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Abstract

We consider a Deligne–Mumford stack X which is the quotient of an affine scheme
SpecA by the action of a finite group G and show that the Balmer spectrum of the
tensor triangulated category of perfect complexes on X is homeomorphic to the space
of homogeneous prime ideals in the group cohomology ring H∗(G,A).
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1. Introduction

Let X be an algebraic stack. The category Perf(X ) of perfect complexes of OX -modules is a
tensor triangulated category. One can ask for a classification of all thick tensor ideals in this
category, or equivalently for a description of the Balmer spectrum

Spc(Perf(X )),

the space of all prime thick tensor ideals in Perf(X ), as defined in [Bal05]. An answer is known
at least in the following cases.

If X is a quasi-compact, quasi-separated scheme, the thick tensor ideals in Perf(X ) are
classified in terms of their support by Thomason [Tho97]. This yields a homeomorphism

Spc(Perf(X )) ∼= |X |, (1.1)
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The Balmer spectrum of certain Deligne–Mumford stacks

where |X | is the underlying topological space of X , by Balmer [Bal19, Theorem 4.1], which relies
on [BKS07] when X is not noetherian. More generally, a homeomorphism (1.1) exists when X is
a quasi-compact algebraic stack with separated diagonal and X is tame, which means that the
geometric stabiliser groups of X are finite and geometrically reductive, by Hall [Hal16].

In a different direction, if X = BG is the classifying space of a finite group G over a field k,
then Perf(X ) is equivalent to Db(kG-mod), the bounded derived category of finite modules over
the group algebra kG. In this case, thick tensor ideals in the stable module category of kG are
classified in terms of their cohomological support by Benson, Carlson and Rickard [BCR97] and
Benson, Iyengar and Krause [BIK11]; see also [CI15] for a direct proof of a non-stable version.
These results yield a homeomorphism

Spc(Perf(X )) ∼= Spech(Rk,G) (1.2)

where Rk,G = H∗(G, k) is the cohomology ring and Spech is the space of all homogeneous prime
ideals, by Balmer [Bal10, Proposition 8.5]. The homeomorphism (1.2) is complementary to (1.1)
because the stack X = BG is tame if and only if the characteristic of k does not divide the
order of G, in which case Spc(Perf(X )) is just a point. More generally, if G is a finite group
scheme over k, a similar classification of the thick tensor ideals in the stable module category
of kG and hence the homeomorphism (1.2) for X = BG exist by Benson, Iyengar, Krause and
Pevtsova [BIKP18].

Our main example
We consider a quotient stack X = [Spec(A)/G] where G is a finite group that acts on a commu-
tative ring A. Let TA,G = Perf(X ). This category is equivalent to the category Db(AG)A-perf of
bounded complexes of AG-modules which are perfect as complexes of A-modules, viewed as a full
subcategory of the derived category D(AG). By [Bal10] there is a natural continuous comparison
map

ρA,G : Spc(TA,G)→ Spech(RA,G)

with RA,G = H∗(G,A). If A is a field with the trivial action of G, which we will call the punc-
tual case, then ρA,G is the homeomorphism (1.2). If G is the trivial group, then ρA,G is the
homeomorphism (1.1) for the affine scheme X = SpecA. The following is our main result.

Theorem 1.3. The map ρA,G is a homeomorphism in all cases.

Even the case A = Z of integral representations seems to be new.

A stable version
The category Perf(AG) of perfect complexes of AG-modules is a tensor ideal in TA,G, and hence
the Verdier quotient

SA,G = TA,G/Perf(AG)

is a tensor triangulated category again. As observed in [Bar21], the following variant of
Theorem 1.3 is an immediate consequence.

Corollary 1.4. The map ρA,G induces a homeomorphism

Spc(SA,G) ∼= Proj(RA,G).

The category SA,G can be viewed as the stable category of the Frobenius category lat(A,G) of
all finite A-projective AG-modules, so Corollary 1.4 is in line with the classical results of modular
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representation theory mentioned above. If G acts trivially on A, another stable category of
AG-modules with different behavior was introduced in [BIK13], using the Frobenius category of
all finitely presented AG-modules with A-split exact sequences.

Recent literature
In the first version of this paper, Theorem 1.3 was proved only when the ring A is regular.
Afterwards, related results on stratification of compactly generated triangulated categories of
AG-modules in the case where A is regular with trivial G-action appeared in [Bar21, Bar22] and
in [BIKP22]. The fact that Theorem 1.3 implies Corollary 1.4 was observed in [Bar21].

Strategy
The proof of Theorem 1.3 is based on a reduction to the punctual case and the case of affine
schemes along the following lines. If A is a field with possibly non-trivial action of G, the result
follows from the punctual case by a form of Galois descent. In general we can assume that A is
essentially of finite type over Z; then it will be sufficient to show that ρA,G is bijective. There is
a commutative diagram of continuous maps

Spc(TA,G)
ρA,G

��

πT
��

Spech(RA,G)

πR

��

Spc(TAG)
∼
ρ

AG

�� Spec(AG)

(1.5)

where AG is the ring of G-invariants and TAG = Perf(Spec(AG)) is the associated category of
perfect complexes; note that AG is the degree-zero component of the graded ring RA,G. Here
ρAG is a homeomorphism by the case of affine schemes. Hence, the map ρA,G is bijective if and
only if it restricts to a bijective map between each fibre of πT and the corresponding fibre of πR.
This map between the fibres will be related to the field case of Theorem 1.3 as follows. For a
prime ideal q ∈ Spec(AG) we consider the reduced fibre of the ring A over q,

A(q) = (A⊗AG k(q))red.

Explicitly this means that A(q) = k(p1)× · · · × k(pr) where p1, . . . , pr are the prime ideals of A
over q. Functoriality gives the following commutative diagram, where the subscript q means fibre
over q in (1.5).

Spc(TA(q),G)
ρA(q),G

��

jT
��

Spech(RA(q),G)

jR
��

Spc(TA,G)q

(ρA,G)q
�� Spech(RA,G)q

The field case of Theorem 1.3 implies that ρA(q),G is a homeomorphism. We will show that jR
is a homeomorphism and that jT is surjective, at least when A is noetherian. It follows that
(ρA,G)q is bijective as required.

Change of coefficients
The preceding assertions on the maps jR and jT relate to the question how the spaces
Spech(RA,G) and Spc(TA,G) vary with the ring A. A G-equivariant homomorphism of
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commutative rings A→ B gives rise to a base change map for the spectra of the
cohomology rings,

Spech(RB,G)→ Spech(RA,G)×Spec(AG) Spec(BG), (1.6)

and a base change map for the Balmer spectra,

Spc(TB,G)→ Spc(TA,G)×Spec(AG) Spec(BG). (1.7)

In the case B = A(q) these maps can be identified with jR and jT . The following general result
on base change in group cohomology shows in particular that jR is a homeomorphism.

Theorem 1.8. The base change map (1.6) is a homeomorphism if B is a localisation of a
quotient of A.

See Corollary 8.27 and the underlying Theorem 8.26, which says that the natural ring
homomorphism (RA,G)even ⊗AG BG → (RB,G)even induces a universal homeomorphism of affine
schemes if B is a localisation of a quotient of A. The proof of that result proceeds by a reduction
to three basic cases: the case where B is a localisation of A, the case B = A/I for a nilpotent
ideal I, and the case B = A/tA for an A-regular element t ∈ AG, under a noetherian assumption.

With hindsight, Theorem 1.3 identifies (1.6) and (1.7). A direct proof of the analogue of
Theorem 1.8 for the map (1.7) seems to be difficult, but in the above three basic cases we can at
least show that (1.7) is surjective, using a general surjectivity criterion of Balmer [Bal18], saying
that a functor between tensor triangulated categories which detects tensor nilpotence induces a
surjective map on the Balmer spectra. By formal arguments one deduces that (1.7) is surjective
when A is noetherian and B = A(q); in other words the map jT is surjective in the noetherian
case.

Structure of the paper
In § 2 we review the comparison map ρ and its relation with cohomological support for general
tensor triangulated categories. In § 3 we study the category Db(AG)A-perf from a purely algebraic
point of view. In § 4 we introduce the category TA,G of perfect complexes on X and show that it
is equivalent to the algebraic category of § 3. In § 5 we study basic properties of the comparison
map for these categories. The field case of Theorem 1.3 is established in § 7. Theorem 1.8 is
proved in § 8. The corresponding surjectivity results for the map jT are proved in §§ 9 and 10.
Finally, the main result is proved in § 11, and Corollary 1.4 is deduced in § 12.

Notation
For a not necessarily commutative ring R we denote by R-Mod the category of left R-modules
and by R-mod the category of finitely generated left R-modules. The latter is abelian if R is left
noetherian.

2. Prime spectra and cohomological support

In this section we recall some aspects of Balmer’s theory of prime spectra of tensor triangulated
categories. Let T be an essentially small tensor triangulated category with unit object 1 and let

R = RT = End∗
T (1) =

⊕

n∈Z

HomT (1,1[n])

as a graded ring. This is a graded-commutative ring by the obvious composition of morphisms,
or equivalently by the tensor product of morphisms; see [Bal10, Proposition 3.3]. By [Bal10,
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Theorem 5.3] there is a continuous map, denoted there by ρ• and called the comparison map in
[Bal19],

ρ = ρT : Spc(T )→ Spech(R) (2.1)

from the space of prime thick tensor ideals in T to the space of homogeneous prime ideals in R,
which is defined by the following property. If ρ(P) = p, a homogeneous element a ∈ R satisfies
a �∈ p if and only if cone(a) ∈ P.

If the ring R is noetherian, then ρ is surjective by [Bal10, Theorem 7.3].

2.1 Support
For a graded R-module M we have the support

suppR(M) = {p ∈ Spech(R) |Mp �= 0}

where Spech(R) is the set of homogeneous prime ideals of R and Mp is the homogeneous
localisation of M at p. For an object X of T there are two notions of support: the canonical
support

supp(X) = {P ∈ Spc(T ) | X �∈ P},

which is a closed subset of Spc(T ); and the cohomological support

V (X) = suppR(End∗
T (X))

as a subset of Spech(R), where MX = End∗
T (X) becomes a graded R-module by the graded

ring homomorphism R→MX defined by f �→ f ⊗ idX , whose image is graded-central; the
same R-module structure on MX arises from the tensor product of morphisms; see [Bal10,
Proposition 3.3].

The cohomological support V (X) can also be described using localisations of T as in [Bal10,
Construction 3.5]. For p ∈ Spech(R), the localisation Tp has the same objects as T and homo-
morphism groups HomTp (X,Y ) = (Hom∗

T (X,Y )p)0, where 0 means the degree-zero part. Let
Xp ∈ Tp be the image of X ∈ T . Then

p ∈ V (X)⇐⇒ (MX)p �= 0⇐⇒ Xp �= 0. (2.2)

The category Tp is equivalent to the Verdier localisation of T with respect to the thick tensor
ideal generated by cone(a) for all homogeneous elements a ∈ R \ p by [Bal10, Theorem 3.6]; in
particular, Tp is a tensor triangulated category such that the localisation T → Tp is an exact
tensor functor.

Lemma 2.3. For a homogeneous element a ∈ R we have

V (cone(a)) = V (a) = {p ∈ Spech(R) | a ∈ p}.

