
The Journal of Symbolic Logic, Page 1 of 37

DISCRETE SETS DEFINABLE IN STRONG EXPANSIONS OF ORDERED
ABELIAN GROUPS

ALFRED DOLICH AND JOHN GOODRICK

Abstract. We study the structure of infinite discrete sets D definable in expansions of ordered Abelian
groups whose theories are strong and definably complete, with a particular emphasis on the setD′ comprised
of differences between successive elements. In particular, if the burden of the structure is at most n, then
the result of applying the operation D �→ D′ n times must be a finite set (Theorem 1.1). In the case when
the structure is densely ordered and has burden 2, we show that any definable unary discrete set must be
definable in some elementary extension of the structure 〈R;<,+,Z〉 (Theorem 1.3).

§1. Introduction. In this article we will present new results on the structure of
infinite discrete sets definable in ordered Abelian groups whose theories are strong
with a special emphasis on the case when the structure has finite dp-rank. Suppose
that R = 〈R; +, <, ...〉 is a divisible ordered Abelian group (possibly with additional
structure) and D ⊆ R is a definable set which is discrete according to the order
topology. Recall that by a result of [9], if the theory of R is dp-minimal (that is,
of dp-rank 1), then D must be finite, but there are examples of R of dp-rank 2 in
which an infinite discrete set is definable: for instance, 〈R; +, <,Z〉, the expansion
of the additive group of the reals by a predicate for the set of integers (see [3] for
details). On the other hand, when the theory of R is strong (in particular, when it
has finite dp-rank), then by general results from [3], D cannot have accumulation
points, and furthermore there must exist a � ∈ R such that for any a ∈ D, we have
|(a – �, a + �) ∩D| > 1 (that is, the points in D cannot be “too spread out”).

The present article presents stronger results on definable discrete sets D when R
has finite burden. The first set of results (in Section 2) concerns the “difference set”
D′ of D. Assuming that R is definably complete (see Definition 1.4 just below),
for every non-maximal a ∈ D there is a next largest element SD(a) in D, and we
defineD′ = {SD(a) – a : a ∈ D \ max(D)}. By Fact 2.4 below,D′ is also a discrete
definable set. We will show that when R has burden at most 2, thenD′ is finite. More
generally, we can iterate the operation of taking difference sets, lettingD(0) = D and
D(k+1) = (D(k))′, and we show the following:

Theorem 1.1. Suppose that R is a definably complete ordered Abelian group,
D ⊆ R is definable and discrete, and D(n) is infinite. Then the burden of R is at least
n + 1. If R is densely ordered, then the burden is greater than n + 1.
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2 ALFRED DOLICH AND JOHN GOODRICK

Question 1.2. Suppose that R is a definably complete ordered Abelian group of
finite dp-rank. Are there only finitely many Archimedean classes represented in D′?

We conjecture that the answer to the Question above is “yes,” but we were not
able to show this.

The second part of the article (Section 3) focuses on the fine structure of a discrete
set D ⊆ R definable in R under the stronger hypothesis that R has burden 2 and is
definably complete. We will show the following:

Theorem 1.3. Suppose that R = 〈R; +, <, ... 〉 is a densely ordered Abelian group
of burden 2 which is definably complete and in which there is an infinite discrete subset
of R definable. There is G ⊆ R with 〈R; +, <,G〉 ≡ 〈R; +, <,Z〉 so that any discrete
D ⊆ R definable in R is definable in 〈R; +, <,G〉. Furthermore if R is of dp-rank 2
then there is such a G so that any definable X ⊆ R is definable in 〈R; +, <,G〉.

Notice that this is very similar to a result from [3] which has an analogous
conclusion in the case when the divisible ordered Abelian group is Archimedean but
under the more general hypothesis that the theory is strong.

In addition to proving Theorem 1.3, we obtain a fairly precise description of
discrete sets definable in R, showing that they are unions of finitely many points and
“pseudo-arithmetic” sets (that is, sets E such that |E ′| = 1). Note that this has a
natural analogue for discrete sets definable in strong Archimedean ordered Abelian
groups, which were shown to be finite unions of points and arithmetic progressions
in [3], and in fact part of the proof strategy from that previous paper is adapted here
to the non-Archimedean context.

In the remainder of this introduction we will briefly recall the definitions of the
central concepts of the article (especially dp- and inp-rank, burden, and definable
completeness). For a more thorough background on the various notions involved
and their importance the reader is referred to the book of Simon [17]. This article
continues the work begun in [3, 9, 16] and especially the recent note [4] in which the
tame topological properties of sets definable in burden-2 ordered Abelian groups
are studied.

1.1. Notations and convention. Most of our notation and terminology is standard
for model theory, but for convenience we recall here some concepts which are not
universally well-known, such as burden and dp-rank.

Structures will be named by calligraphic capital letters such as R and U , with
block letters (like R and U) used to denote their underlying universes. For example,
R = 〈R; +, <, ...〉 denotes a structure R with universe R, a function symbol +, a
binary relation symbol <, and possibly other basic predicates and functions.

We will work with ordered Abelian groups, or Abelian groups 〈R; +〉 endowed
with a strict linear ordering < which is invariant under the group operation (x < y
implies that x + z < y + z). We abbreviate “ordered Abelian group” as OAG. Note
that an OAG can be discretely ordered (having a least positive element, such as
〈Z;<,+〉) or densely ordered (such as 〈R;<,+〉). Recall that an Abelian group
〈R; +〉 is divisible if for every g ∈ R and every positive integer n, there is an h ∈ R
such that nh = g. Every divisible OAG is densely ordered, but there are densely
ordered OAGs which are not divisible.
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DISCRETE SETS IN STRONG OAGS 3

The ordering on an OAG 〈R;<,+〉 naturally defines an order topology on R
whose basic open sets are open intervals, and by default any topological concepts
(being open, closed, discrete, et cetera) refers to this order topology, or to the
corresponding product topology on Rn.

Throughout, we will use “definable” to mean “definable by some first-order
formula, possibly using extra parameters.”

Whenever we talk about “intervals” in a densely ordered structure, by default we
mean nonempty open intervals unless specified otherwise.

Definition 1.4. If R = 〈R;<,+, ...〉 is an expansion of an OAG, then R is
definably complete if every nonempty definable subset X ⊆ R which has an upper
bound in R has a least upper bound in R.

The following observation [13, Proposition 2.2] will sometimes be useful in what
follows:

Fact 1.5. If R is an expansion of a densely ordered OAG which is definably
complete, then R is divisible.

Finally, we recall the definitions of burden and dp-rank. These notions are
originally due to Shelah [15], but the form of the definition which we give is due to
Adler as outlined in [18]. In the definitions below, we work in some fixed complete
first-order theory T. Our theories are always 1-sorted, since in Teq there will always
be sorts of dp-rank greater than 1 (assuming there are infinite models).

Definition 1.6. An inp-pattern of depth κ is a sequence {ϕi(x; y) : i < κ} of
formulas, a sequence {ki : i < κ} of positive integers, and a sequence {ai,j : i <
κ, j < �} of tuples from some model M |= T such that:

• for each i < κ, the “i-th row”

{ϕi(x; ai,j) : j < �} (1)

is ki -inconsistent; and
• for each function � : κ → �, the set of formulas

{ϕi(x; ai,�(i)) : i < κ} (2)

is consistent.
If p(x) is a partial type, an inp-pattern as above is in p(x) if every partial type as

in (2) is consistent with p(x).
The partial type p(x) has burden less than κ if there is no inp-pattern of depth

κ in p(x). If the least κ such that the burden of p(x) is less than κ is a successor
cardinal, say κ = �+, then we say that the burden of p(x) is �.

If the burden of the partial type x = x (in a single free variable x) exists in the
theory T and is equal to κ then we say that the burden of T is κ. The theory T is
inp-minimal if its burden is 1.

The theory T is strong if every inp-pattern in T has finite depth.

Following Adler (see, [18]), the notion of dp-rank is usually defined in terms of
arrays of formulas known as ict-patterns (or randomness patterns, in [14]) which are
similar to the inp-patterns above. However, for the arguments in the present paper,
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4 ALFRED DOLICH AND JOHN GOODRICK

we will not need to work with ict-patterns, preferring to use inp-patterns combined
with the following fact:

Fact 1.7.

(1) (See [17, Observation 4.13]) The dp-rank of a theory T is less than |T |+ if and
only if T is NIP.

(2) (See [14, Lemma 2.11(iv)]) In case T is NIP, the dp-rank of any partial type in
T is equal to its burden. In particular, T is dp-minimal (that is, of dp-rank 1) if,
and only if, T is both NIP and inp-minimal.

§2. Difference sets for discrete sets in strong OAGs. In this section we provide a
detailed analysis of discrete sets definable in a definably complete expansion of
an ordered Abelian group whose theory is strong. The hypothesis of definable
completeness is useful for defining a “successor function” on definable discrete sets
(see the definition of SD below). The principal result of this section is Theorem 1.1
showing that if R has burden at most n + 1 and D is a discrete set definable in R,
then the n-fold difference set D(n) (as defined below) must be finite.

Note that for the case when R has burden 2, the conclusion of Theorem 1.1
is that if D ⊆ R is definable and discrete, then D′ is finite. In a previous paper,
we derived the same conclusion under the assumption that the universe of R is
Archimedean and the complete theory of R is strong (see Corollary 2.29 of [3]).
In the current paper, we generally work in �-saturated models, so the results of [3]
for Archimedean OAGs cannot be applied. The motivation of many of the lemmas
here and in the following section was to generalize our earlier results to the non-
Archimedean context, compensating with stronger assumptions on the theory (finite
burden or burden 2).

Assumption 2.1. Throughout the remainder of this section

R = 〈R; +, <, ...〉

denotes an expansion of an OAG which is definably complete, strong, and sufficiently
saturated (generally�-saturated will be enough), andD ⊆ R is a definable set which
is discrete. T denotes the complete first-order theory of R.

Remark 2.2. In this section, we do not generally assume that R is densely
ordered, though in a couple of places (notably Theorem 1.1) we can achieve slightly
stronger conclusions when R is not discrete. In case R is a discretely ordered group,
a “discrete subset of R” will simply mean any subset of R, and thus many of our
results apply generally to all unary definable sets of a discretely ordered Abelian
group.

We first recall a couple of useful facts about families of discrete definable sets
from [3].

Fact 2.3. [3, Corollary 2.13]. No definable discrete subset D of R can have an
accumulation point. In particular, any definable discrete set D ⊆ R is closed. As
a consequence, the union of finitely many definable discrete sets is also closed and
discrete.
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DISCRETE SETS IN STRONG OAGS 5

Fact 2.4. [3, Corollary 2.17]. IfD ⊆ R is discrete and definable and f : Rn → R
is any definable function, then the image set f[Dn] is also discrete.

Next we set some basic definitions which will be used throughout the remainder
of the paper: the successor function SD , Z-chains in a discrete set, and Archimedean
equivalence.

Definition 2.5. Let D be a discrete set definable in R.

(1) If a ∈ D is not maximal, set SD(a) = min{b ∈ D : a < b}.1 For n ∈ N>0 we
let SnD be the n-th iterate of SD (when defined). Similarly if a is not minimal
in D we let S–1

D (a) = max{b ∈ D : b < d} and for n ∈ N>0 we let S–n
D be the

n-th iterate (when defined). Finally let S0
D(a) = a for any a ∈ D.

(2) If a is not maximal in D we let �D(a) = SD(a) – a, which we call the difference
at a.

(3) D′ = {�D(a) : a ∈ D is not maximal}, the difference set of D.
(4) Note that D′ is the image of D under the definable map a 	→ �D(a), so by

Fact 2.4, the set D′ is also discrete. Hence we may define the n-th difference
set D(n) by recursion on n ∈ N: D(0) = D, and D(n+1) = (D(n))′.

Definition 2.6. Let D be a discrete definable set in R and let a ∈ D. The Z-chain
of a is the set:

Z(a) = {SnD(a) : n ∈ Z and SnD(a) exists}.
Any subset of D of the form Z(a) for some a ∈ D will be referred to as a Z-chain of
D. We also write:

Z≥(a) = {SnD(a) : n ≥ 0 and SnD(a) exists}
and

Z≤(a) = {SnD(a) : n ≤ 0 and SnD(a) exists}.
Any subset of D of the form Z≥(a) is called an �-chain of D, and any subset of the
form Z≤(a) is called an �∗-chain of D.

Definition 2.7. For a ∈ R>0 the Archimedean class of a is the set:

[a] = {b ∈ R : b < na and a < nb for some n ∈ N}.

Note that the collection of Archimedean classes partitions R>0. We write a � b if
[a] < [b] and for sets X,Y ⊆ R>0 we write X � Y if for all x ∈ X and y ∈ Y we
have x � y. Two elements a and b of R are called Archimedean equivalent if they
belong to the same Archimedean class.

We record the following fact about definable families of discrete sets which we
believe is interesting, even though it will not be necessary in proving our main
results.

1Note that this minimum element always exists by definable completeness.
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6 ALFRED DOLICH AND JOHN GOODRICK

Proposition 2.8. Suppose that D ⊆ R is discrete and definable and that Da is a
uniformly definable family of discrete sets for a ∈ D. Then

⋃
a∈D Da is discrete.

Proof. We may assume that R is densely ordered as otherwise the statement is
trivial.

