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Abstract

We consider a feed-forward network with a single-server station serving jobs with multiple
levels of priority. The service discipline is preemptive in that the server always serves a job
with the current highest level of priority. For this system with discontinuous dynamics, we
establish the sample path large deviation principle using a weak convergence argument. In
the special case where jobs have two different levels of priority, we also explicitly identify
the exponential decay rate of the total population overflow probabilities by examining
the geometry of the zero-level sets of the system Hamiltonians.
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1. Introduction

Consider a single-server station with multiple classes of exogenous jobs, where each class is
assigned a priority level. The service discipline is preemptive in that the server always serves a
job with the current highest level of priority. Jobs with the same priority level are served under
the first-in–first-out policy. This model is probably the simplest feed-forward network with
preemptive priority discipline [5]. Yet, it still captures the source of difficulty in the analysis of
such systems, namely, the discontinuous dynamics due to the preemptive service policy.

The theory of large deviations is concerned with the asymptotic behavior of tails of sequences
of probability distributions. Let S be a Polish space equipped with the Borel σ -algebra, and let
{Xn} be a sequence of S-valued random variables. A lower semicontinuous function I : S →
[0, ∞] with compact level sets is said to be a large deviation upper bound rate function if, for
every closed subset F of S,

lim sup
n

1

n
log P(Xn ∈ F) ≤ − inf

x∈F
I (x).

Similarly, I is said to be a large deviation lower bound rate function if, for every open subset
G of S,

lim inf
n

1

n
log P(Xn ∈ G) ≥ − inf

x∈G
I (x).

If I is both an upper and a lower bound rate function, then {Xn} satisfies the large deviation
principle with rate function I .
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546 L. SETAYESHGAR AND H. WANG

Large deviations analysis for stable stochastic systems with continuous dynamics has been a
classical topic in probability theory [15]. However, the general methodologies and techniques
therein cannot be applied to models with discontinuous dynamics that arise naturally in a variety
of applications (notably queueing networks). In the last two decades, research on the large
deviations properties of such models has become more and more popular and many interesting
results have been obtained [4], [6], [14], [20], [22]. With minor regularity conditions, it is
possible to establish an explicit large deviation upper bound rate function [8] for stochastic
systems with very general discontinuous dynamics. However, this upper bound rate function
is not a lower bound rate function in general [1], [17]. The reason for this gap lies in the so
called ‘stability-about-the-interface’ condition. To give an intuitive explanation, let us consider
a simple model of random walk in R

d where the dynamics are constant in the two half-spaces
�1 = {x ∈ R

d : x1 ≤ 0} and �2 = {x ∈ R
d : x1 > 0}. Denote by Li the large deviation

local rate function for the dynamics in the region �i, i = 1, 2. The upper bound rate function
suggested by Dupuis et al. [8] on the interface � = {x ∈ R

d : x1 = 0} is the inf-convolution
of L1 and L2. That is, for every x ∈ � and β ∈ R

d ,

L(x; β) = inf [ρ1L1(ν) + ρ2L2(θ)], (1.1)

where the infimum is taken over all quadruples (ν, θ, ρ1, ρ2) such that

ν ∈ R
d , θ ∈ R

d , ρ1 ≥ 0, ρ2 ≥ 0, ρ1 + ρ2 = 1, ρ1ν + ρ2θ = β.

(1.2)

This upper bound rate function L is not a lower bound rate function in general. Indeed, it was
shown in [7, Chapter 7] that the large deviation rate function is defined exactly as in (1.1)–(1.2)
but with the extra constraints (i.e. the stability-about-the-interface condition)

ν1 ≥ 0 and θ1 ≤ 0

in (1.2). The reason for these extra constraints is that in order to prove a large deviation
lower bound, we need to analyze the cost associated with a piece of trajectory that travels on
the interface �. This is usually achieved by a change-of-measure argument so that the state
process closely tracks the trajectory under the new probability distribution. The vital role of
this stability-about-the-interface condition is to characterize all those changes of measures that
lead to the desired tracking behavior; see [7, Chapter 7] for more details.

The current paper consists of two parts. In the first part we establish the sample path large
deviation principle for the feed-forward network under consideration. It turns out that the
stability-about-the-interface condition is implicitly built into the upper bound rate function [8].
Consequently, the upper bound rate function is indeed the rate function. Similar results have
been obtained by Atar and Dupuis [3], whose analysis used the techniques of the Skorokhod
problem and, therefore, does not apply here. We also wish to point out that the analysis
in [18] can be applied to the current system to establish a sample path large deviation principle.
However, in [18] the rate function is only implicitly defined in terms of the convergence
parameters of the transform semigroup. Furthermore, we use a different approach based on
weak convergence, which seems to be very powerful, especially in dealing with discontinuous
dynamics; see also [10].

The simple form of the upper bound rate function (or the rate function) allows us to
characterize through partial differential equations the asymptotic behavior of various types
of buffer overflow probabilities. In the second part, we illustrate this connection by explicitly
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identifying the exponential decay rate of the total population overflow probabilities when the
exogenous jobs have two levels of priority. The form of the decay rate is motivated by examining
the geometry of the zero-level sets of the system Hamiltonians, and then rigorously verified by
constructing suitable subsolutions to the related partial differential equation.

This paper is partly motivated by the problem of estimating various buffer overflow probabil-
ities for feed-forward networks via importance sampling. It serves as a starting point towards
a large deviation analysis for more complicated networks with preemptive priority service
disciplines. The analysis suggests that it may not be uncommon for the stability-about-the-
interface condition to hold automatically for physically meaningful systems; see also [10].
This leads to the interesting open question of establishing a general sufficient condition to
recognize such systems.

This paper is organized as follows. In Section 2, the model setup and system dynamics
are introduced. The rate function and the large deviation principle are stated in Section 3. In
Section 4 we specialize to the two-dimensional case and explicitly identify the exponential
decay rate of the total population overflow probabilities. A brief summary is given in Section 5.
Some of the technical proofs are deferred to the appendices.

Notation. Unless specified otherwise, we will adopt the following notation.

1. If x is a vector then xi denotes its ith component.

2. If βi is a vector then [βi]k denotes its kth component.

3. ei denotes the vector with 1 in the ith component and 0s elsewhere.

4. The supremum norm is denoted by ‖ · ‖∞. For example, say f (x, t) is a function on
R

d × [0, T ]. Then
‖f ‖∞ = sup

(x,t)∈Rd×[0,T ]
|f (x, t)|.

5. A collection of random variables that take values in a Polish space S is said to be tight if
the probability measures that these random variables induce on S are tight.

6. At times, random variables and stochastic processes will be defined on different proba-
bility spaces. This happens, for example, when the Skorokhod representation theorem is
invoked. To ease exposition, we will use the same notation E to denote the expectation
on all these different probability spaces.

2. The model setup and system dynamics

We consider a single-server station serving d classes of exogenous jobs. Jobs of class
i, i = 1, . . . , d, arrive according to a Poisson process with rate λi > 0, and are buffered
at queue i. The service time for a class-i job is exponentially distributed with rate µi > 0.
The arrival processes and service times are assumed to be mutually independent. The system
adopts a service discipline such that a job of class i has preemptive priority over a job of class j

whenever i > j , and the server always serves a job with the current highest level of priority. Jobs
with the same priority level are served according to the first-in–first-out policy. See Figure 1.

The state process Q = {(Q1(t), . . . , Qd(t)) : t ≥ 0} is a d-dimensional process, where
Qi(t) denotes the queue size of a class-i job at time t . It is a continuous-time pure-jump
Markov process defined on some probability space, say, (	, F , Pr). Define 
(x) to be the
index of the nonempty queue with the highest priority at state x = (x1, . . . , xd) ∈ R

d+, that is,


(x) = max{i : xi > 0} with the convention that 
(0) = 0. (2.1)
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Figure 1: Feed-forward network with preemptive priority service policy.
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Figure 2: System dynamics for d = 2.

Note that the mapping 
 is lower semicontinuous. Under the preemptive service policy, the
set of all possible jumps of Q is

V = {±e1, . . . ,±ed},

and the jump intensity from state x to state x + v is defined as

r(x, v) =

⎧⎪⎨
⎪⎩

λi if v = ei ,

µi if v = −ei and i = 
(x) ≥ 1,

0 otherwise.

The dynamics of the system are discontinuous at the interface {x : 
(x) = i} for each 0 ≤ i ≤
d − 1. Thus, there are in total d interfaces of discontinuity whose dimensions range from 0 to
d − 1. These interfaces are also boundaries of the state space. See Figure 2.
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3. The large deviations analysis

In this section we study the sample path large deviation properties of the state process Q.
To this end, we define the scaled state process

Xn(t) = 1

n
Q(nt).

The processes {Xn : n ∈ N} are again continuous-time pure-jump Markov processes.