Proof. Using (2.2) and the exactness of T → Tp, we have p ∈ V (cone(a)) if and only if cone(a)p �=
0 if and only if a not invertible in Tp if and only if a ∈ p. �

One can ask if (Spech(R), V ) is a support datum on T as in [Bal05, Definition 3.1].

Lemma 2.4. The cohomological support (Spech(R), V ) is a support datum on T if and only if
for all X,Y ∈ T the set V (X) is closed and

V (X ⊗ Y ) = V (X) ∩ V (Y ). (2.5)
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Proof. The conditions are part of the axioms of a support datum. Since the localisation Tp
is a tensor triangulated category, the remaining axioms of a support datum are easily verified
using (2.2). �

2.2 The comparison map and support
Definition 2.6. The tensor triangulated category T will be called End-finite if for each X ∈ T
the R-module MX = End∗

T (X) is noetherian.

Clearly T is End-finite if and only if the ring R = End∗
T (1) is noetherian and the R-module

MX = End∗
T (X) is finite for each X ∈ T . Moreover, this implies that the R-module Hom∗

T (X,Y )
is finite for all X,Y ∈ T since the latter is a direct summand of End∗

T (X ⊕ Y ).
If T is End-finite, V (X) is closed in Spech(R) for each X ∈ T .

Proposition 2.7. For each object X of T we have

ρ(supp(X)) ⊆ V (X),

with equality if (Spech(R), V ) is a support datum or T is End-finite and rigid.

Proof. Let P ∈ Spc(T ) and p = ρ(P). We consider the multiplicative sets S in the category T
and S in the ring R defined by

S = {f : X → Y in T | cone(f) ∈ P},
S = S ∩R.

Then S is the set of homogeneous elements in R \ p by the definition of the map ρ. The
corresponding localisations of T are related by functors

T −→ S−1T −→ S−1T = T /P,

where S−1T = Tp, and S−1T is the Verdier localisation at P. We get

(MX)p = 0⇐⇒ X = 0 in Tp =⇒ X = 0 in T /P ⇐⇒ X ∈ P,

hence P ∈ supp(X) =⇒ p ∈ suppR(MX). This proves the first assertion.
To prove the second assertion, for a given p ∈ suppR(MX) we have to find a prime ideal

P ∈ supp(X) with ρ(P) = p. We can replace T by the localisation Tp; cf. [Bal10, Theorem 5.4].
Then R is a local graded ring with unique graded maximal ideal p. LetM be the multiplicative
set of all objects of T of the form

X⊗n ⊗ cone(a1)⊗ · · · ⊗ cone(ar)

with n ≥ 0 and homogeneous elements a1, . . . , ar ∈ p. We claim that 0 �∈ M. Then by [Bal05,
Lemma 2.2] there is a P ∈ Spc(T ) with M∩P = ∅; in particular, X �∈ P and cone(a) �∈ P for
each homogeneous element a ∈ p. The first condition means that P ∈ supp(X); the second condi-
tion implies that p ⊆ ρ(P) and thus p = ρ(P) since p was assumed to be maximal. So it remains
to verify that 0 �∈ M.

If (Spech(R), V ) is a support datum, the tensor product formula (2.5) implies that p ∈ V (Z)
for every Z ∈M because p ∈ V (X) and p ∈ V (cone(a)) for every a ∈ p by Lemma 2.3. Hence,
0 �∈ M. Assume that T is End-finite and rigid. We have X �= 0 since p ∈ V (X), hence X⊗n �= 0
for n ≥ 0 since T is rigid. So it suffices to verify that Y �= 0 in T implies Y ⊗ cone(a) �= 0 for every
homogeneous element a ∈ p. The triangle Y a−→ Y → Y ⊗ cone(a)→+ gives an exact sequence

End∗
T (Y ) a−→ End∗

T (Y ) −→ Hom∗
T (Y, Y ⊗ cone(a)).
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Here End∗
T (Y ) is a non-zero finite R-module, so the cokernel of multiplication by a on this module

is non-zero by the graded version of Nakayama’s lemma. It follows that Y ⊗ cone(a) �= 0. �
Corollary 2.8. If (Spech(R), V ) is a support datum or T is End-finite and rigid, then ρ is
bijective if and only if ρ is a homeomorphism.

Proof. We have to show that if ρ is bijective and Z ⊆ Spc(T ) is closed, then ρ(Z) is closed. The
definition of the topology on Spc(T ) implies that Z is an intersection of sets of the form supp(Xi)
with Xi ∈ T . Proposition 2.7 yields ρ(supp(Xi)) = V (Xi), which is closed in Spech(R) by the
assumption. Since ρ is injective, ρ(Z) is the intersection of the sets V (Xi) and thus closed. �
Remark 2.9. One can ask if the conclusion of Corollary 2.8 holds for general tensor triangular
categories; see [DS16, Lemma 2.1] and [DS] for a discussion.

Proposition 2.10. If the category T is rigid and ρ is a homeomorphism, then ρ(supp(X)) =
V (X) for each X ∈ T .

Proof. Let P ∈ Spc(T ) and p = ρ(P). As in the proof of Proposition 2.7, we consider the natural
functor j : Tp→ T /P from the localisation at p to the Verdier quotient by P. We have to show
that X = 0 in Tp if and only if X = 0 in T /P. In fact we show that j is an equivalence. By
[Bal10, Theorem 5.4] there is a cartesian diagram of topological spaces

Spc(Tp)
ρTp

��

Spc(q)

��

Spech(Rp)

��

Spc(T )
ρT

�� Spech(R)

where q : T → Tp is the localisation functor. Since ρT is a homeomorphism, ρTp is a
homeomorphism. The space Spech(Rp) has a unique closed point which maps to p in Spech(R).
Hence, Spc(Tp) has a unique closed point P ′ which maps to P in Spc(T ). Since Tp is rigid, P ′

is the zero ideal of Tp; see [Bal10, Proposition 4.2]. Explicitly this shows that P = q−1(0); in
particular, q maps P to zero. Hence, q induces a functor T /P → Tp which is an inverse of j. �

2.3 Products and colimits
Let us record how the Balmer spectrum and the comparison map behave under finite products
and filtered 2-colimits of T .

Lemma 2.11. Let T = T1 × T2 with tensor triangulated categories Ti and Ri = End∗
Ti

(1). Then
there are decompositions into open subspaces

Spc(T ) = Spc(T1) � Spc(T2) and Spech(R) = Spech(R1) � Spech(R2)

such that ρT = ρT1 � ρT2 .

Proof. This is straightforward; note that R = R1 ×R2. See [AM69, Chapter 1, Exercise 22] for
the corresponding assertion for the spectrum of non-graded rings. �
Lemma 2.12. Let T = lim−→i

Ti be a filtered 2-colimit of tensor triangulated categories Ti and
Ri = End∗

Ti
(1). Then we have

Spc(T ) = lim←−
i

Spc(Ti) and Spech(R) = lim←−
i

Spech(Ri)

as topological spaces such that ρT = lim←−i ρTi .
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Proof. This is straightforward. See [Sta20, Exercise 078L] and [GW20, Proposition 10.53] for the
corresponding assertion for the spectrum of non-graded rings. �

3. Modules over the skew group ring

Let A be a commutative ring with an action of a finite group G. We denote by AG the skew
group ring for this action, so AG is the free A-module with basis G, and multiplication in AG
is defined by (ag)(bh) = ag(b)gh for a, b ∈ A and g, h ∈ G. Let D(AG) = D(AG-Mod) be the
derived category of left AG-modules. The bounded-above derived category D−(AG) is equivalent
to the homotopy category K−(AG-Proj) of bounded-above complexes of projective AG-modules,
which carries the tensor product

P ⊗Q = P ⊗A Q (3.1)

with the diagonal action of G. This makes D−(AG) into a tensor triangulated category. We
denote by

Db(AG)A-proj

the full subcategory of D(AG) whose objects are the bounded complexes of AG-modules which
are finite projective A-modules, and by

Db(AG)A-perf

the full subcategory of D(AG) whose objects are the complexes of AG-modules which are
A-perfect, that is, isomorphic in D(A) to a bounded complex of finite projective A-modules.
We will verify that these two categories are equivalent. It is easy to see that they are trian-
gulated subcategories of D−(AG) and that (at least) Db(AG)A-perf is stable under the tensor
product.

Lemma 3.2. For every P ∈ Db(AG)A-perf there is a bounded-above complex of finite projective
AG-modules with a quasi-isomorphism P ′ → P .

Proof. This is standard; see, for example, [Sta20, Lemma 064Z], where all rings are assumed to
be commutative, but that assumption is not used in the proof. Let us sketch a direct argument.
Assume α : Q→ P is chosen, where Q = [Qm → · · · → Qn] is a finite complex of finite projec-
tive AG-modules such that H i(α) is surjective for i = m and bijective for i > m; equivalently,
H i(cone(α)) = 0 for i ≥ m. Since cone(α) is A-perfect, it follows that Hm−1(cone(α)) is a finite
A-module, so we can choose a surjective homomorphism of AG-modulesQm−1 → Hm−1(cone(α))
where Qm−1 is finite projective. This gives an extension Q′ = [Qm−1 → Qm → · · · → Qn] of Q
and an extension α′ : Q′ → P of α such thatH i(cone(α′)) = 0 for i ≥ m− 1. By infinite repetition
the growing Q gives P ′. �
Lemma 3.3. The inclusion Db(AG)A-proj → Db(AG)A-perf is an equivalence of triangulated
categories. The resulting tensor product on Db(AG)A-proj is given by (3.1).

Proof. For P ∈ Db(AG)A-perf let P ′ → P be a quasi-isomorphism as in Lemma 3.2. For suffi-
ciently small n ∈ Z, the truncation P ′′ = τ≥nP ′ is quasi-isomorphic to P as well. Then P ′′ lies in
Db(AG)A-proj because P ′′ is A-perfect and bounded with finite A-projective components except
possibly in the left-most degree n. This proves the first assertion.

For the second assertion we note that for quasi-isomorphisms P ′ → P and Q′ → Q with
P ′, Q′ ∈ K−(AG-Proj) and P,Q ∈ Db(AG)A-proj the resulting homomorphism P ′ ⊗A Q′ → P ⊗A
Q is again a quasi-isomorphism. �
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Lemma 3.4. There is an isomorphism of graded rings

End∗
D(AG)(A) ∼= H∗(G,A), (3.5)

and for two AG-modules M and N such that M is A-projective there is a natural isomorphism
of graded modules with respect to (3.5),

Hom∗
D(AG)(M,N) ∼= H∗(G,HomA(M,N)). (3.6)

Again this is standard, at least when G acts trivially on A, but this condition is not essential.
We sketch a proof for completeness.

