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Abstract 

We have used multiple regression analyses to develop a series of metabolisable energy (ME) 

prediction equations from chemical analyses of pig diets that can be extended to murine diets. 

We compiled four datasets from an extensive range of published metabolism studies with 

grower/finisher and adult pigs. The analytes in the datasets were increasingly complex, 

comprising: 1. the proximate or Weende analysis, 2. the previous analysis but with neutral 

detergent fibre (NDF) replacing crude fibre, 3. the NDF package plus starch, 4. the NDF 

package plus starch and sugars. Diet manufacturers routinely provide most of the analytes for 

batches of murine diet, or they are easily obtainable. The study uniquely compares the four 

analytical packages side-by-side. The number of records in the datasets varies from 367 to 

827. With increasing analytical complexity, adjusted R
2
 values for ME prediction improved 

from 0.751 to 0.869, and the mean absolute error from 0.422 to 0.289 kJ/g. Overall, the 

models’ prediction interval (PI) improved from 1 to 0.7 kJ/g, which is ± 7% to 5% for a 

typical dietary ME density of 14.8 kJ/g. Although prediction accuracy increases as one 

extends the range and complexity of the analytes measured, the improvement is slight and 

may not justify the substantial increase in analytical cost. The equations were validated for 

use on future data sets by k-fold analysis. Although the equations are developed from pig data, 

they are suitable for rat and mouse diets, based on comparable digestibility measurements, 

and substantially improve existing methods. 

 

Abbreviations 

CP - Crude Protein, EE - Ether Extract, AEE- Acid Hydrolysis Ether Extract, CF - Crude 

Fibre, NFE - Nitrogen-free Extractives, NDF - Neutral Detergent Fibre, NFC - Non-fibrous 

Carbohydrates, Res1 - Residue 1, Res2 - Residue 2, GE - Gross energy, DE - Digestible 

Energy, ME - Metabolisable Energy. The residues are the calculated difference between the 

total dry matter and measured nutrients.  
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Introduction 

Many murine research studies report digestible energy (DE) and/or metabolisable energy 

(ME) intake of natural-ingredient diets. These should preferably be determined in an in vivo 

study from food intake, faecal output, and, for ME intake, urine output, and each component's 

gross energy (GE) density 
(1)

. These measurements require specialist equipment and cages and 

appropriate expertise 
(2; 3; 4; 5; 6)

. Only a few laboratories that regularly perform energy 

metabolism studies meet these requirements. Consequently, investigators often estimate 

energy intake by one of two indirect methods.  

First, they may multiply the food intake by the diet’s energy density estimated from Atwater 

Factors applied to the composition of the diet 
(7)

. The values are 4 kcal/g protein and 

carbohydrate (carbohydrate includes fibre) and 9 kcal/g
 
fat; the equivalent SI values are about 

16.7 and 37.7 kJ/g, respectively. Atwater obtained the values (also called Physiological Fuel 

Values) from studies with humans fed typical diets. Subsequently, Merrill and Watt 
(8)

 slightly 

modified the values for different foods. Despite the widespread use of Atwater Factors, there 

are doubts about their accuracy, even for human foods 
(8; 9; 10)

. Furthermore, they assume a 

high nutrient digestibility, typical of refined human foods. Bielohuby and colleagues 
(11)

 have 

confirmed that Atwater Factors are inappropriate for lower digestible, natural-ingredient 

murine diets. Second, investigators may also use ME density estimates from diet 

manufacturers’ data sheets. However, with a few exceptions, these are based on Atwater 

Factors and have the same disadvantages.  

At about the same time as Atwater’s work on human foods, agriculturists were also 

developing a means of predicting the energy content of natural-ingredient animal feed and 

diets that allowed for differences in digestibility. Foremost in these methods was estimating 

ME density from total digestible nutrients (TDN), in which Atwater Factors were fitted to the 

digestible nutrients 
(12; 13)

. However, since the 1960s, direct measurement of DE and ME has 

become the standard method of energy evaluation in the United States and most of Europe 
(14)

.  

This change in energy evaluation methodology and the widespread availability of computers 

in the 1960s led to the development of energy predictions from multiple regression analysis, 

with dietary nutrients as covariates. Initially, the covariates were digestible proximate or 

Weende nutrients, usually to comply with regulatory requirements 
(15)

. The Rostock group was 

at the forefront of developing such predictions in the 1960s. Their data has been summarised 

in a compendium by Schiemann 
(16)

 and two recent reviews 
(17; 18)

. Their work formed the 
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basis of the currently recommended means of predicting the ME density of pig diets in 

Germany from digestible 
(19)

 and crude nutrients 
(20)

. 

Routine measurement of digestible nutrients is impracticable and arguably more difficult than 

directly determining ME density. Consequently, chemical analysis of crude nutrients began to 

replace digestible nutrients in prediction equations 
(21)

. The crude nutrients ranged in 

complexity from those in the simple proximate or Weende analysis (crude protein, ether 

extract, crude fibre, ash, and NFE) to those based on more complex fibre types (NDF, ADF) 

and soluble carbohydrates (starch, sugars) 
(15; 22; 23; 24; 25)

. While each laboratory provides one 

or more valid equations, they reflect the laboratory’s specific conditions, such as the age and 

weight of animals, the techniques used, and environmental conditions. Applying predictions 

more widely from an individual laboratory underestimates the likely prediction errors 
(24)

. 

Unfortunately, investigators often fail to consider the size of prediction errors when drawing 

conclusions from studies in which one or more variables, such as energy intake, are estimated 

rather than measured.  

Our study aimed to improve ME density estimates of murine diets. We had hoped to base 

these estimates on data obtained in rats and mice, but this proved impractical. Consequently, 

the emphasis switched to the suitability of data from pig studies for murine prediction 

equations. Several studies suggested this might be practicable 
(26; 27; 28)

. 

Our first step was to confirm the similarity of digestibility of nutrients in the pig, rats, and 

mice that would justify using predictions of DE and ME density of natural-ingredient diets 

from pig studies for murine models. Second, if so, we intended to create prediction equations 

for energy density in pigs from many published studies using grower/finisher and adult pigs. 

The predictors were to be those commonly reported in four typical analytical packages for 

diets. The number of data records is greater than in previous studies. All the data are 

measured, not calculated, from various geographical areas and research groups. Two other 

recent publications have taken a similar approach by obtaining data from a wide range of 

sources 
(29; 30)

, though there were no equivalent prediction equations for dietary ME density. A 

critical function of our study was to estimate how well our equations fitted the existing data 

and their accuracy in predicting dietary ME density from future analytical data.  

Materials and Methods 

The study comprised two phases, each requiring distinct sets of data. These phases are listed 

below, along with a description of the data used and statistical analyses applied to the data. 

Typically, we used R Statistical Software v 4.2.3 
(31)

 and its various packages. We installed the 
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packages and loaded their library of procedures into RStudio (http://www.rstudio.com/). We 

provide the list of packages in the Supplementary Material. We occasionally supplemented 

these methods with statistical software packages described in the text. Although R is open 

source software, we recognise that some readers prefer ‘plug and play’ software to using such 

code. We identify comparable software in the Supplementary Material. Some of our methods 

are not readily available, and we have provided the code we used in those cases. 

Phase 1. Evidence that energy digestibility in pigs and rats is similar. 

Energy digestibility is the major contributor to metabolisable energy (ME) density. To justify 

using pigs as a model for murine ME density, we must first demonstrate good agreement 

between the DE or ME density of diets fed to murine and pig models. We obtained 12 papers 

containing measurements of energy digestibility in diets or ingredients fed to both pigs and 

rats. These papers contributed 204 data pairs (we excluded two pairs, based on feeding palm 

kernel products, as substantial outliers). The references are given in the Supplementary 

Material. We used the Bland-Altman Plot to assess the agreement in energy digestibility 

between pigs and rats 
(32; 33; 34)

. 

 

Phase 2. The development of predictive estimates of dietary ME density based on dietary 

chemical analysis. 

a. Data sources and selection 

We used PubMed, Google Scholar, and apt journals to obtain papers that included 

measurements of ME density and relevant chemical analyses. The list of papers used is 

provided in the Supplementary Material. For consistency, we refer to each entry containing 

the analytical observations in a diet or ingredient as a record and the collection of records as a 

database. We describe any subgroup of the database as a dataset. The first division of the 

database is into four datasets representing different chemical analysis groups. For simplicity, 

we refer to the groups in the text as the CF, NDF, NDFS, and NDFSS datasets. These four 

datasets include measurements of dry matter, crude protein, ether extract, ash and one of 

crude fibre, neutral detergent fibre, neutral detergent fibre plus starch, or neutral detergent 

fibre plus starch and sugars. Table 1 shows the nutrient components of the four groups. Each 

of the four groups includes a residue value, the difference between the total dry matter and the 

sum of the measured analytes. The residues were nitrogen-free extractives, non-fibrous 

carbohydrates, and Residues 1 and 2. The number of papers used in each dataset was: CF, 55; 

NDF, 80; NDFS, 31; and NDFSS, 8. Several papers contained all these carbohydrate 
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measurements. The data were standardised to a 100% dry matter basis and expressed as g/100 

g for chemical analytes and kJ/g for energy density. 

With a few exceptions, we excluded ingredients from our source data. Although several 

investigators have argued that chemical analysis and energy density measurements of 

ingredients can contribute to dietary energy density predictions (additivity) 
(21; 23; 35; 36; 37; 38; 39)

, 

it is not a universal view. Additivity may be invalid in several circumstances. First, when 

ingredients have a nutritional profile very different from the mixed diet 
(40)

 or when mutual 

supplementation of proteins or amino acids supplementation affects urinary energy excretion 

and metabolisability 
(41; 42)

. Finally, the methods used to determine the energy density of 

ingredients may commonly contain errors 
(43; 44; 45)

. We had sufficient records from diets to 

generally avoid the need to include ingredient data. The exceptions were those where the 

ingredient contributed to almost the entire diet, only supplemented with minerals and 

vitamins. 

Murine diets.  

We found 34 records in six papers that reported measured dietary ME density and appropriate 

chemical analysis obtained with rats or mice, though for the CF model only. The number of 

records is too few to provide reliable regression equations: a minimum of 10-20 records is 

required per independent variable 
(46)

 and possibly more 
(47)

. Consequently, we limited our 

data to those from pig studies. 