3.1. Hamiltonians and rate functions

For every α = (α1, . . . , αd) ∈ R
d , we define

H0(α) =
d∑

k=1

λk(e
αk − 1),

Hi(α) = µi(e
−αi − 1) +

d∑
k=1

λk(e
αk − 1), 1 ≤ i ≤ d.

The functions H0, H1, . . . , Hd are all strictly convex, and Hi corresponds to the Hamiltonian
in the region {x ∈ R

d+ : 
(x) = i}. These Hamiltonians are closely related to the log of the
moment generating functions of the infinitesimal increments of the process Q. Therefore,
they play an important role in the partial differential equation approach to the large deviation
analysis [9].

For each i, denote by Li the Legendre transform of Hi , that is, for each β ∈ R
d ,

Li(β) = sup
α∈Rd

[〈α, β〉 − Hi(α)].

Define ‘⊕’ as the inf-convolution operator and L̄i as the inf-convolution of Li , Li+1, . . . , Ld .
That is, for every β ∈ R

d ,

L̄i(β) = (Li ⊕ Li+1 ⊕ · · · ⊕ Ld)(β)

= inf

{ d∑
j=i

ρjLj (βj ) : βj ∈ R
d , ρj ≥ 0,

d∑
j=i

ρj = 1,

d∑
j=i

ρjβj = β

}
. (3.1)

The local rate function, denoted by L(x, β) for every x ∈ R
d+ and β ∈ R

d , is defined as

L(x, β) = L̄
(x)(β).

Note that the Legendre transform and inf-convolution of convex functions are still convex.
Thus, the local rate function L(x, ·) is convex for every x ∈ R

d+.

3.2. Sample path large deviations

Fix an arbitrary time T > 0. The sample paths {Xn(t) : t ∈ [0, T ]} live in the Polish space
of càdlàg functions D([0, T ] : R

d) endowed with the Skorokhod metric. For each x ∈ R
d+,

define the rate function Ix : D([0, T ] : R
d) → [0, ∞] by

Ix(φ) =
∫ T

0
L(φ(t), φ̇(t)) dt
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if φ(0) = x, φ(t) ∈ R
d+ for all t , and φ is absolutely continuous, and set Ix(φ) = ∞ otherwise.

It was established in [8] that the rate function {Ix : x ∈ R
d+} is an upper bound rate function and

has compact level sets on compacts in the sense that the set⋃
x∈C

{φ : Ix(φ) ≤ M}

is compact for every M ≥ 0 and compact set C ∈ R
d+.

As pointed out in the introduction, the stability-about-the-interface condition is automatically
built into the inf-convolution definition of the local rate function; thus, this upper bound rate
function is tight. More precisely, we have the following main result regarding the sample path
large deviation properties of {Xn}.

Recall that the large deviation principle and the Laplace principle are equivalent for prob-
ability measures on a Polish space [7, Theorem 1.2.1 and Theorem 1.2.3]. Let Exn denote the
expectation conditional on Xn(0) = xn.

Theorem 3.1. The processes {Xn(t) : t ∈ [0, T ]} satisfy the uniform Laplace principle with
rate functions {Ix : x ∈ R

d+}. That is, for any sequence {xn} ⊆ R
d+ such that xn → x and any

bounded continuous function h : D([0, T ] : R
d) → R, we have

lim
n→∞ −1

n
log Exn{exp[−nh(Xn)]} = inf

φ∈D([0,T ] : R
d+)

[Ix(φ) + h(φ)].

Therefore, {Xn(t) : t ∈ [0, T ]} with Xn(0) = x ∈ R
d+ satisfy the large deviation principle with

rate function Ix .

3.3. Proof of Theorem 3.1

Throughout the proof, we will assume without loss of generality that T = 1. The uniform
Laplace principle upper bound is implied by the uniform large deviation upper bound [8,
Theorem 1.1] through an argument analogous to [7, Theorem 1.2.1]. Therefore, it suffices to
show the uniform Laplace principle lower bound. That is, to show that

lim inf
n

1

n
log Exn{exp[−nh(Xn)]} ≥ − inf

φ∈D([0,1] : Rd )
[Ix(φ) + h(φ)]. (3.2)

Since the above inequality holds trivially if Ix(φ) = ∞, we can a priori assume that Ix(φ) is
finite, which dictates that φ is absolutely continuous.

For the convenience of the reader, we divide the long proof into four steps. In step 1, an
alternative representation for the left-hand side of (3.2) is established, which turns the analysis
of the lower bound (3.2) into that of a stochastic control problem. The construction of nearly
optimal controls is given in step 2. The analysis of the limit controlled process is carried out in
step 3 via the weak convergence approach. The desired lower bound (3.2) is finally established
in step 4.

Step 1: relative entropy representation. The proof utilizes the relative entropy representation
for exponential integrals [7, Proposition 1.4.2] and requires the construction of an appropriately
controlled process. To this end, it is often convenient to restrict φ to a more analytically tractable
class N , which consists of those absolutely continuous functions φ∗ : [0, 1] → R

d+ such that
there exists a positive integer K and a partition 0 = t0 < t1 < · · · < tk−1 < tK = 1 where
on each open interval (ti−1, ti), i = 1, . . . , K , both φ̇∗ and 
(φ∗) take constant values. The
following lemma states that any trajectory φ with finite cost can be approximated by a trajectory
in class N . The proof of this lemma is deferred to Appendix A.
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Lemma 3.1. Given any φ ∈ D([0, 1] : R
d) such that Ix(φ) < ∞ and any δ > 0, there exists

a φ∗ ∈ N such that ‖φ − φ∗‖∞ < δ and Ix(φ
∗) ≤ Ix(φ).

Thanks to this lemma and the continuity of h, it is easy to see that in order to show the lower
bound (3.2), we only need to prove that

lim inf
n

1

n
log Exn{exp[−nh(Xn)]} ≥ −[Ix(φ

∗) + h(φ∗)] (3.3)

for every φ∗ ∈ N . Denote by Pn the probability measure induced by Xn on the Polish
space D([0, 1] : R

d). Then, by the relative entropy representation of exponential integrals [7,
Section 1.4],

−1

n
log Exn{exp[−nh(Xn)]} = inf

[
1

n
R(Q ‖ Pn) +

∫
D([0,1] : Rd )

h dQ

]
,

where the infimum is taken over all probability measures Q on D([0, 1] : R
d). Now consider

those probability measures induced by jump Markov processes X̄n with initial condition
X̄n(0) = xn and generator L̄n such that

L̄nf (x, t) = n
∑
v∈V

r̄(x, t; v)

[
f

(
x + v

n

)
− f (x)

]
. (3.4)

Here r̄(x, t; v) is nonnegative and uniformly bounded, and also satisfies r̄(x, t; v) = 0 whenever
r(x; v) = 0 (in other words, X̄n is the scaled version of a jump Markov process with r̄(x, t; v) as
the jump intensity from state x to x +v at time t). If we restrict the infimum to such probability
measures, for which the explicit evaluation of the relative entropy R(·‖ Pn) is available [21,
Theorem B.6], we arrive at the inequality

− 1

n
log Exn{exp[−nh(Xn)]}

≤ inf
r̄

Exn

{∫ 1

0

∑
v∈V

r(X̄n(t); v)�

(
r̄(X̄n(t), t; v)

r(X̄n(t); v)

)
dt + h(X̄n)

}
,

where � is defined by

�(x) =
{

x log x − x + 1 if x ≥ 0,

∞ if x < 0,

with the convention that 0 · �(0/0) = 0. Therefore, in order to prove (3.3), it suffices to
construct, for an arbitrarily fixed positive constant ε, an alternative jump intensity function r̄

(dependent on ε) such that

lim sup
n

Exn

{∫ 1

0

∑
v∈V

r(X̄n(t); v)�

(
r̄(X̄n(t), t; v)

r(X̄n(t); v)

)
dt + h(X̄n)

}

≤ I (φ∗) + h(φ∗) + ε. (3.5)

We now set forth to prove this inequality.
Step 2: construction of r̄ . The construction of r̄ is based on the representation of the rate

function L̄i in terms of the function �. More precisely, we have the following lemma, whose
proof is very similar to that given in [10, Section 4.3]. For the sake of completeness, we include
the proof in Appendix B.
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Lemma 3.2. Given β ∈ R
d and i = 0, 1, . . . , d, we have the representation

L̄i(β) = inf

[ d∑
k=1

ρkµk�

(
µ̄k

µk

)
+

d∑
k=1

λk�

(
λ̄k

λk

)]
,

where the infimum is taken over strictly positive constants {µ̄k, λ̄k : k ≥ 1} and strictly positive
constants {ρk : k ≥ i} with ρk = 0 for k < i such that

d∑
k=i

ρk = 1, −
d∑

k=1

ρkµ̄kek +
d∑

k=1

λ̄kek = β.

Furthermore, L̄i(β) is finite if and only if βk ≥ 0 for all k < i.