For each a ∈ D and b ∈ Da there is ε > 0 so that (b – ε, b + ε) ∩Da = {b}. For
b ∈ Da let fa(b) = sup{ε > 0 : (b – ε, b + ε) ∩Da = {b}} (which exists in R by
definable completeness). This yields a definable functionfa : Da → R. Observe that
fa [Da ] is discrete (by Fact 2.4), hence fa [Da ] is closed (Fact 2.3), and fa [Da ] > 0.
Hence for every a ∈ D there is ε > 0 so that ε < fa [Da ]. Define g : D → R by the
rule

g(a) = sup{ε : ε < fa [Da ]}

(so by definable completeness, g(a) = min(fa [Da ])). This is a definable function,
so g[D] is discrete (by Fact 2.4) and g[D] > 0. Pick ε∗ > 0 so that 2ε∗ < g[D]. Thus
for any a ∈ D and any b ∈ Da we have that (b – 2ε∗, b + 2ε∗) ∩Da = {b}.

Now suppose that b is an accumulation point of
⋃
a∈D Da . By our choice of ε∗,

for any fixed a ∈ D, there cannot be more than one point of Da in an open interval
of length 2ε∗, so in particular there is at most one point of Da in (b – ε∗, b + ε∗).
Thus we can define a function h : D → R such that h(a) is the unique element of
Da ∩ (b – ε∗, b + ε∗), if this exists, and otherwise h(a) = b. Since h is a definable
function, its image h[D] is discrete by Fact 2.4 again. But b must be an accumulation
point of h[D], contradicting Fact 2.3. Therefore

⋃
a∈D Da is discrete. 

Our next goal is to prove Theorem 2.14 below, which says that the existence of
definable discrete sets D0, ... , Dn with certain properties implies the existence of an
inp-pattern of depth n + 1; our main result, Theorem 1.1, will follow rather quickly
from this. Before proving Theorem 2.14, we will need the next definition below and
a pair of technical lemmas (Lemmas 2.11 and 2.13) which will be useful in the
eventual construction of an inp-pattern.

Definition 2.9. If D0, D1, ... , Dn are subsets of R, then

D0 +D1 + ··· +Dn = {c0 + c1 + ··· + cn : ∀i ≤ n [ci ∈ Di ]}.

Lemma 2.10. IfD0, ... , Dn are definable discrete sets, thenD0 + ··· +Dn is discrete.

Proof. This Lemma could be quickly deduced from Proposition 2.8 above, but
it can also be proved directly, as follows. LetD = D0 ∪ ··· ∪Dn, which is discrete as
it is a finite union of discrete sets. Fix some arbitrary point b ∈ D0 + ··· +Dn and
define f : Dn+1 → R by the rule

f(c0, ... , cn) =

{
c0 + ··· + cn, if ci ∈ Di for all i,
b, otherwise.

Then D0 + ··· +Dn is the image of D under f, and hence by Fact 2.4 it is
discrete. 

https://doi.org/10.1017/jsl.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.43


DISCRETE SETS IN STRONG OAGS 7

Lemma 2.11. Suppose that D̃0, ... , D̃n are definable infinite discrete sets such that:

(1) for every i ∈ {0, ... , n}, the set D̃i is bounded above, and 0 < D̃i ; and
(2) for every i such that i ∈ {0, ... , n – 1},

max(D̃i+1) + min(D̃′
i+1) < min(D̃′

i ).

Then the ordering on D̃0 + ··· + D̃n as a subset of R is isomorphic to the
lexicographic ordering on D̃0 × ··· × D̃n under the natural map sending the tuple
(c0, ... , cn) ∈ D̃0 × ··· × D̃n to the sum c0 + ··· + cn.

In particular, if cn is a non-maximal element of D̃n, then

SD̃0+···+D̃n (c0 + ··· + cn–1 + cn) = c0 + ··· + cn–1 + SD̃n (cn).

Proof. First, we establish the following:

Claim 2.12. If 0 ≤ i < n, ci ∈ D̃i , and ci �= max(D̃i), then for any tuple
(ci+1, ci+2, ... , cn) ∈ D̃i+1 × D̃i+2 × ··· × D̃n,

�D̃i (ci) > ci+1 + ··· + cn.

Proof of Claim 2.12. Fix some i ∈ {0, ... , n – 1} and fix some (ci , ... , cn) ∈
D̃i × ··· × D̃n such that ci �= max(D̃i). Then

�D̃i (ci) ≥ min(D̃′
i ) > max(D̃i+1) + min(D̃′

i+1), by hypothesis (2)

≥ ci+1 + min(D̃′
i+1)

> ci+1 + max(D̃i+2) + min(D̃′
i+2), by hypothesis (2)

≥ ci+1 + ci+2 + min(D̃′
i+2)

...

≥ ci+1 + ··· + cn–1 + min(D̃′
n–1)

> ci+1 + ··· + cn–1 + max(D̃n) + min(D̃′
n) by hypothesis (2)

> ci+1 + ··· + cn–1 + max(D̃n)

≥ ci+1 + ··· + cn–1 + cn,

proving the Claim. 

To prove Lemma 2.11, consider any two tuples (c0, ... , cn) and (d0, ... , dn) from
D̃0 × ··· × D̃n, and we must show that

c0 + ··· + cn < d0 + ··· + dn

if and only if the tuple (c0, ... , cn) comes before (d0, ... , dn) in the lexicographic
order. Without loss of generality, the tuples are distinct and (c0, ... , cn) comes before
(d0, ... , dn) in the lexicographic order. Let i ∈ {0, ... , n}be minimal such that ci �= di ,
so that ci < di . We can further assume that i < n, since if i = n the conclusion we
want is trivial. Note that

di ≥ ci + �D̃i (ci). (3)
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8 ALFRED DOLICH AND JOHN GOODRICK

Hence
n∑
j=0

(dj – cj) = di – ci +
n∑

j=i+1

(dj – cj), by minimality of i

≥ �D̃i (ci) +
n∑

j=i+1

(dj – cj), by (3)

>

n∑
j=i+1

dj, by Claim 2.12

> 0, by Hypothesis (1).

Therefore
∑n
j=0 cj <

∑n
j=0 dj , as we wanted. 

Lemma 2.13. If there are definable infinite discrete sets D0, ... , Dn such that
(a) 0 < D0, and
(b) for every i such that 0 ≤ i < n,

0 < Di+1 < D
′
i ,

then there are definable infinite discrete sets D̃0, ... , D̃n satisfying hypotheses (1) and
(2) of Lemma 2.11.

Proof. Note that hypothesis (b) implies thatD1, ... , Dn are all bounded above. In
caseD0 is not bounded above, we may (using�-saturation) replace it with an infinite
subset which is bounded above, which will not affect hypothesis (b); so without loss
of generality, every Di is bounded above.

Now for each i ∈ {1, ... , n}, let di be the largest element ofDi , let ci be the second
largest element of Di , and let bi be the third largest element of Di , and we define

D̃i :=

{
(Di \ {ci , di}) ∪ {di – ci + bi}, if bi < 2ci – di ,
Di \ {di}, if bi ≥ 2ci – di .

Finally, we let

D̃0 := D0.

Note that when bi < 2ci – di , we have

di – ci + bi = ci – (2ci – di – bi) < ci ,

while if bi ≥ 2ci – di , then max(D̃i) = ci ; thus in either case, for any i ∈ {1, ... , n},

max(D̃i) ≤ ci . (4)

Also, since bi ∈ Di > 0 and ci < di , it follows that di – ci + bi > 0, and so in
either case of the definition of D̃i , we have

D̃i > 0. (5)

Next we will verify that for any i ∈ {0, ... , n},

D̃′
i ⊆ D′

i . (6)
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DISCRETE SETS IN STRONG OAGS 9

The relation (6) is trivial when i = 0 and immediate from the definition when
bi ≥ 2ci – di , so say i > 0 and bi < 2ci – di . Since

di – ci + bi = bi + (di – ci) > bi ,

it follows that di – ci + bi is the largest element of D̃i and bi is the second largest
element of D̃i . Hence

D̃′
i ⊆ D′

i ∪ {di – ci + bi – bi}
= D′

i ∪ {di – ci}
= D′

i ,

as desired.
Now from (6) we immediately deduce that for any i ∈ {0, ... , n},

min(D′
i ) ≤ min(D̃′

i ). (7)

Finally, we will show that for any i ∈ {0, ... , n – 1},

min(D̃′
i+1) ≤ di+1 – ci+1. (8)

To prove (8), we divide into two cases depending on the definition of D̃i+1. On the
one hand, if bi+1 < 2ci+1 – di+1, then, as noted above, bi+1 and di+1 – ci+1 + bi+1

are the two largest elements of D̃i+1, so that

�D̃i+1
(bi+1) = SD̃i+1

(bi+1) – bi+1

= di+1 – ci+1 + bi+1 – bi+1

= di+1 – ci+1,

so that

min(D̃′
i+1) ≤ �D̃i+1

(bi+1) = di+1 – ci+1,

as desired.
On the other hand, suppose that i ∈ {0, ... , n – 1} and bi+1 ≥ 2ci+1 – di+1. Then

D̃i+1 = Di+1 \ {di+1},

so in particular ci+1 – bi+1 ∈ D̃′
i+1, and

min(D̃′
i+1) ≤ ci+1 – bi+1

≤ ci+1 – (2ci+1 – di+1)

= di+1 – ci+1,

and again we have the desired conclusion (8).
We will now check that hypotheses (1) and (2) of Lemma 2.11 hold for D̃i . First,

hypothesis (1) of Lemma 2.11 simply says that D̃i is bounded above and 0 < D̃i
for each i ∈ {0, ... , n}, which is (5). As for hypothesis (2) of that Lemma, suppose
i ∈ {0, ... , n – 1}. Hence
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10 ALFRED DOLICH AND JOHN GOODRICK

max(D̃i+1) + min(D̃′
i+1) ≤ ci+1 + min(D̃′

i+1), by (4)

≤ ci+1 + (di+1 – ci+1), by (8)

= di+1

= max(Di+1)

< min(D′
i ), by hypothesis (b) of Lemma 2.13

≤ min(D̃′
i ), by (7).

This shows that both hypotheses of Lemma 2.11 hold with the D̃i in place of Di ,
as desired. 

Theorem 2.14. If there are definable infinite discrete sets D0, ... , Dn such that
(a) 0 < D0, and
(b) for every i such that 0 ≤ i < n,

0 < Di+1 < D
′
i ,

then the burden of R is at least n + 1. If we additionally assume that R is densely
ordered, then its burden is at least n + 2.

Proof. First, by Lemma 2.13, there are infinite definable discrete sets D̃0, ... , D̃n
satisfying the conclusions of Lemma 2.11. We will use the sets D̃0, ... , D̃n to construct
an inp-pattern of depth n + 1, and at the last step explain how the construction can
be extended to add an extra row to the pattern in case R is densely ordered.

First we will describe the formulas ϕi(x; yi) of Row i for each i ∈ {0, ... , n + 1},
and afterwards we will explain how to select parameters ai,j so that the ϕi(x; ai,j)
form an inp-pattern.

Row 0: The formula ϕ0(x; y) for the first row (Row 0) has variables x and
y = (y0, y1) and is

ϕ0(x; y) = y0 < x < y1,

asserting that x lies in a certain open interval.
Rows 1 through n + 1: If 1 ≤ i ≤ n, the formula ϕi(x; y) has variables x and

y = (y0, y1) in addition to the parameters used to define the sets D̃0, ... , D̃n (which
we hold constant and never state explicitly). The formula for Row i is

ϕi(x; y) = y0 < min
{
x – z : z ∈ D̃0 + ...+ D̃i–1 and z < x

}
< y1,

observing that the minimum above exists for any value of x (by definable
completeness) and is definable. Also note that this formula makes sense for i up
to and including n + 1, although we will only use ϕn+1(x; y) in our inp-pattern in
the case when R is densely ordered.

Selecting the parameters: Finally, we will explain how to select parameters ai,j
for the formulas ϕi(x; y) so that

{ϕi(x; ai,j) : i < n + 1, j < �}

forms an inp-pattern (and in case R is densely ordered, we include i = n + 1). We
will assume without loss of generality that R is �-saturated and we will select all
ai,j from R.
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DISCRETE SETS IN STRONG OAGS 11

First we will pick the parameters for Rows 0 through n, and at the end we will
explain how to pick parameters for Row n + 1 in case R is densely ordered.

Recall that for Rows 0 through n to form an inp-pattern, it suffices to pick the
parameters ai,j such that:

(1) for every i ∈ {0, ... , n}, the formulas {ϕi(x; ai,j) : j < �} of Row i are 2-
inconsistent; and

(2) for every function � : {0, ... , n} → �, the formula

ϕ0(x; a0,�(0)) ∧ ··· ∧ ϕn(x; an,�(n))

is consistent.

Given that each set D̃i is infinite and discrete, we can pick pairs ai,j = (a0
i,j , a

1
i,j)

such that the open intervals I (a0
i,j , a

1
i,j) which they define are pairwise disjoint, and

each such interval contains two consecutive elements of D̃i . For definiteness, we fix
elements ci,j ∈ D̃i for each i ∈ {0, ... , n} and each j < � such that

a0
i,j < ci,j < SD̃i (ci,j) < a

1
i,j . (9)

From the definition of the formulas ϕi(x; y) and the fact that the intervals
I (a0

i,j , a
1
i,j) are pairwise disjoint condition (1) above is immediate.

