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Tracial oscillation zero and stable rank one
Xuanlong Fu and Huaxin Lin
Abstract. Let A be a separable (not necessarily unital) simple C∗-algebra with strict comparison.
We show that if A has tracial approximate oscillation zero, then A has stable rank one and the
canonical map Γ from the Cuntz semigroup of A to the corresponding lower-semicontinuous affine
function space is surjective. The converse also holds. As a by-product, we find that a separable
simple C∗-algebra which has almost stable rank one must have stable rank one, provided it has
strict comparison and the canonical map Γ is surjective.

1 Introduction

Let X be a compact metric space and T be a set of probability Borel measures on X .
For each open subset O of X, we consider its measure μ(O). This gives a function
Ô(μ) = μ(O) (μ ∈ T) on T . This function is lower-semicontinuous on T if we endow
T with the weak*-topology. Let α ∶ X → X be a homeomorphism on X and T be
the set of α-invariant probability Borel measures. One considers the case that there
are sufficiently many open sets O for which Ô is continuous on T . This is certainly
the case when the action is uniquely ergodic. The small boundary condition, or the
condition of mean dimension zero, requires that in any neighborhood N(x) of each
point x ∈ X , there is a neighborhood O(x) ⊂ N(x) such that Ô(x) is continuous. Let
ω(Ô) be the oscillation of the function Ô . If Ô is continuous, then ω(Ô) = 0.

Let A be a C∗-algebra with tracial state space T(A). For each a ∈ A+ , one defines
the rank function of a by [̂a](τ) = limn→∞ τ(a1/n) for τ ∈ T(A). When A = Mn ,
i.e., A is the n × n matrix algebra, [̂a] is just the normalized rank of a. We study
the oscillation of the function [̂a]. It is called tracial oscillation of the element a.
This notion of tracial oscillation has been studied in [11, 26] in connection with
the augmented Cuntz semigroups. We introduce the notion of tracial approximate
oscillation zero for C∗-algebras. Roughly speaking, a unital C∗-algebra A has tracial
approximate oscillation zero, if each positive element a is approximated (tracially) by
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2 X. Fu and H. Lin

elements in the hereditary C∗-subalgebra generated by a with small tracial oscillation
(see Definition 5.1). If α is a minimal homeomorphism on X and (X , α) has mean
dimension zero, it is shown in [12] that the crossed product C∗-algebra C(X) ⋊α Z is
Z-stable. As a consequence, C(X) ⋊α Z has tracial approximate oscillation zero (see
Theorem 1.1 below).

The notion of stable rank was introduced to C∗-algebra theory by Rieffel in [36].
A unital C∗-algebra has stable rank one if its invertible elements are dense in A. The
notion plays an important role in the study of simple C∗-algebras (see some earlier
work, for example, [9, 35]). It is proved by Rørdam [41] that if A is a unital finite
separable simple Z-stable C∗-algebra, then A has stable rank one. Robert in [38]
introduced the notion of almost stable rank one, which is also a very useful notion, and
showed that every stably projectionless Z-stable simple C∗-algebra has almost stable
rank one. A question remains open, however, whether a separable simple C∗-algebra
with almost stable rank one actually has stable rank one.

There is a canonical map Γ from the Cuntz semigroup of A, denoted by Cu(A),
to LAff+(Q̃T(A)), the set of strictly positive lower semi-continuous affine functions
(vanishing at zero) on the cone of 2-quasitraces on A, defined by Γ([a])(τ) = dτ(a)
(for τ ∈ Q̃T(A)). A question posed by N. Brown (see the remark after Question 1.1
of [42]) asked whether this map is surjective, i.e., whether every strictly positive
lower semi-continuous affine function on Q̃T(A) is a rank function for some positive
element in A⊗K. It is of course an important question. In fact, the strict comparison
and surjectivity of Γ are perhaps equally important when one studies Cuntz semi-
groups. If we denote by Cu(A)+ the set of purely non-compact elements in the Cuntz
semigroup of a separable stably finite simple C∗-algebra A, then strict comparison is
the condition that Γ restricted on Cu(A)+ is injective. If Γ is also surjective, then the
map Γ gives an isomorphism from Cu(A)+ onto LAff+(Q̃T(A)). In [13], it is shown
that if A is Z-stable, then the map Γ is indeed surjective, which extends an earlier
result of [7]. More recently, it is proved in [1, 42] that when A has stable rank one,
Γ is surjective. We show that if A is a σ-unital simple C∗-algebra which has strict
comparison and tracial approximate oscillation zero, then the map Γ is surjective. On
the other hand, if A is a σ-unital stably finite simple C∗-algebra with strict comparison
which has almost stable rank one and Γ is surjective, then A has tracial approximate
oscillation zero.

