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A simple two-component fluid model of a galaxy is analyzed numerically. 
For this equilibrium configuration a large number of unstable spiral 
modes is found. It is of particular interest that some of these modes 
are well described by the asymptotic theory developed for tightly wound 
trailing spirals, while others are best understood in terms of the 
swing formalism which includes both leading and trailing waves. 

The model consists of a Toomre disk of order 5 and length scale 
12, plus a Plummer sphere with length scale 2 containing half as much 
mass. Only the disk is dynamically active. The sphere, regarded as 
frozen, affects only the total gravitational potential. This combina­
tion produces the rotation curve shown in Figure 1. To complete the 
description I specify the stability function as 

Q(r) = 1 + e x p ( ^ ) . (1) 

In other words, I assume that the innermost portion of the disk (resid­
ing more or less within the sphere) is quite "hot", whereas its exterior 
is just warm enough to avoid Jeans instability. These two conditions 
were adopted purposely to favor - and thereby test - the refraction and 
amplification of the short and long trailing waves involved in the 
asymptotic theory of Lau, Lin and Mark (1976). 

Figure 1. Rotation curve for the adopted equilibrium model. 
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The dynamics are assumed to be governed by the linearized equations 
of motion for the system. I concentrate on the unstable spiral modes 
using methods similar to those developed by Pannatoni (1979), and find 
that there are plenty of them. Figure 2 reports the modal "spectrum11 

for the basic model in a form suggested by Toomre. It obviously offers 
a lot of information. For example, the third two-armed mode (2C) has a 
growth rate 0.512 and corotation radius 5.91 corresponding (with the 
help of Fig. 1) to a pattern speed 2.305. That this basic equilibrium 
is quite unstable makes it all the better to illustrate two distinct 
sources of instability. 
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Figure 2. The spectrum of the various modes for m = 2,3 and 4. 

One feature seen in the spectrum is the nearly identical pattern 
speed and growth rate for the first two m=2 modes. This "degeneracy" 
is now known to be one of the signs that the model (for these modes) is 
approaching the asymptotic regime where the instability can be traced 
to a short-long trailing wave feedback cycle first discussed by Lau, 
Lin and Mark (1976). As evidence for the correctness of this descrip­
tion, I have computed the mode based on the asymptotic second order 
equation and found agreement in pattern speed and growth rate to 
within 5% and 15% respectively. Further, the eigenfunctions produced 
by the different methods are nearly indistinguishable. (See Fig. 3.) 

The spectrum in Figure 2 also cautions, however, that these 
all-trailing modes are not the whole story even in this favorable 
setting. Notice that several of the m=3 modes grow about twice as 
rapidly as the m=2 modes we have just been discussing. And although 
the first two m=3 modes are close in pattern speed, their structures 
and growth rates are not. These modes owe their instability to a feed­
back loop quite different from the aforementioned cycle. This possibil­
ity was first recognized by Bardeen (1976) in his own gas-disk calcula­
tions. He realized that the regularly spaced interference patterns 
typical of these modes (see especially mode 3D in Fig. 3) signify a 
superposition of trailing and leading waves of similar length and 
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amplitude. This intuition is now supported by a solid theory. Given 
the pattern speed and model, Toomre?s (1981) method for calculating the 
growth rate from group transport and swing amplification yields agree­
ment with the "exact" values to within 10% for modes 3D, 3E, etc. 
Again the essence of the modes seems to have been grasped. 
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Figure 3. The perturbation density for modes 2A, 2B and 2-asymptotic 
is shown in the top row. Modes 3A, 3B and 3D are along the bottom. 

Alas, most galaxies or their modes are not so simple as either of 
these two pure cases. But surely an understanding of these building 
blocks is a prerequisite for the analysis of the muddier situations 
where both cycles may be operable. Parameter variations, other modes, 
fluid effects and resonances have not been mentioned. (See Haass, 1982.) 
A detailed description of the numerical method and some variations of 
the model is in preparation. 
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PS from Haass: 10,000-dot visualization of the rapidly-growing mode 3D 
from Figure 3, shown here at 60° intervals of pattern rotation. 
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