To show (2), fix some � : {0, ... , n} → �, and we will show that

e := c0,�(0) + ··· + cn,�(n)

satisfies the formula ϕi(x; ai,�(i)) for each i ∈ {0, ... , n}.
In case i = 0, note that by the conclusion of Claim 2.12,

�D̃0
(c0,�(0)) > c1,�(1) + ··· + cn,�(n)

so that

c0,�(0) < c0,�(0) + ··· + cn,�(n) < SD̃0
(c0,�(0)).

By the inequality (9) and the definition of e, the element e is in the interval
I (a0

0,�(0), a
1
0,�(0)) defined by ϕ0(x; a0,�(0)), as we wanted.

If i ∈ {1, ... , n}, we argue similarly: by the conclusion of Claim 2.12 again,

i–1∑
k=0

ck,�(k) < e <

i–2∑
k=0

ck,�(k) + SD̃i–1
(ci–1,�(i–1)),

and thus, by Lemma 2.11, the greatest element of D̃0 + ··· + D̃i–1 below e is∑i–1
k=0 ck,�(k); therefore,

min
{
e – z : z ∈ D̃0 + ··· + D̃i–1 and z < e

}
= ci,�(i) + ··· + cn,�(n). (10)

If i = n, then this reduces to

min
{
e – z : z ∈ D̃0 + ··· + D̃n–1 and z < e

}
= cn,�(n),
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12 ALFRED DOLICH AND JOHN GOODRICK

and by (9) we have

a0
n,�(n) < min

{
e – z : z ∈ D̃0 + ··· + D̃n–1 and z < e

}
< a1

n,�(n)

so that e satisfies ϕn(x; an,�(n)) as desired.
If i ∈ {1, ... , n – 1}, then once again by Claim 2.12,

�D̃i (ci,�(i)) > ci+1,�(i+1) + ··· + cn,�(n)

so that

ci,�(i) < ci,�(i) + ci+1,�(i+1) + ··· + cn,�(n) < SD̃i (ci,�(i)).

By Equation (10), this implies that

ci,�(i) < min
{
e – z : z ∈ D̃0 + ··· + D̃i–1 and z < e

}
< SD̃i (ci,�(i)).

By the inequalities in (9), we again deduce that e satisfies ϕi(x; ai,�(i)).
Finally, suppose that R is densely ordered. Then by �-saturation, we can pick

parameters an+1,j = (a0
n+1,j , a

1
n+1,j) from R such that for every j ∈ �,

0 < a0
n+1,j < a

1
n+1,j < a

0
n+1,j+1 < a

1
n+1,j+1 < min(D̃′

n).

By density of R, we can pick elements cn+1,j ∈ I (a0
n+1,j , a

1
n+1,j). Now if � :

{0, ... , n + 1} → � is any function, let

e = c0,�(0) + ··· + cn+1,�(n+1).

Arguing just as before, we have that e satisfies ϕi(x; ai,�(i)) for every i ∈ {0, ... ,
n + 1}, and we are done. 

At last, we can prove Theorem 1.1.

Proof of Theorem 1.1. Let D be an infinite definable discrete set such that D(n)

is infinite, and we must show that the burden of R is at least n + 1 (or at least n + 2,
in case R is densely ordered). By passing to an elementary extension as needed, we
assume R is �-saturated.

First we note:

Claim 2.15. There is a definable discrete set D̃ ⊆ R such that 0 < D̃ and D̃(n) is
infinite.

Proof. If n = 0, there is some a such that (D + a) ∩ (0,∞) is infinite,2 and we
can take D̃ = (D + a) ∩ (0,∞). If n ≥ 1, first take some bounded interval (b, c)
such that (D ∩ (b, c))(n) is infinite; then, noting that for any a ∈ R,

(a +D ∩ (b, c))(n) = (D ∩ (b, c))(n),

we may let D̃ be a translation of (D ∩ (b, c))(n) such that D̃ > 0. 
To prove Theorem 1.1, by Theorem 2.14, it is sufficient to construct a new sequence

of infinite discrete sets E0, ... , En such that

2Note that the existence of such an a is guaranteed by �-saturation.
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DISCRETE SETS IN STRONG OAGS 13

(1) 0 < E0, and
(2) for every i ∈ {0, ... , n – 1},

0 < Ei+1 < E
′
i .

To this end, we will build an (n + 1) × (n + 1) matrix of infinite discrete sets
{Ei,j : 0 ≤ i, j ≤ n} such that:

(3) E0,j = D̃(j) for each j ∈ {0, ... , n}.
(4) Ei,j ⊆ Ei–1,j for all 0 ≤ j ≤ n and all 1 ≤ i ≤ n.
(5) If 0 ≤ i ≤ n then 0 < Ei,j < E ′

i,j–1 for all n – i + 1 ≤ j ≤ n.

(6) If 0 ≤ i ≤ n and j < n – i , then Ei,j = D̃(j).

The sets Ei,j will be defined recursively, starting with the first row (when i = 0).
For i = 0, we simply observe that each set E0,j = D̃(j) is discrete by Fact 2.4, and
(4)–(6) are trivial.

Now suppose we have constructed Ei,0, ... , Ei,n satisfying (3)–(6), and we show
how to define Ei+1,0, ... , Ei+1,n. We will define the sets Ei+1,j by four different cases
according to how j relates to n – i .

In the first case, when j ≥ n – i + 1, we set Ei+1,j = Ei,j .
For the second case, we must define Ei+1,j when j = n – i . As Ei,n–i is an infinite

discrete set, by �-saturation of R there is a c ∈ R so that both sets

F0 = {x ∈ Ei,n–i : x < c}

and

F1 = {x ∈ Ei,n–i : x > c}

are infinite. Let

Ei+1,n–i = F0

and note that, in case i > 0, we have Ei+1,n–i+1 < E
′
i+1,n–i by (5) for j = n – i + 1.

For the third case, when j = n – i – 1, we set

Ei+1,n–i–1 = {x ∈ D̃(n–i–1) : �D̃(n–i–1) (x) ∈ F1}.

This is an infinite discrete subset of D̃(n–i–1) = Ei,n–i–1 since F1 ⊆ Ei,n–i ⊆ D̃(n–i), and
if a ∈ Ei+1,n–i–1, then �Ei+1,n–i–1(a) > c and hence E ′

i+1,n–i–1 > Ei+1,n–i .
Finally, for j < n – i – 1, we define Ei+1,j = Ei,j = D̃(j).
Now letting Ej = En,j , we have a sequence of sets satisfying (1) and (2) above,

and we are done. 

§3. Fine structure for discrete sets in the burden 2 case. In this section, we will
prove Theorem 1.3.

Throughout this section R will be an expansion of a divisible ordered Abelian
group of burden 2 which is definably complete and presented in a language L, and
D will always be an infinite discrete set definable in such a structure. Recall that by
Theorem 1.1 if E ⊂ R is any R-definable discrete set (in particular D) then E ′ is
finite.

https://doi.org/10.1017/jsl.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.43


14 ALFRED DOLICH AND JOHN GOODRICK

Theorem 1.3 will follow from a result that such a D must be a finite union of sets
which locally resemble arithmetic sequences. To make this more precise, we give the
following definition.

Definition 3.1. A discrete set E is called pseudo-arithmetic if it is infinite and
|E ′| = 1. If E ′ = {�} we will call E �-pseudo-arithmetic. A definable set X is called
piecewise pseudo-arithmetic if it is a finite union of points and definable pseudo-
arithmetic sets.

The bulk of this section is dedicated to proving:

Theorem 3.2. If R = 〈R; +, <, ... 〉 is a definably complete expansion of a divisible
ordered Abelian group of burden 2 and D ⊆ R is definable and discrete then D is
piecewise pseudo-arithmetic.

In order to establish Theorem 3.2 we first prove a weaker result with more
assumptions on the discrete set D and then later show how the general result can
be deduced from this weaker version. In order to state our desired weakening of
Theorem 3.2 we need a definition.

Definition 3.3. D is narrow if any two elements of D′ are Archimedean
equivalent.

We may now state our weaker version of Theorem 3.2.

Proposition 3.4. If R = 〈R; +, <, ... 〉 is an �-saturated, definably complete
expansion of a divisible ordered Abelian group of burden 2 and D is definable, discrete,
narrow, and bounded below, then D is piecewise pseudo-arithmetic.

We begin by proving Proposition 3.4. Then in turn we show how we may reduce
Theorem 3.2 to this weaker proposition. Once we have established Theorem 3.2 we
then show how our main result,Theorem 1.3, follows. We finish the section with an
example showing the limits of Theorem 1.3.

Before we continue we note that in order to establish Theorem 3.2 we may assume
that the structure R is �-saturated.

Proposition 3.5. For any infinite cardinal κ, to prove Proposition 3.2 in general,
it is sufficient to prove it under the assumption that the structure R is κ-saturated.

Proof. Suppose that R = 〈R; +, <, ... 〉 is any definably complete expansion of a
divisible ordered Abelian group (not necessarilyκ-saturated) of burden 2 and D is an
infinite definable discrete set. LetR1 be aκ-saturated elementary extension ofR, and
letD1 ⊆ R1 be the subset definable by the same formula that defines D in R. ThenD1

is also discrete. Applying Proposition 3.2 forκ-saturated structures, we conclude that
D1 is piecewise pseudo-arithmetic. Thus we find formulas ϕ1(x, a1), ... , ϕm(x, am)
and elements b1, ... , bl ∈ R1 so that D = E1 ∪ ··· ∪ Em ∪ {b1, ... , bl} where each Ei
is a pseudo-arithmetic set defined by ϕi(x, ai). But then we can find a∗1 , ... a

∗
m ∈ R

and c1, ... cl ∈ R so thatD = E∗
1 ∪ ··· ∪ E∗

m ∪ {c1, ... , cl} where eachE∗
i is a discrete

subset of R defined by ϕi(x, a
∗
i ) with |(E∗

i )′| = 1. Not all of the E∗
i are necessarily

pseudo-arithmetic as some may be finite, but nonetheless we have written D as union
of finitely many points and pseudo-arithmetic sets as desired. 
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Note that Proposition 3.4 is only an intermediate step in establishing Theorem 3.2,
and thus we include the hypothesis that R is �-saturated in the statement of
Proposition 3.4.

Finally the following definition will occur throughout the following sections:

Definition 3.6. We will say that X ⊆ D is D-convex if whenever a, b ∈ D ∩ X
and a < c < b for some c ∈ D then c ∈ X .

3.1. Establishing Proposition 3.4. In this subsection we prove Proposition 3.4.
Thus in this subsection we will maintain:

Assumption 3.7. D is a definable discrete set which is narrow and bounded below,
and R is �-saturated.

In order to prove Proposition 3.4 we first need to establish a sequence of
preliminary results. The first of these is a statement describing definable subsets
of D.

Proposition 3.8. LetE ⊆ D be definable. Then there areM ∈ N and finitely many
closed intervals or closed rays C1, ... , Cn in R such that:

(1) E ⊆ (C1 ∩D) ∪ ··· ∪ (Cn ∩D).
(2) The Ci are pairwise disjoint.
(3) If Ci = [b, b] = {b}, then b ∈ E.
(4) If Ci is an infinite closed interval, then Ci ∩ E is infinite.
(5) IfCi is an infinite interval andCi is bounded above, thenCi is of the form [ai , bi ]

with bi ∈ E and ai ∈ E, and otherwise it is of the form [ai ,∞) with ai ∈ E.
(6) IfCi is an infinite interval and Z is a Z-chain withZ ⊆ Ci then E is both cofinal

and coinitial in Z, and moreover for all b ∈ Z, {b, SD(b), ... , SMD (b)} ∩ E �= ∅.
(7) If Ci is an infinite interval of the form [ai , bi ] or [ai ,∞) then E is cofinal in

Z(ai), and moreover for all b ∈ Z(ai) with b ≥ ai ,

{b, SD(b), ... , SMD (b)} ∩ E �= ∅.

(8) If Ci is an infinite interval of the form [ai , bi ] then E is coinitial in Z(bi), and
moreover for all a ∈ Z(bi) with a ≤ bi ,

{a, S–1
D (a), ... , S–M

D (a)} ∩ E �= ∅.

We begin with an essential lemma and some useful corollaries.

Lemma 3.9. Suppose that {Da : a ∈ X} is a definable family of subsets of D and
� = max(D′). Then there is an l ∈ � such that for any a ∈ X , the set {d ∈ Da :
�Da (d ) ≥ l · �} is finite.

Proof. Suppose that no such l exists. Then by compactness we find a ∈ X such
that there are infinitely many d ∈ Da with �Da (d ) � �. Let {di : i ∈ �} list the first
� elements of D. By �-saturation of R, there is an element ε ∈ R such that

(1) for every i ∈ �, di < ε; and
(2) there are infinitely many d ∈ Da such that �Da (d ) > ε.

Let F = {x ∈ Da : �Da (x) ≥ ε} and notice that F ′ ≥ ε. Thus F and D ∩ [0, ε) are
infinite discrete sets such that D ∩ [0, ε] < F ′, violating Theorem 2.14. 
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16 ALFRED DOLICH AND JOHN GOODRICK

If E ⊆ D is definable, then we can apply Lemma 3.9 to the family of setsDa = E
to immediately deduce the following:

Corollary 3.10. If E ⊆ D is definable and � = max(D′), then there can be only
finitely many b ∈ E with �E(b) � �.