Proof. We have Hom∗
D(AG)(M,N) = Hom∗

D(AG)(A,HomA(M,N)), so in (3.6) it suffices to
treat the case M = A. If P ′ → Z is a ZG-projective resolution, then P = A⊗Z P

′ → A is an
AG-projective resolution, and the complex HomAG(P,N) is isomorphic to HomZG(P ′, N). This
gives (3.6) and (3.5) as graded abelian groups. The cup product on H∗(G,A) corresponds to
the tensor product in End∗

D(AG)(A), which coincides with the composition product by [Bal10,
Proposition 3.3], and hence (3.5) is an isomorphism of graded rings. Similarly (3.6) is an
isomorphism of graded modules over these rings. �

3.1 Functoriality
The pairs (G,A) where G is a finite group that acts on a commutative ring A can be made into
a category such that a morphism

f : (G,A)→ (H,B) (3.7)

consists of a group homomorphismG← H and anH-equivariant ring homomorphism f : A→ B;
this is opposite to [Bro82, Chapter III, § 8] and [Wei03, 6.7.6]. A morphism of pairs f : (G,A)→
(H,B) as in (3.7) induces a functor of tensor triangulated categories

f∗ : D−(AG)→ D−(BH)

or equivalently f∗ : K−(AG-Proj)→ K−(BH-Proj), the latter defined by

f∗(P ) = P ⊗A B (3.8)

with diagonal H-action using the restriction under G← H on the first component. One verifies
that the functor f∗ restricts to a functor

f∗ : Db(AG)A-perf → Db(BH)B-perf , (3.9)

which is given by (3.8) on the objects of Db(AG)A-proj. Under the isomorphism (3.5), this functor
gives a ring homomorphism

f∗ : H∗(G,A)→ H∗(H,B). (3.10)

This is the usual functoriality of group cohomology as a functor of two variables; see [Bro82,
Chapter III, § 8] or [Wei03, 6.7.6].

Lemma 3.11. Let G be a finite group and A = lim−→i
Ai a filtered colimit of commutative rings

with an action of G. Then

Db(AG)A-perf
∼= lim−→

i

Db(AiG)Ai-perf

as a filtered 2-colimit of tensor triangulated categories.

Proof. By Lemma 3.3 we can replaceDb(AG)A-perf by E(A) = Db(AG)A-proj. The natural functor
lim−→i
E(Ai)→ E(A) is surjective on isomorphism classes because every complex in E(A) is deter-

mined by finite data of matrices over A subject to finitely many relations. The functor is fully
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faithful because for X,Y ∈ E(A), after choosing a quasi-isomorphism P → X as in Lemma 3.2
we have HomE(A)(X,Y ) = HomK(AG)(P, Y ), which commutes with filtered colimits of A. �

3.2 Finiteness conditions
Let AG ⊆ A be the ring of G-invariant elements.

Definition 3.12. The pair (G,A) will be called noetherian if the ring AG is noetherian and A
is a finite AG-module.

Lemma 3.13. If A is an algebra of finite type over a noetherian subring B of AG, then AG is of
finite type over B, and the pair (G,A) is noetherian.

Proof. Since A is integral over AG by [Bou75, Chapter V, § 1.9, Proposition 22], [AM69,
Proposition 7.8] implies that AG is a B-algebra of finite type. Hence, AG is noetherian. Moreover,
A is integral and of finite type over AG, hence finite over AG. �
Corollary 3.14. If A is a ring of finite type (i.e. a finitely generated Z-algebra), then AG is
of finite type as well, and the pair (G,A) is noetherian.

Proof. Let B be the image of Z→ A and apply Lemma 3.13. �
Proposition 3.15. If the pair (G,A) is noetherian, the triangulated category Db(AG)A-perf is
End-finite in the sense of Definition 2.6; in particular, the ring H∗(G,A) is noetherian.

Proof. Let R = H∗(G,AG). Since AG is a noetherian ring and A is a finite AG-module with
an AG-linear action of G, [Eve61, Theorem 6.1 and Corollary 6.2] give that R is a noetherian
ring and that H∗(G,A) is a finite R-module, thus a noetherian ring. By Lemma 3.3 it suffices
to show that for P , Q ∈ Db(AG)A-proj the graded R-module MP,Q = Hom∗

D(AG)(P,Q) is finite.
Since the finite R-modules form a Serre subcategory of the category of all R-modules, one can
assume that the complexes P and Q are concentrated in degree zero. In that case, (3.5) gives
MP,Q = H∗(G,HomA(P,Q)), which is finite over R by [Eve61, Theorem 6.1] again. �

4. Perfect complexes over quotient stacks

As in § 3 let A be a commutative ring with an action of a finite group G. We consider the
Deligne–Mumford stack X = [Spec(A)/G] and the tensor triangulated category

TA,G = Perf(X ) (4.1)

of perfect complexes in D(Xet), the derived category of OX -modules on the étale site of X , as
well as the graded-commutative ring

RA,G = End∗
TA,G

(1) = End∗
D(Xet)

(OX ). (4.2)

We refer to [LM00, (4.6.1)] for the definition of X , to [LM00, § 12] for the étale site of X and
to [Sta20, Section 08G4] for perfect complexes on a ringed site. We note that Perf(X ) is the
category of dualisable objects in D(Xet) by [Sta20, Section 0FPP]. In particular, Perf(X ) is a
rigid tensor triangulated category.

Remark 4.3. For general algebraic stacks one uses the lisse-étale site and the associated category
D(Xlis-et) to define Perf(X ); see for example [HR17]. For Deligne–Mumford stacks this makes
no difference because the categories Dqc(Xet) and Dqc(Xlis-et) of complexes of OX -modules with
quasi-coherent cohomology are equivalent by [LM00, Proposition 12.10.1]; cf. also [HR17, §§ 1
and 4].

1323

https://doi.org/10.1112/S0010437X23007200 Published online by Cambridge University Press

https://stacks.math.columbia.edu/tag/08G4
https://stacks.math.columbia.edu/tag/0FPP
https://doi.org/10.1112/S0010437X23007200


E. Lau

Proposition 4.4. There is an equivalence of tensor triangulated categories

TA,G ∼= Db(AG)A-perf , (4.5)

and hence an isomorphism of graded rings

RA,G ∼= H∗(G,A). (4.6)

Remark 4.7. We view Proposition 4.4 as a motivation to study the algebraic category
Db(AG)A-perf . In the remainder of the paper, the stack X will not appear in an essential way, so
the reader could skip the rest of this section and take (4.5) as a definition.

Proof of Proposition 4.4. Let Y = SpecA. We denote by OY [G]-Mod the category of
G-equivariant OY -modules on the étale site of Y . Gluing of sheaves for the étale covering
π : Y → X yields an equivalence

OX -Mod ∼= OY [G]-Mod, (4.8)

using that Y ×X Y ∼= G× Y . There is a pair of adjoint functors

AG-Mod
ϕ

�� OY [G]-Mod ∼= OX -Mod
Q

�� (4.9)

with ϕ left adjoint to Q, where ϕ(M) = M̃ is the quasi-coherent OY -module associated to M as
anA-module, with the action ofG on M̃ induced by the given action onM , andQ(M) = Γ(Y,M)
as an A-module, carrying the action of G induced by the given action on M. The functor ϕ is
exact and preserves the tensor product defined by M ⊗A N in AG-Mod and by M⊗OY

N in
OY [G]-Mod, in both cases with diagonal G-action. We will show that ϕ induces the inverse of
the desired equivalence (4.5).

Let D+
qc(Xet) ⊆ D+(Xet) be the full subcategory of complexes with quasi-coherent

cohomology. The following variant of [SGA6, II, Proposition 3.5] is a special case of [HNR19,
Theorem C.1]; we give a direct proof for completeness.

Lemma 4.10. The functor ϕ induces an equivalence of triangulated categories D+(AG) ∼=
D+

qc(Xet) with quasi-inverse functor RQ.

Proof. We begin with two initial remarks.
(1) For M ∈ AG-Mod, the natural map M → Q(ϕ(M)) is an isomorphism, so ϕ is fully

faithful. The image of ϕ is the category of quasi-coherent OX -modules in the sense of [Sta20,
Definition 03DL] because an OX -module M is quasi-coherent if and only if MY = π∗(M) is a
quasi-coherent OY -module, which means that MY

∼= M̃ for an A-module M by faithfully flat
descent.

(2) The functor Q is left exact with derived functors RiQ(M) = H i(Yet,M) with the induced
action of G. Since Y is an affine scheme, for an AG-module M and i > 0 we have H i(Yet, M̃) = 0,
and thus RiQ(ϕ(M)) = 0.

Now the exact functor ϕ induces an exact functor ϕ : D+(AG)→ D+
qc(Xet). We have to show

that for complexes M ∈ D+(AG) and M∈ D+
qc(Xet), the natural homomorphisms ηM : M →

RQ(ϕ(M)) and εM : ϕ(RQ(M))→M are isomorphisms. Both assertions are easily reduced to
the case where M andM are modules concentrated in degree zero. Then ηM is an isomorphism
because M → Q(ϕ(M)) is an isomorphism by (1) and RiQ(ϕ(M)) = 0 for i > 0 by (2). The
module M is quasi-coherent since it lies in D+

qc(Xet), thus M = ϕ(N) for an AG-module N
by (1). Hence, εM is an isomorphism since this holds for ηN . �
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We continue the proof of Proposition 4.4. In the case G = 1, by Lemma 4.10 the functor ϕ
gives an equivalence D+(A) ∼= D+

qc(Yet). This equivalence restricts to an equivalence Perf(A) ∼=
Perf(Yet) because a complex P of A-modules is perfect if and only if for some faithfully flat
ring homomorphism A→ A′ the complex P ⊗A A′ is perfect; see [Sta20, Lemma 068T]. For
general G it follows that a complex P in D+(AG) is A-perfect if and only if the complex
π∗(ϕ(P )) in D+(Yet) is perfect, which means that ϕ(P ) in D+(Xet) is perfect because this is
a local condition. Hence, the equivalence of Lemma 4.10 restricts to the desired equivalence
Db(AG)A-perf

∼= Perf(X ). This functor preserves the tensor product because this evidently holds
for its restriction to Db(AG)A-proj; see Lemma 3.3. The isomorphism (4.6) follows by (3.5). �

4.1 Functoriality
A morphism of pairs f : (G,A)→ (H,B) as in (3.7) induces a morphism of algebraic stacks (see,
for example, [Sta20, Lemma 046Q])

ψ = Spec(f) : [Spec(B)/H]→ [Spec(A)/G],

which gives an inverse image functor of tensor triangulated categories

f∗ = ψ∗ : TA,G → TB,H , (4.11)

using that the étale topos of Deligne–Mumford stacks is functorial (see, for example, [Zhe15,
Construction 2.4], together with [Sta20, Lemma 08H6]). One verifies that under the equivalence
of Proposition 4.4, the functor f∗ of (4.11) corresponds to the functor f∗ of (3.9). We omit further
details.

5. The comparison map: basic properties

As earlier, let A be a commutative ring with an action of a finite group G. The comparison map
ρT of (2.1) for the category T = TA,G of (4.1) will be denoted by

ρA,G : Spc(TA,G)→ Spech(RA,G). (5.1)

5.1 Functoriality
Since the comparison map ρT is natural in T , for a morphism of pairs f : (G,A)→ (H,B) as
in (3.7) the functor f∗ : TA,G → TB,H of (4.11) induces a commutative diagram of topological
spaces

Spc(TB,H)
ρB,H

��

fT

��

Spech(RB,H)

fR

��

Spc(TA,G)
ρA,G

�� Spech(RA,G)

(5.2)

Here fT is the inverse image map under the functor f∗, and fR is the inverse image map under
the ring homomorphism f∗ : RA,G → RB,H defined by this functor. We recall that under the
equivalence (4.5), the functor f∗ corresponds to the functor (3.9), and under the isomorphism
(4.6), the ring homomorphism f∗ corresponds to the homomorphism (3.10).
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5.2 The case of the trivial group
We will write TA = TA,{e} = Perf(SpecA) and ρA = ρA,{e}. In this case we have RA,{e} = A as a
graded ring concentrated in degree zero, and the comparison map

ρA : Spc(TA)→ Spec(A) (5.3)

is a homeomorphism by [Bal10, Proposition 8.1], which is based on [Tho97, Theorem 3.15].