Pig diets 

We only included data from pigs in the grower/finisher (25 to 125 kg) and adult phases 

(usually sows weighing over 200 kg). For most analyses, we combined the data from the two 

groups. Occasionally, authors duplicated records in more than one paper, and we excluded 

them to prevent any bias or data weighting. We also eliminated outliers using the methods 

described in statistics. Regrettably, we excluded many potentially valuable papers because 

they lacked some analytical component(s), often ether extract or ash. Sometimes, we could 

retain such papers with additional information from the authors. 

b. Statistical analyses 

Data description 

We used the R datasummary function to obtain descriptive statistics of the four analytical 

datasets for the combined grower/finisher (GF) and adult (AD) phases. These descriptives are 

shown in Table 1.  
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Analysis of variance (ANOVA) 

Where an ANOVA was necessary, we first tested for normality using a Q-Q plot and the 

Shapiro-Wilks test. The appropriate ANOVA test depended on the outcome, with the Welch 

ANOVA test preferred for parametric data and the Kruskal-Wallis test for nonparametric data. 

Removal of outliers with the isolation forest method and extreme standardised residuals 

We excluded outliers from the four datasets using the isolation forest (IF) method 
(48)

 as 

described here. We initially used multiple regressions to analyse the records in each dataset 

(CF, NDF, NDFS, and NDFSS). The dependent variable was ME density, with the chemical 

analyses as the covariates. The analysis created a predicted ME density and its standardised 

residual (the distance of the actual value from the prediction divided by the standard deviation 

of the residuals) for each observation. We then applied the isolation forest procedure to the 

pairs of predicted ME density and standardised residuals using the solitude package in R. The 

isolation forest process can be envisaged as randomly drawing horizontal and vertical lines 

through a scatter plot. The number of lines required to isolate each point from adjacent ones is 

recorded. The exercise is repeated, in our case, 100 times, but ‘starting’ the line in a different 

location each time. Only a few lines are necessary to separate outliers, while those in a cluster 

need many more (see the illustration in Liu et al. 
(48)

). The process then allocates an anomaly 

score to each point based on the average number of ‘cuts’ or divisions required to isolate it. 

The score is standardised and ranges from zero (not anomalous) to one (anomalous). The 

dividing score between points being definitely anomalous or not anomalous is 0.5. We 

considered records with an anomaly score of about 0.65 and above as outliers. We used a rigid 

procedure to ensure an unbiased exclusion of outliers across all datasets. 

Multiple Regression Analysis 

We used several R packages and functions to obtain the statistics for the multiple regressions 

and goodness of fit measurements. We have included a list and their purpose in the 

Supplementary Material.  

Collinearity and variable selection 

Collinearity occurs when a regression has a high correlation between two or more predictors 

(49)
. It is generally assumed to increase the confidence interval and p-value and decrease the 

precision of regression coefficients. Compositional data such as ours (where the predictors 

add up to 1 or 100) presents a severe problem with collinearity, and regression analysis using 

all the predictors becomes impracticable. We applied the standard solution of removing a 
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predictor - the ‘drop one’ approach. This process, including the choice of predictor, is 

discussed further in the correlation matrices section of the results. 

We assessed the risk of collinearity in two ways. First, we used a correlation matrix to 

examine the degree of correlation between pairs of predictors. Although we describe the pair-

wise correlations in the results, the tables are in the Supplementary Material. If there is 

significant collinearity, the highest correlated pair usually becomes the candidate from which 

one predictor is dropped. Secondly, we determined each coefficient’s variance inflation factor 

(VIF), which is a more effective method. The VIF reports the overall association between 

predictors rather than between pairs, as shown in the correlation matrix. One would typically 

consider dropping the predictor with the highest VIF to avoid collinearity. We tested for 

detrimental effects of collinearity on coefficients using a measure of SE adjusted for their 

size. We term this the coefficient of variation of the SE (CVse), calculated as 100xSE/mean. 

The values are shown in the Supplementary Material.   

Assessment of potential laboratory bias 

To test for potential bias in our regressions from data from one or more laboratories, we 

allocated each record to one of eight Lab groups that might use similar pigs and have a 

common approach to environmental conditions and techniques, e.g. Noblet’s group. Lab 

group 0 was the reference group made up of a large number of records from unconnected 

research groups. We measured potential laboratory bias from the variation in specific 

laboratory EMM and contrasts after multiple regression analysis with Laboratory as a factor. 

The estimated marginal mean (EMM) is the mean ME density when one applies the 

regression equation to the subset of predictors for a particular laboratory. The factor also gives 

the difference (contrast) between the EMM value for each laboratory and the reference Lab 0 

(see Supplementary Material). We statistically compared the EMMs and contrasts before and 

after outlier removal across the four datasets. 

Regression analysis methods using intercept and no-intercept models 

After checking for bias and outlier removal, we performed intercept and no-intercept 

(regression through the origin, RTO) multiple linear regressions for the four analytical 

datasets for both GE and ME density. Regression models are rarely used to predict GE 

density. However, the model is a valuable check on the data and regression model since one 

can match the predicted coefficients against well-established estimates of the energy content 

of the primary nutrients.  
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Intercept model: We analysed the combined GF and AD data incorporating Phase (GF, AD) as 

a factor. The regression analysis gives identical nutrient coefficients for both grower/finisher 

and adult animals. The coefficient for the Phase represents the additional energy adult animals 

obtain from a diet compared to the grower/finisher animals. The additional energy should only 

be added to ME density predictions for adult animals.  

No intercept model: Many statisticians advise against the no-intercept model since it weakens 

the regression fit to the data 
(50)

. However, we use it here to estimate the relative contribution 

of energy-containing variables to the overall energy density 
(51; 52)

, and thus ash is excluded as 

an independent variable. Unfortunately, the no-intercept model cannot account for external 

variables, such as the growth phase, effectively substituting these variables with a pseudo-

intercept value. Consequently, when we used a no-intercept model for ME density, the 

grower/finisher and adult animal data were analysed separately. That was not necessary for 

GE density since this is unaffected by Phase. 

Goodness of fit estimates 

We determined various measures of goodness of fit (GOF) of the regressions. We used the 

adjusted coefficient of determinations (R
2
, the Ezekiel estimator 

(53)
) to express the proportion 

of variation in the dependent variable accounted for by the independent variables. Unlike the 

coefficient of determination (R
2
) derived from the Pearson correlation coefficient (r), it 

compensates for what otherwise would be an increase in value caused simply by adding 

additional independent variables. Adjusted R
2
 thus allows us to compare the GOF in models 

with different numbers of independent variables. We also included predicted R
2
 (see the 

section on validation). However, we excluded R values for the no-intercept models since they 

are inflated by the standard calculation method and provide an unreliable estimate of their 

relative performance 
(54)

. 

We also determined the root mean square error (RMSE) and residual standard deviation/error 

(RSD/RSE/sigma are used interchangeably). Although RMSE and RSD are closely related, 

they have slightly different uses. Outliers affect RMSE more than RSD, and a few extreme 

values may introduce considerable bias. Since we removed extreme outliers, RSD is more 

appropriate here, though we retain RMSE for comparison with other studies. 

The two groups of values provide a convenient juxtaposition: R
2
, with a scale of 0 to 1, 

estimates the variation explained by the independent variables. In contrast, RMSE/RSD 

represents the unexplained variation, with units in which the dependent variable is reported. 
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We also included MAE (the mean absolute error), a simple but useful measure. It is the 

average mean absolute difference between the predicted and actual values from the 

regression. Its derivative MAPE (the mean absolute percentage error) is the mean absolute 

difference expressed as a percentage of the actual value. Finally, we analysed the AIC (Akaike 

Information Criteria) to identify a model that most accurately fits the data without overfitting 

(i.e. it avoids identifying a regression that fits the existing data very well but at the expense of 

providing an optimum prediction of new data). It actively penalises any superfluous additional 

independent variables. The smaller the value, the better the model. Thus, an increase in the R-

value(s) and a decrease in RMSE, RSE/RSD, MAE, MAPE, or AIC indicates an improvement 

in the fit of a regression model. 

c. Assessment of the regression models in estimating metabolisable energy density 

The variation in the number of laboratories contributing to the data in each of the four 

analytical regression models restricted our ability to determine the models’ relative accuracy. 

However, our data included 359 records that contained the full range of analytes. We 

calculated the predicted ME density for each of the records of the four regression analytical 

models. The goodness of fit measurements, particularly the mean absolute error (MAE), gave 

unbiased estimates of the accuracy and precision of the four models. We used two further 

statistical tests to determine the differences in absolute residual values. The two tests were an 

ANOVA, as described above, and a test of equivalence using a multiple-sample TOST test 

provided in the InVivoStat software package (https://invivostat.co.uk/). Equivalence testing 

increases the confidence that two or more treatments (their means and 95% confidence 

intervals) are equivalent within stated bounds, in our case, about 2% rather than simply not 

significantly different as in an ANOVA 
(55)

. 

d. Validation: the accuracy and precision of the regression analyses for future sets of data  

Although it is common to describe regression equations as predictive, they only explain the 

data on which they are based and may be of doubtful accuracy for a predictive model. 

Investigators often overlook the subtle difference between the explanatory and predictive 

functions 
(56)

. The change in function does not affect the regression coefficients themselves. 

The main effect is on goodness of fit and the magnitude of explained and unexplained 

variation: this can be a severe problem with small datasets. We tested the predictive quality of 

our regression in two ways.  

https://doi.org/10.1017/S0007114525000042  Published online by Cam
bridge U

niversity Press

https://invivostat.co.uk/
https://doi.org/10.1017/S0007114525000042


Accepted manuscript 
 

The most comprehensive method was the k-fold cross-validation 
(57; 58)

 with a k value of 10: 

the analysis is provided in the R caret package. The procedure assumes that one can mimic a 

future set of data that complies with the characteristics of the current population. The existing 

data are divided into k portions or folds. The estimated ME density of each of the ten portions 

('the future dataset') is obtained sequentially from predictive equations from the remaining 

nine data portions. This procedure produces ten estimates of one or more measurements of the 

goodness of fit. As a default, caret provides R
2
, RMSE, and MAE as GOF indices. We 

extended the code to add adjusted R
2
 and RSD (the code is shown in the Supplementary 

Material). We repeated the procedure ten times to improve the reliability of the values. Our 

mean values and their 95% confidence intervals were thus obtained from 100 estimates. We 

also obtained the predicted R
2
 using the olsrr R package. This value is a simpler validation 

measure based on dividing the dataset into a training and evaluation group. After that, the 

procedure is similar to the k-fold cross-validation, but it only provides a single estimate of R
2
. 

Results 

Phase 1. Evidence that energy digestibility in pigs and rats is similar. 

The preliminary data assessment shown in the Supplementary Material showed good 

agreement in the energy digestibility of pigs and rats above 0.65D. Nineteen pairs of data 

below 0.65D were considered outliers and excluded. Figure 1 displays a Bland-Altman plot of 

the remaining 185 pairs of combined data sets above 0.65D. Although the bias differed 

significantly from zero with 95% confidence intervals of 0.011 to 0.020, the biological 

difference was negligible, with digestibility in pigs about 0.015 units greater than in rats. This 

bias amounts to about 2% of our data’s typical digestibility of 0.83. The outer levels of 

agreement were -0.042 to 0.073. Our interim conclusion was that we could proceed and use 

pigs as a model for murine models if digestibility was greater or equal to 0.65.  

