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Abstract

In this short note, two results on a solid, pointed, closed cone C in R" will be given: first, C is
polyhedral iff it has a finite number of maximal faces; second, for any face F of C, C* N F* is a face
of its dual cone C* of dimension n —dim F.

1. Introduction

Many interesting properties of a cone in a Euclidean space are readily
suggested by geometric intuition. For example, it is reasonable to guess that for a
cone to be polyhedral a necessary and sufficient condition is that it has a finite
number of maximal faces. Although this is true, the proof is by no means trivial.
It is a purpose of this short note to give a simple proof of this characterization of
polyhedral cones. Another result that will be proved is: for any face F of a
polyhedral cone C in R", C*N F* is a face of its dual cone C* of dimension
n —dim F. Although this result is known (cf. Stoer and Witzgall (1970), p. 70, (2.
13. 3)), it is included here because the proof is interesting.

2. Notation and preliminaries

A familiarity with elementary results on cones will be assumed (see, for
instance, Barker (1973)). For convenience and clarity, we review some of the
definitions and results.

A subset C of the Euclidean space R" is called a cone if
(i) C is a non-empty, closed subset of R",

(i) C+CCC,

(iii) aC CC for all & 20,

(iv) CN(=C)={0},

(v) C-C=R"

The content of this paper formed part of the author’s Ph.D. thesis.
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In other words, the ‘cone’ considered here is what usually referred to as
‘solid, pointed, closed cone’.

A subset F of R" is called a face of C if it is contained in dC, satisfies (i), (ii),
(iii) above, together with the following condition: if x, y € C such that x + y € F,
then x, y € F. If F is not properly contained in any other face of C, then it is said
to be maximal. By the dimension of F, we mean dim L (F), where L(F) is the
subspace spanned by F.

For any x € dC, denote by ®(x) the set {y € C:x —ay € C for some
a > 0}. It can be shown that ®(x) is a face; in fact, for any face F of C, any
x € dC, x belongs to the relative interior of F iff ®(x)=F.

A vector x € C is called extremal iff x = y + z with y, z € C implies that
both y,z are non-negative multiples of x. In this case, x € 3C and ®(x)=
{Ax: A =0},

A cone C is said to be generated by a set of vectors if each vector in C can be
written as a finite non-negative linear combination of these vectors. It can be
shown that any cone in R" is generated by its extremal vectors. A cone is called
polyhedral iff it has a finite number of extremal vectors.

For any non-empty subset S of R", the polar $* of S is the set
{z€R":(z,y)=0 for all y € S}. The following result is well-known: for any
non-empty subset S which is closed under addition and multiplication by
non-negative scalars, clS = §**.

The polar C* of a cone C is a cone, known as the dual cone of C.

3. A characterization of polyhedral cones

To begin with, we prove the following result for general cones.
THEOREM 1. Let C be a cone in R". For any x € 4C
dim®d(x)<n-1
iff every neighbourhood of x meets at least two maximal faces of C.

Proor. “If Part”: Suppose dim®(x)=n —1. Choose any w € intC.
Then the set {aw + y: a =0,y € relative boundary of ®(x)} is closed, and for
every y EP(x), a >0, aw +y € intC. To prove the former assertion, let
(0iw + yi)ien, With @; =0, y; € relative boundary of ®(x), be a convergent
sequence. Clearly, it is sufficient to establish the convergence of (a:)ien. Take a
non-zero z € 3C* such that z L ®(x). Then the continuity of the inner product
guarantees the convergence of the sequence ((aw + yi, 2))ien = (a: (W, 2))ien, and
hence that of (a:)ien because (w,z)#0. Now x is a point outside the above
closed set. If r >0 is sufficiently small, then the open set {y E R": d(x,y)<r}
meets only one maximal face of C, namely, ®(x).
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“Only If Part”: Suppose dim®(x)<n—1. Let G be a maximal face
containing ®(x), and let z# 0E C* be orthogonal to G. Consider a convex
neighbourhood U of x. Clearly, there exists w € (U N{z}*)\C. Take any
y €int CN U. Then for some A ER, 0<A <1, Ay +(1—2A)w €9C N U. But
any maximal face which contains Ay + (1 — A)w must be different from G.

COROLLARY. Let C be a cone in R". If C has a face of dimension less than
n —1 contained in only one maximal face, then C has infinitely many maximal
faces.

Proor. Let ®(x) be a face of dimension less than n — 1 contained in only
one maximal face, say H. By the theorem, every neighbourhood of x meets a
maximal face C other than H. However, any such face is at positive distance
from x, and hence the corollary follows.

We now come to our first main result on polyhedral cones.

THEOREM 2. Let Cbe a cone in R". Cis polyhedral iff C has a finite number
of maximal faces. If the condition is satisfied, then every maximal face of C is a
polyhedral cone of dimension n — 1.

Proor. Since every face is generated by its extremal vectors, the necessity
part of the theorem is obvious. We now prove the sufficiency part, together with
the last statement, by induction on n.

Let C be a cone in R" with a finite number of maximal faces. From the
corollary of Theorem 1, each maximal face of C must be of dimension n — 1. The
proof is complete if each maximal face is polyhedral. Assume to the contrary
that C has a non-polyhedral maximal face, say H. By induction, H as a cone of
dimension n — 1 has infinitely many maximal faces. However, each maximal face
of H is a face of C of dimension less than n — 1, and so from the corollary of
Theorem 1, each of them belongs to at least one maximal face of C other than H.
But two different maximal faces of H cannot belong to the same maximal face of
C except H. Consequently, C has infinitely many maximal faces, which is a
contradiction.