Let ≡ be the convex equivalence relation on D so that a ≡ b for a, b ∈ D if and
only if |a – b| < l · max (D′) for some l ∈ �. Notice as D is narrow we also have
a ≡ b if and only if |a – b| < l · min (D′) for some l ∈ �. Or to state things more
simply, a ≡ b if and only if a and b lie on the same Z-chain of D. By saturation D/≡
is a dense linear ordering.

Corollary 3.11. If E ⊆ D is definable then E/≡ has finitely many convex
components in D/≡.

Proof. Suppose otherwise and letCi for i ∈ � be distinct convex components of
E/≡ in D/≡. As R is assumed to be�-saturated we may assume by compactness that
Ci < Ci+1 for all i ∈ �. We may find ai ∈ D \ E for i ∈ � so that Ci < (ai/≡) <
Ci+1 and so that ai �≡ e for any e ∈ E.

Now let bi = max{e ∈ E : e < ai} for i ∈ �. As Ci < (ai/≡) and R is definably
complete, bi exists; and as E is closed (by Fact 2.3), bi ∈ E. Note that bi is not
maximal in E for any i ∈ � as (bi/≡) < Ci+1. We claim that �E(bi) > l · max (D′)
for all i, l ∈ �. Suppose otherwise and that �E(bi) ≤ l · max (D) for some i, l ∈ �.
But by choice of bi we must have that SE(bi) > ai . Hence |ai – bi | ≤ l · max (D′)
and so ai ≡ bi but this violates our choice of ai . Thus for all i, l ∈ � we have that
�E(bi) > l · max (D′). But this violates Corollary 3.10. 

Corollary 3.12. Let E ⊆ D be definable. Then there isM0(E) ∈ � so that:

(1) If E is cofinal in a Z-chain Z then

{b, SD(b), ... , SM0(E)
D (b)} ∩ E �= ∅

for all sufficiently large b ∈ Z.
(2) If E is coinitial in a Z-chain Z then

{b, SD(b), ... , S–M0(E)
D (b)} ∩ E �= ∅

for all sufficiently small b ∈ Z.
(3) If E is both cofinal and coinitial in a Z-chain Z then

{b, SD(b), ... , SM0(E)
D (b)} ∩ E �= ∅

for all b ∈ Z.

Proof. First suppose that (1) fails. LetN ∈ �. For i ∈ � we may find ai ∈ D all
lying on a single Z-chain so that

{S–N
D (ai), ... , S–1

D (ai), ai , SD(ai), ... , SND (ai)} ∩ E = ∅

and bi ∈ E with ai < bi < ai+1 for all i ∈ �.
Then by compactness we find a∗i ∈ D for i ∈ � so that {SMD (a∗i ) :M ∈ Z} ∩

E = ∅ and b∗i ∈ E so that a∗i < b
∗
i < a

∗
i+1. For each i ∈ � we have that |a∗i – c| >

l · min (D′) for all l ∈ � and any c ∈ E. As D is narrow a∗i �≡ c for any c ∈ E. Thus
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(a∗i /≡) < (b∗i /≡) < (a∗i+1/≡) and furthermore (a∗i /≡) /∈ E/≡ but (b∗i /≡) ∈ E/≡ for all
i ∈ �. In particular each (b∗i /≡) is in a distinct convex component of E/≡ in D/≡
violating Corollary 3.11

The proof of (2) is identical to that of (1) except that for each N ∈ � we find
ci ∈ E and ai ∈ D for i ∈ � so that

{S–N
D (ai), ... , S–1

D (ai), ai , SD(ai), ... , SND (ai)} ∩ E = ∅
with ai > ci > ai+1.

Now assume that (3) fails. As (1) and (2) hold, for each N ∈ � we can find
pairwise distinct Z-chains Zi of D and ai ∈ Zi for i ∈ � so that

{S–N
D (ai), ... , S–1

D (ai), ai , SD(ai), ... , SND (ai)} ∩ E = ∅
together with bi , ci ∈ E ∩ Zi so that ci < ai < bi . We can assume that either the Zi
are ordered so that Zi < Zi+1 for all i ∈ � or that Zi > Zi+1 for all i ∈ �. In the
case that Zi < Zi+1 argue with ai , bi exactly as in the proof of (1). In the case that
Zi > Zi+1 argue with ai , ci exactly as in the proof of (2). 

We may now prove Proposition 3.8. Recall that we always assume that D
is bounded below, thus any interval or ray Ci occurring in the statement of
Proposition 3.8 may be assumed to be bounded below.

Proof. For the purposes of this proof let us call a definable E ⊆ D neat if we
may findM ∈ N andC1, ... , Cn closed intervals or rays satisfying conditions (1)–(8)
of Proposition 3.8.

Notice that for clauses (6)–(8) in the statement of Proposition 3.8 the “moreover”
portion will follow from the initial statements and Corollary 3.12. Hence to establish
that a set is neat we need only produce the intervals or rays C1, ... , Cn witnessing
(1)–(8) in the definition of neat without the “moreover” clauses.

It is immediate that if E = E1 ∪ ··· ∪ El where the Ei are definable, pairwise
disjoint, and neat then E is neat.

Let E ⊆ D be definable. By Corollary 3.11, E/≡ has finitely many convex
components. LetHj for 1 ≤ j ≤ k be the convex components of E/≡. We may pick
ej, fj ∈ D ∪ {∞} so thatHj = E ∩ [ej , fj )/≡. SettingEj = [ej, fj) ∩ E, to establish
that E is neat it suffices to show that each Ej is neat.

Thus fix 1 ≤ j ≤ k. If Ej is finite then the result is immediate, hence we may
assume that Ej is infinite. Let a = min(Ej), which exists as Ej is bounded below.
If Ej is bounded above let b = max(Ej). Let Z be any Z-chain so that Ej ∩ Z �= ∅
and Z(a) < Z < Z(b) (if b exists). We claim that Ej must be both cofinal and
coinitial in Z. Suppose otherwise, then for any N ∈ � we can find c ∈ Z so that
{SlD(c) :– N ≤ l ≤ N} ∩ Ej = ∅. By compactness we can then find anotherZ-chain
Z0 so that Z(a) < Z0 < Z(b) (if b exists) and Z0 ∩ Ej = ∅. But this violates the
fact that Ej/≡ is convex in D/≡. Hence Ej is cofinal and coinitial in Z. Similarly
we can conclude that Ej is cofinal in Z(a) and coinitial in Z(b) (if b exists). Thus
C1 = [a, b] if b exists, or C1 = [a,∞) otherwise is a closed interval or ray witnessing
that Ej is neat. 

To continue our proof of Proposition 3.4 we proceed with a combinatorial analysis
ofZ-chains in D much like that in [3] to establish thatZ-chains in D are approximately
periodic. To make this precise we need a definition.
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Definition 3.13. Suppose that 
 is an infinite sequence {ai : i ∈ I } of elements
from the setD′ where the index set I is either Z, �, or �∗ (that is, � with the reverse
ordering). In case I = �∗, we use i + k to denote the k-th successor of i if such an
element exists, thus whenever we write i + k we are presuming the k-th successor of
i exists.

(1) The sequence 
 is m-periodic if whenever i and i +m belong to I, we have
ai+m = ai .

(2) If I = �, the sequence 
 is eventually m-periodic if there is some N ∈ I such
that for every k ≥ N , we have ak+m = ak .

(3) If I = �∗, the 
 is eventually m-periodic if there is someN ∈ �∗ such that for
every k ≤ N , we have ak+m = ak .

(4) If I = Z, the sequence 
 is eventually m-periodic if both of the subsequences
{ai : i ≥ 0} and {ai : i ≤ 0} are eventually m-periodic, according to (2) and
(3) above.

(5) If I = � or �∗ and � ∈ (D′)m, the sequence 
 is �-periodic if it is m-periodic
and the first m elements of 
 (or the last m elements, in case I = �∗) are
a cyclic permutation of �. The notion of eventually �-periodic are defined
analogously.

(6) The sequence 
 is (eventually) periodic if it is (eventually) m-periodic for some
m ∈ � \ {0}.

(7) A Z-chain Z from D is (eventually) m-periodic if for some a ∈ Z, the
corresponding sequence of elements 〈�iD(a) : i ∈ Z〉 is (eventually) m-
periodic. Similarly for subsets of D of the form Z≥(b) or Z≤(b).

For the next Proposition and its consequences the following definition is
convenient.

Definition 3.14. If E is an infinite definable discrete set and {�1, ... , �k} is a
finite set of finite sequences from E ′ we call {�1, ... , �k} a characteristic set for E
if every �-chain of E and every �∗-chain of E is eventually �i -periodic for some
1 ≤ i ≤ k.

Our next goal is to show:

Proposition 3.15. D has a characteristic set.

In order to establish Proposition 3.15 we need some preliminary definitions and
lemmas.

Definition 3.16. For a, b, c, d ∈ D such that a < b and c < d , we define (a, b) ∼
(c, d ) if and only if b – a = d – c and for all e in the interval (a, b) we have that
e ∈ D if and only if e + c – a ∈ D. For any pair (a, b) ∈ D2 such that a < b, let
P(a,b) = {c ∈ D : (a, b) ∼ (c, c + (b – a))}.

Roughly speaking (a, b) ∼ (c, d ) if these two intervals are “isomorphic” as far as
D is concerned.

Definition 3.17. For a finite sequence � = 〈c1, ... , cm〉 of elements from D′, let
P� be the set of all d ∈ D so that Sl (d ) – Sl–1(d ) = cl for all l ∈ {1, ... , m}.
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Notice that if � is any finite sequence fromD′ withP� non-empty thenP� is equal
to P(a,b) for some a, b ∈ D. In particular the family of all P� is part of a uniformly
definable family of subsets of D.

Lemma 3.18. There is some fixedm0 ∈ � such that for any�-chain C in D and any
k ∈ �, there are at most m0 sequences � of length k so that P� is not bounded above
in C. Similarly, there is a fixed m1 ∈ � such that for every �∗-chain C in D and any
k ∈ �, there are at most m1 sequences � of length k so that P� is not bounded below
in C.

Proof. Say D′ = {�1, ... , �n} where the �i are listed in increasing order. First we
will give the proof of the existence of m0. By Lemma 3.9, there is some l0 ∈ � such
that for any a, b ∈ D, there are only finitely many c ∈ P(a,b) with �P(a,b)

(c) ≥ l0 · �n.
Since �1 is Archimedean equivalent to �n, there is some l ∈ � such that l · �1 ≥ l0 · �n,
and hence:

(∗) For any a, b ∈ D, there are only finitely many c ∈ P(a,b) with �P(a,b)
(c) ≥ l · �1.

We claim that m0 = l works. Fix an �-chain C and a natural number k and
suppose that there are m distinct sequences �1 ... , �m of length k fromD′ so that no
P�i is bounded above in C. If there is a �i such that the set

{a ∈ C : P�i ∩ {a, SD(a), ... , Sl–1
D (a)} = ∅}

is cofinal in C, then P′
�i

contains infinitely many elements which are greater than or
equal to l · �1, contradicting statement (∗) above. Therefore for all sufficiently large
a ∈ C , each setP�i must intersect {a, SD(a), ... , Sl–1

D (a)}. Since the setsP�1 , ... , P�m
are pairwise disjoint, this implies that m ≤ l , as we wanted.

The same proof, mutatis mutandis, shows the existence of m1. 

At this point, we can repeat some arguments from our paper [3] (specifically,
Lemma 2.33 and Proposition 2.35) to conclude that every �-chain is eventually
periodic. In the interest of making the current paper self-contained, we now present
a simplified version of the combinatorial argument found there. Suppose that 
 is an
infinite sequence a0, a1, ... of elements from the set D′ = {�1, ... , �n}, and recall the
definition of “eventually m-periodic” from Definition 3.13 above. Say that a finite
sequence � from D′ is infinitely recurring in 
 in case it occurs infinitely often as a
subsequence ai , ai+1, ... , ai+k of 
. Let f
 : � → � be the function defined by the
rule that f
(k) is the number of infinitely-recurring sequences of length k in 
.

The crucial fact about f
 is the following:

Lemma 3.19. If M ∈ � and f
(k) ≤M for every k ∈ �, then the sequence 
 is
eventually m-periodic for some m ≤M .

Proof. Suppose that f
(k) ≤M for every k ∈ �. Note that since D′ is finite,
it follows from the Pigeonhole Principle that every infinitely-recurring sequence of
length k in 
 can be extended to at least one infinitely-recurring sequence of length
k + 1 in 
. Hence

f
(k) ≤ f
(k + 1),
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that is, the function f
 is nondecreasing. By the hypothesis that values of f
 are
bounded above by some M, there is k ∈ � for which f
(k) = f
(k + 1).

Claim 3.20. Without loss of generality, there isk ∈ � such thatf
(k) = f
(k + 1)
and furthermore every subsequence of 
 of length k or k + 1 is infinitely recurring.

Proof. First pick some k such that f
(k) = f
(k + 1), which exists by the
argument just above. If � is a subsequence of 
 which is not infinitely recurring,
then there is some point p� ∈ � such that � never occurs past p� . Let p be the
maximum of p� for all subsequences � of length k or k + 1 which occur only finitely
often in 
 (of which there can be only finitely many, since D′ is finite). Then every
subsequence of length k or k + 1 which occurs past the point p must be infinitely
recurring. 