Since φ∗ ∈ N , there exists a partition 0 = t0 < t1 < · · · < tK−1 < tK = 1 such that on
the open interval (tj , tj+1), both φ̇∗(t) and 
(φ∗(t)) take constant values, say φ̇∗(t) = βj and

(φ∗(t)) = Ij . Thanks to Lemma 3.2, we can define a collection {ρj

k , µ̄
j
k , λ̄

j
k}k≥0 such that

the following statements hold.

1. For k < Ij , ρ
j
k = 0, µ̄

j
k = µk , and λ̄

j
k = λk . Note that the definitions of µ̄

j
k and λ̄

j
k can

be arbitrary since the limit process does not spend any meaningful amount of time on the
interface {x ∈ R

d+ : 
(x) = k}.
2. For k ≥ Ij , ρ

j
k , µ̄

j
k , and λ̄

j
k are all strictly positive and satisfy

d∑
k=Ij

ρ
j
k = 1, −

d∑
k=1

ρ
j
k µ̄

j
kek +

d∑
k=1

λ̄
j
kek = βj , (3.6)

d∑
k=1

ρ
j
k µk�

(
µ̄

j
k

µk

)
+

d∑
k=1

λk�

(
λ̄

j
k

λk

)
≤ L̄Ij

(βj ) + ε. (3.7)

The alternative jump intensity r̄ is defined as follows. For every t ∈ [tj , tj+1), let

r̄(x, t; v) =

⎧⎪⎨
⎪⎩

λ̄
j
k if v = ek ,

µ̄
j
k if v = −ek and 
(x) = k ≥ 1,

0 otherwise.

(3.8)

The function r̄ defines a jump process X̄n, given the initial condition X̄n(0) = xn. We also
introduce the notation

βj,0 =
d∑

k=1

λ̄
j
kek, βj,i = −µ̄

j
i ei +

d∑
k=1

λ̄
j
kek, i = 1, . . . , d. (3.9)

It is trivial from definitions (3.8) and (3.9) that, for every t ∈ [tj , tj+1),

βj,
(x) =
∑
v∈V

r̄(x, t; v) · v. (3.10)

In other words, {βj,
(x)} corresponds to the law of large number limit of the velocity of the
process X̄n at state x.
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Remark 3.1. The probability measures induced by X̄n and Xn are absolutely continuous with
respect to each other. This is because, for any given jump size v, the corresponding jump
intensities r̄(x, t; v) and r(x; v) are either both zero or strictly positive.

Step 3: weak convergence analysis of the limit process. The goal of this step is to argue
that {X̄n} converges in distribution to φ∗. We first show that {X̄n} is tight and, thus, has a
subsequence converging in distribution, and then identify the weak limit to be φ∗. The proof of
tightness is standard. It is in the identification of the weak limit that the structure of the model,
namely the stability-about-the-interface condition, plays a crucial role; see Remark 3.2.

For each n, we define a collection of random measures γ n = (γ n
0 , γ n

1 , . . . , γ n
d ) on [0, 1],

where, for every k = 0, 1, . . . , d and every Borel set B ⊂ [0, 1],

γ n
k (B) =

∫
B

1{
(X̄n(t))=k} dt.

Here, for every ω ∈ 	, 1A(ω) is defined to be 1 if ω ∈ A and 0 otherwise. Each γ n
k is a

random variable taking values in the Polish space of subprobability measures on the interval
[0, 1], equipped with the topology of weak convergence.

Lemma 3.3. Given any subsequence of (γ n, X̄n), there exists a subsubsequence and a collec-
tion of random measures γ = (γ0, γ1, . . . , γd) on [0, 1] such that

1. the subsubsequence converges in distribution to (γ, φ∗);

2. with probability 1, γk is absolutely continuous with respect to the Lebesgue measure on
[0, 1], and its density, say hk , satisfies, for almost every t ,

hk(t) =
K−1∑
j=0

ρ
j
k 1(tj ,tj+1)(t). (3.11)

Proof. To simplify the notation, the subsequence is still denoted by (γ n, X̄n). We first argue
that it is tight. The family of random measures {γ n

k } is contained in the set of all subprobability
measures on [0, 1]. Since [0, 1] is compact, this set is compact as well. This proves the tightness
of {γ n}.

In order to show the tightness of {X̄n}, we introduce an auxiliary process Sn. Loosely
speaking, it is the ‘average’ of the process X̄n:

Sn(t) = xn +
d∑

k=0

[I (t)−1∑
j=0

βj,kγ n
k {[tj , tj+1)} + βI (t),kγ n

k {[tI (t), t)}
]
.

Here I (t) = max{j : tj ≤ t}. Since every random measure γ n
k is absolutely continuous with

respect to the Lebesgue measure on [0, 1] with the density or the Radon–Nikodým derivative
uniformly bounded by 1, {Sn} is uniformly Lipschitz continuous. It follows that {Sn} takes
values in a compact subset of C([0, 1] : R

d) by theArzélà–Ascoli theorem, which in turn implies
the tightness of {Sn}.

It suffices now to show that ‖X̄n − Sn‖∞ converges to 0 in probability (and, therefore, {X̄n}
is tight). To this end, we introduce the process

Zn(t) = nX̄n

(
t

n

)
, 0 ≤ t ≤ n.
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Note that X̄n is a scaled version of Zn. Since the generator of X̄n takes the form (3.4), it is
clear that the generator of Zn, denoted by Ln, is such that

Lnf (z, t) =
∑
v∈V

r̄

(
z

n
,

t

n
; v

)
[f (z + v) − f (z)].

In other words, Zn is a pure-jump Markov process whose jump intensity (for a jump of size v)
at state Zn = z and time t is

λn(z, t; v) = r̄

(
z

n
,

t

n
; v

)
. (3.12)

For every v ∈ V, denote by Yn,v the counting process for jumps of size v associated with the
process Zn. That is,

Yn,v(t) = number of jumps of size v up until time t for the process Zn.

It is clear that, for every t ∈ [0, 1],

Zn(t) = Zn(0) +
∑
v∈V

Yn,v(t) · v = nxn +
∑
v∈V

Yn,v(t) · v, (3.13)

and the instantaneous intensity function for Yn,v is λn(Z
n(t), t; v); see also [21, Appendix B]

for a more detailed discussion on counting processes.
We can now rewrite Sn in terms of the intensity function λn. Recalling the definitions of Sn

and {γ n
k }, and that I (s) = j if s ∈ [tj , tj+1) and I (s) = I (t) if s ∈ [tI (t), t), we have

Sn(t) = xn +
d∑

k=0

[I (t)−1∑
j=0

βj,k

∫ tj+1

tj

1{
(X̄n(s))=k} ds

+ βI (t),k

∫ t

tI (t)

1{
(X̄n(s))=k} ds

]

= xn +
d∑

k=0

∫ t

0
βI (s),k1{
(X̄n(s))=k} ds

= xn +
∫ t

0
βI (s),
(X̄n(s)) ds.

Thanks to (3.10) and (3.12), it follows that

Sn(t) = xn +
∫ t

0

∑
v∈V

r̄(X̄n(s), s; v) · v ds

= xn +
∫ t

0

∑
v∈V

λn(Z
n(ns), ns; v) · v ds

= xn + 1

n

∫ nt

0

∑
v∈V

λn(Z
n(s), s; v) · v ds.
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Combined with (3.13), we have

X̄n(t) − Sn(t) = 1

n
Zn(nt) − Sn(t)

= 1

n

∑
v∈V

[
Yn,v(nt) −

∫ nt

0
λn(Z

n(s), s; v) ds

]
· v.

It is now clear that X̄n − Sn is a martingale since λn is the intensity of Yn,v [13, Lemma 2.3.2].
Therefore, it follows from Doob’s maximal inequality that, for every fixed ε > 0,

Pr
xn

(
sup

t∈[0,1]
‖X̄n(t) − Sn(t)‖ > ε

)
≤ 1

ε2 Exn ‖X̄n(1) − Sn(1)‖2.

Thanks to (3.12) and the definition of r̄ in (3.8), λn is uniformly bounded by ‖r‖∞. Therefore,
for some constant C [13, Theorem 2.5.3],

Exn ‖X̄n(1) − Sn(1)‖2 ≤ C

n2

∑
v∈V

Exn

[
Yn,v(n) −

∫ n

0
λn(Z

n(s), s; v) ds

]2

= C

n2

∑
v∈V

Exn

∫ n

0
λn(Z

n(s), s; v) ds

≤ C · 2d‖r̄‖∞
n

.

The right-hand side of the above inequality converges to 0 as n tends to ∞. Therefore,
‖X̄n − Sn‖∞ converges to 0 in probability and {X̄n} is tight.

