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of course there may be repetitions if replacements are allowed. The
part of the probable value due to this drawing is

1
N
and the total probable value is

(ko + kg + ovv. + k),

1
T EC kst R,

where 2 denotes summation of N sets of m terms each, in all mN

terms.

Now, since no coin is singled out for special favour, o will equally
often be 1, 2, ...., or n; and the same is true of 8, y, ...., and p.
Hence in the sum above the expression k, 4+ k, 4 .... + k, must

occur a whole number of times, and this whole number must be
mN/n. Thus finally, since the value of all the coins is P, the probable
value in question is

1wk, _wP

¥ plt

The invariant property of mathematical expectation is thus
brought out. (For a rather similar result see Chrystal’s Algebra,
Part 11, pp. 594-5.)

The case where the number of replacements allowed is not
limited leads to an identity in combinatory analysis which is by no
means obvious, namely

" m!

by '(mlal—i—mzag 4. mea)=mn™ Ya + ar+. ...

=1 m]! mQ! .« ’m,.

where m, +mg + .... + m, — m, and X includes all r-part composi-
tions (1.e. partitions in which order of parts is relevant) of m,
associated with all r-ary combinations of 1, 2, ...., n.

A Simple Method of Finding Sums of Powers of the
Natural Numbers

By I. M. H. ETHERINGTON.

Let 1° + 2% + 3 4 .... 4+ n* be denoted by S,. It is well known
that S, can be expressed as a polynomial in n of degree (o 4+ 1). The
expressions for 8y, 8y, 8;.... can be found in succession by elemen-
tary methods, which also give numerous relations such as S, = §2,
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128, 8; = 785 + 58,. The elegant method which I am about to
explain is not original. It is due in essence to the Arabian mathe-
matician Alkarkhi* (circa 1000 B.C.).

The method consists of arranging numbers in a square, adding
them up in two ways, and equating the results. An example will
make it clear. To find §,, assuming that we know 8, =1in(n+ 1)
and 8, = n (n + 1)(2n + 1), consider this arrangement of numbers:

tese0vses0s 0
® 5 e 40 e
.

------

Adding up by rows or columns, the sum of all the numbers is seen to
be S, 8;. But we can also add by gnomons, as indicated by the heavy
lines. The sum of the numbers comprising the n'® gnomon, i.e. the
last row and column,

=nS; +n’8;, —n®

=1in*(n-+ 1)(2n + 1)+ in®(n + 1) — nd

= in* + ln%
Thus the total is £ (in' 4 In?)

1

= 38 + &8s

Equating the results,
68; 8, = 58, + 8,

whence, substituting for S, and S,, we find:
S, =25 n(n+ 1)(2n + 1){3n + 3n — 1).

* See his Fakhri (Woepcke, Paris, 1853), p. 61.
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In general, by taking a*b® as the occupant of the cell in the a*
row and b* column, we obtain:

8,8 =2 (ne8g 4 nf S, — noth),
1

Assuming that we know the expressions for §, and S,; we can
substitute these in the right hand side. Then:
» SaSB:AlSl+AQSQ+ +Aa+ﬁ+ISa+[3+l!
where 4;, 4, ...., 4,,5,1 are numbers which depend on the
coefficients in the expressions for S,, S;  Actually, (provided
a, B=F0) A,,, always vanishes, and the last coefficient Agipen is
(« + B+ 2)/(a + 1)(B + 1). These follow from the fact that the
r+1 nr

r+l+—2—+.,..

Thus we can find S,.5.. if we know the expressions for
81, Sz vevny Seipon

An interesting case arises when 8=0. Since S, =n, we then
obtain:

polynomial for S, always begins

'nSa = Z (na+1 + Sa —_ nr“)
1
= Sa+1 + ﬁ510. - Sa)
1
giving the useful formula
Se1 + 28, =n+1)8,.
1

The method may be extended by generalising the square to ¢
dimensions and filling it with numbers of the form

aras: ..., an
where a, as, .. .., a, are fixed, while a;, a,, .. .., a, vary independently
from 1 to n. The analogous result is:
8,8, .. 8, =20,
1

where G, = [n48, Sy ... Sy + 08, S, ... 8, + ....]
— [na1+u:Sau [ Sat + P .] —i—— [nalfa.:,“a:; Sa* o Sat_}_ . .]
T e :tnal‘l"ﬂ-:%-.“,_ga"

Assuming that the expressions for S, ,S,, .... 8., are known, we
can substitute polynomials in n for the §’s, and obtain for G, a poly-

nomial of degree a; +a; + .... +a,+¢— 1. Thus S, Se,on .8, can
be expressed linearly in terms of S;, S,, .... S,, where

d=a1+a2+....—f—a¢+t—1;
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and the expression can be calculated if the polynomial expressions
for 8,,,8,,, .... S, are known.

As an example, let o, =1, a; =2, a3 = 3, = 3.
Then G, =n8,8;+ n28;8, +n®8, 8, —n°S, —n*S, —n38; - n
=n.in(n+ 12 + 1).1n’(n + 1)? + ete.,
reducing to
G, = in® 4+ Lnb + Lt
Hence 248, 8,8; = 98; + 148, + S,.

A few further results, easily proved in this way, or by repeated
applications of the square method, may be quoted :—

S? == S.’S, 6Sl S2 = 5S4 + S21
48? == 3S5 + S3, 12S% 6’2 = 7S6 + 584,
28% = 8+ 8, 248? 8, = 98; + 1486 + 8,

168} = 58, 4+ 108; + S;, 4881 8; = 1180+ 308, + 78;.
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