4. A relation between the dimensions of F and C* N F*

Our second result on polyhedral cones is:

THEOREM 3. Let C be a polyhedral cone in R". For any face F of C of
dimension r, the largest face of C* orthogonal to F, i.e. C* N F*, is of dimension
n-—r.

We need the following lemma whose proof is easy enough to be omitted (cf.
McMullen and Shephard (1971), p. 70, Theorem 15).

https://doi.org/10.1017/51446788700016311 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700016311

[4] Polyhedral cones 459

LEMMA. Let Cbe aconein R". For any subspace Hof R", C* N H = p[C]*
where p is the orthogonal projection of R" onto H, and p[C]* is the polar of p[C]
in H.

Proor oF THEOREM 3. We proceed by induction on n. It can be assumed
that dimF = n —2. Let H be a maximal face of C containing F. Then H is a
polyhedral cone of the n — 1 dimensional subspace L(H) and F is a face of H.
Denote by p the orthogonal projection of R" onto L(H), and by H* the dual
cone of H (which is considered as a cone in L(H)). From the lemma,
H=CNL(H)=p[C*])* and hence H* = p[C*]** = clp[C*] = p[C*]. By in-
duction, the largest face of H” orthogonal to F is of dimension n —1—r. It
follows that there exist zi, -+, z,-,_; € C*\H" orthogonal to F such that their
projections on L(H) form an independent family. But we can also find a
non-zero z.-, € C* N H*. Therefore, the dimension of C*NF*is n—r.

We omit the detailed proof of the following simple corollaries:

COROLLARIES.

1. Every polyhedral cone in R" has at least n maximal faces.

2. For each face F of a polyhedral cone C, there exists z € C* such that
F=Cn{z}".

3. Let C be a polyhedral cone in R", and let y# 0 € dC. Then

y is an extremal vector of C iff C*N{y}* is a maximal face of C*.

4. Let C be a polyhedral cone in R". If F is a face of C of dimension r, then
there exist at least n — r maximal faces of C containing F.

5. Remarks

1. Theorem 2 implies the following theorem on convex sets: A closed and
bounded convex set in R" is a polytope iff it has a finite number of maximal
faces.

(Our definition of ‘face’ is different from that of McMullen and Shephard
(1971), p. 39. A subset F of a convex set K is called a face of K if F is closed,
convex and satisfies: Ax + (1—A)y EF, x,y € K,0=A =1 implies x, y € F. For
polytopes the two definitions coincide.)

The proof depends on the following easily-proved result:

Let K be a closed and bounded convex set with non-empty interior in R".
Let C ={a(y.1)ER"*": @ =0, y € K}. Then C is a cone in R""". Furthermore,
we have,

(i) (y,1)EaC iff y € 9K.

(i) (y,1) is an extremal vector of C iff y is an extreme point of K.
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(iii) Each face of C is of the form {a(y,1)€E R"*': @ Z0, y € F} for some
face F of K.

2. Theorem 2 also suggests a simple proof of the following well-known
result (cf. Stoer and Witzgall (1970), p. 56).

THEOREM OF WEYL. The dual cone C* of a polyhedral cone C is
polyhedral.

Suppose C* is not polyhedral. Then by Theorem 2, it has an infinite number
of maximal faces. But for any two distinct maximal faces G, H of C*, C N G*,
C N H* are distinct faces of C because (C N G*)N(C N H*) = 0. It follows that
C has infinitely many faces, and hence is non-polyhedral.

3. It is difficult, if not impossible, to prove Theorem 2 by the Theorem of
Weyl. The difficulties are, maybe for some maximal face of C, there are infinitely
many extremal vectors of C* orthogonal to it; or it may happen that there exist
extremal vectors of C* not orthogonal to any maximal faces of C. The example
below shows that, unlike polyhedral cones, in general, a cone C does not possess
the following properties: if F is a maximal face of C, then F* N C* is an extreme
ray of C*; if y is an extremal vector of C, then ®(y)* N C* is a maximal face of
C*.
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ExampLE. Let C be the cone in R> defined by: C = {a(x,y,1)E R* a Z0,
(x,y) € K} where K is the compact convex set in R? bounded by the curves
y=«x2y= V2x and x + y =1. Now, ®(0,0,1) is a maximal face of C, but
®(0,0,1)* N C* = ®(1,0,0) v ®(0, 1,0), not an extreme ray of C*. Also, in C*
there are two extremal vectors orthogonal to the vector (2—+/3, —1+1/3, 1) of
dC: one of them is normal to the subspace spanned by (2—+1/3, —1++/3, 1) and
(—1+/3,2—1+/3,1); the other is the vector ((—1+vV3)™',—1,(—1++/3)/2),
normal to the surface x = uv, y = v\/2u, z = v at 2—/3, —1+/3,1). Here,
even though ((—1++/3)"', —1,(—1++/3)/2) is an extremal vector of C*,
d(-1+V3), -1, (-1+VI2PNC=d2-+3, —1++/3, 1) is not a
maximal face of C.

The author wishes to thank Dr. Y. H. Au-Yeung for his advice and
encouragement during the preparation of this paper.
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