By Prohorov’s theorem [12, Chapter 3], there exists a subsubsequence, still denoted by
(γ n, X̄n), that converges in distribution to say (γ, X̄), where γ = (γ0, γ1, . . . , γd). Note
that X̄ is continuous since it is also the weak limit of Sn. By the Skorokhod representation
theorem [7, Theorem A.3.9], we can assume that the convergence is almost-sure convergence
when everything is defined on some probability space, say (	̄, F̄ , P̄r). Again, since {γ n

k } is
absolutely continuous with respect to the Lebesgue measure on [0, 1] with the density uniformly
bounded by 1, the limitγk also enjoys the same property. Furthermore, it follows that, for every t ,
Sn(t) converges almost surely to

S(t) = x +
d∑

k=0

[I (t)−1∑
j=0

βj,kγk{[tj , tj+1)} + βI (t),kγk{[tI (t), t)}
]
.

Therefore, S(t) = X̄(t) almost surely for every t . Since both S and X̄ are continuous, S = X̄

with probability 1. In particular, if we denote by hk the density of γk ,

dX̄(t)

dt
=

d∑
k=0

βI (t),khk(t) (3.14)

for almost every t .
It remains to show (3.11) and that X̄ = φ∗. In doing so, we first establish a useful property

of {hk}, namely, that, with probability 1,

d∑
k=0

hk(t) = 1 =
d∑

k=
(X̄(t))

hk(t) for almost every t ∈ [0, 1]. (3.15)
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The first equality is trivial since
∑d

k=0 γ n
k equals the Lebesgue measure on [0, 1] for every n.

The second equality follows from a standard argument [7, Theorem 7.4.4(c)]. Note that, for
almost every ω ∈ 	, X̄(t, ω) is continuous with respect to t , γ n(ω) converges weakly to γ (ω),
and X̄n(·, ω) converges to X̄(·, ω) in the Skorokhod metric. Arbitrarily fix such an ω. Define
Ai = {t ∈ [0, 1] : 
(X̄(t, ω)) = i}. Since X̄n(·, ω) also converges to X̄(·, ω) in the supremum
norm [21, Theorem A.6.5] and 
 is lower semicontinuous, it follows that, for every t ∈ Ai ,
there exists an open interval (at , bt ) containing t and an N ∈ N such that 
(X̄n(s, ω)) ≥ i

for all s ∈ (at , bt ) and n ≥ N . Therefore,
∑

k<i γ n
k (ω){(at , bt )} = 0 for all n ≥ N . Letting

n → ∞, it follows that
∑

k<i γk(ω){(at , bt )} = 0 for every t ∈ Ai . Since Ai ⊆ ⋃
t∈Ai

(at , bt ),
there exists a countable subcover [19, Lindelöf Theorem, p. 49], that is, there exists {tj } ⊆ Ai

such that

Ai ⊆
⋃
j

(atj , btj ).

It follows from the countable subadditivity of measures that
∑

k<i γk(ω){Ai} = 0. Therefore,

0 =
d∑

i=0

∑
k<i

γk(ω){Ai} =
∫ 1

0


(X̄(t))−1∑
k=0

hk(t, ω) dt.

This completes the proof (3.15). Combining (3.9), (3.14), and (3.15), we obtain the identity

dX̄(t)

dt
=

d∑
k=0

βj,khk(t) =
d∑

k=1

λ̄
j
kek −

d∑
k=max{
(X̄(t)),1}

µ̄
j
khk(t)ek (3.16)

for almost every t ∈ (tj , tj+1).
We will now use induction to argue (3.11). It is trivial that (3.11) holds for almost every

t ∈ [0, tj ] with j = 0 since t0 = 0. Assume that (3.11) holds for almost every t ∈ [0, tj ].
The goal is to show that it holds for almost every t ∈ [0, tj+1], or, equivalently, hk(t) = ρ

j
k for

almost every t ∈ (tj , tj+1).
It is not difficult to verify that X̄(t) = φ∗(t) for all t ∈ [0, tj ]. Indeed, by the induction

hypothesis that (3.11) holds for almost every t ∈ [0, tj ], and (3.6) and (3.9), we have

dX̄(t)

dt
=

d∑
k=0

βI (t),k
K−1∑
j=0

ρ
j
k 1(tj ,tj+1)(t)

=
K−1∑
j=0

d∑
k=0

ρ
j
k βj,k1(tj ,tj+1)(t)

=
K−1∑
j=0

βj 1(tj ,tj+1)(t)

= dφ∗(t)
dt

. (3.17)

Therefore, since X̄(0) = x = φ∗(0), X̄(t) = φ∗(t) for every t ∈ [0, tj ]. In particular, X̄(tj ) =
φ∗(tj ).
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Define Ij = 
(φ∗(t)) and βj = φ̇∗(t) for every t ∈ (tj , tj+1). Observing that [βj ]k = 0
for all Ij < k ≤ d , we can uniquely determine the value of {ρj

k } based on the definition of {ρj
k }

and (3.6), namely,

ρ
j
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ̄
j
k

µ̄
j
k

if Ij < k ≤ d,

1 −
d∑

k=Ij +1

λ̄
j
k

µ̄
j
k

if k = Ij ,

0 if k < Ij .

(3.18)

We also note that the lower semicontinuity of 
 implies that Ij ≥ 
(φ∗(tj )) = 
(X̄(tj )).
The key step in this inductive argument is to prove that 
(X̄(t)) = Ij for every t ∈

(tj , tj+1). To this end, note that 
(X̄(t)) can only take finitely many possible values; hence,
the maximum of 
(X̄(t)) on (tj , tj+1) must be attained at some t∗ ∈ (tj , tj+1). Since 
 is
lower semicontinuous, there exists an open interval that is contained in (tj , tj+1) such that,
for all t in this interval, 
(X̄(t)) ≥ 
(X̄(t∗)). Denote by (a, b) ⊆ (tj , tj+1) the largest of
such intervals. By the definition of t∗, 
(X̄(t)) = 
(X̄(t∗)) = i (say) for every t ∈ (a, b). It
follows from (3.16) that, on the interval (a, b),

dX̄(t)

dt
=

d∑
k=1

λ̄
j
kek −

d∑
k=max{i,1}

µ̄
j
khk(t)ek. (3.19)

Furthermore, since clearly [dX̄(t)/dt]k = 0 for all k > i and t ∈ (a, b), we can directly
compute hk from (3.15) and (3.19) to obtain a formula analogous to (3.18):

hk(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ̄
j
k

µ̄
j
k

if i < k ≤ d,

1 −
d∑

k=i+1

λ̄
j
k

µ̄
j
k

if k = i,

0 if k < i,

(3.20)

for almost every t ∈ (a, b).
We will argue by contradiction that i ≤ Ij . Assume otherwise, namely, i > Ij . Then, by

comparing (3.18) and (3.20), it follows easily that hi(t) > ρ
j
i and, thus,[

dX̄(t)

dt

]
i

= λ̄
j
i − µ̄

j
i hi(t) < λ̄

j
i − µ̄

j
i ρ

j
i = 0.

This implies that [X̄(a)]i > [X̄(t∗)]i > 0, or 
(X̄(a)) ≥ i > Ij . Recall that Ij ≥ 
(X̄(tj )).
Therefore, a 
= tj and, thus, we must have a > tj . By the lower semicontinuity of 
,
there exists a small η > 0 such that a − η > tj and 
(X̄(t)) ≥ i = 
(X̄(t∗)) for every
t ∈ (a−η, a]. Therefore, (a−η, b) ⊆ (tj , tj+1) is an interval on which 
(X̄(t)) ≥ 
(X̄(t∗)).
This contradicts the maximality of the interval (a, b). Therefore, i ≤ Ij and, hence,


(X̄(t)) ≤ Ij for all t ∈ (tj , tj+1). (3.21)

In order to show the reverse inequality, we exclude the trivial case by assuming that Ij ≥ 1.
Note that (3.21) implies that [dX̄(t)/dt]k = 0 for all k > Ij . Thanks to (3.16), this is equivalent
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to hk(t) = λ̄
j
k/µ̄

j
k = ρ

j
k for all k > Ij . It follows that

hIj
(t) ≤ 1 −

d∑
k=Ij +1

hk(t) = 1 −
d∑

k=Ij +1

ρ
j
k = ρ

j
Ij

,

which in turn implies that, for every t ∈ (tj , tj+1),

d[X̄(t) − φ∗(t)]Ij

dt
= [λ̄j

Ij
− µ̄

j
Ij

hIj
(t)] − [λ̄j

Ij
− µ̄

j
Ij

ρ
j
Ij

(t)] ≥ 0.

Since X̄(tj ) = φ∗(tj ), we have [X̄(t)]Ij
≥ [φ∗(t)]Ij

> 0, or 
(X̄(t)) ≥ Ij for all t ∈ (tj , tj+1).
Therefore, taking (3.21) into consideration we arrive at


(X̄(t)) = Ij = 
(φ̄∗(t))

on the interval (tj , tj+1).
The desired equality hk(t) = ρ

j
k for every t ∈ (ti , tj+1) is now trivial. Indeed, the two

formulae (3.18) and (3.20) are identical when i = 
(X̄(t)) = Ij . This completes the proof
of (3.11).

