean field
and observing the relationship between L∗ and S∗

r .
Finally, this comparison does not include fully laminar SBLIs and/or experiments

performed in ‘quiet’ wind tunnels. It remains to be seen whether such SBLIs would
result in higher length scales compared to weakly transitional SBLIs. Considering the
evolution of slopes from turbulent SBLIs to weakly transitional SBLIs, it would be
of interest to determine whether such SBLIs would exhibit similar slopes compared to
weakly transitional interactions. Moreover, SBLIs with wall heat transfer effects (and as
a consequence, hypersonic SBLIs) have also not been included in this compilation. It is
believed that while this set of scaling laws used in the analysis (i.e. L∗ in (3.4) and S∗

r
in (3.10)) should be applicable to all type of SBLIs (hence being universal in nature),
different models might be more appropriate to determine the pressure required to separate
the boundary layer in such cases. There are already some studies that have tried to address
the separation criterion for SBLIs with non-adiabatic wall conditions (Morgan et al. 2013;
Jaunet et al. 2014; Zuo et al. 2022), and it would be interesting to note how the evolution
of the length scales in such SBLIs would compare to the current analyses.

4. Conclusion

Experiments on transitional SBLIs were made on nominally two-dimensional compression
ramps. Two ramp geometries, with 6◦ and 10◦ flow deflections, were studied at Mach
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number 1.65, and the unit Reynolds number was varied between 5.6 million per metre
and 11 million per metre. The canonical nature of the transitional SBLI was verified with
comparisons with free interaction theory.

The non-dimensional scaling of the length of interaction (originally proposed by
Souverein et al. 2013), based on the mass-balance between the incoming and outgoing
boundary layers, was found to reconcile the differences in absolute length scales between
compression ramp SBLIs and transitional oblique shock reflection experiments of Diop
(2017). Thus such a mass-balance scaling also worked for transitional SBLIs.

A compilation of lengths of interaction reported from various experiments on
transitional SBLIs in the literature was made for the first time. The compilation showed
that different trends were observed by subsets, and highlighted the effects of Reynolds
number on the separation criteria.

A new non-dimensional scaling was developed for the shock strength that was based
on the ratio of pressures across the interaction as opposed to the difference in pressures
across the interaction (as originally proposed by Souverein et al. 2013). The pressure
ratio across the interaction was normalized with the pressure ratio required to separate
the boundary layer. For transitional SBLIs, this pressure ratio was determined using free
interaction theory, and the use of such a scaling was able to collapse most of the data
set, by obtaining a linear relationship between this new normalized shock strength and the
length of interaction.

The current experiments on transitional SBLIs (performed at the IUSTI laboratory)
were found to have the longest non-dimensional lengths of interaction compared to the
rest of the compilation. And it was observed that some subsets exhibited an offset in
non-dimensional length scales with respect to the current experiments. Many possible
factors were identified that could have contributed to this offset, including higher
free-stream noise, leading edge bluntness, and three-dimensional effects. However, a
conclusive cause for this offset could not be found. Additionally, other subsets showed
lower slopes, compared to the rest of the compilation. While a conclusive cause could
not be identified, the most likely explanation was the combination of high free-stream
noise and high Reynolds number, resulting in a non-canonical laminar boundary layer and
SBLI. Based on these results, the compilation of transitional SBLIs was classified into
three sub-categories, depending on the extent of influence on boundary layer transitional
mechanisms on the length scales of the interaction.

The scaling of the separation criterion based on the ratio of pressures across the
interaction was extended to turbulent SBLIs. Contrary to transitional SBLIs, several
models were found that determine the pressure required to separate a turbulent boundary
layer, and the differences mainly arose due to a Reynolds number effect. A universal
model to predict the pressure required to separate a turbulent boundary layer was not
found, and different models from literature were used when appropriate. Nevertheless,
the new normalized shock strength using these models was able to collapse most of the
experimental data on turbulent SBLIs.

Due to the common non-dimensional formulation of the length scales and normalized
shock strength between transitional and turbulent SBLIs, a direct comparison was made
between the different types of SBLIs for the first time. This comparison showed that the
L∗ scaling was able to reconcile large differences in the aspect ratios (L/δ∗) of different
SBLIs. Similarly, the rate of increase of length scales with increasing normalized shock
strength was found to be dependent on the state of the boundary layer over the interaction.
The highest rate of increase of length scales was found for weakly transitional SBLIs,
while turbulent interactions exhibited the lowest growth rates.
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Therefore, the set of non-dimensional scalings L∗ and S∗
r is proposed as ‘universal’,

given that direct comparisons could be made for all types of SBLIs. However, different
models have to be used to determine the pressure required to separate different types of
boundary layers. Further experiments and analyses are required to confirm and validate
this hypothesis for different separation criteria, as well as to reaffirm the growth rates of
the length scales for fully laminar interactions, experiments made in quiet wind tunnels,
and SBLIs with wall heat transfer effects, including hypersonic interactions.
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