Phase 2. The development of predictive estimates of dietary metabolisable energy (ME) 

density based on dietary chemical analysis. 

Removal of unsuitable and anomalous data 

We excluded eight records before statistical analysis. Five records had a DE/GE ratio of less 

than 0.65 and were outside the range of agreement between pig and murine digestibility; one 

of the five had an unusual ME/DE value of less than 0.90. We deleted three records from a 

single laboratory from the NDF and NDFS groups because of doubts about the accuracy of 

the analytical data (the sum of the measured analytes substantially exceeded the dry matter).  
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Removal of outliers  

The number of statistical outliers identified and excluded in the four datasets using the IF 

method was less than 2.5%: CF, 14 of 697 (2%); NDF, 18 of 845 (2.1%); NDFS, 12 of 498 

(2.4%); and NDFSS, 5 of 372 records (1.3%) (Figure 2). 

Dataset descriptive statistics 

Table 1 shows the descriptive statistics for the four groups after outlier removal. The 

nutritional values encompass those of typical murine breeding, general-purpose, and 

maintenance diets. Removing outliers had a small effect on the analyte concentrations, with a 

mean difference of -0.40% (SD 0.78) of the values in the equivalent original dataset. We were 

concerned to see negative minimum values for Res1 and Res2 in a few records, some of 

which occurred in laboratories we considered to be highly competent. Negative residue values 

indicate an error in one or more measured analytical variables. However, we retained these 

records to avoid unintended bias since these analytical discrepancies might be present in other 

records but less visible. 

Correlation matrices 

We have provided the full matrices in the Supplementary Material. The correlation matrices 

are an objective method for deciding which pair of predictors to use in the ‘drop-one’ 

approach in regressing compositional data. While the correlations between ash and residues 

for the CF (-0.65) and NDF (-0.58) models support dropping ash or the residue, that is less so 

for the NDFS (0.17) and NDFSS models (0.41). In the latter two models, substituting ash and 

starch is statistically the best option but unhelpful when starch is an important predictor to 

study. We consider context to be an important consideration in our choice. Thus, for 

compatibility with previous studies and consistency across our models, we removed either ash 

or the calculated residue (NFE, NFC, Res1, or Res2) from all four dataset regressions. We 

refer to the options as ash-based and residue-based models. We describe our approach to 

choosing between the two models in the regression collinearity section below. 

The matrices also provided other nutritionally interesting associations. There was a high 

correlation (0.98) between DE and ME density measurements across the four analytical 

datasets. Some authors included ME values calculated from DE, which inevitably influences 

the correlation. Nevertheless, there is undoubtedly a close relationship. The correlations 

between GE and DE or ME density were poor (0.29 to 0.47). The ether extract was 

consistently highly correlated with GE (0.79 to 0.92) but not DE or ME density. Both DE and 

ME were moderately negatively correlated with ash (-0.40 to -0.62), probably because ash is 
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the inverse of energy-containing organic matter. Energy digestibility (DE/GE) consistently 

showed a high negative correlation with crude or neutral detergent fibre (-0.67 to -0.77) and a 

moderately positive one with NFC or starch (0.59 to 0.64). The typically low levels of sugars 

had no effect. 

Of the nutrient-nutrient correlations, only two exceed the cutoff of 0.8 to 0.9 associated with a 

possible collinearity problem 
(59)

. These were crude protein and NFE (-0.80) in the crude fibre 

dataset and starch and ash (-0.81) in the NDFSS dataset. The remaining correlations ranged 

from -0.73 to 0.54, with a mean absolute value of 0.31 (SD 0.21). 

Regression analyses  

Unless otherwise stated, the comments refer to the regression models after removing outliers. 

Regression collinearity and variance inflation factors (VIF) 

In addition to the correlation matrices, we assessed the risk of collinearity of the regression 

coefficients using variance inflation factors (VIF). VIF values, and thus collinearity, were 

much lower in the ash-based than residue-based models (Tables 2a to 2d). The effect of VIF 

on the precision of a calculated coefficient was estimated from the CVse as described in the 

Materials and Methods. Despite the higher VIF values in the residue models, there was no 

statistical difference between the precision of the coefficients in the ash- or residue-based 

regressions across the four models (t-test with unequal variances, t=2.06, P=0.26, df=25). The 

complete data are shown in the Supplementary Material.  

Although using the ash models avoids the issue of collinearity, it can produce coefficients 

that, while mathematically correct, appear biologically odd. For example, in the NDFS GE 

density model, starch has a coefficient of zero with P=0.54. Although the VIF in the residue-

based models is high, the effect is moderated by the high R
2
 values and the large sample 

number, as described in the Discussion. The adjusted R
2 

for ME density regressions for the 

four models varies from 0.751 to 0.869, with 367 to 827 records. Thus, in this study, VIF 

values exaggerate the risk of detrimental collinearity. However, since using the residue model 

is not universally accepted, we have included both ash- and residue-based intercept 

regressions below. The predicted energy densities and GOF values are the same in both cases. 

Regression models 

In summary, we created intercept and non-intercept regressions for dietary GE and ME 

density from four datasets (CF, NDF, NDFS, and NDFSS). Tables 2a-d show the nutrients 

included in each. Each intercept regression included the ash- and residue-based alternatives. 
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The effect of potential laboratory bias 

After removing outliers, the mean difference in Estimated Marginal Means (EMMs) between 

the laboratory groups and Lab Group 0 across the four datasets was 0.02 kJ/g (SD 0.28 kJ/g), 

which represents approximately 0.1% of the average dietary metabolisable energy (ME) 

density (Supplementary Material). We concluded we could ignore any Laboratory Group bias 

and analyse the data as a whole. 

Regression parameters 

Intercept models 

Tables 2a-d show regression analyses on the four datasets from which outliers have been 

excluded. Removing outliers had a negligible effect on the coefficients (typically 1 to 3% at 

most). The coefficients for the individual intercept models shown in the tables require little 

comment. The intercept for most GE density models based on residues was not significantly 

different from zero. The exception was that for the NDFS regression: nevertheless, it was 

small (c. 2.7 kJ/g, CI 1.3 to 4.1). The intercepts for the ash models were substantial (generally 

17 to 18 kJ/g) and significant (P<0.001). 

The predictor coefficients for GE and ME density were highly significant (mainly P<0.001) 

with two exceptions: (a) starch in the GE and ME density NDFS Ash models (P=0.54, 

P=0.16), and (b) NDF in the GE density NDFSS Ash model (P=0.053). Although many ME 

density regressions have negative coefficients for crude fibre, we observed it only in the ash-

based model (and the no-intercept model below). However, even when not negative, the ME 

coefficients for crude fibre were much lower than the biological estimate of 7.54 kJ/g (Table 

3). 

The age-related Phase AD coefficients for the GE density models were also consistently non-

significant, close to zero, and unaffected by the model. In contrast, those for ME density 

models were highly significant and much larger. The average age-related coefficient shows 

that older animals (as defined in the Materials and Methods) absorb an additional 0.37 kJ/g 

from a diet than the younger grower/finisher animals. The amount increased from about 0.25 

to 0.48 kJ/g across the four models. 

The coefficients for ash and alternative residues (and their t values, though not shown here) 

appear as mirror images across comparable regression models, a phenomenon not commonly 

reported in the literature. This pattern occurs when any one of a pair of predictors is 

substituted and is unrelated to their coefficient in the correlation matrix. Its cause is beyond 

the scope of this paper. 
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The individual nutrient GE density values determined with the residue models were about 

95% (SD 8.1%) of their respective theoretical values (Table 3). We ascribe the slight 

discrepancy to the contribution of energy density from the intercept. In the case of the 

residue-based ME density regressions, the very high intercept values made any attempt to 

relate the coefficients with theoretical values pointless. There was no similarity between the 

coefficients and theoretical nutrient GE or ME density in the ash-based regressions. The most 

reliable comparisons of regression and theoretical values are with the no-intercept models 

reported below. 

The goodness of fit (GOF) of the intercept models 

The GOF values for the intercept models are the same for the residue-based and ash-based 

models and are shown in Tables 4a (GE density regressions) and 4b (ME density regressions).  

Removing outliers had little effect on the GOF values for the GE density regressions. 

Goodness of fit progressively improved with model complexity. The predictors explain about 

77 to 94% of the variation in GE density, and unexplained variation is low. For example, RSD 

averaged 0.23 kJ/g, progressively decreasing with more independent variables in the models. 

The unexplained variation in the models represents only 1-2% of the typical GE density of 

murine and pig diets (about 18.4 kJ/g). 

Although we removed only about 2% of the records as outliers, there was a modest 

improvement in the GOF of ME density regressions. The various R
2
 estimates improved by 

about 2% across the four groups, while RMSE and RSD values improved by 7% and MAE 

and MAPE by about 5%. Not surprisingly, considering the additional complexity of 

measurement and variation in the metabolisability of the fibre components, GOF values were 

poorer in the ME density prediction models. Nevertheless, the independent variables still 

account for about 75 to 87% of the variation in the dependent variable, which is good for most 

science-based studies 
(60)

. We comment in the Discussion section on the source of the 

remaining variation. The RSD values for the ME density regressions were 50-80% higher 

than for GE regressions in the crude fibre and NDF models and over two-fold higher in the 

NDFS and NDFSS models. However, the MAE levels were low even in the more challenging 

ME prediction models and were only about 2-3% of the ME density of typical pig or murine 

diets (14.8 kJ/g). The MAE was highest with the crude fibre model, about 0.42 kJ/g (CI 0.40, 

0.45), and this improved in the NDFSS model to about 0.29 kJ/g (CI 0.27, 0.31). 

The GOF measurements across the four analytical models show that the crude fibre-based 

model is the weakest fit while the NDFSS model is the strongest. This trend is not just a 
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function of an increasing number of independent variables since AIC, which penalises such 

increases, substantially improves across the models. The NDFS model generated the largest 

single-step improvement in fit. Unfortunately, one must treat this comparison with caution 

since the number of laboratory groups (and hence potential variability) differs in the four 

models: we address this later when we analyse the GOF indices in 359 records that include all 

the analytes. 

No-intercept models 

The no-intercept models represent the net contribution of energy-containing nutrients to the 

regression. The merit of the no-intercept approach is that it generates biologically relevant 

coefficients, though they are still empirically based. However, the no-intercept model does not 

allow a meaningful coefficient for a factor like Phase: the outcome is a value tantamount to an 

intercept. Because of the expected insignificant effect of Phase on GE density in the intercept 

models, we have reported GE density coefficients in the no-intercept models on the whole 

data (Table 5a). In contrast, there was a significant Phase effect in the intercept-based ME 

density regressions, so we performed no-intercept ME density regressions for grower/finisher 

and adult animals separately (Table 5b).  