Now fix some k as in the conclusion of the Claim above. Hence if � is any length-k
subsequence of 
, it has a unique length-(k + 1) end extension �+ which occurs as a
subsequence of 
, and we define �′ to be the sequence formed by the last k elements
of �+. Let � be the first k elements of 
 and form the sequence

�, �′, �′′, ... , �(i), ...

by recursively applying this operation. By the Pigeonhole Principle, there must be
i < j such that �(i) = �(j), and we may pick j so that j – i ≤ f
(k) ≤M . Thus 
 is
(j – i)-periodic past the first instance of �(i), and we are done. 

From the previous Lemma, we can quickly deduce Proposition 3.15:

Proof. We will show that there are finitely many finite sequences �1, ... , �k such
that any�-chain of D is eventually �i -periodic for some i ∈ {1, ... , k}, and the same
argument, with only notational changes, applies to �∗-chains of D, yielding the
conclusion of Proposition 3.15.

So fix some �-chain C of D. Pick a ∈ C arbitrarily and let 
 be the �-chain
(�D(a), �D(SD(a)) ... �D(SlD(a)), ... ). By Lemma 3.18, f
(n) ≤ m0 for all n ∈ �.
Applying Lemma 3.19 we conclude that 
, and hence C, is eventually m-periodic for
some m ≤ m0. Since D′ is finite, there are only finitely many sequences of length at
most m0 from D′, and the conclusion of Proposition 3.15 follows. 

We need one final intermediate proposition elucidating the structure of D which
will allow us to deduce Proposition 3.4. In order to state this result we need a
definition.

Definition 3.21. Let � be any finite sequence of elements ofD′. A closed interval
I ⊆ R≥0 is a �-interval if:

(1) I = [a, b] or [a,∞) with a, b ∈ D.
(2) I ∩D is infinite.
(3) If Z is a Z-chain and Z ⊂ I then Z is �-periodic.
(4) If I = [a, b] or [a,∞) then Z≥(a) is �-periodic.
(5) If I = [a, b] then Z≤(b) is �-periodic.
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Given this definition we aim to prove:

Proposition 3.22. Assume {�1, ... , �k} is a characteristic set for D. There is a
finite collection of pairwise disjoint intervals C so that each I ∈ C is a �i -interval for
some 1 ≤ i ≤ k and D \

⋃
I∈C I is finite.

Fix {�1, ... , �k}, a characteristic set for D.
To establish Proposition 3.22 we need a key preliminary Lemma:

Lemma 3.23. All but finitely many Z-chains in D are periodic.

Proof. Suppose toward a contradiction that there are infinitely many non-
periodic Z-chains in D. If there are sequences in {�1, ... , �k} of different lengths,
then if m is a common multiple of the lengths of all the �i ’s, we may replace each �i
with a suitable number of concatenations with itself which has length m, and thus
without loss of generality each �i has the same length m. There is also no harm in
assuming that the set {�1, ... , �k} is closed under cyclic permutations.

Fix some Z-chain Z which is not periodic. Then there is some a ∈ Z such
that Z≥(a) is not periodic. By Proposition 3.15, Z≥(a) is eventually periodic.
We may assume that a is maximal in the sense that if a′ ∈ Z and a′ > a,
then Z≥(a′) is periodic. Let 
 be the �-chain �D(a), �D(SD(a)), �D(S2

D(a)), ... of
successive elements ofD′ beginning at �D(a). Then there is some dZ ∈ D′ and some
iZ ∈ {1, ... , k} such that 
 = dZ��iZ (the concatenation of dZ followed by� copies of
�iZ ), since by our maximality assumption on a, the �-chain of successive elements
of D′ which begins at �D(SD(a)) must be periodic.

By the assumption that there are infinitely many non-periodic Z-chains and the
Pigeonhole Principle, there is a single d ∈ D′ and a single i ∈ {1, ... , k} such that
there are infinitely many non-periodic Z-chains Z such that dZ = d and iZ = i . Let
�i = �–

i e where �–
i is the prefix consisting of the first m – 1 elements of �i and e is

the final element of �i . Then e �= d , since otherwise

d��i = d�–
i e�

–
i e ...

would be an m-periodic sequence, contrary to our assumption.
Now let � = d�i . Since d �= e, the sequence � cannot be a subsequence of any m-

periodic�-chain. Thus there are infinitely manya ∈ P� such that a is the last element
of itsZ-chain which intersectsP� . ThereforeP� is an infinite definable discrete subset
of D and there are infinitely many elements a ∈ P� such that SP� (a) – a � D′, but
this contradicts Corollary 3.10. 

Proof of Proposition 3.22. By Proposition 3.15, for every narrow definable
discrete set D which is bounded below, there is some k ∈ � and finite sequences
�1, ... , �k from D′ so that {�1, ... , �k} is a characteristic set for D. Let k(D) be the
minimum number such that there is a characteristic set {�1, ... , �k(D)} for D. Without
changing the number k(D) of sequences in such a set, we may further assume that
all the sequences �i have the same length (arguing as in the first paragraph of the
proof of Lemma 3.23). We also note that by minimality of k(D), no two sequences
�i and �j for 1 ≤ i < j ≤ k(D) are cyclic permutations of one another. In case D is
finite, we define k(D) = 0, and whenever D is infinite, k(D) > 0.

Our proof is by induction on k(D). We assume that the conclusion of
Proposition 3.22 holds for all narrow discrete sets E which are bounded below
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and for which k(E) < k(D). We prove the conclusion of Proposition 3.22 for D.
Note that the base case is when k(D) = 0, which holds if and only if D is finite, in
which case the conclusion of Proposition 3.22 is trivial.

Now suppose that k(D) > 0. Fix a characteristic set{�1, ... , �k(D)} for D with all
�i of the same length, none of which is a cyclic permutation of the other. We apply
Proposition 3.8 to the subset of D defined by P�1 to obtain a finite collection of
closed, pairwise-disjoint intervals C0 = {C1, ... , Cn} such that P�1 ⊆

⋃
1 ≤ i ≤ nCi

and for each i ∈ {1, ... , n},

(1) P�1 is cofinal and coinitial in every Z-chain contained in D ∩ Ci ,
(2) P�1 is cofinal in every �-chain contained in D ∩ Ci , and
(3) P�1 is coinitial in every �∗-chain contained in D ∩ Ci .

Since the Z-, �-, and �∗-chains in (1)–(3) must be eventually �i -periodic for
some i, and by our assumptions that the �i ’s are all of the same length and not cyclic
permutations of one another, it follows that the chains in (1)–(3) are all eventually
�1-periodic.

The conclusion of Proposition 3.8 allows for some intervals Ci which intersect
P�1 in only one point; by discarding such Ci , we may further assume that every set
Ci ∩ P�1 is infinite, and that

(4) P�1 \
⋃
Ci∈C0

Ci is finite.

The intervals in C0 may not be �1-intervals for either one of two reasons. First,
it may be the case that for some W, an eventually �1-periodic but not �1-periodic
Z-chain of D, we have thatW ⊆ I for some I ∈ C0. But by Lemma 3.23 there are
only finitely many such chains. Thus we can rectify this problem by partitioning
the elements of C0 into subintervals so that no such W is contained in any of the
intervals. Secondly for some J ∈ C0 with J = [a, b] or J = [a,∞) it may be the case
that either Z≥(a) or Z≤(b) are only eventually �1-periodic and not �1-periodic.
But this is easily fixed by replacing a by a suitably chosen Sl (a) or replacing b
by a suitably chosen S–l (b). With these adjustments C0 is a finite collection of
�1-intervals.

Next let D1, ... , Dr be the finitely many infinite D-convex components of D \⋃
Ci∈C0

Ci (we may ignore any finite D-convex components). For each i ∈ {1, ... , r},
any �-chain of Di is also an �-chain of D, and by construction it is not eventually
�1-periodic, hence it is �j-periodic for some j ∈ {2, ... , k(D)}, and likewise for �∗-
chains; thus {�2, ... , �k(D)} is a characteristic set for eachDi , and so k(Di) < k(D).
By the induction hypothesis we may find finite collections of intervals Ci for 1 ≤ i ≤ r
so that each I ∈ Ci is a �j-interval for some 2 ≤ j ≤ k(D) and so thatDi \

⋃
I∈Ci I

is finite. Then setting C =
⋃r
i=0 Ci yields the desired collection of intervals. 

Now at last we are in a position to prove Proposition 3.4.

Proof. Let D be definable, discrete, narrow, and bounded below. By Proposi-
tion 3.22, there are finitely many finite sequences �1, ... , �k from D′ such that D
is the union of a finite set F plus finitely many sets of the form D ∩ I where I is
a �-interval for some � ∈ {�1, ... , �k}. Without loss of generality we may assume
D = D ∩ I for some �-interval I.
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Also without loss of generality, � is of minimal length—that is, for any finite
sequence �′ from D′ which is shorter than �, the interval I is not a �′-interval. Let
k be the length of �, and for i ∈ {0, 1, ... , k – 1}, let

Di = {a ∈ D : SiD(a) ∈ P�}.

ThenD = D0 ∪ ··· ∪Dk–1, so it suffices to show that each setDi is pseudo-arithmetic.

Claim 3.24. if i ∈ {0, ... , k – 1}, then SDi (a) = SkD(a).

Proof. Suppose that 0 ≤ i < k, a ∈ D, SiD(a) ∈ P� , and j ∈ � is minimal such
that j > i andSjD(a) ∈ P� . Since |�| = k, it follows thatSi+kD (a) ∈ P� , so j ≤ i + k.
If j – i < k, then the infinite sequence �D(a), �D(SD(a)), ... , �D(S�D(a)), ... would
be (j – i)-periodic, and thus D ∩ I would be �′-periodic where �′ is a subsequence
of � of length j – i , contradicting the minimality of k. Therefore j = i + k, and the
Claim follows. 

By the Claim, if � = (d1, ... , dk) and � =
∑k
i=1 di , thenDi is �-pseudo-arithmetic,

as we wanted. 

3.2. Deducing Theorem 3.2 from Proposition 3.4. In this section we show how
Theorem 3.2 follows from Proposition 3.4. This will be achieved by showing that
after partitioning and performing simple definable transformations on the discrete
set D we may reduce to the situation of discrete sets of the type occurring in
Proposition 3.4.

Throughout the subsection we fix D ⊆ R a definable discrete set. Note that
Assumption 3.7 of the previous subsection is no longer in effect, so D is not
necessarily bounded below. But as noted in Proposition 3.5 in this subsection we
still maintain:

Assumption 3.25. R is �-saturated.

The following two Lemmas are immediate. Recall that if D is discrete and a ∈ R
then D – a = {b – a : b ∈ D} and –D = {–b : b ∈ D}.

Lemma 3.26. (1) If D is a definable discrete set and a ∈ R then �D(b) =
�D–a(b – a) for any b ∈ D and hence D′ = (D – a)′. In particular if D is
narrow so is D – a. Also if D is �-pseudo-arithmetic then so is D – a.

(2) If D is definable and discrete, a ∈ D, and SD(a) = b then S–D(–b) =– a and
�–D(–b) = �D(a). HenceD′ = (–D)′. In particular if D is narrow so is –D and
if D is �-pseudo-arithmetic then so is –D.

Lemma 3.27. (1) If D is the finite union of points and definable discrete sets each
of which is piecewise pseudo-arithmetic then D is piecewise pseudo-arithmetic.

(2) If D is piecewise pseudo-arithmetic and a ∈ R then D – a is also piecewise
pseudo-arithmetic.

(3) D is piecewise pseudo-arithmetic then so is –D.

Proposition 3.28. To show that D is piecewise pseudo-arithmetic it suffices to show
that any definable discrete E which is bounded below is a finite union of points and
definable discrete sets Ei which are narrow.
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Proof. Let D be an arbitrary definable discrete set. Let D0 = D ∩R≥0 and
let D1 = D \D0. By Lemma 3.27(1) it suffices to show that D0 and D1 are
piecewise pseudo-arithmetic. By Lemma 3.27(3) to show that D1 is piecewise
pseudo-arithmetic if suffices to show that –D1 is piecewise pseudo-arithmetic. Thus
we may assume that D is bounded below. By assumption D is a finite union of
points and definable discrete sets Ei for 1 ≤ i ≤ r each of which is narrow. By
Lemma 3.27(1) it suffices to show that Ei is piecewise pseudo-arithmetic for each
1 ≤ i ≤ r. Fix 1 ≤ i ≤ r. But Proposition 3.4 applies to Ei and so Ei is piecewise
pseudo-arithmetic. Hence D is piecewise pseudo-arithmetic. 

Thus for the rest of this subsection we work with:

Assumption 3.29. D is bounded below.

We aim to show that D is a finite union of definable subsets Di which are narrow.
In order to establish this we first show that D can be decomposed into finitely many
definable subsets which can be considered highly “uniform.” To this end we need
some definitions (recall the definition of D-convex–see Definition 3.6).

Definition 3.30. A finite convex partition of D is a finite partitionD = D0 ∪ ... ∪
Dm such that eachDi is D-convex. We say that the partition is definable if eachDi is.

Definition 3.31. A definable discrete set D is uniformized if either D is a singleton
or D is infinite and there is N (D) ∈ � so that if C ⊆ D is D-convex and of size at
least N (D) then for all � ∈ D′ there is a ∈ C with �D(a) = �.