5.3 Restriction to fibres
For a general pair (G,A) there is a morphism of pairs π : ({e}, AG)→ (G,A) defined by the inclu-
sion AG → A and the unique group homomorphism {e} ← G. This gives the following instance
of the functoriality diagram (5.2):

Spc(TA,G)
ρA,G

��

πT

��

Spech(RA,G)

πR

��

Spc(TAG)
ρ

AG

∼
�� Spec(AG)

(5.4)

Here ρAG is a homeomorphism by [Bal10, Proposition 8.1], as explained in (5.3). We note that
πR is induced by the ring homomorphism π∗ : AG → RA,G given by the inclusion of the degree-
zero component, and hence πR(p) = p0 is the degree-zero part of a homogeneous prime ideal p

of RA,G.
For a given q ∈ Spec(AG) with unique inverse image Q ∈ Spc(TAG) the vertical fibres in (5.4)

over these points will be denoted by

Spc(TA,G)q = (πT )−1(Q) and Spech(RA,G)q = (πR)−1(q). (5.5)

The map ρA,G induces a map between these fibres

(ρA,G)q : Spc(TA,G)q→ Spech(RA,G)q. (5.6)

The following result is evident.

Lemma 5.7. For a given pair (G,A), the map ρA,G is bijective if and only if the map (ρA,G)q is
bijective for each q ∈ Spec(AG).

Remark 5.8. Diagram (5.4) is functorial with respect to (G,A). More precisely, a morphism
of pairs f : (G,A)→ (H,B) as in (3.7) gives rise to a commutative cube: [(5.4) for (H,B)]→
[(5.4) for (G,A)]. Since the lower line of (5.4) is always a homeomorphism, the essential
information of this cube is captured by the following extension of (5.2),

Spc(TB,H)

fT

��

ρB,H
�� Spech(RB,H)

fR

��

πR

�� Spec(BH)

f0

��

Spc(TA,G)
ρA,G

�� Spech(RA,G)
πR

�� Spec(AG)

(5.9)

where f0 comes from the ring homomorphism AG → BH induced by f .
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5.4 Fibres of the coefficient ring
For a given q ∈ Spec(AG) let

A(q) = (A⊗AG k(q))red, (5.10)

where the subscript red means maximal reduced quotient, so Spec(A(q)) is the reduced fibre
over q of the morphism Spec(A)→ Spec(AG), and let

ψq : A→ A(q) (5.11)

be the natural homomorphism given by a �→ a⊗ 1. The action of G on A induces an action on
A(q) via the first factor, and ψq is G-equivariant.

Lemma 5.12. Let p1, . . . , pr be the prime ideals of A lying over q. Then

A(q) = k(p1)× · · · × k(pr).
Proof. The prime ideals of A over q form a finite discrete set because they form a single
G-orbit in Spec(A) by [Bou75, Chapter V, § 2.2, Theorem 2(i)], and this set is homeomorphic to
Spec(A(q)). Hence, the reduced ring A(q) is the product of its residue fields, and these residue
fields coincide with the corresponding residue fields of A since A(q) is a quotient of a localisation
of A. �
Lemma 5.13. There is a commutative diagram of rings

A
ψq

�� A(q)

AG

��

can
�� k(q) �� A(q)G

��

where the vertical homomorphisms are the inclusions. Here A(q)G is a field, and k(q)→ A(q)G

is a purely inseparable field extension.

Proof. The composition AG → A→ A(q) factors over k(q) by the definition of A(q), and the
resulting homomorphism k(q)→ A(q) has image in A(q)G since G acts trivially on k(q). If
p ∈ Spec(A) lies over q and if H ⊆ G is the stabiliser of p, then A(q)G ∼= k(p)H , which is a field,
and a purely inseparable extension of k(q) by [Bou75, Chapter V, § 2.2, Theorem 2(ii)]. �

5.5 The fibre diagram
Again let q ∈ Spec(AG) be given.

Proposition 5.14. The functoriality diagram (5.2) for the homomorphism of pairs ψq :
(G,A)→ (G,A(q)) of (5.11) induces a commutative diagram

Spc(TA(q),G)
ρA(q),G

��

ψT
q,res

��

Spech(RA(q),G)

ψR
q,res

��

Spc(TA,G)q

(ρA,G)q
�� Spech(RA,G)q

(5.15)

which we call the fibre diagram at q.

This diagram also appears in the introduction, where the vertical arrows are denoted by jT
and jR.
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Proof. Let us draw the extended functoriality diagram (5.9) for ψq.

Spc(TA(q),G)
ρA(q),G

��

ψT
q

��

Spech(RA(q),G)

ψR
q

��

πR
�� Spec(A(q)G)

ψ0
q

��

Spc(TA,G)
ρA,G

�� Spech(RA,G)
πR

�� Spec(AG)

We have to verify that the images of the vertical arrows ψT
q and ψRq map to q in Spec(AG). This

holds because the ring homomorphism AG → A(q)G factors over k(q) by Lemma 5.13, so the
image of ψ0

q is the singleton {q}. �
Lemma 5.16. As earlier, let p1, . . . , pr be the prime ideals of A over q. Moreover, let L = k(p1),
and let H ⊆ G be the stabiliser of the element p1 of Spec(A). Then the tensor triangulated
category TA(q),G is equivalent to TL,H , and consequently the map ρA(q),G is isomorphic to ρL,H .

Proof. The group H acts on L by functoriality. We use Lemma 5.12. Since G acts transitively
on the set {p1, . . . , pr}, there is an equivalence

A(q)G-mod ∼= LH-mod

given by M �→M ⊗A(q) L with diagonal action of H. The resulting equivalence
Db(A(q)G-mod) ∼= Db(LH-mod) gives TA(q),G

∼= TL,H by Proposition 4.4, using that every
A(q)-module is projective. �
Remark 5.17. On the geometric side, the equivalence TA(q),G

∼= TL,H comes from an isomorphism
of stacks [Spec(L)/H] ∼= [Spec(A(q))/G] which is induced by the obvious morphism of pairs
(G,A(q))→ (H,L).

5.6 Additional comments on the ring A(q)
Lemma 5.18. If the ring AG is local with maximal ideal q, then ψq is surjective and induces a
homeomorphism Spec(A(q)) ∼= Max(A).

Proof. The assumption implies that AG → k(q) is surjective, and hence ψq is surjective. Since
AG ⊆ A is an integral extension, a prime ideal p of A is maximal if and only if p ∩AG is a
maximal ideal of AG; see [Bou75, Chapter V, § 2.1, Proposition 1]. Hence, Max(A) is the set of
prime ideals of A lying over q, which is homeomorphic to Spec(A(q)). �
Lemma 5.19. Let f : A→ B be a G-equivariant ring homomorphism and let q̃ ∈ Spec(BG) with
image q ∈ Spec(AG) be given. Then f induces an injective ring homomorphism f ′ : A(q)→ B(q̃).
If B is a localisation of a quotient of A, then f ′ is bijective.

Proof. Clearly f induces f ′. All assertions follow from Lemma 5.12. Indeed, the G-equivariant
map Spec(f) : Spec(B)→ Spec(A) sends the G-orbit over q̃ to the G-orbit over q, and this map
between G-orbits is necessarily surjective. Moreover, for p̃ ∈ Spec(B) with image p ∈ Spec(A)
the homomorphism of residue fields k(p)→ k(p̃) is injective. Hence, f ′ is injective. If B is a
localisation of a quotient of A, then Spec(f) is injective, so our map between G-orbits is bijective.
Moreover, f induces isomorphisms of the residue fields. Hence, f ′ is bijective. �
Lemma 5.20. Let Aq = S−1A with S = AG \ q. The homomorphism ψq factors into
G-equivariant homomorphisms

A→ Aq
π−→ A(q)
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where π is surjective. The ring (Aq)G = (AG)q is local with maximal ideal qq. There is an iso-
morphism A(q) ∼= Aq(qq) under which π corresponds to the homomorphism (5.11) for Aq and qq

in place of A and q.

Proof. The homomorphism ψq factors over S−1A because AG → k(q) factors over S−1(AG). We
have (Aq)G = (AG)q since localisation is flat. The rest follows easily; one can also use Lemma 5.19
with B = S−1A. �

6. Spectra of graded rings

For a graded-commutative ring R let Reven be the subring of R generated by the homogeneous
elements of even degree. Then Reven is a commutative graded ring, and there is a homeo-
morphism Spech(R) ∼= Spech(Reven). In this section we record a number of basic properties of
this construction.

Lemma 6.1. For a homomorphism S → T of graded-commutative rings let

f : Spec(Teven)→ Spec(Seven) and fh : Spech(T )→ Spech(S)

be the induced maps. If f is surjective, then so is fh. If f is a homeomorphism, then so is fh.

Proof. One can replace S and T by Seven and Teven. Since Spech(S) ⊆ Spec(S) and Spech(T ) ⊆
Spec(T ) carry the subspace topology, it suffices to show that fh is surjective if f is surjective.
For p ∈ Spech(S) we consider the residue field k(p) = Frac(S/p) and the graded residue field
k((p)) = Sp/pSp, where Sp is the graded localisation of S at p. There are ring homomorphisms
S → k((p))→ k(p). Since f is surjective, the ring T ⊗S k(p) is non-zero, hence the graded ring
T ⊗S k((p)) is non-zero. Any graded prime ideal of T ⊗S k((p)) gives a graded prime ideal of T
that maps to p. �

Lemma 6.2. Let R be a graded-commutative ring with an action of a finite group Γ by automor-
phisms of graded rings. Then the inclusion RΓ → R induces a homeomorphism Spech(R)/Γ ∼=
Spech(RΓ).

Proof. The lemma includes its non-graded version because a commutative ring can be considered
as a graded ring concentrated in degree zero. The non-graded version is well known and appears,
for example, in [SGA1, Exp. V, Proposition 1.1]. In more detail, RΓ → R is integral and gives
a bijective continuous map Spec(R)/Γ→ Spec(RΓ) by [Bou75, Chapter V, § 2, Theorem 2]; this
map is also closed by [GW20, Proposition 5.12]. In the graded case it follows that the natural map
Spech(R)/Γ→ Spech(RΓ) is the inclusion of a subspace, and the map is surjective by Lemma 6.1,
hence a homeomorphism. �

Lemma 6.3. A graded commutative ring R =
⊕

n≥0Rn is noetherian if and only if the ring
R0 is noetherian and R is an R0-algebra of finite type. If this holds, for any d > 0 the ring
R(d) =

⊕
nRnd is noetherian as well, and R is a finite R(d)-module.

Proof. See, for example, [Mat80, Theorem 13.1] for the first assertion. The second assertion is
reduced to the case R = R0[T1, . . . , Tr] where each Ti is homogeneous of some positive degree.
Then R′ = R0[T d1 , . . . , T

d
r ] ⊆ R(d) ⊆ R where R′ is noetherian and R is finite over R′, and the

second assertion follows. �
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7. The comparison map: the field case

Let L be a field with an action of a finite group G. By Proposition 4.4, the tensor triangulated
category TL,G is equivalent to Db(LG-mod). The aim of this section is to prove the following
result.

Theorem 7.1. If L is a field, the map ρL,G : Spc(TL,G)→ Spech(RL,G) of (5.1) is a
homeomorphism.