The percentage differences in the comparable coefficients after removing outliers were 

negligible (typically 1%). The main exception was the crude fibre coefficient in the ME 

density regression: this was probably a consequence of the small coefficient values and the 

relatively large effect of a small difference after outlier removal. 

The GE density regression coefficients were similar to those of Noblet and Van Milgen 
(52)

, 

and our theoretical estimates for crude protein, ether extract, and carbohydrates gathered from 

various publications (Table 3). The overall agreement with theoretical estimates was 101.2% 

(SD 3.4%). We could not find direct estimates of the ME density of individual nutrients, 

presumably because suitable experiments would be complex. However, we have calculated 

estimates of nutrient ME density from published data (Table 3). There were three points of 

interest: first, the regression values for the ‘available’ carbohydrates (NFE, NFC, Starch, and 

Sugars) and ether extract were extremely close to the calculated values (mean 0.98, SD 0.03). 

Second, the regression values were much lower than theoretical for the fibre constituents (CF, 

NDF). Finally, the crude protein value was c.20% higher from the regressions than theoretic 

values. Overall, the values were consistent with crude fibre primarily affecting protein 

absorption with energy losses integrated into the fibre coefficients.  
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The goodness of fit (GOF) of the no-intercept models 

Outlier removal had little effect on the GOF values for GE density predictions (median 

improvement < 1%) but improved those for ME density (median c. 5-6%). Table 6 shows the 

GOF indices of the no-intercept models, which follow the same trend as the intercept models. 

The GOF values of the GE and ME density regressions generally improve with increasing 

model complexity. The difference between the CF and NDF ME density prediction models for 

grower/finisher pigs is an exception. However, the AIC values show that the overall 

improvement is not just an effect of increasing the number of predictors. The GOF of no-

intercept models for ME density is poorer than the comparable intercept models. The effect is 

most evident in the estimates of mean absolute error, especially for the NDF and NDFS 

regressions. Despite the attractiveness of biologically relevant regression coefficients, the 

mean absolute error values indicate that the prediction of ME density is slightly less accurate 

than the intercept model. 

Assessment of the regression models in estimating metabolisable energy density 

Figure 3 shows the regression plots of measured ME density on predicted ME density for the 

four models. We regressed the data in this order since it is important to understand how well 

the calculated energy density value represents the measured value. It is also the orientation 

recommended by Piñeiro et al. 
(61)

. In all four cases, the slopes were 1.00 and the intercept 

zero: these values demonstrate a perfect agreement between mean predicted and actual values 

across the range of values studied. The 95% confidence interval of the prediction of the mean 

response (confidence interval, CI) in these regressions is small and not clearly evident in the 

figures.  Although the CI is tapered, we have calculated its mean value as ± 0.5 kJ/g across all 

four regressions. Perhaps the best overall practical measure of the predictive accuracy of our 

regressions is the 95% confidence interval of the prediction of a single value (prediction 

interval, PI). It provides the range within which the true value of a prediction is likely to fall 

95% of the time. The prediction intervals are almost linear over the range of ME density 

values, so we can reasonably express them as a single value for each of the four analytical 

models. The prediction intervals were ± 1.03 kJ/g (CF), ± 0.97 kJ/g (NDF), ± 0.79 kJ/g 

(NDFS), and ± 0.71 kJ/g (NDFSS). These values represent a deviation from the average 

predicted ME value for the four models (14.8 kJ/g) of ± 7.0, 6.6, 5.3, and 4.8%, respectively. 

As expected, the absolute PIs are about twice the RMSE/RSD values. 
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Choosing an optimum cost-effective regression model to estimate the metabolisable energy 

density. 

We obtained an unbiased estimate of the relative accuracy and precision of the four analytical 

regression models by analysing the 359 records present in all four datasets. Table 7 shows the 

GOF indices used. Notably, these regressions and GOF measurements come from a narrow 

range of laboratories with less diversity of factors such as animal breed, technique, and 

measurement accuracy than records in the whole dataset. Consequently, it is unsurprising that 

the coefficients and GOF measures within these datasets are generally more precise than the 

equivalent whole dataset. The major exception is the regression analysis for the NDFSS 

dataset, in which the coefficients and GOF measurements in the two were very similar. 

However, the 359-records dataset included a substantial proportion of the NDFSS dataset. As 

with the primary data (Table 4), the GOF estimates improved with the complexity of the 

model.  

Since the mean actual and predicted ME densities of the four regression models using the 

common dataset are the same (14.43 kJ/g) and the average of the residuals zero, we compared 

the accuracy and precision of the four models by analysing the absolute residuals. Figure 4 

shows the distribution of the absolute errors as a raincloud plot. A preliminary examination for 

normality with a Q-Q plot (not shown) and the Shapiro-Wilk test showed that the regressions’ 

absolute residuals were not normally distributed (W=0.93, P<0.001). Consequently, we used 

the nonparametric Kruskal-Wallis test, which showed that the overall difference between the 

regressions’ absolute residuals was not statistically significant at the 5% level (P=0.11). No 

further ad hoc testing was deemed necessary. The InVivoStat Equivalence TOST Test showed 

that the four sets of absolute residuals are equivalent at the 5% level within ± 0.1 kJ/g. Thus, 

apart from the few outlying absolute residuals with the CF model, there seems to be little 

difference in the accuracy of the four regression models in predicting the ME density of 

individual records. 

Finally, we obtained estimates of analysis costs for the analytes in the four regression models. 

Since these will change over time, we have expressed them relative to that of the CF model. 

The relative costs for the four analytical packages in 2023 were: CF, 1; NDF, 1.4; NDFS, 1.9; 

and NDFSS, 2.2. Despite the higher costs, the improvement in MAE over the four models for 

the global and common data is less than 0.15 kJ/g,
 
which is only about 1% of the typical ME 

density. 
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The effectiveness of the four regression models in estimating metabolisable energy density in 

future datasets 

Table 8 shows the 10-fold cross-validation data for the prediction of ME density in the four 

analytical models. The adjusted R
2
, RSD, RMSE, and MAE values indicate negligible 

overfitting since they are little different from the equivalent values in Table 4. This 

observation suggests that the regressions provided in this paper can accurately predict the ME 

density of additional future datasets, providing the new data’s nutrient levels and energy 

densities fall within the ranges shown in the descriptives. This assertion holds even if one 

takes the most unfavourable 95% confidence interval values. For example, in some future 

comparable datasets, the predictors in the crude fibre model would typically account for about 

75% of the variation in the ME density prediction, and the MAE would be no more than ± 

0.43 kJ/g. The improvement in prediction and GOF values from the crude fibre to NDFSS 

datasets follows a similar pattern to the existing regressions. Thus, the three NDF-based 

regressions would improve predictive quality over crude fibre, although the biological effect 

is small. The simpler predictive R
2
 values were similar to those of the adjusted R

2
. 

Comparison of regression equations with previously published ones. 

Although investigators have developed numerous regression equations to estimate ME density 

in pigs, many are based on only a few nutrients. We collated several regression equations 

developed to predict the ME density of pig diets using a more comprehensive range of 

nutrients similar to our selection (Table 9). The comparatively large intercept values in the 

ME-density intercept models make applying meaningful comparisons for the nutrient 

coefficients difficult. That issue is not a problem for those from the no-intercept models. 

While the crude fibre coefficient is often negative, that is not axiomatic, though its value is 

close to zero. Each regression provides a similar predicted ME density when applied to the 

analytical data from the grower/finisher subset of the 359 ‘common records’ dataset. As one 

might expect, the GOF values on regressions based on a single laboratory are generally 

slightly better than those from this study. Morgan’s RSD/RMSE values are much higher, 

possibly because the regressions are based on the combined data from ingredients and 

complete diets. We return to this information in the Discussion. 

 

Discussion 

We have developed a series of predictive equations for the metabolisable energy (ME) density 

of murine diets from their nutrient analysis. There were insufficient suitable data from murine 
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studies, and we relied on data from pig studies. As Figure 1 shows, there is good agreement in 

digestibility between pigs and murine models above 0.65D, and several studies confirm that 

the similarity extends to metabolisability. Basing equations on pig data has major advantages. 

There is a large amount of published data from a wide range of laboratories, and the dietary 

nutrient levels and ingredients are those often seen in murine diets.  

Variable selection was primarily dictated by analytical packages routinely reported by 

manufacturers for diets for laboratory rats and mice 
(1)

. The most widely used is the proximate 

analysis, though NDF sometimes replaces crude fibre since it is considered a better estimate 

of fibre. Although routine pig or murine diet analysis rarely includes starch and sugars, they 

were part of the analytical packages in many publications. We included them in our datasets 

and regression models to test if their inclusion in routine nutrient analysis might be beneficial 

in providing more accurate and reliable estimates of energy density and sufficiently so to 

warrant the additional cost.  

With compositional data such as ours, where the values of potential predictors should total 

100, dropping one predictor is often used to avoid multicollinearity 
(59)

. We decided to choose 

between ash and a residue, such as NFE or NFC, based on the output from the correlation 

matrices, our desire to be consistent across the models, and compatibility with other studies. 

There is no consistency in the literature (see, for example, Table 9). One can choose between 

ash or residue-based models from a statistical and biological perspective. While residue-based 

regressions tend to give more “physiologically meaningful” coefficients 
(22)

, they increase 

collinearity and result in higher VIF values for most coefficients. Although a high VIF may be 

associated with increased coefficient variance and imprecision, there is decreased risk with 

large sample numbers and high R
2
 values 

(59; 65; 66; 67; 68)
. Our estimation of CVse in the ash- 

and residue-based regressions and p-values confirmed no detrimental effect of collinearity on 

the precision of the coefficients. From a biological perspective, although ash could affect 

energy density by increasing the endogenous losses of protein and fat 
(69; 70)

, the evidence 

suggests that any effects are small or non-existent in pigs 
(71; 72)

 but perhaps significant in 

poultry 
(73)

. We believe both ash- and residue-based regressions are satisfactory, and we 

include both since each has merits that are ultimately best assessed by the reader. 

An equation generated from one data source may not apply more generally because of the 

many differences in the animals, environment, and methodology used 
(24)

. We sought to 

overcome this limitation by selecting data from numerous studies encompassing various pig 

breeds, diet preparations and types, nutrient levels, environmental conditions, and technical 
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practices. By analysing data from such a broad spectrum, we mitigate the risks of overfitting 

and shrinkage 
(56; 74)

 and improve reproducibility 
(75)

, ensuring our models are more 

generalisable and reflective of real-world variability 
(76)

. This approach significantly enhances 

the reliability of our predictive models when applied to future datasets. Choi 
(30)

, Sung 
(29)

, and 

their colleagues have taken a similar approach but with fewer samples and predictors and 

without equivalent prediction equations for dietary ME density. 