It remains to show that X̄(t) = φ∗(t) for all t ∈ [0, 1]. This can be done by repeating the
steps in (3.17) for every t ∈ (0, 1). The proof of Lemma 3.3 is now complete.

Step 4: analysis of the cost. Along the convergent subsubsequence (still denoted by
(γ n, X̄n)), Lemma 3.3 and (3.7) imply that

lim
n

Exn

{∫ 1

0

∑
v∈V

r(X̄n(t); v)�

(
r̄(X̄n(t), t; v)

r(X̄n(t); v)

)
dt + h(X̄n)

}

= lim
n

Exn

K−1∑
j=0

[∫ tj+1

tj

d∑
k=1

λk�

(
λ̄

j
k

λk

)
dt +

d∑
k=1

µk�

(
µ̄

j
k

µk

)
γ n
k (dt)

]
+ h(φ∗)

=
K−1∑
j=0

[∫ tj+1

tj

d∑
k=1

λk�

(
λ̄

j
k

λk

)
dt +

d∑
k=1

ρ
j
k µk�

(
µ̄

j
k

µk

)
dt

]
+ h(φ∗)

≤
K−1∑
j=0

∫ tj+1

tj

[L̄Ij
(βj ) + ε] dt + h(φ∗)

=
∫ 1

0
L(φ∗(t), φ̇∗(t)) dt + ε + h(φ∗).

This completes the proof of (3.5) as well as the proof of Theorem 3.1.

Remark 3.2. The stability-about-the-interface condition manifests itself in the monotonicity
of the value hk(t) with respect to the value of 
(X̄(t)); see (3.20). Loosely speaking, this
monotonicity property implies that the change of measure (control) defined by the upper bound
rate function automatically pushes the trajectory back to the discontinuous interface if it ever
wanders off. This guarantees the desired tracking behavior.
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4. A case study

In this section we illustrate in the context of an example how to explicitly identify the
exponential decay rate of a rare event of interest. Consider the case where d = 2 in the original
model. The probability of interest is

pn = Pr(total population Q1 + Q2 reaches n before coming back to 0,

starting from Q = (0, 0)).

Under the assumption that the stability condition holds, that is,

λ1

µ1
+ λ2

µ2
< 1,

the total population overflow is a rare event when n is large.
The exponential decay rate of pn can be explicitly identified in terms of the appropriate

roots of the Hamiltonians H1 and H2. Note that H2 is the Hamiltonian in the interior of the
state space, whereas H1 is the Hamiltonian on the boundary ∂ = {x : 
(x) = 1} = {x =
(x1, x2) : x2 = 0, x1 > 0}. For this reason, we simplify the notation and define

H = H2, H∂ = H1.

Sometimes H and H∂ are referred to as the interior and the boundary Hamiltonians, respectively.
Similarly, the rate functions L2 and L1 will be replaced by L and L∂ , respectively. We will
proceed heuristically for now to show the form of the decay rate of pn, which is closely
connected to the geometry of the zero-level sets of H and H∂ .

4.1. Three important roots of the Hamiltonians

The quantity of interest pn is just the probability of the scaled process Xn reaching the exit
boundary ∂e = {x = (x1, x2) : xi ≥ 0, x1 + x2 = 1} before coming back to the origin, starting
from the origin itself. Thanks to Theorem 3.1, it is reasonable to expect that the exponential
decay rate of pn equals the value of the calculus of variations problem

inf
∫ τ

0
L(φ(t), φ̇(t)) dt,

where the infimum is taken over all absolutely continuous functions φ : [0, ∞) → R
2+ and

τ ≥ 0 such that φ(0) = 0 and φ(τ) ∈ ∂e. It is not difficult to see that an optimal trajectory
φ∗, if it exists, should be a straight line due to the convexity of the local rate function and the
homogeneity of the system dynamics. See Figure 3.

In order to solve the aforementioned calculus of variations problem, we recast it into a control
problem. To this end, we slightly expand this variational problem to a general initial condition
φ(0) = x and denote the corresponding infimum by V (x). Note that the exponential decay
rate of pn is in fact V (0). Recall that the optimal trajectory φ∗ is a straight line, which either
travels through the interior of the state space or along the boundary ∂ . The value function V is
different in each of these two cases. We will discuss them separately.

If the optimal trajectory travels through the interior of the state space then the dynamic
programming principle implies that the value function V satisfies the Hamiltonian–Jacobi–
Bellman (HJB) equation

0 = inf
β

[L(β) + 〈∇V (x), β〉] = −H(−∇V (x)).
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x2 � Q2/n

x1 � Q1/n0

x2 � x2 � 1

φ*

φ

Pn (φ) α exp[−nI(φ)]

Figure 3: Representative limit sample path φ.
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�

� �
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Figure 4: Geometry and trajectory (I).

Furthermore, the boundary condition V (x) = 0 for x ∈ ∂e should hold. This suggests that
∇V (x) = −α∗, where H(α∗) = 0, and that α∗ is orthogonal to ∂e, or, equivalently, α∗

1 = α∗
2 .

In this case, the exponential decay rate of pn is just α∗
1 , and the optimal trajectory leaves the

domain in a straight line with slope β∗ = ∇H(α∗) (β∗ is the minimizer in the HJB equation).
We wish to make an important cautionary comment, namely that the geometry of the zero-level
set of H has to be taken into consideration in order for these heuristics to determine a possible
optimal trajectory. For illustration, consider the following two scenarios (see Figure 4). In both
cases, ᾱ denotes the point on the level set {H = 0} with the maximal first component, whence
∇H(ᾱ) = ae1 for some nonnegative constant a. In Figure 4(a) the 45◦ line intersects with
the level set at point α∗ which is above ᾱ. The corresponding β∗ = ∇H(α∗) has nonnegative
components. Therefore, the root α∗ determines a candidate optimal trajectory φ∗(t) = β∗t
that lives in the nonnegative orthant and hits ∂e in finite time. In contrast, in Figure 4(b) the
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45◦ line intersects with the level set at point α∗ which is below ᾱ and β∗ = ∇H(α∗) has a
negative second component. It is clear that this root α∗ does not associate with any physically
meaningful trajectory since φ∗(t) = β∗t will not live in the nonnegative orthant.

In the case where the optimal trajectory travels along the boundary ∂ , it may represent two
different types of prelimit behavior: (i) the trajectory really ‘pushes into’ the boundary if it
is the limit of the prelimit sample paths that constantly switch residence between the interior
and the boundary ∂; (ii) the trajectory barely ‘touches’ or ‘glides’ along the boundary ∂ if it
is the limit of those prelimit sample paths that live very close to the boundary ∂ . The way to
determine the trajectory also differs. For case (i), it is expected that along the boundary ∂ both
the interior and the boundary HJB equations will be satisfied. That is,

−H(−∇V (x)) = 0, −H∂(−∇V (x)) = 0.

This suggests that −∇V (x) = α̂, where H(α̂) = H∂(α̂) = 0. The exponential decay rate of
pn is therefore 〈α̂, e1〉 = α̂1. The corresponding trajectory is φ∗(t) = β∗t , where

β∗ = (β∗
1 , 0) = ρ1∇H(α̂) + ρ2∇H∂(α̂)

for some nonnegative constants ρ1 and ρ2 such that ρ1 + ρ2 = 1. The physical meaning of
this identity is fairly clear: ρ1 and ρ2 are respectively the limit fraction of time that the prelimit
sample paths spend in the interior and on the boundary ∂ , whereas ∇H(α̂) and ∇H∂(α̂) are
respectively the limit velocity of the prelimit sample paths in the interior and on the boundary ∂ .
For case (ii), when the limit optimal trajectory glides along the boundary ∂ , we expect that only
the interior HJB equation −H(−∇V (x)) = 0 will be satisfied. Hence, ∇V = −α̂, where
H(α̂) = 0 and the corresponding β∗ = ∇H(α̂) is a horizontal vector. The exponential decay
rate is thus 〈α̂, e1〉 = α̂1 and the corresponding trajectory is φ∗(t) = β∗t .