Our first goal is to prove:

Proposition 3.32. If D is a definable discrete set which is bounded below, then
D has a definable finite convex partition into subsets D1, ... , Dn so that each Di is
uniformized.

We begin by establishing the necessary results to show that D is a finite union of
uniformized sets. The following is immediate:

Lemma 3.33. GivenD = D1 ∪ ... ∪Dm a finite convex partition of D. If a ∈ Di for
some i ∈ {1, ... , m} and a is not maximal inDi then �Di (a) = �D(a). In particular we
have that D′

i ⊆ D′.

Notice that if E ⊆ D is definable and D-convex it is potentially the case that
�E(max(E)) is not defined while �D(max(E)) is defined and thus it may not be the
case that E ′ = {�D(e) : e ∈ E}.

To begin with, if � ∈ D′ and �–1
D (�) is finite then we can take a definable finite

convex partition of D so that if �D(a) = � then a /∈ Di for any infinite Di in the
partition. Thus by Lemma 3.33 � /∈ D′

i for any infinite Di in the partition. Thus, as
D′ is finite, we may make the following assumption:

Assumption 3.34. For each � ∈ D′, there are infinitely many elements a ∈ D
with �D(a) = �.

We need a definition.

Definition 3.35. ForX ⊆ D and �1 ... �l ∈ D′ we say that X is an anti-{�1, ... , �l}
set if for no a ∈ X is �D(a) = �i for 1 ≤ i ≤ l . If l = 1, we omit the braces and call
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this an anti-�1 set. A subset E ⊆ D is called an anti-{�1, ... , �l}-component if E is a
D-convex, anti-{�1, ... , �l} set, and if F ⊆ D is D-convex with E ⊂ F then F is not
an anti-{�1, ... , �l} set.

To establish Proposition 3.32 we first show that for any {�1, ... , �l} ⊆ D′ there is a
finite bound on the size of any finite anti-{�1, ... , �l} component (Lemma 3.37). In
turn we will use this to establish that after potentially partitioning D into definable D-
convex subsets we can reduce to the case that for any � ∈ D′ there are no infinite anti-
� components (Lemma 3.39). Once these two facts are established Proposition 3.32
is immediate.

For the finite case we need a simple fact.

Lemma 3.36. Let R be an OAG and let �1, ... , �l ∈ R>0. If Z ⊆ Nl is infinite then

S = {m1�1 + ··· +ml�l : (m1, ... , ml ) ∈ Z}

is infinite.

Proof. We induct on l. If l = 1 the result is immediate. Thus suppose we have
�1 < ··· < �l+1. Let l+1 : Nl+1 → N be the projection onto the last coordinate and
first suppose that l+1[Z] is finite. Let (1...l) : Nl+1 → Nl be the projection onto
the first l coordinates. There is m∗ ∈ l+1[Z] whose pre-image is infinite. Let Z0 :=
(1...l)[–1

l+1(m∗)]. Then by induction

{m1�1 + ··· +ml�l +m∗�l+1 : (m1 ... ml ) ∈ Z0} ⊆ S

is infinite.
Therefore we may assume that l+1[Z] is infinite. As �l+1 is maximal among the �i ’s

any sum of the formm1�1 + ··· +ml+1�l+1 withml+1 �= 0 is Archimedean equivalent
to �l+1 (recall all the �i ’s are positive and Z ⊆ Nl+1). As l+1[Z] is infinite, the set S
must be cofinal in the Archimedean class [�l+1] of �l+1 and thus infinite. 

We note in passing that by a theorem of Levi, an Abelian group is orderable just
in case it is torsion-free [12], and thus the conclusion of the previous lemma holds
for any torsion-free Abelian group.

Lemma 3.37. For any �1 ... �l ∈ D′ there is N ∈ � so that if X ⊆ D is a finite
anti-{�1 ... �l}-component, then |X | < N .

Proof. Suppose the lemma is false and take �1, ... , �l so that D has arbitrarily
large finite anti-{�1, ... , �l}-components. Also letD′ = {�1, ... , �n} for n ≥ l (recall-
ing that D′ must be finite). Let

D0 = {x ∈ D : �D(x) ∈ {�1, ... , �l}}.

Let E be a finite anti-{�1 ... �l}-component of D and further assume that
min (E) > min(D). LetM = |E| and let a be the minimal element of E. Now note
that �D0(S–1

D (a)) = m1�1 + ··· +mn�n where m1 + ··· +mn =M + 1. As the size of
finite anti-{�1 ... �l}-components of D is unbounded there must be an infiniteZ ⊆ Nn

so that if (m1 ... mn) ∈ Z then m1�1 + ··· +mn�n ∈ D′
0. By the previous lemma D′

0
is infinite, which is impossible since D0 is a definable discrete set. 
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Thus we have a uniform bound on finite anti-{�1, ... , �l} components. To
establish the fact on infinite anti-� components we need a simple consequence of
Theorem 2.14.

Lemma 3.38. If D0 and D1 are infinite discrete definable sets, then it cannot be the
case that D′

0 � D′
1.

Proof. Suppose otherwise. By Lemma 3.26 we may without loss of generality
assume thatDi ⊆ R≥0 and 0 ∈ Di for i ∈ {0, 1}. SetD′

0 = {�1, ... , �m}. AsD′
0 � D′

1
and 0 is the minimal element of D0 it follows that if d is among the first � many
elements of D0 then d = l1�1 + ··· + lm�m for some l1 ... lm ∈ N. In particular d <
D′

1. Hence by compactness find ε ∈ R with ε < D′
1 so that [0, ε) ∩D0 is infinite.

Then (0, ε) ∩D0 < D
′
1, violating Theorem 2.14. 

Lemma 3.39. There is a definable finite convex partitionD0 ∪ ··· ∪Dm of D so that
for every Di and every � ∈ D′

i the set Di has no infinite anti-�-component.

Proof. We proceed by induction on n = |D′|. If n = 1 then the result is trivial.
Assume that D′ = {�1, ... , �n+1} where the �i ’s are listed in increasing order, and
suppose that we have established the lemma for all definable discrete sets which are
bounded below and whose difference sets have size at most n.

We will do a sub-induction on i ∈ {1, ... , n + 1}, in reverse order (beginning with
i = n + 1), to show the following:

(∗)i There is a definable finite convex partition ofD = D0 ∪ ··· ∪Dm such that for
every 1 ≤ � ≤ m and every j ∈ {i, i + 1, ... , n + 1}, either �j /∈ D′

l , or else Dl has
no infinite anti-�j-component.

Notice that (∗)1 is our desired result.
First we will establish the base case, that is, (∗)n+1. If there are only finitely many

infinite anti-�n+1-components in D, then (∗)n+1 follows quickly: there is a definable
finite convex partition D = D0 ∪ ··· ∪Dm such that for each i, either (i) Di is an
infinite anti-�n+1-component, or else (ii) Di has no infinite anti-�n+1-components.

Thus we may assume that there are infinitely many infinite anti-�n+1-components.
Let

E = {a ∈ D : a lies in an infinite anti-�n+1-component}

which is definable by Lemma 3.37. Let

E0 = {a ∈ E : �D(S–1
D (a)) = �n+1},

or in other words, E0 is the set of all initial points of infinite anti-�n+1-components.
Notice that as we assume that there are infinitely many infinite anti-�n+1-components
E0 is infinite.

By our assumptions we may find k ∈ {1, ... , n + 1} minimal so that there
are infinitely many infinite anti-{�k ... �n+1}-components. Notice that k = 1 is
impossible and thus k ≥ 2.

Pick c, d ∈ D such that F := [c, d ] ∩D is infinite and F ′ ⊆ {�1, ... , �k–1}. Notice
that by the minimality of k and the saturation of R, for infinitely many anti-
{�k ... �n+1}-components C, there are infinitely many a ∈ C with �D(a) = �k–1.
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Thus there are infinitely many a ∈ E0 such that SE0(a) – a � �k–1, so by
compactness we can pick � � �k–1 such that there are infinitely many a ∈ E0

satisfying SE0 (a) – a > � . Let

E1 = {a ∈ E0 : SE0(a) – a > �}.

F and E1 are infinite discrete sets so that F ′ � E ′
1, contradicting Lemma 3.38. This

concludes the proof of (∗)n+1.
Now assume that (∗)i holds for i > 1, and for the inductive step we need to show

(∗)i–1. After partitioning as in (∗)i , we may assume that in D itself there are no infinite
anti-�j-components for any j ≥ i . As in the proof of (∗)n+1, the case where D has
only finitely many infinite anti-�i–1-components is straightforward. Thus we assume
that D has infinitely many infinite anti-�i–1-components. By further partitioning D
as necessary and applying induction on |D′| we may assume that in any infinite anti-
�i–1-component of D, there are infinitely many points a with �D(a) = �n+1. Now set

E = {a ∈ D : a lies in an infinite anti-�i–1-component}

which, again, is definable by Lemma 3.37. Set

E0 = {a ∈ E : S–1
D (a) /∈ E}.

Notice thatE0 is infinite and if a ∈ E0 is not maximal then SE0(a) – a � �n+1. Now
D and E0 are infinite discrete sets such that D′ � E ′

0, contradicting Lemma 3.38.
This completes the sub-induction and hence establishes the Lemma. 

Proof Of Proposition 3.32. Partition D into D1 ... Dm as in Lemma 3.39. Now
by Lemma 3.37 for each 1 ≤ j ≤ m there isNj ∈ � so that for any �1 ... �l ∈ D′

j if X
is an anti-{�1 ... �l} component then |X | < Nj . It follows thatDj is uniformized. 

Next we need to establish that we may partition a discrete set, D, into finitely
many definable subsets Di each of which is narrow.

To achieve this we first show:

Proposition 3.40. Suppose that D is a uniformized then D is a finite union of
definable discrete sets D1, ... , Dm each of which is narrow.

Proof. First we set some notation. If E is a definable discrete set, let l(E) be
the (finite) number of distinct Archimedean classes represented in E ′. For ease
of notation let l = l(D) for our fixed discrete set D. Let K1 < ··· < Kl list all the
Archimedean classes in D′ and letM (D) be the cardinality of the largest D-convex
subset of D of the form [a, b) ∩D with a, b ∈ D so that for no c ∈ [a, b) ∩D is
�D(c) ∈ Kl . As D is uniformizedM (D) is finite.

We prove the Proposition by induction on l = l(D). If l = 1 the result is trivial,
so suppose that l > 1 and the conclusion of the Proposition holds for all discrete
sets E which are bounded below and for which l(E) < l(D). We proceed by a sub-
induction on M (D). Note that M (D) = 0 is impossible if l > 1, so suppose that
M (D) ≥ 1 and the proposition is true for all uniformized discrete sets E which are
bounded below, for which the Archimedean classes in E ′ are among K1 ... Kl , and
are such thatM (E) < M (D).
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Now define

D1 = {a ∈ D : �D(a) ∈ Kl} ∪ {max(D)}.

(Where max(D) is added if and only if it exists.)
Since M (D) is finite and Kl is the maximal Archimedean class every element

� ∈ D′
1 must lie in Kl . Thus D1 is a definable subset of D so that all elements of D′

1
lie in the same Archimedean class.

Now let D̃ = D \D1. If a ∈ D̃ and �D(SD(a)) /∈ Kl then �D̃(a) = �D(a) and
so �D̃(a) ∈ K1 ∪ ··· ∪Kl . Next suppose that �D(SD(a)) ∈ Kl . As D is uniformized
and l > 1 there is some r ∈ N so that �D(SrD(a)) /∈ Kl . In particular as Kl is the
maximal Archimedean class it follows that �D̃(a) ∈ Kl . Thus the Archimedean
classes represented in D̃′ are among K1, ... , Kl .

We may apply Proposition 3.32 to D̃ and work within one of the D̃-convex
pieces, so without loss of generality D̃ is uniformized and the Archimedean classes
represented in D̃′ are still among K1 ... Kl (which follows from Lemma 3.33). If
l(D̃) < l(D), we are done by induction. Thus we may assume that all Archimedean
classes K1 ... Kl are represented in D̃′.

Suppose that M (D̃) ≥M (D) and let this be witnessed by [a, b) ∩ D̃ with
a, b ∈ D̃. Then �D(b) /∈ Kl and b is not maximal in D. Next suppose that c ∈
[a, b) ∩D and �D(c) ∈ Kl . As D is uniformized and l > 1 there is some minimal
r ∈ N so that S–r

D (c) ∈ [a, b) ∩ D̃. But then SD̃(S–r(c)) ∈ Kl contradicting the
definition of M (D̃). Hence for every c ∈ [a, b) ∩D we have �D(c) /∈ Kl . But then
[a, SD(b)) is of size at least M (D) + 1 and �D(c) /∈ Kl for all c ∈ [a, SD(b)), a
contradiction. ThusM (D̃) < M (D) and we are done by induction. 

The final remaining element needed in order to establish Theorem 3.2 is:

Proposition 3.41. If D is a definable discrete set which is bounded below then D is
a finite union of definable, narrow, discrete sets.

Proof. First apply Proposition 3.32 to D. Thus we can writeD =
⋃n
i=1Di where

theDi form a definable convex partition of D and eachDi is uniformized. Fix i, asDi
is bounded below apply Proposition 3.40 to write Di as a finite union of definable
sets which are narrow. But then D is a finite union of definable, narrow, discrete
sets. 