This diverse background comes with a penalty, though we consider that the utilitarian nature 

of our regressions outweighs the disadvantages. The primary ‘disadvantage’ is that these other 

variable background factors increase the unattributed variation, resulting, for example, in 

slightly poorer adjusted R
2
, RSD, and MAE values than one might hope. Nevertheless, the 

adjusted R2 values are still good, ranging from 0.75 to 0.87 for the four models 
(60)

. The 

typical RSD from carefully conducted, single-site studies by Noblet is about 0.34 kJ ME/g for 

a crude fibre regression and about 0.30 kJ ME/g for the NDF one (Table 9). In our ‘global’ 

equations, the values were higher at 0.52 and 0.46 kJ/g for the crude fibre and NDF models. 

When we restricted the data to 359 sets common to all models and from fewer sources, the 

RSD values were about midway between the single site and ‘global’ models, at 0.45 and 0.37 

kJ/g, respectively. Two related studies by Bulang and Rodehutscord 
(63)

 and Grümpel-Schlüter 

and colleagues 
(64)

 deviate from our expectations and produce unusually low RMSE values 

(median c. 0.25 kJ/g) despite a diverse data source. The divergence may result from 

calculating each diet’s ME density from an equation recommended by the GfE 
(19; 20)

 rather 

than measurement. This approach inevitably decreases variation. 

Investigators have used intercept and non-intercept regressions to predict energy density from 

dietary chemical constituents (Table 9). Removal of the intercept slightly decreases accuracy, 

as can be seen when comparing the values predicted with Noblet’s (E) and our data (F) in 

Table 9 by the two regression types. The GOF was similar in both regression types.  

The no-intercept models have some advantages: they avoid the issue of ash- or residue-based 

regressions discussed above, and unlike those in the intercept models, one can apply their 

coefficients to diets and ingredients alike 
(43)

. Moreover, excluding intercepts, which are large 

contributors to the dependent variable, may provide “physiologically relevant” coefficients 
(22)

 

that may appeal to some investigators. We use both forms of regression, with the intercept 

model providing the definitive prediction and the no-intercept model providing a (net) 

measure of the contribution of the energy-yielding nutrients to the total energy density 
(43)

.  

The intercepts and nutrient coefficients in Table 2 apply to both grower/finisher and adult 
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animals. Adding a growth phase to the regressions is a powerful feature and accommodates 

data consolidation from the grower/finisher and adult animals in the regression. It defines the 

additional energy that should be added to the dependent variable for adult animals to reflect 

their greater energy absorption and metabolisability 
(62; 77; 78)

. However, the ages of animals in 

most murine research and regulatory studies are probably best represented by grower/finisher 

pigs and the base prediction equations, even though the age effect may exist in older murine 

models 
(79)

. Determining the effect of the growth phase on predicted ME density is only 

possible with the intercept models.  

Though it is unlikely one would predict GE density from nutrient analyses, we have included 

GE density regressions here as a test of the regression process’s effectiveness when applied to 

ME density predictions. Since the GE coefficients in the four models are affected by the 

intercept size, the best comparison is with the no-intercept regressions in Table 5a. Across the 

models, there is good agreement with the published values for simple analytes such as crude 

protein, ether extract, starch, and sucrose (Table 3) from the residue-based regressions, though 

not those based on ash. Assessing the accuracy of GE density coefficients for crude or neutral 

detergent fibre is more complex. Their energy content depends on their fibre composition, 

which varies with the ingredient 
(80; 81; 82; 83; 84; 85; 86)

. Cellulose and hemicellulose, two of the 

main components in fibre, have values of about 16-18 kJ/g, while lignin ranges from 21-30 

kJ/g 
(87; 88; 89; 90; 91)

. Fibre may also include small amounts of protein (c.23-24 kJ/g).  

Although obtaining reliable estimates of the GE density of nutrients from regressions is 

reassuring despite the empirical nature of the regressions, the study’s primary purpose was to 

predict ME density. In contrast to the nutrient coefficients for GE density, there is 

considerable variation in comparable coefficients in this study’s four ME density models and 

other published equations (Table 9). The exceptionally high intercept values contribute to 

much of the variation, especially in those regressions that include residues (NFE, NFC, Res1 

or Res2). Overall, there is no correspondence in the intercept regressions between theoretical 

ME density values and those obtained from the coefficients. Nevertheless, despite a large 

variation in intercept and coefficient values between models, the different regression 

equations generally give predicted ME density values close to the actual values. 

The no-intercept regressions allow the comparison of regression-derived nutrient coefficients, 

unaffected by the large and variable intercepts, with our theoretical estimates for ME density 

(Table 3). The fibre regression coefficients are much lower than calculated ME densities (CF, 

c.300% lower, and NDF 65% lower). In contrast, those for protein and ether extract are about 
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10-20% higher. These results are consistent since dietary fibre is known to increase energy 

loss from protein and fat 
(92; 93; 94)

, and the nature of the regression analysis allocates these 

losses to fibre rather than the protein and ether extract coefficients. There is good agreement 

for the soluble carbohydrates (0 to 5% difference) consistent with the absence of a significant 

effect of fibre on starch absorption 
(92; 95; 96)

.  

The GOF values showed that our regression models were consistently good and improved 

with increasing characterisation of the diet's nutrient composition. The GOF measurements 

were inevitably poorer with the ME density regressions than those for GE density, reflecting 

increased experimental variation and errors associated with biological studies. Internal 

validation based on predicted R
2
 and k-fold GOF measurements confirms that our regression 

equations explain existing relationships between energy density and the chemical analytes 

well and are suitable for future predictions without exhibiting overfitting. We are confident 

that the first three models provide generalised predictions suitable for widespread practical 

use. However, data from the Noblet group 
(24; 39; 62; 97)

 dominated the NDFSS model, 

contributing about 87% of the records. This may lead to some overfitting, though less than 

using data from a single study. 

Although GOF indices such as RMSE, RSD or MAE reflect errors in the regression model, 

they apply to populations rather than individual samples. While this expression of error may 

be suitable for a diet manufacturer providing an illustrative ME density as a guideline, most 

investigators should be concerned with the prediction error in a single diet sample rather than 

that averaged over a population of samples. Here, the PI is the best estimate of uncertainty 

when new predicted values are required. Unfortunately, investigators often ignore the effect of 

the PI on a study. As with the MAE, PI improves across the four models but only by about 0.3 

kJ/g. One should assume the PI could be up to ± 1 kJ/g of the predicted value. 

External validation of prediction equations is important, although often overlooked. Its 

significance is particularly well-recognised in clinical studies 
(98)

. We achieved some benefits 

of external validation by comparing the actual ME density of a test diet with values predicted 

from our equations and other published equations (Table 9). While this step does not replace 

traditional external validation, it still reinforces the validity of the equations. There was good 

agreement, though it was slightly better for the intercept than the no-intercept model.  

In selecting the best regression model for routine use, one should consider the analysis's 

complexity, cost, and GOF. We found no evidence from either the Kruskal-Wallis or 

equivalence testing that any of the four analytical models was better at predicting ME density. 
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However, there was a slight improvement in GOF values with greater complexity. The CF 

model seems adequate for murine models, especially since murine laboratory diet analysis 

commonly includes the necessary predictors. Although NDF-based models improve the 

prediction error, they cost up to twice that of the CF model analysis. For some studies, these 

increases in cost for such little gain might be cost-effective, though unlikely. 

There are three constraints to using our equations. First, although diet manufacturers provide 

typical nutrient estimates, we recommend the investigator obtain chemical analysis data on 

the diet used for optimal accuracy. Second, the regressions may not apply to purified diets for 

which the Atwater Factors remain relevant 
(11)

. Third, their accuracy may decline with very 

high or low levels of individual nutrients, though such values would be uncommon for murine 

diets (or complete diets for pigs). 

In developing our regressions, we have accumulated more data records than in previous 

publications and subjected them to rigorous statistical analysis. Possibly, for the first time, we 

have compared the relative merits of predictions based on several analytical packages in a 

single study and evaluated their cost-effectiveness. We have also provided realistic estimates 

of the possible prediction error when applied to diet samples or an individual batch. Our 

inability to validate these predictive equations with murine data remains a weakness and 

indicates the need for further reliable ME density measurements in rats and mice. We know of 

only one study that examined the application of a pig equation to natural-ingredient murine 

diets to predict ME density. Bielohuby and colleagues 
(11)

 found the equation (unattributed, 

but Kirchgessner and Roth’s MEBFS equation 
(25)

 shown in Table 9) was more accurate than 

Atwater Factors for natural-ingredient rat diets. However, the eleven diets tested are too few 

to validate their use confidently.  

Although near-infrared spectroscopy (NIRS) has been suggested as an alternative to predict 

dietary energy density, it is not straightforward. It is easily affected by small environmental 

and sample changes, may require several hundred calibration samples, and the equipment is 

expensive 
(99)

. Nor do we consider its accuracy for energy density predictions better than ours 

(cf Noel and colleagues 
(100)

). 

Although several previous studies (Table 9) predict the ME density of pig diets from chemical 

analysis, this study provides more robust validated prediction equations, with standard 

combinations of the most common feed analytes as predictors. Several of the studies use only 

calculated ME density and no-intercept models. The regressions are from single laboratories, 

include fewer records, and inevitably underestimate prediction errors when used widely. We 

https://doi.org/10.1017/S0007114525000042  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114525000042


Accepted manuscript 
 

used more extensive measures of goodness of fit and validation to ensure that the regressions 

would maintain their robustness when applied to new data. All four regression models give 

good GE and ME density predictions that can be applied to murine diets. While the quality of 

fit to the data improves slightly with increased numbers or refinement of predictors, analysis 

costs increase substantially. Moreover, the differences in prediction errors are small relative to 

the predicted values. Thus, the crude fibre equation seems an adequate practical approach to 

determining ME density. If one requires higher precision and accuracy than shown here, one 

must measure ME density in vivo. 
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Figure1. 0-BA plot of pig and rat digestibility 
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Figure 2. Identification of outliers in the ME density data for the four regression models 
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Figure 3. Relationship between the measured and predicted ME densities 
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Figure 4. Raincloud plot 
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Table 1. Descriptive statistics for four datasets from which outliers have been removed. The 

chemical analyses are expressed as g per 100 g of dry matter and energy values as kJ/g of dry 

matter. The abbreviations for the nutrients and energy forms are defined in the abbreviations 

section. 