If G acts trivially on L, this is the content of [Bal10, Proposition 8.5], which is eventually
based on the fact that thick tensor ideals in Db(LG-mod) are classified by their cohomological
support in Spech(RL,G), or equivalently that thick tensor ideals in the stable module category
of G over L are classified by their cohomological support in Proj(RL,G). The stable version is
proved in [BCR97, Theorem 3.4] when L is algebraically closed, and in [BIK11, Theorem 11.4]
for arbitrary fields L; a direct proof of the unstable version appears in [CI15].

The general case will be reduced to the case of trivial action. Let

H = Ker(G→ Aut(L))

so that G/H acts faithfully on L. The morphism of pairs

f : (G,L)→ (H,L)

defined by the identity of L and the inclusion G← H gives the following instance of the
functoriality diagram (5.2):

Spc(TL,H)
ρL,H

��

fT

��

Spech(RL,H)

fR

��

Spc(TL,G)
ρL,G

�� Spech(RL,G)

(7.2)

Here the vertical arrows are induced by the functor f∗ : TL,G → TL,H which corresponds to the
restriction functor

resGH : Db(LG-mod)→ Db(LH-mod)

under the equivalence of Proposition 4.4.

Lemma 7.3. The group Ḡ = G/H acts on all spaces in (7.2) with trivial action on the lower line
such that all maps in (7.2) are Ḡ-equivariant.

Proof. The actions are induced by the conjugation action of G on the ring LG and on the subring
LH; note that H is a normal subgroup of G.

In more detail, for g ∈ G and an LH-module X we form the LH-module Xg which is X with
the action of z ∈ LH by gzg−1. This defines a right action of G on the triangulated category
TL,H ∼= Db(LH-mod), here called the conjugation action. The conjugation action admits the
following alternative description, which shows that the action of G on TL,H preserves the tensor
structure. Each g ∈ G gives a homomorphism of pairs (H,L)→ (H,L) defined by L→ L, a �→
g−1(a) and H ← H, ghg−1 ←� h. The resulting endomorphism of TL,H by functoriality with
respect to (H,L) is isomorphic to the endomorphism X �→ Xg because there is an isomorphism
Xg → X ⊗L,g−1 L, y �→ y ⊗ 1. Hence, the action of G on the pair (H,L) induces by functoriality
the conjugation action of G on TL,H .
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The conjugation action of G on TL,H induces compatible left actions of G on the source and
target of ρL,H . Similarly, G acts on the tensor triangulated category TL,G, which induces com-
patible actions of G on the source and target of ρL,G such that all maps in (7.2) are equivariant.
It remains to verify that H acts trivially on the source and target of ρL,H and G acts trivially
on the source and target of ρL,G.

For an LG-module X and g ∈ G, multiplication by g is an isomorphism X ∼= Xg. It follows
that G acts trivially on Spc(TL,G). The alternative description of the conjugation action implies
that the resulting action of G on RL,G ∼= H∗(G,L) corresponds to the conjugation action in
group cohomology as defined in [Bro82, Chapter III, § 8], which is trivial by [Bro82, Chapter III,
Proposition (8.1)]. Similarly, H acts trivially on Spc(TL,H) and on RL,H . �

Lemma 7.4. The map fR of (7.2) induces a homeomorphism

Spech(RL,H)/Ḡ
f̄R

−−−→ Spech(RL,G).

Proof. Let K = LG. Then L/K is a finite Galois extension with Galois group Ḡ. We consider
the sequence of left exact functors

LG-Mod
(−)H

−−−→ LḠ-Mod
(−)Ḡ

−−−→ K-Mod (7.5)

whose composition is the functor of G-invariants. By Galois descent [GW20, Theorem 14.85], the
functor (−)Ḡ in (7.5) is an equivalence, in particular, exact. Hence (7.5) yields an isomorphism
of δ-functors

H i(G,M) ∼−→ H i(H,M)Ḡ

for M ∈ LG-Mod, which coincides with the restriction map in group cohomology because this
holds for i = 0, as is easily verified. For M = L it follows that the homomorphism f∗ : RL,G →
RL,H identifies RL,G with the ring of Ḡ-invariants in RL,H . Then Lemma 6.2 finishes the
proof. �

Lemma 7.6. The map fT of (7.2) is surjective.

Proof. The restriction functor f∗ : LG-mod→ LH-mod has an exact right adjoint f ! defined by
f !(M) = HomLH(LG,M), which is an LG-module using the right LG-module structure of LG.
This induces an exact right adjoint f ! of the tensor triangulated functor f∗ : Db(LG-mod)→
Db(LH-mod). By [Bal18, Theorem 1.7] it follows that the image of the map fT = Spc(f∗) is
equal to the support of f !(1) = HomLH(LG,L), viewed as an object of Db(LG-mod). One ver-
ifies that H acts trivially on f !(1), so this is an LḠ-module. An LḠ-module is determined
by its L-dimension by Galois descent [GW20, Theorem 14.85]. Hence, f !(1) ∼= L[G:H] and thus
supp(f !(1)) = supp(1) = Spc(TL,G). �

Proof of Theorem 7.1. By Lemma 7.3, the commutative diagram (7.2) induces a commutative
diagram of topological spaces

Spc(TL,H)/Ḡ
ρ̃L,H

��

f̃T

��

Spech(RL,H)/Ḡ

f̃R

��

Spc(TL,G)
ρL,G

�� Spech(RL,G)

(7.7)
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Here ρ̃L,H is a homeomorphism because ρL,H is a homeomorphism by [Bal10, Proposition 8.5],
f̃R is a homeomorphism by Lemma 7.4, and f̃T is surjective by Lemma 7.6. It follows that all
arrows in (7.7) are homeomorphisms. �
Remark 7.8. In the situation of Theorem 7.1 one could ask for a relation between the stacks
[Spec(L)/G] and [Spec(K)/H] or between the corresponding module categories LG-mod and
KH-mod. In general, these stacks are not isomorphic, and the categories are not equivalent. For
example, let L = C and G = Z/4Z such that a generator of G acts on L by complex conjugation,
so K = R and H = 2Z/4Z. Then KH-mod has two isomorphism classes of one-dimensional
representations while LG-mod has only one such class, so these categories are not equivalent as
tensor categories because the number of invertible objects up to isomorphism is different.

8. Change of coefficients in group cohomology

We fix a finite group G. For a commutative ring A with an action of G we ask how the graded-
commutative ring RA,G = H∗(G,A) and its homogeneous prime spectrum depend on A.

8.1 Base change homomorphisms
A G-equivariant ring homomorphism

u : A→ B

induces a homomorphism of graded-commutative rings

u′ : RA,G → RB,G

whose degree-zero component is the homomorphism AG → BG defined by u. This gives a
homomorphism of graded-commutative rings

u′′ : RA,G ⊗AG BG → RB,G

and, by restriction to the subrings generated by the elements of even degree, a homomorphism
of commutative graded rings

u′′′ : (RA,G)even ⊗AG BG → (RB,G)even. (8.1)

A homomorphism of commutative rings S → T will be called a universal homeomorphism if
it induces a universal homeomorphism SpecT → SpecS of schemes, which means that for every
ring homomorphism S → S′ the natural map Spec(T ⊗S S′)→ Spec(S′) is a homeomorphism.

Definition 8.2. We denote by Coh-uh(G) the class of all G-equivariant homomorphisms of
commutative rings u : A→ B such that the base change homomorphism u′′′ in (8.1) is a universal
homeomorphism.

Remark 8.3. The class Coh-uh(G) does not contain all G-equivariant ring homomorphisms. For
example, if L/K is a finite Galois extension with Galois group G, then L is an induced G-module
by the normal basis theorem, the inclusion map K → L is G-equivariant, and the associated
homomorphism RK,G → RL,G is the augmentation H∗(G,K)→ K.

Proposition 8.4. The class Coh-uh(G) is stable under composition.

Proof. If A u−→ B
v−→ C is a sequence of G-equivariant ring homomorphisms, then (v ◦ u)′′′ = v′′′ ◦

(u′′′ ⊗BG CG). �
We will show that the class Coh-uh(G) contains all G-equivariant surjections and

localisations. First we study the effect of such homomorphisms on the rings of G-invariants,
that is, on the degree-zero part of RA,G.
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Proposition 8.5. Let A be a commutative ring with an action of G and let B = A/I for
a G-stable ideal I of A. Then the natural ring homomorphism AG/IG → BG is a universal
homeomorphism.

Proof. Since A is integral over AG by [Bou75, Chapter V, § 1.9, Proposition 22], the injective
ring homomorphism AG/IG → B is integral, so AG/IG → BG is integral and injective as well,
and the induced morphism

f : Spec(BG)→ Spec(AG/IG)

is integral and surjective by [Sta20, Lemma 00GQ]. We have

Spec(AG) = Spec(A)/G and Spec(BG) = Spec(B)/G

as topological spaces; see Lemma 6.2. Since Spec(B)→ Spec(A) is injective it follows that
Spec(BG)→ Spec(AG) is injective, hence f is injective and thus bijective. Since f is integral
and bijective, by [GD67, 18.12.11] it remains to show that the residue field extensions induced
by f are purely inseparable.

For given q̃ ∈ Spec(BG) with image q ∈ Spec(AG) the homomorphism A→ B induces an
isomorphism A(q)→ B(q̃) by Lemma 5.19. The sequence of G-equivariant ring homomorphisms

A→ B → B(q̃) ∼= A(q)

gives ring homomorphisms AG → BG → B(q̃)G ∼= A(q)G, which induces field extensions k(q)→
k(q̃)→ B(q̃)G ∼= A(q)G by Lemma 5.13 applied to B, and the total extension k(q)→ A(q)G is
purely inseparable by Lemma 5.13 applied to A. Hence, k(q)→ k(q̃) is purely inseparable as
well. �

Lemma 8.6. Let A→ B be a G-equivariant homomorphism of rings such that B is a localisation
of A, and let S ⊆ A be the set of elements which become invertible in B. Then BG = (SG)−1AG

and B = A⊗AG BG.

Proof. If s ∈ S then
∏
g∈G g(s) ∈ SG. Hence, B = S−1A = A⊗AG (SG)−1AG. Since localisation

is exact it follows that BG = (SG)−1AG. �

8.2 Calculation by resolutions
We will use the following description of the graded ring RA,G = H∗(G,A). Let P → A be a
resolution of A by a complex P of finite projective AG-modules; for example, one can take a
resolution P ′ → Z by finite projective ZG-modules and set P = A⊗Z P

′. Let

E = EndAG(P ) (8.7)

as a differential graded algebra. Then

RA,G = H∗(E) (8.8)

as a graded ring. Moreover, let

N = HomAG(P,A) (8.9)

as a right differential graded (dg) E-module. The homomorphism P → A induces a quasi-
isomorphism of right dg E-modules E → N and thus

RA,G = H∗(N) (8.10)

as a graded right RA,G-module, in particular as a graded abelian group.
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Lemma 8.11. For a flat ring homomorphism AG → B0 let B = A⊗AG B0, where G acts on the
first factor. Then BG = B0, and the homomorphism of graded rings RA,G ⊗AG BG → RB,G is an
isomorphism. In particular, the homomorphism A→ B lies in the class Coh-uh(G).