Proof Of Theorem 3.2. The theorem follows immediately from Proposition 3.28
and Proposition 3.41. 

3.3. Proof of Theorem 1.3 and an example. In this final subsection we prove
Theorem 1.3 and finish the subsection highlighting this theorem’s limits. As in the
previous section we work in a structure R = 〈R,+, <, ... 〉, but we no longer assume
any saturation for R.

We need some basic results about the structure of pseudo-arithmetic sets.

Lemma 3.42. Suppose that E0 and E1 are both definable �-pseudo-arithmetic sets
and that 0 is the least element of both E0 and E1. Then either E0 is an initial segment
of E1 or E1 is an initial segment of E0.
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Proof. We first show that either E0 ⊆ E1 or E1 ⊆ E0. Suppose that E0 �⊆ E1.
Let α be the least element of E0 \ E1. Note that α must have a predecessor, α – �,
inE0 (and hence α – � is also inE1). If SE1 (α – �) is defined then SE1(α – �) = α –
� + � = α and α ∈ E1. Hence α – �must be the maximal element ofE1. IfE1 is not
a subset ofE0 pick � maximal inE1 not inE0. Then � < α – � and so � + � ∈ E1 and
notice that also � + � ∈ E0. But then immediately � ∈ E0, a contradiction. Hence
E1 ⊆ E0.

Suppose that E1 ⊆ E0, we show that E1 is an initial segment of E0. Let α ∈ E0

and α ≤ maxE1. If α = 0 then α ∈ E1 otherwise pick � ∈ E1 with � maximal so
that � < α. Notice that � is not maximal in E1. As both E0 and E1 are �-pseudo-
arithmetic SE1(�) ≤ α but SE1(�) < α violates the maximality of � and hence
SE1(�) = α and so α ∈ E1. So E1 is an initial segment of E0. 

As an immediate consequence of Lemma 3.38 we have:

Lemma 3.43. If E1 is a definable �1-pseudo-arithmetic set and E2 is a definable
�2-pseudo-arithmetic set then �1 and �2 are Archimedean equivalent.

Lemma 3.44. Suppose that E1 is a definable �1-pseudo-arithmetic set and E2 is a
definable �2-pseudo-arithmetic set then there is q ∈ Q so that �2 = q�1.

Proof. For each Ei at least one of Ei ∩ [0,∞) or Ei ∩ (– ∞, 0] is �i -pseudo-
arithmetic, hence we may assume that for each i either Ei ⊆ R≥0 or Ei ⊆ R≤0. By
Lemma 3.26 we may without loss of generality assume that 0 ∈ Ei andEi ⊆ R≥0 for
i ∈ {1, 2}. Also by Lemma 3.43 �1 and �2 are Archimedean equivalent. Notice that
the first � many elements ofEi are of the form n�i for n ∈ N. If n�1 = m�2 for some
m, n ∈ N>0 then we are done. Let F = E1 ∪ E2, which is also discrete. As �1 and �2

are Archimedean equivalent it must be the case that for infinitely many ni ∈ N that
the successor of mi�1 in F is ni�2 for some mi, ni ∈ N. Also as F ′ is finite we can
find � ∈ R and infinitely many pairs (mi, ni) ∈ N2 so that SF (mi�1) = mi�1 + � =
ni�2. Thus working with (m0, n0) and (m1, n1) we have that m0�1 + � = n0�2 and
m1�1 + � = n1�2. Eliminate � and solve for �2 to get: �2 = (m0–m1)

(n0–n1) �1 as desired. 

Theorem 3.45. Let R = 〈R; +, <, ... 〉 be a definably complete expansion of a
divisible ordered Abelian group of burden 2. Let D be a definable infinite discrete set.
There is a definable pseudo-arithmetic set E ⊆ R≥0 with minimal element 0 so that D
is definable in 〈R; +, <,E〉.

Proof. By Theorem 3.2 D is a finite union of definable pseudo-arithmetic sets,
D1 ... Dn. Clearly, D is definable in any structure in which D1, ... , Dn are definable.
As each Di is definable in any structure where Di ∩ (– ∞, 0] and Di ∩ [0,∞) are
both definable we may replace each Di by Di ∩ (– ∞, 0] and Di ∩ [0,∞) and thus
we find pseudo-arithmetic setsE1 ... El so that for each 1 ≤ i ≤ l eitherEi ⊆ R≥0 or
Ei ⊆ R≤0 and D is definable in 〈R; +, <,E1, ... El 〉. Further eachEi is interdefinable
with its image under a non-zero Q-linear map and hence after translating and
possibly multiplying by – 1 we may replace Ei by pseudo-arithmetic sets Fi so that
min(Fi) = 0 for each i and so that D is definable in 〈R; +, <, F1, ... Fl 〉.

AsFi is interdefinable with qFi for any q ∈ Q =0 we may further assume by Lemma
3.44 that all of the Fi are �-psuedo-arithmetic for one fixed �. By Lemma 3.42 for
each i and j either Fj is an initial segment of Fi or vice versa. Thus for some F
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among the Fi , each Fi is an initial segment of F. Hence each Fi and thus also D is
definable in 〈R; +, <, F 〉. 

Notice that it follows from Theorem 3.45 and Lemma 3.44 that we can fix a
single � ∈ R so that if D is any discrete set definable in R then there is an �-pseudo-
arithmetic set E so that D is definable in 〈R; +, <,E〉.

Now we work towards showing that all infinite discrete sets D definable in R
are definable in a model of Th(〈R; +, <,Z〉). We recall some basic facts about
TZ = Th(〈R; +, <,Z〉).

Fact 3.46. (1) [13] The complete theory of the structure

〈R; +, <, 0, 1, � �, � : � ∈ Q〉

has quantifier elimination, where 0 and 1 are constants, �x� is the unary “floor”
function giving the greatest integer less than or equal to x, and � denotes
the unary function sending x to � · x. Notice that this structure has the same
definable sets as 〈R; +, <,Z〉 and is definably complete. Furthermore in this
language the structure is universally axiomatizable and hence all definable
functions are given piecewise by terms.

(2) [3, Section 3.1] The theory TZ has dp-rank 2.

We work towards identifying a discrete subgroup of R which will act as our copy
of “Z.”

Lemma 3.47. Suppose that E ⊆ R is a definable �-pseudo-arithmetic set with
smallest element 0. Let H be the convex hull of E.

(1) If a, b ∈ E and a + b ∈ H, then a + b ∈ E.
(2) If a, b ∈ E and a ≤ b, then b – a ∈ E.

Proof. (1): Suppose this fails. Let a ∈ E be least so that there is b ∈ E with
a + b ∈ H but a + b /∈ E. Notice that 0 < a, and let a∗ be the predecessor of a
in E. Then a∗ + b ∈ H so a∗ + b ∈ E. Also a∗ + b cannot be maximal in E as
a∗ + b < a + b and a + b is in the convex hull of E. Thus a∗ + b + � ∈ E. But
a∗ + b + � = a + b, a contradiction.

(2) Suppose this fails. Leta ∈ E be minimal so that b – a /∈ E for some b ∈ E with
b ≥ a. Notice that a > 0, and if a∗ = S–1

E (a), we must have that b – a∗ ∈ E. Also
b – a∗ > 0 and thus b – a∗ – � ∈ E, but b – a∗ – � = b – a, a contradiction. 

Definition 3.48. Let � ∈ R>0. A subgroup G ⊆ R is �-integer-like if G is a
discrete subgroup of R, � is the smallest positive element of G, and for any a ∈ R
in the convex hull of G there is b ∈ G with b ≤ a ≤ b + �. G is integer-like if it is
�-integer-like for some �.

If a definable, discrete, �-pseudo-arithmetic set E ⊆ R≥0 is unbounded and has
minimal element 0 then by Lemma 3.47 E∪ – E is an �-integer-like subgroup of
R. Furthermore if F is any other definable �-pseudo-arithmetic set with smallest
element 0 then F is an initial segment of E by Lemma 3.42. We aim to show that in
general there is an unbounded �-integer-like subgroup G ⊆ R so that for all E, an
�-pseudo-arithmetic set with smallest element 0, E is an initial segment of G≥0. Of
course G will typically not be definable.
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Lemma 3.49. Suppose that � ∈ R and there is a definable �-pseudo-arithmetic
set. Then there is an unbounded �-integer-like subgroup, G, so that for all �-pseudo-
arithmetic definable sets E with smallest element 0, E an initial segment of G≥0.

Proof. First suppose there is a definable unbounded �-pseudo-arithmetic set E.
By Lemma 3.26(1) we may translate E to assume 0 ∈ E. Then by Lemma 3.47 (E ∩
[0,∞))∪ – (E ∩ [0,∞)) is the desired group. Also notice that by Lemma 3.42 (E ∩
[0,∞)∪ – (E ∩ [0,∞)) must be the unique subgroup with the desired properties.
Hence we assume that any definable �-pseudo-arithmetic set is bounded. Again by
Lemma 3.26 if there is a definable �-pseudo-arithmetic set then there is one with
least element 0.

Let

F0 =
⋃

{E : E definable, �-pseudo-arithmetic, and min(E) = 0}.

Note that by Lemma 3.42 F0 =
⋃
i∈α Ei where α is an ordinal, each Ei is definable

and �-pseudo-arithmetic with minimal element 0, and if i < j ∈ α then Ei is an
initial segment of Ej . Furthermore, again by Lemma 3.42 if E is any definable
�-pseudo-arithmetic set then E is an initial segment of F0.

We claim that if x, y ∈ F0 then x + y ∈ F0. Pick i so that x, y ∈ Ei by Lemma
3.47 x + y ∈ Ei ∪ (Ei + c) where c = maxEi . Note that c exists asEi is bounded by
assumption and also thatEi ∪ (Ei + c) is again�-pseudo-arithmetic. ButEi ∪ (Ei +
c) ⊆ F0. Similarly if x, y ∈ F0 and x < y then y – x ∈ F0. Thus F = F0∪ – F0 is a
subgroup of R. We claim that F is �-integer-like. To show that F is discrete is suffices
to show if f1 < f2 ∈ F0 then f2 – f1 ≥ �. But this is immediate as f1, f2 ∈ Ei for
some i ∈ α and Ei is an initial segment of F0 by Lemma 3.42. Also clearly � is the
smallest positive element of F as each Ei is �-pseudo-arithmetic. Finally suppose
that u is in the convex hull of F and first assume that u ≥ 0. Then u is in the convex
hull ofEi for some i ∈ α. Let b = max{e ∈ Ei : e ≤ u}, then b is an element of F so
that b ≤ u ≤ b + �. If u < 0, find b ∈ F so that b ≤– u ≤ b + �, then – (b + �) ∈ F
is so that – (b + �) ≤ u ≤– (b + �) + �.

If F is unbounded we are done. Otherwise let U be the convex hull of F in R. As F
is a subgroup of R it follows that U is a rational vector subspace of R. Let H be the
subspace of R so that R = U ⊕H as rational vector spaces. Then H is a discrete
subset of R since if h1 < h2 ∈ H and h2 – h1 < u for some non-zero u ∈ U then, as
U is convex, h2 – h1 = v for some non-zero v ∈ U which is impossible. Also H is
clearly unbounded in R.

Finally let G = F +H . Clearly G is an unbounded subgroup of R. We need
to verify that G is �-integer-like. Let f + h ∈ G and note that (f + �) + h ∈ G
as F has minimal element �. We claim there is no f′ + h′ ∈ G so that f + h <
f′ + h′ < (f + �) + h. If h = h′ then it must be the case that f′ > f but we must
also have f′ – f < � which is impossible. Thus h �= h′, but then (f′ + h′) – (f +
h) /∈ U (since otherwise h′ – h ∈ U ) and so (f′ + h′) – (f + h) > � which is also
impossible. Hence G is a discrete group and � must be the smallest element of
G. Now suppose that a ∈ R. Write a = u + h where u ∈ U and h ∈ H . As F is
�-integer-like there is b ∈ F so that b ≤ u ≤ b + � but then b + h ∈ G is so that
b + h ≤ u + h ≤ b + � + h.
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By construction if E is any definable �-pseudo-arithmetic subset of R with minimal
element 0 then E is an initial segment of F≥0 and hence of G≥0. 

Now we may provide a proof of Theorem 1.3.

Proof. By Lemma 3.44 we find � ∈ R so that if F ⊆ R is any pseudo-arithmetic
set then there is q ∈ Q so that qF is �-pseudo-arithmetic. Fix such an �. For any
infinite definable discrete set D, by Theorem 3.45 there is a definable pseudo-
arithmetic set E(D) ⊆ R≥0 with minimal element 0 so that D is definable in
〈R; +, <,E(D)〉. By our choice of � we may assume that all such E(D) are �-
pseudo-arithmetic. As we assume that there is a definable infinite discrete subset
of R then there is a definable �-pseudo-arithmetic set. By Lemma 3.49 there is an
unbounded �-integer-like group G so that E(D) is an initial segment of G≥0 for
every infinite definable discrete set D. Notice that all such E(D) (and hence all D)
are definable in 〈R; +, <,G〉. Finally by the Appendix of [13] 〈R; +, <,G〉 is a model
of TZ.