 

a. Crude Fibre dataset (N=683) 

 

  Mean SD Median Min Max 

CP 19.10 4.98 18.88 7.83 47.20 

EE 4.01 2.83 2.77 0.97 19.80 

CF 4.94 2.23 4.59 1.01 16.20 

NFE 65.60 7.29 66.00 34.49 83.46 

Ash 6.34 1.46 6.07 2.60 11.30 

GE 18.44 0.71 18.30 16.36 20.98 

DE 15.32 1.07 15.38 11.72 18.11 

ME 14.72 1.05 14.74 11.28 17.40 

ME/DE 0.96 0.01 0.96 0.91 0.99 

DE/GE 0.83 0.05 0.84 0.65 0.94 

 

b. NDF dataset (N=827) 

 

 Mean SD Median Min Max 

CP 17.89 4.08 18.44 7.17 34.66 

EE 4.19 2.62 3.22 0.97 15.60 

NDF 16.18 5.57 15.43 4.12 46.00 

NFC 55.71 8.54 55.60 20.40 78.06 

Ash 6.02 1.41 5.79 3.10 10.80 

GE 18.42 0.65 18.28 17.13 20.63 

DE 15.45 1.04 15.53 12.16 18.57 

ME 14.88 1.04 14.93 11.51 18.03 

ME/DE 0.96 0.01 0.96 0.91 0.99 

DE/GE 0.84 0.05 0.84 0.65 0.95 
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c. NDF plus Starch dataset (N=486) 

 

  Mean SD Median Min Max 

CP 17.87 3.81 18.34 7.17 29.00 

EE 3.92 2.62 2.74 0.97 11.60 

NDF 15.63 4.93 14.75 4.37 31.46 

Starch 47.69 10.69 47.65 2.87 76.36 

Res1 8.48 6.24 7.71 -8.10 68.73 

Ash 6.40 1.45 6.11 3.30 10.83 

GE 18.31 0.58 18.19 17.20 20.27 

DE 15.27 1.03 15.38 11.96 17.34 

ME 14.68 1.02 14.71 11.61 16.79 

ME/DE 0.96 0.01 0.96 0.91 0.99 

DE/GE 0.83 0.05 0.84 0.65 0.95 

 

d. NDF plus Starch and Sugars dataset (N=367)  

 

  Mean SD Median Min Max 

CP 18.24 3.36 18.49 10.05 29.00 

EE 3.94 2.79 2.54 0.97 11.60 

NDF 16.20 4.97 15.52 4.37 29.70 

Starch 46.86 9.62 47.60 10.80 68.63 

Sugars 4.65 2.61 4.17 0.20 28.24 

Res2 3.30 3.12 3.23 -5.41 12.80 

Ash 6.82 1.40 6.53 4.48 10.83 

GE 18.29 0.60 18.16 17.20 20.27 

DE 15.02 1.03 15.10 11.96 17.30 

ME 14.40 1.00 14.50 11.51 16.79 

ME/DE 0.96 0.01 0.96 0.91 0.98 

DE/GE 0.82 0.05 0.83 0.65 0.94 
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Table 2 Gross and metabolisable energy regressions after removal of outliers, with the 

Grower/Finisher animals as the reference phase. The values in brackets are the 95% 

confidence intervals. Unless otherwise stated P<.001. When the coefficients are applied to 

nutrients expressed as g/100g diet DM, the unit of energy density will be kJ/g DM. Phase AD: 

the additional energy to be applied to the predicted energy digestibility when used for older 

animals. The VIF values are identical for the gross and metabolisable energy density 

regressions. 

a. The Crude Fibre dataset  

 Gross Energy Density Metabolisable Energy 

Density 

VIF 

 Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

(Intercept) 2.2083 17.4474 -16.4063 16.3006   

 (0.1508, 

4.2658) 

P=0.035 

(17.3120, 

17.5827) 

(-

19.5802, -

13.2325) 

(16.0917, 

16.5094) 

  

CP 0.2072 0.0548 0.3894 0.0623 21.89 1.26 

 (0.1831, 

0.2313) 

(0.0490, 

0.0606) 

(0.3522, 

0.4265) 

(0.0533, 

0.0712) 

  

EE 0.3547 0.2023 0.4686 0.1416 7.26 1.05 

 (0.3302, 

0.3791) 

(0.1930, 

0.2116) 

(0.4309, 

0.5064) 

(0.1272, 

0.1559) 

  

CF 0.1730 0.0207 0.0649 -0.2622 6.14 1.19 

 (0.1446, 

0.2015) 

(0.0081, 

0.0332) 

(0.0210, 

0.1088) 

P=0.004 

(-0.2815,  

-0.2429) 

  

NFE 0.1524  0.3271  35.95  

 (0.1313, 

0.1735) 

 (0.2945, 

0.3596) 
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Ash  -0.1524  -0.3270  1.44 

  (-0.1735,  

-0.1313) 

 (-0.3596,  

-0.2945) 

  

Phase AD 0.0064 0.0064 0.2578 0.2577 1.03 1.03 

 (-0.0685, 

0.0814) 

P=0.87 

(-0.0685, 

0.0814) 

P=0.87 

(0.1422, 

0.3734) 

(0.1421, 

0.3733) 

  

 

b. The NDF dataset  

 Gross Energy Density Metabolisable Energy 

Density 

VIF 

 Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

       

(Intercept) 1.3475 17.2547 -30.8702 17.2736   

 (-0.1772, 

2.8723) 

P=0.08 

(17.1493, 

17.3601) 

(-

33.6411, -

28.0993) 

(17.0820, 

17.4652) 

  

CP 0.2169 0.0579 0.5444 0.0630 16.72 1.32 

 (0.1983, 

0.2355) 

(0.0526, 

0.0631) 

(0.5106, 

0.5782) 

(0.0535, 

0.0725) 

  

EE 0.3741 0.2151 0.6704 0.1890 6.51 1.04 

 (0.3560, 

0.3922) 

(0.2078, 

0.2223) 

(0.6375, 

0.7033) 

(0.1758, 

0.2021) 

  

NDF 0.1704 0.0113 0.3912 -0.0902 24.73 1.06 

 (0.1538, 

0.1870) 

(0.0079, 

0.0148) 

(0.3611, 

0.4213) 

(-0.0964,  

-0.0840) 

  

NFC 0.1591  0.4814  51.11  
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 (0.1435, 

0.1746) 

 (0.4532, 

0.5097) 

   

Ash  -0.1591  -0.4814  1.39 

  (-0.1746,  

-0.1435) 

 (-0.5097,  

-0.4532) 

  

Phase AD 0.0272 0.0272 0.3305 0.3305 1.04 1.04 

 (-0.0268, 

0.0813) 

P=0.32 

(-0.0268, 

0.0813) 

P=0.32 

(0.2323, 

0.4287) 

(0.2323, 

0.4287) 

  

       

 

c. The NDF plus Starch dataset  

 Gross Energy Density Metabolisable Energy 

Density 

VIF 

 Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

       

(Intercept) 2.6865 17.2588 -31.6787 17.1835   

 (1.2830, 

4.0899) 

(16.9903, 

17.5273) 

(-

34.9061, -

28.4512) 

(16.5661, 

17.8009) 

  

CP 0.1946 0.0488 0.5620 0.0734 17.59 1.97 

 (0.1774, 

0.2117) 

(0.0431, 

0.0546) 

(0.5225, 

0.6015) 

(0.0602, 

0.0866) 

  

EE 0.3589 0.2132 0.6620 0.1734 8.15 1.28 

 (0.3419, 

0.3759) 

(0.2064, 

0.2199) 

(0.6229, 

0.7011) 

(0.1579, 

0.1889) 

  

NDF 0.1604 0.0147 0.3831 -0.1055 24.85 1.72 
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 (0.1447, 

0.1762) 

(0.0106, 

0.0188) 

(0.3469, 

0.4194) 

(-0.1150,  

-0.0960) 

  

Starch 0.1466 0.0008 0.4930 0.0044 94.65 3.29 

 (0.1324, 

0.1607) 

(-0.0018, 

0.0035) 

P=0.54 

(0.4604, 

0.5256) 

(-0.0017, 

0.0105) 

P=0.16 

  

Res1 0.1457  0.4886  34.91  

 (0.1310, 

0.1605) 

 (0.4547, 

0.5226) 

   

Ash  -0.1457  -0.4886  1.88 

  (-0.1605,  

-0.1310) 

 (-0.5226,  

-0.4547) 

  

Phase AD 0.0175 0.0175 0.4085 0.4085 1.11 1.11 

 (-0.0250, 

0.0600) 

P=0.42 

(-0.0250, 

0.0600) 

P=0.42 

(0.3108, 

0.5062) 

(0.3108, 

0.5062) 

  

       

 

d. The NDF plus Starch and Sugars dataset  

 Gross Energy Density Metabolisable Energy 

Density 

VIF 

 Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

Residue 

Model 

Ash 

Model 

(Intercept) -1.0733 18.3393 -17.3681 13.0380   

 (-2.6847, 

0.5380) 

P=0.19 

(17.7786, 

18.9000) 

(-

21.4723, -

13.2640) 

(11.6099, 

14.4660) 

  

CP 0.2427 0.0485 0.3961 0.0920 20.04 2.76 
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 (0.2232, 

0.2621) 

(0.0413, 

0.0557) 

(0.3466, 

0.4456) 

(0.0737, 

0.1104) 

  

EE 0.4001 0.2059 0.4983 0.1942 13.21 1.93 

 (0.3811, 

0.4191) 

(0.1987, 

0.2132) 

(0.4498, 

0.5467) 

(0.1757, 

0.2127) 

  

NDF 0.2000 0.0059 0.2199 -0.0841 37.87 4.15 

 (0.1820, 

0.2181) 

(-0.0001, 

0.0119) 

P=0.053 

(0.1740, 

0.2659) 

(-0.0993,  

-0.0689) 

  

Starch 0.1844 -0.0097 0.3479 0.0438 115.03 13.40 

 (0.1682, 

0.2006) 

(-0.0153,  

-0.0042) 

P=0.001 

(0.3065, 

0.3893) 

(0.0297, 

0.0579) 

  

Sugars 0.1809 -0.0132 0.3429 0.0388 11.64 2.44 

 (0.1619, 

0.1999) 

(-0.0219,  

-0.0045) 

P=0.003 

(0.2945, 

0.3913) 

(0.0166, 

0.0610) 

P=0.001 

  

Res2 0.1941  0.3041  17.00  

 (0.1749, 

0.2134) 

 (0.2551, 

0.3531) 

   

Ash  -0.1941  -0.3041  3.42 

  (-0.2134,  

-0.1749) 

 (-0.3531,  

-0.2551) 

  

Phase AD 0.0067 0.0067 0.4750 0.4750 1.18 1.18 

 (-0.0300, 

0.0433) 

P=0.72 

(-0.0300, 

0.0433) 

P=0.72 

(0.3817, 

0.5684) 

(0.3817, 

0.5684) 
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Table 3. Calculated gross and metabolisable energy density of nutrients. 