Proof. Flatness implies that BG = B0. For N = HomAG(P,A) as in (8.9) there is an isomorphism

N ⊗AG BG ∼= HomBG(P ⊗A B,B) (8.12)

because P consists of finite projective AG-modules. Since AG → BG is flat, the cohomology of the
left-hand side of (8.12) is RA,G ⊗AG BG. Since P ⊗A B → B is a resolution by finite projective
BG-modules, the cohomology of the right-hand side of (8.12) is RB,G. �

Proposition 8.13. The class Coh-uh(G) of Definition 8.2 contains allG-equivariant localisation
homomorphisms.

Proof. By Lemma 8.6 we have B = A⊗AG B0 where B0 is a localisation of AG, so the assertion
follows from Lemma 8.11. �

Proposition 8.14. Let Ā = A/I for a G-stable nilpotent ideal I. Then the natural ring
homomorphism

πeven : (RA,G)even → (RĀ,G)even

is a universal homeomorphism, and the projection u : A→ Ā lies in the class Coh-uh(G) of
Definition 8.2.

Proof. For a prime p let pr be the maximal p-power dividing |G| and let mp = |G|/pr. Then
Spec(Z) is covered by the open sets Spec(Z[1/mp]) for varying p, and we can replace A by
A[1/mp] for a fixed prime p, using Lemma 8.11. Then prH i(G,M) = 0 for any AG-module M
and i > 0.

To prove that πeven is a universal homeomorphism, by an induction using the sequence of
G-equivariant ring homomorphisms A→ A/I2 → A/I we can assume that I has square zero.
Then the exact sequence of AG-modules

0→ I → A→ Ā→ 0

induces a long exact sequence in group cohomology

H∗(G, I)
j−→ RA,G

π−→ RĀ,G
δ−→ H∗(G, I). (8.15)

Here π is a homomorphism of graded rings that restricts to the homomorphism πeven of the
proposition, H∗(G, I) is a graded left and right RĀ,G-module since I is an Ā-module, and j is
RA,G-linear. Moreover, δ is a graded derivation by Lemma 8.17 below. If a ∈ RĀ,G is homogeneous
of even degree, we obtain

δ(ap
r
) =

pr∑

i=1

ai−1δ(a)ap
r−i = prδ(a)ap

r−1 = 0, (8.16)

hence ap
r

lies in the image of π; moreover, pra lies in the image of π since prδ(a) = 0. The image
j has square zero since this holds for I. It follows that πeven is a universal homeomorphism by
[Sta20, Lemma 0BRA].

To prove that u lies in Coh-uh(G) we can drop the assumption that I has square zero. The
degree-zero component of πeven factors into the homomorphisms AG → AG/IG → ĀG, which are
both universal homeomorphisms by Proposition 8.5 and since IG is nilpotent. Now πeven is the
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composition

(RA,G)even → (RA,G)even ⊗AG ĀG
u′′′−−→ (RĀ,G)even

where the first arrow is a universal homeomorphism since this holds for AG → ĀG, and u′′′ is the
homomorphism associated to u : A→ Ā as in (8.1). Hence, u′′′ is a universal homeomorphism
since this holds for πeven. �
Lemma 8.17. The homomorphism δ of (8.15) is a graded derivation, that is, δ(ab) = δ(a)b+
(−1)|a|aδ(b) for homogeneous elements a, b ∈ RĀ,G.

This is a variant of the well-known fact that the Bockstein homomorphism is a graded
derivation; see, for example, [Hat02, Example 3E.1]. We include a proof for completeness.

Proof. We use that RA,G = H∗(E) with E = EndAG(P ) as in (8.7). Let P̄ = P/IP . Then P̄ →
Ā is a resolution of Ā by finite projective ĀG-modules, and IP → I is a resolution of I by
ĀG-modules. Let Ē = EndĀG(P̄ ) and J = HomAG(P, IP ) = HomĀG(P̄ , IP ). The obvious exact
sequence 0→ IP → P → P̄ → 0 induces an exact sequence

0→ J → E
π̃−→ Ē → 0 (8.18)

where π̃ is a homomorphism of dg algebras, so J is a two-sided dg ideal of E, and J becomes
a dg Ē-bimodule since J has square zero. The cohomology sequence of (8.18) can be identified
with (8.15). For a ∈ RĀ,G let ã ∈ E be an inverse image under π̃ of a representative of a in Ē.
Then δ(a) = [d(ã)] where [ ] is the cohomology class of a cycle in J , and the lemma follows from
the relation d(ãb̃) = d(ã)b̃+ (−1)|a|ãd(b̃). �

We recall that the pair (G,A) is called noetherian if the ring AG is noetherian and if A is
finite over AG; see Definition 3.12.

Proposition 8.19. Let Ā = A/tA where t ∈ AG is an A-regular element and assume that (G,A)
is noetherian. Then the natural ring homomorphism

π̄even : (RA,G/tRA,G)even → (RĀ,G)even

is a universal homeomorphism, and the projection u : A→ Ā lies in the class Coh-uh(G) of
Definition 8.2.

Proof. We begin with two initial remarks.
First, we can replace t by a positive power tm using Proposition 8.14 for A/tm → A/t; note

that the projection (RA,G/tm)even → (RA,G/t)even is a universal homeomorphism, and Coh-uh(G)
is stable under composition by Proposition 8.4. The value of m will be determined later.

Second, as in the proof of Proposition 8.14, after replacing A by a localisation we can assume
that for a fixed prime p we have prH i(G,M) = 0 for any AG-module M and i > 0.

The exact sequence of AG-modules,

0→ A
t−→ A→ Ā→ 0,

induces a long exact sequence in group cohomology,

RA,G
t−→ RA,G

π−→ RĀ,G
δ−→ RA,G

t−→ RA,G, (8.20)

and thus an injective homomorphism of graded rings,

π̄ : RA,G/tRA,G → RĀ,G,

that restricts to the homomorphism π̄even of the proposition. By Lemma 8.21 below, after replac-
ing t by tm for some positive m, for each homogeneous element a ∈ RĀ,G of even degree, ap

r
lies
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in the image of π. Moreover, pra lies in the image of π since prδ(a) = 0. It follows that π̄even is
a universal homeomorphism by [Sta20, Lemma 0BRA].

The degree-zero component of π̄even is given by AG/tAG → ĀG, which is a universal homeo-
morphism by Proposition 8.5; note that tAG = (tA)G since t is A-regular. Now π̄even is the
composition

(RA,G)even ⊗AG AG/tAG → (RA,G)even ⊗AG ĀG
u′′′−−→ (RĀ,G)even

where the first arrow is a universal homeomorphism since this holds for AG/tAG → ĀG, and u′′′ is
the homomorphism associated to u : A→ Ā as in (8.1). Hence, u′′′ is a universal homeomorphism
since this holds for π̄even. �
Lemma 8.21. In the situation of Proposition 8.19, after replacing t by tm for some fixed positive
integer m, for every homogeneous element a ∈ RĀ,G of even degree we have δ(ap

r
) = 0 in RA,G.

Proof. This is similar to the calculation in (8.16), but with some complications since we do not
have a direct analogue of Lemma 8.17. Since the ring RA,G is noetherian by Proposition 3.15,
the ideals Ji = Ker(ti : RA,G → RA,G) stabilise for large i. After replacing t by tm for some
m ≥ 1 we can assume that J1 = J2. We use again that RA,G = H∗(E) with E = EndAG(P ) as
in (8.8). Let P̄ = P/tP . Then P̄ → Ā is a resolution of Ā by finite projective ĀG-modules. Let
Ē = EndĀG(P̄ ). There is an exact sequence

0→ E
t−→ E

π̃−→ Ē → 0,

whose cohomology sequence can be identified with (8.20). If ã ∈ E is an inverse image of a
representative of a in Ē, then δ(a) = [d(ã)/t] where [ ] denotes the class of a cycle in E. Since RĀ,G
is a graded-commutative ring, for homogeneous elements x, y, z ∈ E with d(x), d(y), d(z) ∈ tE
we have

xyz − (−1)|x|·|y|yxz ∈ d(E) + tE. (8.22)

Modulo d(E) + tE we obtain

d(ãp
r
)

t
=

pr∑

i=1

ãi−1d(ã)
t
ãp

r−i ≡ pr d(ã)
t
ãp

r−1 ≡ 0,

so δ(ap
r
) = [d(x) + ty] = [ty] for certain x, y ∈ E. Necessarily, d(x) + ty is a cycle, so 0 = d(ty) =

td(y). Hence, d(y) = 0 since t is E-regular, and thus δ(ap
r
) = tc with c = [y] ∈ RA,G. We have

t2c = tδ(ap
r
) = 0 since t ◦ δ = 0 in (8.20). Since J1 = J2 it follows that δ(ap

r
) = tc = 0. �

The following combination of Propositions 8.14 and 8.19 will be used for a noetherian
induction.

Proposition 8.23. Assume that the pair (G,A) is noetherian and the ring AG is local with
maximal ideal q. If the homomorphism ψq : A→ A(q) of (5.11) is not an isomorphism, then there
is a non-zero G-invariant ideal I of A with I ⊆ Ker(ψq) such that the projection A→ A/I lies
in the class Coh-uh(G) of Definition 8.2.

Proof. If A is not reduced, let I ⊆ A be a non-zero G-stable nilpotent ideal, for example the
nil-radical of A. Then I ⊆ Ker(ψq) since A(q) is reduced, and the projection A→ A/I lies in
Coh-uh(G) by Proposition 8.14. So we can assume that A is reduced.

By Lemma 5.18, the homomorphism ψq is surjective and induces a homeomorphism
Spec(A(q)) ∼= Max(A). If some maximal ideal of A is also a minimal prime ideal, this holds
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for every maximal ideal of A because Max(A) is a single G-orbit in Spec(A), hence Spec(A) =
Max(A), and ψq induces a bijective map Spec(A(q))→ Spec(A). Since A is reduced and ψq sur-
jective, this implies that ψq is bijective, which was excluded. Hence, every minimal prime ideal
p of A is non-maximal and therefore satisfies p ∩AG �= q.

By prime avoidance in AG we find an element t ∈ AG with t ∈ q such that t is not con-
tained in any minimal prime ideal of A; the minimal prime ideals of A form a finite set
since A is noetherian. Since A is reduced, t is A-regular, so A→ A/tA lies in Coh-uh(G) by
Proposition 8.19. �

Proposition 8.24. If the pair (G,A) is noetherian, for each q ∈ Spec(AG) the homomorphism
ψq : A→ A(q) of (5.11) lies in the class Coh-uh(G) of Definition 8.2.

Proof. Using the factorisation A→ Aq→ A(q) of ψq of Lemma 5.20, Propositions 8.4 and 8.13
allow us to replace A by Aq. Then AG is local with maximal ideal q. The case A = A(q) is clear,
so let ψq not be an isomorphism. Proposition 8.23 gives a factorisation of ψq into G-equivariant
homomorphisms

A
π−→ A′ = A/I

ϕ−→ A(q) (8.25)

where I is non-zero and π lies in Coh-uh(G).
Here A′G is local with maximal ideal q′ lying over q because the natural map Spec(A′G)→

Spec(AG/IG) is a homeomorphism by Proposition 8.5. The resulting homomorphism A(q)→
A′(q′) is an isomorphism by Lemma 5.19, so ϕ can be identified with the homomorphism (5.11)
for A′ and q′ in place of A and q. One verifies that the pair (G,A′) is noetherian using the chain
AG → A′G ⊆ A′, where A′ is finite over AG and AG is noetherian.