Again, when this heuristic is used to determine a possible optimal trajectory, the geometry of
the zero-level sets of H and H∂ has to be incorporated. For illustration, consider the following
two scenarios (see Figure 5). As before, ᾱ denotes the point on the level set {H = 0} with
the maximal first component. In Figure 5(a), the intersection of the two zero-level sets, α̂, is
below ᾱ. The corresponding β∗ does determine a possible optimal trajectory φ∗(t) = β∗t ,

(a) (b)

00

α

ᾱ

β*

H∂  0

H∂  0

ᾱ

α2

α1

α2

α1

H  0

H  0

H  0 H  0
α*

α*

   H∂(α*)

   H∂(α*)

   H(α*)

   H(α*)

   H(α)¯
   H(α)¯

� �

�

�
�

�

Figure 5: Geometry and trajectory (II).
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which ‘pushes into’ the boundary ∂ . In Figure 5(b), however, α̂ is above ᾱ. In this case, since
both ∇H(α̂) and ∇H∂(α̂) have positive second components, none of their convex combinations
will yield a horizontal velocity β∗. Therefore, this root α̂ does not represent any meaningful
trajectory traveling along the boundary ∂ . Indeed, the root that will determine such a trajectory
is ᾱ. It corresponds to a trajectory that ‘glides’along the boundary ∂ with velocity β∗ = ∇H(ᾱ),
a horizontal vector.

It is now clear that the roots α∗, ᾱ, and α̂ are crucial in the identification of the exponential
decay rate of pn. They can be explicitly calculated and we summarize the result in the following
lemma. Its proof is straightforward but tedious, and thus omitted. To ease notation, from now
on we let

θ1 = λ1

µ2
, θ2 = λ2

µ2
, θ3 = µ1

µ2
,

and define the constant

z = (θ1 + θ2 + θ3 − 1) + √
(θ1 + θ2 + θ3 − 1)2 + 4θ1(1 − θ3)

2θ3
.

Lemma 4.1. The constant z satisfies max{0, 1 − 1/θ3} < z < 1. Define vectors α∗, ᾱ, and α̂

to be
α∗ = −log [θ1 + θ2](1, 1),

α̂ = (−log z, −log [1 − θ3 + θ3z]),

ᾱ =
(

log

[
1 + (1 − √

θ2)
2

θ1

]
, −log

√
θ2

)
.

Then H(α∗) = 0, H(α̂) = H∂(α̂) = 0, and H(ᾱ) = 0 = 〈∇H(ᾱ), e2〉. Furthermore, for any
α such that H(α) = 0, the inequality α1 ≤ ᾱ1 holds, with equality if and only if α = ᾱ.

4.2. The exponential decay rate of pn

It is now intuitively clear what the exponential decay rate of pn should be. For example,
if α∗

2 > ᾱ2 and α̂2 < ᾱ2, then it corresponds to Figure 3(a) and Figure 4(a). Therefore,
α∗ determines a trajectory leaving the domain through the interior with cost α∗

1 , whereas α̂

determines a trajectory leaving the domain by ‘pushing into’ the boundary ∂ with cost α̂1. The
optimal trajectory should be the one with a smaller cost and the minimal cost is min(α∗

1 , α̂∗
1).

More generally, we haveTheorem 4.1, which can be shown by constructing suitable subsolutions
and invoking Lemma 4.2 below.

Lemma 4.2. Suppose that W : R
2+ → R is a twice continuously differentiable function satis-

fying

−H(−∇W(x)) ≥ 0 for x = (x1, x2) ∈ R
2+ such that x2 > 0,

−H∂(−∇W(x)) ≥ 0 for x ∈ ∂,

W(x) ≤ 0 for x ∈ ∂e.

Then

lim inf
n

−1

n
log pn ≥ W(0).

The function W is called a classical subsolution to the related partial differential equation.
This lemma can be shown by a verification argument and its proof is deferred to Appendix C.
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Theorem 4.1. The exponential decay rate of pn is

lim
n

−1

n
log pn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(α∗
1 , α̂1) if α∗

2 > ᾱ2, α̂2 < ᾱ2,

α∗
1 if α∗

2 > ᾱ2, α̂2 ≥ ᾱ2,

α̂1 if α∗
2 ≤ ᾱ2, α̂2 < ᾱ2,

ᾱ1 if α∗
2 ≤ ᾱ2, α̂2 ≥ ᾱ2.

Proof. We only give the details for the case where α∗
1 > ᾱ2 and α̂2 < ᾱ2. The proof for

other cases is similar and thus omitted. Let γ = min(α∗
1 , α̂1). We first show the upper bound

lim inf
n

−1

n
log pn ≥ γ. (4.1)

Thanks to Lemma 4.2, it suffices to construct a sequence of subsolutions whose values at the
origin approach γ . To this end, we define two vectors

v∗ = γ

α∗
1
α∗ = γ · (1, 1), v̂ = γ

α̂1
α̂ = γ ·

(
1,

α̂2

α̂1

)
.

Since H(α∗) = H(α̂) = H(0) = 0 and H∂(α̂) = H∂(0) = 0, it follows from the convexity of
H and H∂ that

H(v∗) ≤ 0, H(v̂) ≤ 0, H∂(v̂) ≤ 0.

We claim that v∗
2 > v̂2. Indeed, letting ν = (0, ᾱ2), where, by Lemma 4.1, ᾱ2 = −log

√
θ2, a

straightforward calculation yields

H(ν) = λ2

(
1√
θ2

− 1

)
+ µ2(

√
θ2 − 1) = −(

√
λ2 − √

µ2)
2 < 0.

Therefore, it follows from the strict convexity of H and H(ᾱ) = 0 that H(sᾱ + (1 − s)ν) ≤ 0
for all s ∈ [0, 1]. This in turn implies that

α̂2

α̂1
<

ᾱ2

ᾱ1
,

since otherwise s∗ = ᾱ2/ᾱ1 · α̂1/α̂2 ∈ [0, 1], and the convexity of H implies that (note that
α̂2 < ᾱ2 by assumption)

H(α̂) <
α̂2

ᾱ2
H(s∗ᾱ + (1 − s∗)ν) +

(
1 − α̂2

ᾱ2

)
H(0) ≤ 0.

The above inequality is impossible since H(α̂) = 0. Observing that ᾱ2 < α∗
1 by assumption,

and ᾱ1 > α∗
1 by Lemma 4.1, we have

v̂2 = α̂2

α̂1
γ <

ᾱ2

ᾱ1
γ <

α∗
1

α∗
1
γ = γ = v∗

2 .

Now fix an arbitrarily small positive number δ and define a piecewise affine function on
x ∈ R

2 by

Wδ(x) = min{〈−v∗, x〉, 〈−v̂, x〉 − δ} =
{

〈−v∗, x〉 if x2 > bδ,

〈−v̂, x〉 − δ otherwise,

where b = (v∗
2 − v̂2)

−1 > 0. Let Wε,δ be the classical mollification of Wδ [16, Section 7.2],
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namely,

Wε,δ(x) =
∫

R2
ρ(y)Wδ(x + εy) dy,

where ρ is a smooth symmetric kernel defined by

ρ(y) =
⎧⎨
⎩c exp

[
1

‖y‖2 − 1

]
if ‖y‖ ≤ 1,

0 if ‖y‖ ≥ 1,

∫
R2

ρ(y) dy = 1.

Assuming that the mollification parameter ε < bδ, we now argue that

W(x) = Wε,δ(x) + γ − ‖v∗‖ · ε

is a classical subsolution. Indeed, for x ∈ R
2+, it is not difficult to see that

∇W(x) = −a(x)v∗ − (1 − a(x))v̂, a(x) =
∫

{y : εy2>bδ−x2}
ρ(y) dy.

Therefore, by the convexity of H and the fact that a(x) ∈ [0, 1],
−H(−∇W(x)) ≥ −[a(x)H(v∗) + (1 − a(x))H(v̂)] ≥ 0.

On the other hand, for every x = (x1, x2) ∈ R
2 such that x2 < bδ − ε, we have {y : εy2 >

bδ − x2} ⊂ {y : ‖y‖ > 1}. Hence, a(x) = 0 and ∇W(x) = −v̂. In particular, for every x ∈ ∂ ,

−H∂(−∇W(x)) = −H∂(v̂) ≥ 0.

Finally, for every x ∈ ∂e, since Wδ(x) ≤ 〈−v∗, x〉 = −γ and Wδ is Lipschitz continuous with
‖v∗‖ as a Lipschitz constant (note that ‖v∗‖ ≥ ‖v̂‖), it follows that

W(x) ≤
∫

R2
ρ(y)‖v∗‖ · ε‖y‖ dy − ‖v∗‖ · ε ≤

∫
R2

ρ(y)‖v∗‖ · ε dy − ‖v∗‖ · ε = 0.

Applying Lemma 4.2, we arrive at

lim inf
n

−1

n
log pn ≥ W(0) = γ − δ − ‖v∗‖ε ≥ γ − (1 + b‖v∗‖)δ

for all δ > 0. Letting δ tend to 0, we complete the proof of the upper bound (4.1).
It remains to show the lower bound

lim sup
n

−1

n
log pn ≤ γ.

We first observe that the sample path large deviation principle (i.e. Theorem 3.1) implies that

lim sup
n

−1

n
log pn ≤ inf

∫ τ

0
L(φ(t), φ̇(t)) dt,

where the infimum is taken over all absolutely continuous sample paths φ : [0, ∞) → R
2+ such

that φ(0) = 0, φ(τ) ∈ ∂e. The proof of this inequality is standard and almost verbatim
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to that of Equation (8.5) of [11]—the only major difference is that ‘LA(1) is finite for any
A ⊂ {1, 2, . . . , d}’ should be replaced by ‘L̄i(1) is finite for any i = 0, 1, . . . , d’.