 GE Density (kJ/g)      ME Density (kJ/g) 

Nutrient P
u
b
li

ca
ti

o
n
-b

as
ed

 

O
u
r 

es
ti

m
at

e 

M
ed

ia
n
 

A
p
p
ar

en
t 

D
ig

es
ti

b
il

it
y
 

D
E

 D
en

si
ty

 (
k
J/

g
) 

F
ib

re
 G

as
eo

u
s 

lo
ss

 (
%

 

D
E

) 

A
ft

er
 

F
ib

re
 

G
as

eo
u
s 

lo
ss

 

M
E

:D
E

 R
at

io
 

C
al

cu
la

te
d
 

O
u
r 

es
ti

m
at

e 
fr

o
m

 

re
g
re

ss
io

n
s 

Crude protein 23.71 23.05 0.80 18.97   0.83 15.74 18.79 

Ether extract 39.22 38.62 0.75 29.41   1.00 29.41 30.55 

Crude fibre 19.83 20.14 0.40 7.93 5 7.54 1.00 7.54 -15.73 

Neutral Detergent 

Fibre 
17.41 18.79 0.60 10.45 5 9.92 1.00 9.92 3.77 

Nitrogen-free 

extractives 
17.39 17.50 0.90 15.65   1.00 15.65 15.96 

Non-fibrous 

Carbohydrates 
17.32 17.29 1.00 17.32   1.00 17.32 16.68 

Starch 17.46 17.37 1.00 17.46   1.00 17.46 17.54 

Sugars 16.14 16.89 1.00 16.14     1.00 16.14 15.28 

1. Our estimates of GE and ME density are taken from the non-intercept models, using mean values where possible. The ME values were from the grower/finisher data only. 

2. The basis for the data taken directly or calculated from publications is provided in the supplementary data. 

3. The values are estimated for typical diets with a digestibility greater than about 0.7; the energy density values for protein and fat are likely to be substantially lower in high-fibre diets. 

4. We have rounded our estimates on nutrient digestibility to the nearest 0.05 to avoid suggesting that the values are more than informed estimates from the literature. They could vary by 

0.05 to 0.1 units. 
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Table 4 Goodness of fit estimates for the gross and metabolisable energy density intercept-

based regressions of the combined GF and AD data. 

a. Gross Energy 

 

Parameter CF Model NDF Model 
NDF plus 

Starch Model 

NDF plus Starch and 

Sugars Model 

N 683 827 486 367 

Adj. R
2
 0.769 0.827 0.908 0.945 

Pred. R
2
 0.766 0.825 0.907 0.943 

RMSE 0.340 0.271 0.173 0.140 

RSD/RSE 0.341 0.272 0.175 0.142 

MAE  0.215 0.196 0.133 0.110 

(95% CI) (0.196, 0.235) (0.183, 0.209) (0.123, 0.143) (0.102, 0.119) 

MAPE (%) 1.167 1.061 0.729 0.603 

AIC 477.061 200.649 -307.751 -382.911 

 

b. Metabolizable Energy 

Parameter CF Model NDF Model 
NDF plus Starch 

Model 

NDF plus Starch 

and Sugars 

Model 

N 683 827 486 367 

Adj. R
2
 0.751 0.775 0.845 0.869 

Pred. R
2
 0.747 0.772 0.842 0.865 

RMSE 0.524 0.492 0.399 0.357 

RSD/RSE 0.526 0.494 0.402 0.361 

MAE 0.422 0.391 0.324 0.289 

(95% CI) (0.399, 0.446) (0.370, 0.411) (0.303, 0.345) (0.268, 0.311) 

MAPE (%) 2.880 2.652 2.224 2.031 

AIC 1069.173 1188.665 501.709 303.331 
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Table 5 No intercept regressions. The data for the grower/finisher and adult animals are 

combined to estimate the gross energy density coefficients but reported separately for the 

metabolisable energy density coefficients (see text for explanation). 

a. Gross Energy Density 

 CF Model NDF Model NDFS Model NDFSS Model 

CP 0.2326 0.2328 0.2267 0.2300 

 (0.2284, 0.2368) (0.2291, 0.2366) (0.2231, 0.2303) (0.2259, 0.2341) 

EE 0.3790 0.3886 0.3891 0.3879 

 (0.3700, 0.3881) (0.3816, 0.3957) (0.3830, 0.3952) (0.3824, 0.3934) 

CF 0.2014    

 (0.1905, 0.2122)    

NFE 0.1750    

 (0.1738, 0.1763)    

NDF  0.1851 0.1904 0.1882 

  (0.1821, 0.1881) (0.1875, 0.1933) (0.1857, 0.1908) 

NFC  0.1729   

  (0.1718, 0.1739)   

Starch   0.1737 0.1736 

   (0.1728, 0.1746) (0.1727, 0.1746) 

Res1   0.1733  

   (0.1707, 0.1759)  

Sugars    0.1689 

    (0.1625, 0.1754) 

Res2    0.1815 

    (0.1766, 0.1864) 

 

1. Values in parentheses are the 95% confidence intervals. 

2. Unless otherwise shown, the p values are < 0.001. 
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b. Metabolisable Energy Density 

 Grower/Finisher data Adult data 

  CF Model NDF Model NDFS Model 
NDFSS 

Model 
CF Model 

NDF 

Model 

NDFS 

Model 

NDFSS 

Model 

CP 0.2014 0.1769 0.1830 0.1901 0.1763 0.1666 0.1900 0.1995 

 
(0.1941, 

0.2087)  

(0.1674, 

0.1864)  

(0.1710, 

0.1950)  

(0.1773, 

0.2029)  

(0.1516, 

0.2010)  

(0.1498, 

0.1835)  

(0.1681, 

0.2118)  

(0.1751, 

0.2239)  

EE 0.2889 0.3315 0.2997 0.3019 0.2843 0.3476 0.3141 0.3062 

 
(0.2724, 

0.3053)  

(0.3134, 

0.3496)  

(0.2782, 

0.3211)  

(0.2846, 

0.3193)  

(0.2516, 

0.3170)  

(0.3203, 

0.3749)  

(0.2855, 

0.3428)  

(0.2794, 

0.3330)  

CF -0.1573    -0.0505    

 
(-0.1770,         

-0.1376)  
   

(-0.0894,     

-0.0115) 

P=0.012 

   

NFE 0.1596    0.1613    

 
(0.1573, 

0.1618)  
   

(0.1558, 

0.1668)  
   

NDF  0.0618 0.0291 0.0221  0.0608 0.0602 0.0530 

  
(0.0541, 

0.0695)  

(0.0188, 

0.0394)  

(0.0138, 

0.0303)  
 

(0.0489, 

0.0726)  

(0.0461, 

0.0742)  

(0.0396, 

0.0664)  

NFC  0.1668    0.1737   

  (0.1642,    (0.1695,   
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 Grower/Finisher data Adult data 

  CF Model NDF Model NDFS Model 
NDFSS 

Model 
CF Model 

NDF 

Model 

NDFS 

Model 

NDFSS 

Model 

0.1694)  0.1779)  

 

 

Starch 

  

 

 

0.1747 

 

 

0.1760 

  

 

 

0.1696 

 

 

0.1701 

   
(0.1716, 

0.1778)  

(0.1729, 

0.1792)  
  

(0.1647, 

0.1745)  

(0.1655, 

0.1746)  

Res1   0.1621    0.1538  

   
(0.1533, 

0.1709)  
   

(0.1295, 

0.1780)  
 

Sugars    0.1528    0.1374 

    
(0.1341, 

0.1715)  
   

(0.0647, 

0.2101)  

Res2    0.0948    0.1552 

    
(0.0792, 

0.1104)  
   

(0.1270, 

0.1833)  

 

1. Values in parentheses are the 95% confidence intervals. 

2. Unless otherwise shown, the P values are < 0.001. 
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Table 6 Goodness of fit estimates for the gross and metabolisable energy density no-intercept regressions of the grower/finisher and adult data in 

Table 5 

 
Gross Energy Density: GF and AD 

combined 

Metabolisable Energy Density: 

Grower/Finisher data only 

Metabolisable Energy Density:  

Adult data only 

Parameter 
CF 

Model 

NDF 

Model 

NDFS 

Model 

NDFSS 

Model 

CF 

Model 

NDF 

Model 

NDFS 

Model 

NDFS

S 

Model 

CF 

Model 

NDF 

Model 

NDFS 

Model 

NDFS

S 

Model 

N 683 827 486 367 587 709 397 276 96 118 89 91 

RMSE 0.341 0.272 0.176 0.140 0.576 0.651 0.562 0.392 0.413 0.369 0.321 0.307 

RSD/RSE 0.342 0.272 0.177 0.142 0.578 0.653 0.566 0.396 0.422 0.376 0.330 0.318 

MAE  0.215 0.197 0.133 0.111 0.461 0.524 0.452 0.314 0.332 0.284 0.239 0.233 

(95% CI) 
(0.195, 

0.235) 

(0.184, 

0.210) 

(0.123, 

0.143) 

(0.102, 

0.120) 

(0.433

, 

0.489) 

(0.495

, 

0.552) 

(0.419

, 

0.485) 

(0.286

, 

0.342) 

(0.282

, 

0.382) 

(0.241

, 

0.327) 

(0.194

, 

0.284) 

(0.191

, 

0.275) 

MAPE 

(%) 
1.164 1.069 0.727 0.607 3.155 3.584 3.122 2.224 2.268 1.933 1.651 1.616 

AIC 477.6 200.9 -296.9 -385.0 
1029.

2 

1413.

0 
681.1 280.2 112.6 109.9 62.3 57.4 

 

1. Values for R
2
 are inappropriate for no-intercept regressions and are excluded.  
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Table 7. Comparison of goodness of fit measures of the four datasets of common 

grower/finisher and adult records 

a. Gross Energy 

Parameter CF Model NDF Model NDFS Model NDFSS Model 

N 359 359 359 359 

Adj. R
2
 0.943 0.944 0.944 0.945 

Pred. R
2
 0.942 0.943 0.943 0.943 

RMSE 0.144 0.143 0.142 0.141 

RSD/RSE 0.145 0.144 0.143 0.142 

MAE  0.114 0.112 0.111 0.111 

(95% CI) (0.105, 0.123) (0.103, 0.121) (0.101, 0.120) (0.102, 0.120) 

MAPE (%) 0.621 0.610 0.605 0.606 

AIC -359.502 -365.757 -366.330 -371.806 

b. Metabolizable Energy 

Parameter CF Model NDF Model NDFS Model NDFSS Model 

N 359 359 359 359 

Adj. R
2
 0.784 0.851 0.861 0.865 

Pred. R
2
 0.779 0.848 0.857 0.861 

RMSE 0.442 0.367 0.354 0.348 

RSD/RSE 0.446 0.370 0.357 0.352 

MAE 0.343 0.299 0.288 0.283 

(95% CI) (0.314, 0.372) (0.277, 0.321) (0.266, 0.309) (0.261, 0.304) 

MAPE (%) 2.399 2.087 2.008 1.973 

AIC 446.726 313.255 288.971 279.836 
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Table 8 The probable range of goodness of fit measures for ME density on future datasets 

with similar characteristics to the diets in this study, determined by a 10-fold cross-validation 

analysis repeated 10 times. Values in parenthesis are the 95% CI. 