Hence, the hypotheses of Proposition 8.23 are satisfied by A′ and q′ in place of A and q, and
we can apply Proposition 8.23 repeatedly as long as the new rings A′ differ from A(q). Since A
is noetherian, the process necessarily stops and we arrive at a finite chain of G-equivariant ring
homomorphisms A→ A′ → A′′ → · · · → A(n) = A(q) where all arrows lie in the class Coh-uh(G).
Then ψq lies in Coh-uh(G) by Proposition 8.4. �

Theorem 8.26. The class Coh-uh(G) of Definition 8.2 contains all G-equivariant ring homo-
morphisms u : A→ B such that B is a localisation of a quotient of A.

Proof. The homomorphism u : A→ B factors into G-equivariant homomorphisms A w−→ A′ v−→ B
where w is surjective and v is an injective localisation. By Propositions 8.4 and 8.13 we can
assume that u is surjective.

Let us first assume that the pair (G,A) is noetherian in the sense of Definition 3.12. Then
RB,G is a finite module over the noetherian ring RA,G by Proposition 3.15. Moreover, RA,G is
a finite module over the noetherian ring (RA,G)even by Lemma 6.3. Hence, (RB,G)even is finite
over (RA,G)even. So the ring homomorphism u′′′ of (8.1) is finite, thus universally closed, and it
suffices to show that u′′′ is universally bijective. This holds if and only if for each q ∈ Spec(BG)
the base change of u′′′ under the natural ring homomorphism BG → k(q) is universally bijective,
which is verified as follows.

Let q′ ∈ Spec(AG) be the image of q and let C = B(q). Since A(q′) ∼= B(q) by Lemma 5.19,
in the sequence of G-equivariant homomorphisms A u−→ B → C the homomorphisms A→ C and
B → C lie in Coh-uh(G) by Proposition 8.24. By two-out-of-three for universal homeomorphisms
it follows that the base change of u′′′ under the ring homomorphism BG → CG is a univer-
sal homeomorphism; see the proof of Proposition 8.4. By Lemma 5.13, BG → CG factors as
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BG → k(q)→ CG, where k(q)→ CG is a purely inseparable field extension and hence a uni-
versal homeomorphism. It follows that the base change of u′′′ under BG → k(q) is a universal
homeomorphism as well. This finishes the proof if the pair (G,A) is noetherian.

The general case follows by a limit argument. We have A = lim−→i
Ai as a filtered direct limit

where Ai runs through all finitely generated G-invariant subrings of A, and B = lim−→i
Bi where

Bi is the image of Ai in B. Let ui : Ai → Bi be the restriction of u. There is the following
commutative diagram.

lim−→i
((RAi,G)even ⊗AG

i
BG
i )

lim−→u′′′i
��

��

lim−→i
(RBi,G)even

��

(RA,G)even ⊗AG BG
u′′′

�� (RB,G)even

Each pair (G,Ai) is noetherian by Corollary 3.14, so ui lies in Coh-uh(G) by the first part
of the proof, that is, u′′′i is a universal homeomorphism. It follows that lim−→u′′′i is a universal
homeomorphism since Spec transforms a filtered colimit of rings into a limit of topological
spaces; see [GW20, Proposition 10.53]. The vertical arrows of the diagram are isomorphisms
since the cohomology of a finite group preserves filtered colimits of the coefficients. Hence, u′′′ is
a universal homeomorphism as desired. �

Corollary 8.27. Let u : A→ B be a G-equivariant ring homomorphism where B is a local-
isation of a quotient of A. Then there is the following cartesian diagram of topological spaces
with immersions as vertical arrows.

Spech(RB,G)

fR

��

πR

�� Spec(BG)

f0

��

Spech(RA,G)
πR

�� Spec(AG)

(8.28)

Proof. The diagram is the right-hand square of (5.9) in the case H = G and f = u. The homo-
morphism u factors into a G-equivariant surjection and a G-equivariant localisation, and it
suffices to treat these cases separately.

If B is a G-equivariant localisation of A, then B = S−1A for a multiplicative set S ⊆ AG by
Lemma 8.6, so we have RB,G = S−1RA,G by Lemma 8.11, and all assertions follow. If B = A/I
for a G-invariant ideal I, then AG/IG → BG is a universal homeomorphism by Proposition 8.5.
Hence, in the chain of homomorphisms

RA,G ⊗AG AG/IG → RA,G ⊗AG BG → RB,G

the first arrow is a universal homeomorphism, while the second arrow is a universal homeo-
morphism by Theorem 8.26. Therefore, using Lemma 6.1, the upper line of (8.28) can be
replaced by

Spech(RA,G/IGRA,G)→ Spec(AG/IG),

and again all assertions follow. �
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Corollary 8.29. For an arbitrary pair (G,A) and q ∈ Spec(AG) the map

ψRq,res : Spech(RA(q),G)→ Spech(RA,G)q

in the fibre diagram (5.15) is a homeomorphism.

Proof. This follows from Corollary 8.27 with B = A(q) because the continuous map
Spec(A(q)G)→ Spec(AG) can be identified with the inclusion {q} → Spec(AG) by
Lemma 5.13. �

Remark 8.30. If the pair (G,A) is noetherian, to deduce Corollary 8.29 it is sufficient to use
Proposition 8.24 instead of Theorem 8.26.

9. Tensor nilpotence

Let F : K → L be a tensor triangulated functor between essentially small tensor triangulated
categories. Following [Bal18], we say that F detects tensor nilpotence of morphisms if every
morphism f : X → Y in K with F (f) = 0 satisfies f⊗n = 0 for some n ≥ 1.

If F detects tensor nilpotence of morphisms and K is rigid, then the map Spc(F ) : Spc(L)→
Spc(K) is surjective by [Bal18, Theorem 1.3].

Proposition 9.1. Let G be a finite group and let f : A→ A′ be a G-equivariant homomorphism
of commutative rings. The resulting functor

f∗ : TA,G → TA′,G

detects tensor nilpotence of morphisms in the following cases:

(1) A′ = A/N for a G-invariant nilpotent ideal N ;
(2) A′ = Ab ×A/b for an A-regular element b ∈ AG.

Proof. We use the equivalence TA,G ∼= Db(AG)A-proj given by Proposition 4.4 together with
Lemma 3.3. Let f : X → Y be a morphism in Db(AG)A-proj such that f ′ : X ′ → Y ′ is zero in
Db(A′G), where X ′ = X ⊗A A′ etc. We have to show that f⊗n = 0 for some n ≥ 1.

We choose a quasi-isomorphism u : P → X where P is a bounded-above complex of finite
projective AG-modules; see Lemma 3.2. Then f is represented by a homomorphism of complexes
g : P → Y which is unique up to homotopy, namely g = fu in D(AG). The base change g′ : P ′ →
Y ′ is homotopic to zero because g′ = f ′u′ in D(A′G) where f ′ = 0.

In case (1) we write g′ = dh′ + h′d for a homomorphism of graded A′G-modules h′ : P ′ →
Y ′[−1]. Since P consists of projective AG-modules, h′ lifts to a homomorphism of graded
AG-modules h : P → Y [−1]. We can replace g by g − (dh+ hd) and thus assume that g′ is zero,
which means that g factors as P → NY → Y . Then g⊗r factors as P⊗r → (NY )⊗r → N rY ⊗r →
Y ⊗r. If N r = 0 it follows that g⊗r = 0 as a homomorphism of complexes and thus f⊗r = 0 in
D(AG). This refines (1) because the exponent r is explicit (the nilpotence order of N).

In case (2) letXb = X ⊗A Ab etc. Since the components of P are finite projective AG-modules
we have

HomD(AbG)(Xb, Yb) = HomK(AbG)(Pb, Yb)

= HomK(AG)(P, Y )b = HomD(AG)(X,Y )b.

The assumption f ′ = 0 in D(AG) implies that fb : Xb → Yb is zero in D(AbG), and hence brf = 0
in D(AG) for some r ≥ 1. The obvious exact triangle X br−→ X

π−→ X/br →+ in D(AG) then shows
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that f factors as

X
π−→ X/br

f̃−→ Y.

Now there is the following commutative diagram in D(AG) where (X/br)⊗m denotes the iterated
tensor product over A/br, and similarly for Y , and where fr : X/br → Y/br is the reduction of f .

X⊗r ⊗A X
f⊗r⊗id

��

id⊗π
��

Y ⊗r ⊗A X
id⊗f

��

id⊗π
��

Y ⊗r ⊗A Y

X⊗r ⊗A X/br
f⊗r⊗id

��

�
��

Y ⊗r ⊗A X/br
id⊗f̃

���������������

�
��

(X/br)⊗r ⊗A/br X/br
f⊗r

r ⊗id
�� (Y/br)⊗r ⊗A/br X/br

Indeed, the upper square and triangle are evident, and the lower square follows from the cor-
responding square in K(AG) with P in place of X and g in place of f . The assumption f ′ = 0
implies that f1 : X/b→ Y/b is zero in D((A/b)G). By the refined version of (1) applied to the
G-equivariant homomorphism A/br → A/b it follows that f⊗rr is zero in D((A/br)G) and hence
in D(AG). It follows that f⊗(r+1) = 0 in D(AG). �

10. Change of coefficients for Spc

As in § 8, we fix a finite group G. For a G-equivariant ring homomorphism f : A→ B we consider
the outer square of the extended functoriality diagram (5.9) for G = H,

Spc(TB,G)

fT

��

ρ̄B,G
�� Spec(BG)

f0

��

Spc(TA,G)
ρ̄A,G

�� Spec(AG)

(10.1)

and the corresponding fibre product of topological spaces,

(f0)∗ Spc(TA,G) = Spc(TA,G)×Spec(AG) Spec(BG).

Diagram (10.1) induces a continuous map,

fTres : Spc(TB,G)→ (f0)∗ Spc(TA,G), (10.2)

which we call the base change map associated to f .

Definition 10.3. We denote by Spc-surj(G) the class of all G-equivariant homomorphisms of
commutative rings f : A→ B such that the base change map fTres is surjective.

One should compare this with Definition 8.2.

Remark 10.4. For the homomorphism f = ψq : A→ A(q) of (5.11) the base change map fTres
can be identified with the map ψT

q,res in the fibre diagram (5.15) because the natural map
Spec(A(q)G)→ Spec(AG) can be identified with the inclusion {q} → Spec(AG) by Lemma 5.13.

Proposition 10.5. The class Spc-surj(G) is stable under composition.
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Proof. If A
f−→ B

g−→ C is a sequence of G-equivariant ring homomorphisms, then (g ◦ f)Tres
factors as

Spc(TC,G)
gTres−−−→ (g0)∗ Spc(TB,G)

(g0)∗fTres−−−−−−→ (g0)∗(f0)∗ Spc(TA,G). �

Proposition 10.6. The class Spc-surj(G) contains all G-equivariant localisation
homomorphisms.

Proof. Let f : A→ B be a G-equivariant localisation, so B = S−1A for a multiplicative set
S ⊆ AG by Lemma 8.6. By [Bal10, Corollary 3.10], the Verdier localisation of TA,G at the thick
tensor ideal generated by cone(s) for s ∈ S is a tensor triangulated category S−1TA,G with
End(1) = S−1AG = BG. Since the functor f∗ : TA,G → TB,G maps S to isomorphisms, it factors
into tensor triangulated functors

TA,G
j−→ S−1TA,G

ϕ−→ TB,G,
and accordingly the transpose of diagram (10.1) factors as follows.