In view of the above discussion, it suffices to construct a sample path φ∗ with hitting time
τ ∗ such that ∫ τ∗

0
L(φ∗(t), φ̇∗(t)) dt ≤ γ.

We consider the following two cases.
Case 1: α∗

1 ≤ α̂1. Define β∗ = ∇H(α∗) = (λ1eα∗
1 , λ2eα∗

2 − µ2e−α∗
2 ). That is, β∗ is the con-

jugate of α∗ through the convex duality of H and L. Clearly, β∗
1 > 0. Since α∗

2 = α∗
1 > ᾱ2 =

−log
√

θ2 (Lemma 4.1), it follows that

β∗
2 > λ2eᾱ2 − µ2e−ᾱ2 = √

λ2µ2 − √
λ2µ2 = 0. (4.2)

Thus, the trajectory φ∗(t) = β∗t lives in the positive orthant and τ ∗, defined as the first hitting
time to ∂e, is finite. It follows from the definition of L(·, ·) and the conjugacy of β∗ and α∗
that, for every t > 0,

L(φ∗(t), φ̇∗(t)) = L(φ̇∗(t)) = L(β∗) = 〈α∗, β∗〉 − H(α∗) = 〈α∗, β∗〉.
Therefore, ∫ τ∗

0
L(φ∗(t), φ̇∗(t)) dt =

∫ τ∗

0
〈α∗, β∗〉 dt = 〈α∗, β∗τ ∗〉.

Since α∗
1 = α∗

2 and β∗τ ∗ ∈ ∂e, we have 〈α∗, β∗τ ∗〉 = α∗
1 = γ .

Case 2: α∗
1 > α̂1. Define β̄ = ∇H(α̂) and β̂ = ∇H∂(α̂). Thus, β̄ and α̂ are conjugate

through the convex duality of H and L, while β̂ and α̂ are conjugate through the convex duality
of H∂ and L∂ . By direct calculation,

β̄ = (λ1eα̂1 , λ2eα̂2 − µ2e−α̂2), β̂ = (λ1eα̂1 − µ1e−α̂1 , λ2eα̂2).

Since α̂2 < ᾱ2, it follows that β̄2 < 0 by an argument analogous to (4.2). Define

ρ1 = β̂2(β̂2 − β̄2)
−1 and ρ2 = −β̄2(β̂2 − β̄2)

−1.

Then ρ1 and ρ2 are both nonnegative, ρ1 + ρ2 = 1, and

β∗ = ρ1β̄ + ρ2β̂ = (β∗
1 , 0).

We claim that β∗
1 > 0. Indeed, since H and L are both strictly convex and L(β) = 0 if and

only if β = ∇H(0), it follows from the conjugacy of β̄ and α̂ that

〈α̂, β̄〉 = 〈α̂, β̄〉 − H(α̂) = L(β̄) > 0. (4.3)

Similarly,
〈α̂, β̂〉 = 〈α̂, β̂〉 − H∂(α̂) = L∂(β̄) > 0. (4.4)

Therefore,
β∗

1 α̂1 = 〈β∗, α̂〉 = ρ1〈α̂, β̄〉 + ρ2〈α̂, β̂〉 > 0,
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which in turn implies that β∗
1 > 0. Define the trajectory φ∗(t) = β∗t , and let τ ∗ be the first

hitting time to the exit boundary ∂e. The trajectory travels along the boundary ∂ and the hitting
time τ ∗ is finite. Furthermore,∫ τ∗

0
L(φ∗(t), φ̇∗(t)) dt =

∫ τ∗

0
(L ⊕ L∂)(β

∗) dt = τ ∗(L ⊕ L∂)(β
∗).

However, by the definition of inf-convolution, (4.3), and (4.4),

(L ⊕ L∂)(β
∗) ≤ ρ1L(β̄) + ρ2L∂(β̂) = ρ1〈α̂, β̄〉 + ρ2〈α̂, β̂〉 = 〈α̂, β∗〉.

It follows that ∫ τ∗

0
L(φ∗(t), φ̇∗(t)) dt ≤ 〈α̂, β∗τ ∗〉 = α̂1 = γ.

This completes the proof.

Remark 4.1. The proof of Theorem 4.1 actually shows that the decay rate γ equals the value
of the calculus of variation problem

γ = inf
∫ τ

0
L(φ(t), φ̇(t)) dt

and that the trajectory φ∗ is indeed a minimizing trajectory.

5. Summary

In this paper we used a weak convergence approach to establish the sample path large
deviation principle for a single-server system with preemptive priority service policy. The
difficulty in the analysis is due to the discontinuity of the system dynamics. We showed that
the general upper bound rate function [8] is indeed tight since the stability-about-the-interface
condition is automatically built into the upper bound rate function. This simple form of the rate
function proves to be useful when studying the asymptotic behavior of various buffer overflow
probabilities. For illustration, in the two-dimensional case the exponential decay rate of the
total population overflow probabilities was explicitly identified. This was done by studying
the geometry of the zero-level sets of the system Hamiltonians and by constructing appropriate
subsolutions to the related partial differential equation.

Appendix A. Proof of Lemma 3.1

Given an arbitrary δ > 0, we need to show that there exists aφ∗ ∈ N such that‖φ−φ∗‖∞ ≤ δ

and Ix(φ
∗) ≤ Ix(φ). The idea is to approximate φ by suitable linear interpolations. We

introduce the following notation. Denote by [[a, b]] an interval with end points a and b. The
interval can be of any type (open, closed, or half open half closed).

Lemma A.1. Given an arbitrary interval [[a, b]] and any σ > 0, there exists a finite partition

[[a, b]] =
⋃
j

[[αj , βj ]]

such that, for each j ,

1. 0 ≤ βj − αj ≤ σ ;

2. 
(φ(t)) ≥ max{
(φ(αj )), 
(φ(βj ))} for every t ∈ (αj , βj ).
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Proof. Let k∗ = min{
(φ(t)) : t ∈ [[a, b]]}. Note that the minimum is always attained
since 
(·) can only take values from {0, 1, . . . , d}. We will prove the lemma by backward
induction on k∗. The claim is trivial in the case k∗ = d. Indeed, in order to satisfy part 1,
we can partition the interval [[a, b]] into subintervals of equal length with the length of each
subinterval at most σ , while part 2 holds automatically.

Assume that the lemma holds for k∗ = k + 1, . . . , d. We would like to show that it is also
valid when k∗ = k. To ease exposition, we assume that [[a, b]] = [a, b] is a closed interval.
The proof for other cases is almost verbatim and thus omitted.

It suffices to show that there exists a finite collection of closed intervals {[āi , b̄i]} with
nonoverlapping interiors such that 0 ≤ b̄i − āi ≤ σ , 
(φ(āi)) = 
(φ(b̄i)) = k∗ = k, and

min

{

(φ(t)) : t ∈ [a, b]

∖ ⋃
i

[āi , b̄i]
}

≥ k + 1.

Indeed, in this case, by the induction hypothesis, the set [a, b] \ ⋃
i[āi , b̄i], which is the union

of a finite number of intervals, can be partitioned in a way that parts 1 and 2 are satisfied.
Adding to this partition the collection of closed intervals {[āi , b̄i]}, we obtain a desired partition
of [a, b] (note that part 2 is satisfied for interval [āi , b̄i] by the definition of k∗).

The values of āi and b̄i are defined recursively as follows. Let

ā = inf{t ∈ [a, b] : 
(φ(t)) = k}, b̄ = sup{t ∈ [a, b] : 
(φ(t)) = k}.
Thanks to the lower semicontinuity of 
, 
(φ(ā)) = 
(φ(b̄)) = k. Define

ā1 = ā,

b̄1 = sup[t ∈ [ā1, (ā1 + σ) ∧ b] : 
(φ(t)) = k],
and, for i ≥ 1,

āi+1 = inf[t ∈ [āi + σ, b] : 
(φ(t)) = k],
b̄i+1 = sup[t ∈ [āi+1, (āi+1 + σ) ∧ b] : 
(φ(t)) = k].

The recursion will end if b̄N = b̄ for some N . It is clear that N is finite since āi+1 − āi ≥ σ .
Furthermore, the collection {[āi , b̄i] : i = 1, 2, . . . , N} clearly has the desired property. This
completes the proof.

Since Ix(φ) < ∞, φ is absolutely continuous and, hence, uniformly continuous on [0, 1].
Therefore, there exists σ > 0 such that, for s, t ∈ [0, 1],

|φ(s) − φ(t)| ≤ δ if |s − t | ≤ σ.