 

GOF Indices CF NDF NDFS NDFSS 

R
2
 

0.751 

 (0.740, 0.762) 

0.775 

 (0.767, 0.783) 

0.844 

 (0.838, 0.851) 

0.867 

 (0.859, 0.875) 

Predicted R
2
 

0.747 0.772 0.842 0.865 

Adjusted R
2
 

0.747 

 (0.736, 0.758) 

0.772 

 (0.764, 0.780) 

0.841 

 (0.834, 0.848) 

0.863 

 (0.855, 0.872) 

RMSE 

0.528 

 (0.519, 0.536) 

0.495 

 (0.488, 0.502) 

0.404 

 (0.396, 0.411) 

0.364 

 (0.356, 0.372) 

RSD 

0.527 

 (0.518, 0.535) 

0.495 

 (0.488, 0.502) 

0.406 

 (0.398, 0.413) 

0.363 

 (0.355, 0.371) 

MAE 

0.427 

 (0.419, 0.434) 

0.394 

 (0.388, 0.400) 

0.329 

 (0.322, 0.335) 

0.296 

 (0.289, 0.303) 

 

 

1. The Predicted R
2
 values from Table 4b have been included for comparison. 
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Table 9. Published equations for the prediction of ME density from analytical components of diets standardised as g/100g for nutrients and 

kJ/g for energy. The regression equations have been applied to the average nutrient values for the 271 grower/finisher records from the 

common dataset to give a predicted ME density. The average measured ME density of the 271 records was 14.34 kJ/g. For consistency, the 

predicted ME densities and GOF indices have been rounded to two decimal places. See footnote 1 for the definition of the residues (Res1 to 4). 

Intercept Models 

Source 
# Diets Model Equation 

Predict. 

ME 
R

2
 RSD 

RMS

E 

A 
21 Ingred + 

16 diets 

Equation 35 -20.0623 + 0.4163 CP + 0.6054 AEE + 0.3674 NFE 14.06 0.90 0.89  

Our 

regression 
-19.8385 + 0.4147 CP + 0.5858 EE – 0.0048 CF + 0.3677 NFE 14.17 0.88  0.95 

B 24 Diets 
CF & NFE 

v6 

-8.529 + 0.255 CP + 0.338 EE + 0.036 CF + 0.266 Starch + 0.293 

Sugars + 0.200 Res3 
14.31 0.90 0.22  

C 
321 Diets Table XV 5.412 + 0.143 CP + 0.194 EE - 0.245 CF + 0.106 NFE 14.46 0.77 0.72  

50 Diets Table XVI -34.627 + 0.632 CP + 0.624 EE + 0.109 CF + 0.516 NFE 13.83 0.96 0.32  

D 114 Diets 
Equation 34 17.4391 + 0.05858 CP + 0.1715 EE - 0.2552 CF - 0.5146 Ash 14.30 0.88 0.34  

Equation 35 17.5477 + 0.0418 CP + 0.1715 EE - 0.1464 NDF - 0.3849 Ash 14.08 0.92 0.29  

E 77 Diets Equation 26 17.64 + 0.039 CP + 0.151 EE - 0.135 NDF - 0.323 Ash 14.64 0.91 0.30  

F 

587 GF 

Diets  
CF & NFE -16.4063 + 0.3894 CP + 0.4686 EE + 0.0649 CF + 0.3271 NFE 14.38 

0.75 0.53 0.52 
587 GF 

Diets  
CF & Ash 16.3006 + 0.0623 CP + 0.1416 EE - 0.2622 CF - 0.3270 Ash 14.38 

https://doi.org/10.1017/S0007114525000042  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114525000042


Accepted manuscript 
 

 

709 GF 

Diets 
NDF & NFC -30.8702 + 0.5444 CP + 0.6704 EE + 0.3912 NDF + 0.4814 NFC 14.47 

0.78 0.49 0.49 
709 GF 

Diets 
NDF & Ash 17.2736 + 0.0630 CP + 0.1890 EE - 0.0902 NDF -0.4814 Ash 14.47 

397 GF 

Diets 
NDFS 

-31.6787 + 0.5620 CP + 0.6620 EE + 0.3831 NDF + 0.4930 Starch 

+ 0.4886 Res1 
14.43 

0.85 0.40 0.40 
397 GF 

Diets 
NDFS & Ash 

17.1835 + 0.0734 CP + 0.1734 EE -0.1055 NDF +0.0044 Starch - 

0.4886 Ash 
14.43 

276 GF 

Diets 

NDFSS & 

NDF 

-17.3681 - 0.3961 CP + 0.4983 EE + 0.2199 NDF + 0.3479 Starch 

+ 0.3429 Sugars + 0.3041 Res2
 

14.34 

0.87 0.36 0.36 
276 GF 

Diets 

NDFSS & 

Ash 

13.0380 + 0.0920 CP + 0.1942EE - 0.0841 NDF + 0.0438 Starch + 

0.0388 Sugars - 0.3041 Ash 
14.33 
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No-intercept Models 

 

 

 

 

No-intercept Models 

Source # Diets Model Equation 
Predict. 

ME 
R

2
 RSD 

RMS

E 

A 
21 Ingred + 

16 diets 

Our 

regression 
0.1735 CP + 0.3897 EE - 0.2450 CF + 0.1685 NFE 14.49   1.35 

C 
321 diets  Table XV 0.203 CP+ 0.252EE - 0.178 CF + 0.162 NFE 14.40  0.32  

50 diets Table XVI 0.236 CP + 0.260 EE - 0.272 CF + 0.159 NFE 14.36  0.36  

E 77 Diets 
Equation 26 

(G only) 
0.201 CP + 0.318 EE + 0.026 NDF + 0.171 Starch + 0.165 Res1# 14.77  0.34  

F 

587 GF 

Diets  
CF Model 0.2014 CP + 0.2889 EE - 0.1573 CF + 0.1596 NFE 14.48  0.58 0.58 

709 GF 

Diets 
NDF Model 0.1769 CP + 0.3315 EE + 0.0618 NDF + 0.1668 NFC 14.75  0.65 0.65 

397 GF 

Diets 
NDFS Model 

0.1830 CP + 0.2997 EE + 0.0291 NDF + 0.1747 Starch + 0.1621 

Res1#
 

14.55  0.57 0.56 

276 GF 

Diets 

NDFSS 

Model 

0.1901 CP + 0.3019 EE + 0.0221 NDF + 0.1760 Starch + 0.1528 

Sugars + 0.0948 Res2#
 

14.34  0.40 0.39 

G 

  

48 Diets 

  

Table 2 (ME 

from DE less 

urine) 

0.226 CP + 0.319 EE - 0.129 CF + 0.166 Starch + 0.184 Sugars + 

0.097 Res3# 
14.74  0.37  

Table 2 0.223 CP + 0.341 EE -0.109 CF + 0.170 Starch + 0.168 Sugars + 14.66  0.28  
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(calculated 

MEBFS) 

0.074 Res3# 

H 

  

  

  

Piglets & 

GF 290 

Diets 

Model B1 
0.20930 CP + 0.32846 EE - 0.23898 CF + 0.16458 Starch 

+0.21068 Sugars + 0.13962 Res3# 
14.55   0.24 

Piglets & 

GF 290 

Diets 

Model C1 
0.21503 CP + 0.32497 EE - 0.21071 CF + 0.16309 Starch + 

0.14701 Res4# 
14.52   0.25 

Piglets & 

GF 290 

Diets 

Model D1 0.21041 CP + 0.33050 EE - 0.25123 CF + 0.16164 NFE 14.45   0.26 

Piglets 92 

Diets 
Model B2 

0.19395 CP + 0.43018 EE - 0.14847 CF + 0.16182 Starch + 

0.15015 Sugars + 0.14131 Res3# 
14.76   0.23 

Piglets 92 

Diets 
Model C2 

0.19329 CP + 0.43655 EE - 0.14559 CF + 0.16131 Starch + 

0.14313 Res4# 
14.76   0.22 

Piglets 92 

Diets 
Model D2 0.19586 CP + 0.42760 EE - 0.19627 CF + 0.15791 NFE 14.63   0.22 

G/F 198 

Diets  
Model B3 

0.20984 CP + 0.31895 EE - 0.23710 CF + 0.16556 Starch + 

0.21359 Sugars + 0.13495 Res3# 
14.53   0.24 

G/F 198 

Diets 
Model C3 

0.21984 CP + 0.30506 EE - 0.20134 CF + 0.16413 Starch + 

0.13961 Res4# 
14.48   0.25 
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G/F 198 

Diets 
Model D3 0.21197 CP + 0.31849 EE - 0.26291 CF + 0.16224 NFE 14.41   0.27 

I 524 Diets 
C1 Piglets & 

GF 

0.2039 CP + 0.3702 EE -0.1775 CF + 0.1648 Starch + 0.1412 Res 

4
#
 

14.64    0.32 

 

1. # Organic residue definitions:  

Res1: 100-(CP+EE+NDF+Starch+Ash);  

Res2: 100-(CP+EE+NDF+Starch+Sugars+Ash); 

Res3: 100-(CP+EE+CF+Starch+Sugars+Ash);  

Res4: 100-(CP+EE+CF+Starch+Ash) 

2. Source key: A - Morgan et al., 1975 II (see 3 below), B - Eeckhout and Moermans, 1981, C - Just et al., 1984, D - Noblet & Perez 1993, E - Le Goff & Noblet, 2001, 

F – Current paper, G - Kirchgessner & Roth, 1983, H - Bulang and Rodehutscord 2009, I - Grümpel-Schlüter et al., 2021. 

3. Mean analytical values (%, g/100g) for the 271 G/F records in the common dataset:  

CP 18.50, EE 4.10, CF 5.29, NFE 65.17, NDF 15.55, NFC 54.91, Starch 46.15, Sugars 4.92, Res1 8.77, Res2 3.84, Res3 14.09, Res4 19.02, Ash 6.94. 

4. The Morgan data combines ingredient and diet data. Their original Eq 35 uses acid hydrolysis ether extract as a coefficient. We have used the ether extract value, 

which introduces a small error in the predicted ME value. We carried out a multiple regression analysis of Morgan’s data to estimate the coefficients of intercept and 

no-intercept models that included CP, EE, CF and NFE. Our regression based on CP, EE, and NFE gave coefficients nearly identical to those of Morgan’s Eq 35 

despite substituting EE for AEE. 

 

5. For our intercept-based regressions (F), the GOF values are from the combined GF and Adult data. 

 

6. For reasons given in the text, R
2
 values are not relevant for no-intercept models and are excluded even when given in a publication. 
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