Spc(TB,G)
Spc(ϕ)

��

ρ̄B,G

��

Spec(S−1TA,G)
Spc(j)

��

ρ̄

��

Spc(TA,G)

ρ̄A,G

��

Spec(BG)
∼

�� Spec(S−1AG) �� Spec(AG)

(10.7)

Here the right-hand square is cartesian by [Bal10, Theorem 5.4]. The functor ϕ is fully faithful
because homomorphisms in Db(AG)A-proj are homomorphisms in K−(AG-proj) by Lemma 3.2,
and these commute with localisation at S by finiteness. Hence, Spc(ϕ) is surjective by [Bal18,
Cor. 1.8]. Together it follows that fTres is surjective. �
Proposition 10.8. The class Spc-surj(G) contains all surjective G-equivariant homomorphisms
f : A→ B with nilpotent kernel.

Proof. Let N be the kernel of A→ B. The map f0 in (10.1) factors into Spec(BG)→
Spec(AG/NG)→ Spec(AG), where both maps are homeomorphisms by Proposition 8.5 and
because NG is a nilpotent ideal. So f0 is a homeomorphism. The functor f∗ : TA,G → TB,G
detects tensor nilpotence by Proposition 9.1(1), so the map fT = Spc(f∗) is surjective by [Bal18,
Theorem 1.1]. This map factors as

Spc(TB,G)
fTres−−−→ (f0)∗ Spc(TA,G) π−→ Spc(TA,G) (10.9)

where π is a base change of f0 and thus bijective. Hence fTres is surjective. �
Proposition 10.10. For each A-regular element b ∈ AG, the projection homomorphism g : A→
A/b lies in the class Spc-surj(G).

Proof. Let B = Ab ×A/b. We consider the diagram (10.1) for the natural G-equivariant homo-
morphism f : A→ B. Since TB,G ∼= TAb,G × TA/b,G as tensor triangulated categories and BG =
(Ab)G × (A/b)G as rings, there are compatible disjoint decompositions into open and closed
subspaces

Spc(TB,G) ∼= Spc(TAb,G) � Spc(TA/b,G), (10.11)

Spec(BG) ∼= Spec((Ab)G) � Spec((A/b)G), (10.12)
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using Lemma 2.11 for (10.11). There is a similar disjoint decomposition into an open and a closed
subspace

Spec(AG) ∼= Spec((AG)b) � Spec(AG/b). (10.13)

Here (AG)b = (Ab)G and AG/b = AG/(bA)G since b is A-regular. Hence, the decompositions
(10.12) and (10.13) together with Proposition 8.5 applied to A→ A/b show that the map f0 :
Spec(BG)→ Spec(AG) is bijective.

Now the situation is similar to Proposition 10.8. The functor f∗ : TA,G → TB,G detects tensor
nilpotence of morphisms by Proposition 9.1(2), so the map fT = Spc(f∗) is surjective by [Bal18,
Theorem 1.1]. Again this map factors as (10.9) where π is bijective since f0 is bijective, so fTres
is surjective. The decompositions (10.11) and (10.12) yield that

gTres : Spc(TA/b,G)→ (g0)∗ Spc(TA,G)

is a retract of fTres, so gTres is surjective as well. �
Proposition 10.14. Assume that the ring A is noetherian and the ring AG is local with max-
imal ideal q. If the homomorphism ψq : A→ A(q) of (5.11) is not an isomorphism, then there is
a non-zero G-invariant ideal I of A with I ⊆ Ker(ψq) such that the projection A→ A/I lies in
the class Spc-surj(G) of Definition 10.3.

Proof. This is parallel to Proposition 8.23, using Propositions 10.8 and 10.10 instead of
Propositions 8.14 and 8.19. �
Proposition 10.15. If the ring A is noetherian, then for each q ∈ Spec(AG) the homomorphism
ψq : A→ A(q) of (5.11) lies in the class Spc-surj(G); in other words, the map ψT

q,res in the fibre
diagram (5.15) is surjective.

Proof. This is parallel to Proposition 8.24, using Propositions 10.5, 10.6, and 10.14 instead of
Propositions 8.4, 8.13, and 8.23. See Remark 10.4 for the assertion ‘in other words’. �

11. The comparison map: conclusion

Theorem 11.1. For every pair (G,A) the map

ρA,G : Spc(TA,G)→ Spech(RA,G)

of (5.1) is a homeomorphism.

Proof. We recall that TA,G is equivalent toDb(AG)A-perf by Proposition 4.4. Since A is the filtered
colimit of its finitely generated G-invariant subrings, by Lemmas 3.11 and 2.12 we can assume
that A is of finite type; in particular, the pair (G,A) is noetherian in the sense of Definition 3.12
by Corollary 3.14. Then the rigid tensor category TA,G is End-finite by Proposition 3.15, so by
Corollary 2.8 the map ρA,G is a homeomorphism if and only if it is bijective. By Lemma 5.7 this
holds if and only if for each q ∈ Spec(AG) the map (ρA,G)q of (5.6) is bijective. This map is the
lower arrow in the fibre diagram (5.15), in which the upper arrow ρA(q),G is a homeomorphism
by Lemma 5.16 and Theorem 7.1, the right arrow ψRq,res is a homeomorphism by Corollary 8.29,
and the left arrow ψT

q,res is surjective by Proposition 10.15. It follows that (ρA,G)q is bijective as
required. �
Remark 11.2. In the first version of this paper, Theorem 11.1 was proved only when the ring A
is regular by a similar route, including also results on the functoriality of cohomological support.
In view of Proposition 2.10 these results are now obsolete.
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12. A stable variant

Let us record a variant of Theorem 11.1 with Proj in place of Spech, which is a rather formal
consequence. This was first observed in [Bar21, § 3.4] when A is regular with trivial action of G.
We begin with an elementary remark.

Remark 12.1. The restriction of scalars res : AG-Mod→ A-Mod has a left adjoint ind :
A-Mod→ AG-Mod defined by ind(M) = AG⊗AM , using the right A-module structure of AG
for the tensor product. Let P0 = AG as a left AG-module. For an AG-module Q there is a natural
isomorphism

ind resQ ∼= P0 ⊗A Q (12.2)

where the tensor product is formed as in (3.1), that is, G acts diagonally. Indeed, the A-linear
map resQ→ P0 ⊗A Q, x �→ 1⊗ x gives by adjunction an AG-linear map ind resQ→ P0 ⊗A Q,
which is an isomorphism.

Lemma 12.3. The category Perf(AG) of perfect complexes of AG-modules is a thick tensor ideal
in Db(AG)A-perf .

Proof. Clearly Perf(AG) is a thick subcategory of Db(AG). By Lemma 3.3 it suffices to show
that for a finite AG-modules P , Q where P is projective and Q is A-projective, P ⊗A Q is
AG-projective. We can assume that P = AG. Then P ⊗A Q ∼= ind resQ by (12.2), which is
AG-projective. �

Using Proposition 4.4, we identify TA,G and Db(AG)A-perf . Then Perf(AG) is a tensor ideal
in TA,G by Lemma 12.3, so the Verdier quotient

SA,G = TA,G/Perf(AG)

is a tensor triangulated category.

Corollary 12.4. For every pair (G,A) the homeomorphism ρA,G of Theorem 11.1 restricts to
a homeomorphism

ρ̄A,G : Spc(SA,G) ∼= Proj(RA,G).

Proof. Compare [Bar21, Corollary 3.32]. The ring homomorphism q : RA,G → AG defined by pro-
jection to degree zero gives a closed immersion of topological spaces Spec(AG)→ Spech(RA,G),
whose complement is Proj(RA,G); moreover, the natural functor TA,G → SA,G induces a
homeomorphism

Spc(SA,G) ∼= {P ∈ Spc(TA,G) | Perf(AG) ⊆ P}

by [Bal05, Proposition 3.11]. Hence, it suffices to show that ρA,G induces by restriction a bijective
map ρ̄A,G as indicated. But some P ∈ Spc(TA,G) satisfies Perf(AG) ⊆ P if and only if AG ∈ P if
and only if P �∈ supp(AG) if and only if ρ(P) �∈ V (AG) by Proposition 2.10. Now End∗(AG) =
AG in degree zero, which is an RA,G-module via q, and it follows that V (AG) = Spec(AG).
Hence, ρ(P) �∈ V (AG) if and only if ρ(P) ∈ Proj(RA,G). �
Remark 12.5. The Verdier quotient SA,G can be viewed as the stable category associated to the
Frobenius category lat(A,G) of A-projective finite AG-modules (here lat is short for lattice).
More precisely, lat(A,G) is an exact subcategory of the abelian category AG-Mod, and with
this exact structure lat(A,G) is a Frobenius category where the projective objects are the finite
projective AG-modules; note that exact sequences in lat(A,G) are automatically A-split, and
lat(A,G) has a duality involution defined by M∨ = HomA(M,A) with G-action by conjugation.
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The stable category lat(A,G) is a triangulated category by [Hap88, Theorem 2.6], and it is a
tensor triangulated category since the projective objects of lat(A,G) form a tensor ideal. By an
obvious extension of [Ric89, Theorem 2.1] there is a tensor triangulated equivalence

lat(A,G) ∼= SA,G. (12.6)

In more detail, the composition lat(A,G)→ Db(AG)A-perf → SA,G induces the functor (12.6),
and an inverse functor is given by stabilised syzygies as follows. The category Db(AG)A-perf

is equivalent to the homotopy category K = K−(AG-proj)A-perf of upper bounded complexes
of finite projective AG-modules which are A-perfect. Let T denote the suspension functor of
lat(AG). Each X ∈ K has bounded cohomology. If X has trivial cohomology in degree at most
n, then the AG-module Zn(X) = ker(d : Xn → Xn+1) is A-projective and the object T−nZn(X)
of lat(A,G) is independent of n. This construction gives a functor K → lat(A,G), which induces
an inverse of (12.6) as is easily verified. If G acts trivially on A, the equivalence (12.6) is also
proved in [Bar21, Proposition 3.26] using homotopy theoretic arguments.

Remark 12.7. If G acts trivially on A, a different stable category stmod(AG) is considered
in [BIK13]. The category of all AG-modules with the exact structure given by the A-split exact
sequences is a Frobenius category, the associated stable category is denoted by StMod(AG),
and stmod(AG) is the full subcategory of StMod(AG) whose objects are the finitely presented
AG-modules. There is an obvious functor SA,G ∼= lat(A,G)→ stmod(AG), but these categories
behave quite differently with respect to tensor ideals. For example, for A = Z and a prime p
dividing the order of G, by [BIK13, § 7] there is an infinite ascending sequence D1 � D2 � · · ·
of radical tensor ideals in stmod(AG), where Dn consists of all finite AG-modules isomorphic to
modules annihilated by pn. This sequence is not visible in lat(A,G) because the inverse image
of Dn in lat(A,G) is zero for all n.

Remark 12.8. We also note the following geometric description of SA,G. The natural morphism
h : SpecA→ [Spec(A)/G] gives a direct image functor h∗ : TA → TA,G, which corresponds to the
functor

Perf(A)→ Db(AG), Q �→ AG⊗A Q.

It follows that Perf(AG) coincides with 〈h∗TA〉, the thick subcategory of TA,G generated by the
image of h∗, and hence SA,G ∼= TA,G/〈h∗TA〉.
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