For the “furthermore” we show that under the additional assumption that R is
of dp-rank 2 there is G ⊆ R an integer-like subgroup so that all R-definable X ⊆ R
are definable in 〈R; +, <,G〉. Thus suppose that R is of dp-rank 2. By [4, Corollary
2.10] any set definable in R is either discrete or has interior. By the first part of the
theorem we may fix G ⊆ R an integer-like subgroup so that all R-definable discrete
subsets D ⊂ R are definable in 〈R; +, < G〉. It suffices to show that any open set
definable in R is definable in 〈R; +, <,G〉. Thus let U be an open R-definable subset
of R and without loss of generality assume thatU �= R. As R is definably complete,
U is a disjoint union of open intervals. LetD0 be the set of all left endpoints of open
intervals in U and letD1 be the set of all right endpoints of intervals in U. Note that
D0 andD1 are definable in R and as we are assuming that U �= R at least one ofD0

or D1 is non-empty. The sets D0 and D1 are discrete and definable in R and hence
also definable in 〈R; +, <,G〉.

Thus U may be defined in 〈R; +, <,G〉 as:

{x ∈ R : ∃d0 ∈ D0∃d1 ∈ D1(d0 < x < d1 ∧ (d0, d1) ∩ (D0 ∪D1) = ∅)}

∪{x ∈ R : ∃d1 ∈ D1(x < d1 ∧ (– ∞, d1) ∩ (D0 ∪D1) = ∅)}

∪{x ∈ R : ∃d0 ∈ D0(d0 < x ∧ (d0,∞) ∩ (D0 ∪D1) = ∅)}. 

At this stage we provide a more detailed description of the definable subsets of R
by simply developing a precise description of the definable subsets in models of TZ.
We recall the following definition.

Definition 3.50. A structure R = 〈R;<, ... 〉 with < a dense linear ordering
without endpoints is called locally o-minimal if for every definable X ⊆ R and every
x ∈ X there is an open interval I with x ∈ I so that X ∩ I is a finite union of points
and intervals.

Proposition 3.51. If M = 〈M ; +, <,Z〉 |= TZ and X ⊆M is definable then X is
a finite union of sets of the form

• ⋃
w∈W {w + �} where W is definable in the structure 〈Z; +, <〉 and � ∈ [0, 1)

(where 1 denotes the minimum positive element of Z);or

https://doi.org/10.1017/jsl.2024.43 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.43


DISCRETE SETS IN STRONG OAGS 33

• ⋃
w∈W (w + �0, w + �1) where W is definable in the structure 〈Z; +, <〉, �0 < �1,

and �0, �1 ∈ [0, 1].

Proof. By [3, Lemma 3.3(i)] and compactness there is N ∈ N so that if l ∈ Z
then X ∩ (l, l + 1) = X1 ∪ ··· ∪ XN where each Xi is either empty, a single point, or
an open interval, and the Xi are pairwise disjoint. We proceed by induction on N.

By [11, Theorem 19] TZ is locally o-minimal and as noted in Fact 3.46 it is
definably complete. These two facts together imply that ifX ⊆M is definable then X
is a union of a closed discrete set and an open set (see [7, Lemma 2.3]). Furthermore
by definable completeness any open subset is a union of open intervals.

Thus without loss of generality we may assume that X is either a union of open
intervals or closed and discrete. IfY ⊆ Z is definable then Y is definable in 〈Z; +, <〉
by [3, Lemma 3.3(ii)]. Thus X ∩ Z is a set of the first form in the statement of the
Lemma and we may without loss of generality assume that X ∩ Z = ∅.

Suppose thatN = 1 and also that X is open. Thus X consists of at most one open
subinterval of (l, l + 1) for each l ∈ Z. LetXl be the set of left endpoints of intervals
in X and let Xr be the right endpoints. Note that Xl and Xr are closed and discrete
and thus so isXl ∪ Xr . Letf : Xl ∪ Xr → [0, 1] be given by x 	→ x – �x� if x ∈ Xl or
x ∈ Xr \ Z and x 	→ 1 otherwise. As noted in Fact 3.46 TZ is of dp-rank 2 and thus
is strongly dependent. Hence by [3, Corollary 2.17] in models of TZ forward images
of discrete sets under definable functions must be discrete. Thus f[Xl ∪ Xr ] ⊆ [0, 1]
is discrete and so by [3, Lemma 3.3(i)] it is finite.

Let �1 < ··· < �s list all the elements of f[Xl ∪ Xr ]. For 1 ≤ i < j ≤ s let

Wij = {z ∈ Z : (z + �i , z + �j) ⊆ X}.

By [3, Lemma 3.3(ii)]Wij is definable in 〈Z; +, <〉. Let

Xij = {x : ∃z(z ∈Wij ∧ z + �i < x < z + �j)}.

Thus X =
⋃

1≤i,j≤s Xij and each Xij is of the second form given in the statement of
the proposition.

Now suppose X is discrete. Let X̃ =
⋃
x∈X (�x�, x), which is a union of open

intervals with at most one interval in each (l, l + 1) for l ∈ Z. Thus the previous
case applies and X̃ is a finite union of sets Xi =

⋃
w∈Wi (w + �i0, w + �i1) with W

definable in 〈Z; +, <〉, �i0 < �i1, and �i0, �
i
1 ∈ [0, 1). (Note that �i1 < 1 asX ∩ Z = ∅.)

For each i letW ′
i = {w ∈Wi : w + �i1 ∈ X}, which again is definable in 〈Z; +, <〉

by [3, Lemma 3.3(ii)]. Then X is the union of
⋃
w∈W ′

i
{w + �i1} which are of the first

form in the statement of the Lemma.
Now suppose that N > 1. Let

X0 = {x ∈ X : ¬∃y, z(�x� < y < z < x ∧ z /∈ X ∧ y ∈ X )}.

Then X0 is a set so that (l, l + 1) ∩ X0 consists of at most one point or interval for
each l ∈ Z and so the N = 1 case applies to X0. Also (X \ X0) ∩ (l, l + 1) must
consist of at mostN – 1 points or intervals for all l ∈ Z so the induction hypothesis
applies to X \ X0 and we are done. 

Note that by the cell decomposition result of Cluckers for sets definable in models
of the theory of 〈Z; +, <〉[2], we can describe the sets W in the conclusion of
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Proposition 3.51 even more explicitly: Each such W is a finite union of points and
infinite intervals intersected with a coset of nZ for some n ∈ N.

Recall that by [3] 〈R; +, <,Z〉 has dp-rank 2 and is clearly definably complete. In
light of Theorem 1.3 it is reasonable to ask if for any R = 〈R; +, <, ... 〉 which is a
definably complete and dp-rank 2 expansion of a divisible ordered Abelian group
there is a group G so that 〈R; +, <,G〉 |= TZ and R is a reduct of 〈R; +, <,G〉. We
give an example to show this is not the case.

To construct our example of a divisible dp-rank 2 expansion of an OAG with
definable completeness which is not simply a reduct of a model of TZ, we will use
the simple product construction as defined in [11], in particular the standard simple
product as elaborated by Fujita in [8], whose definition we now recall.

Definition 3.52. (See [8, Definition 2.5]) Suppose that L0 and L1 are two
disjoint languages with only relation and constant symbols, and we assume that
each language contains at least one constant symbol. Further suppose that M0

and M1 are structures in the languages L0 and L1 respectively. The standard simple
product of M0 and M1 is the structure N in a new language Lsim, defined as follows:

(1) The universe N of N is the Cartesian productM0 ×M1.
(2) For each constant symbol c0 ∈ L0 and each constant symbol c1 ∈ L1, there

is a constant symbol Cc0,c1 ∈ Lsim, which is interpreted in N as

CN
(c0,c1) = (cM0

0 , c
M1
1 ).

(3) For k ∈ {0, 1} and for each n-ary relation symbol R ∈ Lk , there is an
identically named relation symbol R ∈ Lsim. Letting k : N →M0 ×M1 be
the projection onto the k-th coordinate, we define the interpretationRN of R
in N as

RN = {(a1, ... , an) ∈ Nn : (k(a1), ... , k(an)) ∈ RMk}.
(4) Finally, Lsim contains two additional binary relation symbols ∼0 and ∼1

interpreted as equality of the corresponding coordinate projections: for each
k ∈ {0, 1},

∼N
k = {(a, b) ∈ N 2 : k(a) = k(b)}.

As shown by Fujita [8], the complete theory of the standard simple product N
can be naturally axiomatized in terms of the complete theories of each Mk .

Proposition 3.53.
3 If M0 and M1 are structures such that dp-rk(Mk) ≤ κk for

k ∈ {0, 1}, then if N is the standard simple product of M0 and M1,

dp-rk(N ) ≤ κ0 + κ1.

Proof. We will use the following characterization of dp-rank found in [17,
Proposition 4.17] (though the idea goes back to [10]):

3We were alerted by the referee that a similar bound was obtained by Touchard (see Proposition 1.24
of [18]). However, Touchard’s result concerns burden, not dp-rank, so to apply his result, we would need
to prove that NIP is preserved under direct products of structures; hence we found it simpler to include
our own proof here.
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Fact 3.54. IfM |= T is sufficiently saturated, dp-rk(T ) < κ if and only if for every
b ∈M and every family of infinite, mutually indiscernible sequences (It : t ∈ X ),
there is some X ′ ⊆ X such that |X ′| < κ and the family (It : t ∈ X \ X ′) is mutually
indiscernible over b.

We will apply this criterion to the standard simple product N . By [8, Theorem
2.8], we may replace our original model N by a sufficiently saturated extension and
the result will still be a standard simple product of models of Th(Mk). Now fix any
b = (b0, b1) ∈ N and let (It : t ∈ X ) be mutually indiscernible sequences of finite
tuples from N, say It = {ai,t : i ∈ �}. Each ai,t can be written as (a0

i,t , a
1
i,t) where aki,t

is the tuple fromMk obtained by coordinate projection, and let I kt = {aki,t : i ∈ �}.
By [8, Lemma 3.4], each family (I kt : t ∈ X ) for k ∈ {0, 1} is mutually indiscernible,
so by the characterization of dp-rank given in the Fact, there are sets Xk ⊆ X
such that |Xk | < κ+

k such that (I kt : t ∈ X \ Xk) are mutually indiscernible over
bk . Hence |Xk | ≤ κk , and thus if X ′ = X 0 ∪ X 1, we have |X ′| ≤ κ0 + κ1, or
equivalently, |X ′| < (κ0 + κ1)+. By [8, Lemma 3.4], we have (It : t ∈ X \ X ′)
are mutually indiscernible over b, so applying the Fact again, we conclude that
dp-rk(T ) < (κ0 + κ1)+, as desired. 

Proposition 3.55. Let R = 〈R; +, <, sinx〉. If T = Th(R) then T is definably
complete and has dp-rank 2.

Proof. By [9, Lemma 3.3] the dp-rank of T is at least 2 as no infinite discrete set
can be definable in a dp-minimal expansion of a divisible OAG.

T is definably complete as R has universe R. We establish that T has dp-rank 2 by
showing that it may be realized as a reduct of a simple product which we can verify
has dp-rank 2 via Proposition 3.53.

Let M0 = 〈Z; +Z,<Z, 0Z〉 where +Z,<Z, and 0Z are just the usual addition,
order, and 0 except that we think of +Z as a relation. Let M1 = 〈[0, 2); +s , <s ,
sins x, Es , 0s〉 where <s and 0s are just the usual order and 0, sins x is the sine
function restricted to [0, ] thought of as a relation, Es is a binary relation that
holds of a, b if and only if a + b < 2, and +s is addition modulo 2 thought of as
a relation. Note that M0 is quasi-o-minimal with definable bounds (see [1, Example
2 and Remark after Theorem 3]); thus, by [5, Corollary 3.3] M0 is dp-minimal. By
[6, Example 1.6] M1 is o-minimal, and thus by [5, Corollary 3.3] it is dp-minimal.
Let M be the standard simple product of M0 and M1. Recall that M has universe
M0 ×M1.

We think of each point (n, x) ∈M0 ×M1 as representing 2n + x ∈ R and the
operations sin2, +2, as defined below, will correspond to the usual operations of sin(·)
and addition on R. Set sin2 :M →M to be the M-definable function given by

sin2((n, x)) =

{
(0, sinx), if 0 ≤ x ≤ ,
(– 1, 2 – sin(x – )), if  < x < 2.

Similarly +2 be the M-definable binary operation given by

(m,x) +2 (n, y) =

{
(m + n, x + y), if x + y < 2,
(m + n + 1, x + y – 2), if x + y ≥ 2.
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Note that the relation Es is used in defining +s . Also, the lexicographic ordering
<lex onM0 ×M1 is M-definable.

Notice that 〈M,+2, <lex, sin2 x〉 is isomorphic to 〈R; +, <, sinx〉 via the map
(n, x) 	→ 2n + x.

By Proposition 3.53, the dp-rank of M is at most 2, and as R is isomorphic to a
reduct of M we conclude that T has dp-rank 2. 

Finally we point out that the above example is not a reduct of a model of TZ.

Proposition 3.56. Let R = 〈R; +, <, sinx〉. For no Z ⊆ R with RZ = 〈R; +,
<,Z〉 |= TZ is R a reduct of RZ .

Proof. FixZ ⊆ R so that RZ |= TZ. By the first part of Fact 3.46 and [3, Lemma
3.2] if (a, b) ⊂ R is a bounded interval and f : (a, b) → R is definable in RZ then
f is piecewise linear. But clearly sin : (0, 1) → R is not piecewise linear; hence, R is
not a reduct of RZ . 
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