Let [0, 1] = ⋃
j [[αj , βj ]] be the partition in Lemma A.1 with the given σ . Define φ∗ as the

linear interpolation of φ from this partition. That is, for every j and every t ∈ (αj , βj ),

φ̇∗(t) = φ(βj ) − φ(αj )

βj − αj

,

and φ∗(t) = φ(t) if t = αj or βj for some j . Clearly, φ∗ is absolutely continuous and
‖φ∗ − φ‖∞ ≤ δ. It remains to show that Ix(φ

∗) ≤ Ix(φ). Note that, for every t ∈ (αj , βj ),


(φ∗(t)) = max{
(φ(αj )), 
(φ(βj ))} ≤ 
(φ(t)).
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Observing that the rate functions {L̄i} are monotonically nondecreasing in that L̄0 ≤ L̄1 ≤
· · · ≤ L̄d , we have∫ βj

αj

L(φ(t), φ̇(t)) dt =
∫ βj

αj

L̄
(φ(t))(φ̇(t)) dt ≥
∫ βj

αj

L̄
(φ∗(t))(φ̇(t)) dt.

Thanks to the convexity of {L̄i} and Jensen’s inequality, it follows that∫ βj

αj

L(φ(t), φ̇(t)) dt ≥ (βj − αj )L̄
(φ∗(t))(φ̇
∗(t)) dt =

∫ βj

αj

L(φ∗(t), φ̇∗(t)) dt.

This completes the proof.

Appendix B. Proof of Lemma 3.2

For any given λ > 0 and v ∈ R
d , it follows from a straightforward calculation that the

Legendre transform of the convex function h(α) = λ[e〈α,v〉 − 1] is

h∗(β) = sup
α∈Rd

[〈α, β〉 − h(α)]

=

⎧⎪⎨
⎪⎩

λ�

(
λ̄

λ

)
if β = λ̄v for some λ̄ ∈ R,

0 otherwise,

for every β ∈ R
d . It is now an immediate consequence of [7, Corollary D.4.2] that Li , the

Legendre transform of Hi , has the following alternative representation. That is, for every
β ∈ R

d ,

L0(β) = inf

[ d∑
k=1

λk�

(
λ̄k

λk

)
:

d∑
k=1

λ̄kek = β

]
(B.1)

and, for i = 1, . . . , d,

Li(β) = inf

[
µi�

(
µ̄i

µi

)
+

d∑
k=1

λk�

(
λ̄k

λk

)
: − µ̄iei +

d∑
k=1

λ̄kek = β

]
. (B.2)

We are now in a position to prove the alternative representation for L̄i . With loss of generality,
we assume that i = 0. The proof for i ≥ 1 is similar and thus omitted. Thanks to the definition
of L̄i , (3.1), and (B.1)–(B.2), we have

L̄0(β) = inf

[
ρ0

d∑
k=1

λk

(
λ̄

(0)
k

λk

)
+

d∑
i=1

ρi

[
µi�

(
µ̄

(i)
i

µi

)
+

d∑
k=1

λk�

(
λ̄

(i)
k

λk

)]]

= inf

[ d∑
i=1

ρiµi�

(
µ̄

(i)
i

µi

)
+

d∑
i=0

ρi

d∑
k=1

λk�

(
λ̄

(i)
k

λk

)]
,

where the infimum is taken over all (ρi, µ̄
(i)
i , λ̄

(i)
k ) such that

ρi ≥ 0,

d∑
i=0

ρi = 1, ρ0

d∑
k=1

λ̄
(0)
k ek +

d∑
i=1

ρi

[
−µ̄

(i)
i ei +

d∑
k=1

λ̄
(i)
k ek

]
= β. (B.3)
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Abusing notation a bit, write, for k = 1, . . . , d,

µ̄k = µ̄
(k)
k , λ̄k =

d∑
i=0

ρiλ̄
(i)
k .

Then the constraints (B.3) become

ρi ≥ 0,

d∑
i=0

ρi = 1, −
d∑

k=1

ρkµ̄kek +
d∑

k=1

λ̄kek = β,

which are exactly the constraints in the statement of Lemma 3.2. Observe that, by the convexity
of �,

d∑
i=0

ρi

d∑
k=1

λk�

(
λ̄

(i)
k

λk

)
=

d∑
k=1

λk

d∑
i=0

ρi�

(
λ̄

(i)
k

λk

)
≥

d∑
k=1

λk�

(
λ̄k

λk

)
,

with equality if λ̄
(i)
k = λ̄

(j)
k = λ̄k for every i, j . Furthermore, we can restrict the parameters

{λ̄k, µ̄k : 1 ≤ k ≤ d} and {ρk : i ≤ k ≤ d} to be strictly positive. This is because � is finite and
continuous on [0, ∞). The representation for L̄i now follows readily.

It remains to show that L̄i(β) is finite if and only if βk ≥ 0 for all k < i. This is trivial
since the set of (ρk, λ̄k, µ̄k) that satisfies the constraints is nonempty if and only if βk ≥ 0 for
all k < i. This completes the proof.

Appendix C. Proof of Lemma 4.2

Consider the discrete embedded Markov chain of the state process Q, and denote by
{Z(k) ∈ Z

2+ : k = 0, 1, 2, . . .} the queue lengths at the transition epochs of the network. Since
the process Q starts at the origin, the initial state of the Markov chain Z is Z(0) = 0.

We claim that, for all k, n, and z = (z1, z2) ∈ Z
+
2 such that z1 + z2 ≤ n,

E

{
exp

[
−n

[
W

(
Z(k + 1)

n

)
− W

(
Z(k)

n

)]] ∣∣∣∣ Z(k) = z, Z(k − 1), . . . , Z(0)

}
≤ eM/n

(C.1)
for some constant M . We will only show this inequality for the case when z2 > 0. The case
where z2 = 0 is similar and thus omitted. Let x = z/n, and, without loss of generality, assume
that λ1 + λ2 + µ2 = 1. Since z2 is strictly positive, Z(k + 1) can only take values in the set
{z + e1, z + e2, z − e2} with respective probabilities {λ1, λ2, µ2}. Therefore, the conditional
expectation on the left-hand side of (C.1) equals

λ1 exp

[
−n

[
W

(
x + e1

n

)
− W(x)

]]
+ λ2 exp

[
−n

[
W

(
x + e2

n

)
− W(x)

]]

+ µ2 exp

[
−n

[
W

(
x − e2

n

)
− W(x)

]]
.

Since W is twice continuously differentiable, every component of the Hessian matrix ∇2W(x)

is uniformly bounded on the compact set {x = (x1, x2) : xi ≥ 0, x1 + x2 ≤ 1}. Then by
Taylor’s expansion we have∣∣∣∣〈∇W(x), v〉 − n

[
W

(
x + v

n

)
− W(x)

]∣∣∣∣ ≤ M

n
‖v‖2

for every vector v and some constant M . Therefore, the conditional expectation is bounded
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from above by

eM/n[λ1e−〈∇W(x),e1〉 + λ2e−〈∇W(x),e2〉 + µ2e−〈∇W(x),−e2〉].
Observe that the sum in the square bracket is exactly 1+H(−∇W(x)), which is bounded from
above by 1, owing to the subsolution property ofW . This completes the proof of inequality (C.1).

Fix an arbitrarily positive integer n. Define Tn to be the first hitting time to the exit
boundary ∂e:

Tn = inf{k ≥ 0 : Z1(k) + Z2(k) = n}.
Define a nonnegative process

Yn(k) = exp

[
−Mk

n
− nW

(
Z(k)

n

)]
, k = 0, 1, 2, . . . .

It follows from inequality (C.1) that the stopped process {Yn(k∧Tn)} is a supermartingale with
respect to the natural filtration generated by Z. Let T0 be the return time to the origin:

T0 = inf{k ≥ 1 : Z(k) = 0}.
Owing to the optional sampling theorem and the nonnegativity of Yn, we have

E{Yn(T0 ∧ Tn)} ≤ E{Yn(0)} = e−nW(0).

Furthermore, by the fact that W(x) ≤ 0 for every x ∈ ∂e,

Yn(T0 ∧ Tn) ≥ Yn(Tn)1{Tn<T0} ≥ e−MTn/n1{Tn<T0},

and, thus,
E{e−MTn/n1{Tn<T0}} ≤ e−nW(0).

Since the system is exponentially ergodic, there exists a constant c > 0 such that E{ecT0}
is finite [2, Lemma 6.3]. Applying Hölder’s inequality and observing that any power of an
indicator function is still itself, we arrive at

pn = E{1{Tn<T0}}
≤ (E{e−MTn/n1{Tn<T0}})cn/(M+cn)(E{ecTn1{Tn<T0}})M/(M+cn),

≤ e−nW(0)cn/(M+cn)(E{ecT0})M/(M+cn).

Taking the logarithm on both sides, it follows easily that

lim inf
n

−1

n
log pn ≥ W(0).

This completes the proof.
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