Let A be a σ-unital simple C∗-algebra. We also found that if A has tracial approx-
imate oscillation zero, then A has a nice matricial structure, a property that we call
(TM) (see Definition 8.1). We prove that if A has strict comparison and has property
(TM), then A has stable rank one. As a by-product, we show that, if A has strict
comparison and Γ is surjective, then the condition that A has almost stable rank one
implies that A actually has stable rank one.

Our main result may be stated as follows:

Theorem 1.1 Let A be a separable simple C∗-algebra which admits at least one densely
defined non-trivial 2-quasitrace and has strict comparison.

Then the following are equivalent:
(1) A has tracial approximate oscillation zero;
(2) Γ is surjective (see Definition 2.13) and A has stable rank one;
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(3) A has stable rank one;
(4) Γ is surjective and A has almost stable rank one;
(5) A has property (TM).

The technical terms in the statement above will be discussed in detail in the
process and some examples of simple C∗-algebras which satisfy (1) will be given (e.g.,
Proposition 5.8 and Theorem 5.9). The condition that A has a non-trivial densely
defined 2-quasitrace could be replaced by that A is stably finite (see Remark 9.10).
Note that Theorem 1.1 is stated without assuming that A is nuclear or exact. Related to
the Toms–Winter conjecture, Thiel in [42] shows that under the same assumption
as that of Theorem 1.1, if A is unital and has stable rank one, then Γ is surjective,
and, if, in addition, A has local finite nuclear dimension, then A is Z-stable. With the
same spirit, Corollary 9.8 below states that, under the same assumption as in Theorem
1.1, if (1) in the theorem above also holds and A has local finite nuclear dimension,
then A is Z-stable (see also Remark 9.9 for an even weaker hypothesis). In fact, the
idea of tracial oscillation zero can also be directly used in the study of Toms–Winter
conjecture (see [25]).

The paper is organized as follows. Section 2 is a preliminary that lists a number
of notations and definitions that are used in the paper. It also includes some known
facts which may not be stated explicitly in the literature. Section 3 discusses some
preliminary cancellation properties that will be used later. In Section 4, we recall
the notion of tracial oscillation and introduce the notion of tracial approximate
oscillation for positive elements. In Section 5, we introduce the notion of tracial
approximate oscillation zero for C∗-algebras and give some examples of separable
C∗-algebras which have positive tracial approximate oscillation and examples which
have tracial approximate oscillation zero. In particular, we show that, if the cone of
2-quasitraces of A has a basis S which has countably many extremal points, then A
has tracial approximate oscillation zero. In Section 6, we study sequence algebras and
its quotients for compact C∗-algebras A. We find that l∞(A)/I

QT(A)w , where I
QT(A)w is

the quasitrace kernel ideal, is a SAW*-algebra and has real rank zero and stable rank
one, provided A has tracial approximate oscillation zero. Section 7 contains one of the
main results: if A has strict comparison and tracial approximate oscillation zero, then
Γ is surjective. In Section 8, we introduce the property (TM), a property of tracial
matricial structure. We show that, under the assumption of strict comparison, the
property (TM) is equivalent to the property of tracial approximate oscillation zero.
The last section is devoted to the proof of Theorem 1.1 mentioned above, in particular,
(1) ⇒ (2) without assuming that A is separable (but σ-unital).

2 Preliminary

In this section, we will give a list of basic notations and a number of definitions
which will be used throughout this paper. Most of them are familiar to experts. It
also includes some basic facts about Cuntz semigroups and 2-quasitraces, as well as
some ad hoc but more or less known facts. Readers are encouraged to skip them until
they are needed.
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2.1 Some basic notations and definitions

Notation 2.1 In this paper, the set of all positive integers is denoted by N. The set of all
compact operators on a separable infinite-dimensional Hilbert space is denoted by K.

Let A be a normed space andF ⊂ A a subset. Let ε > 0. For any pair a, b ∈ A, we write
a ≈ε b if ∥a − b∥ < ε. We write a ∈ε F if there is x ∈ F such that a ≈ε x .

Let A be a C∗-algebra and x ∈ A. Let ∣x∣ ∶= (x∗x)1/2 . If a, b ∈ A and ab = ba = a∗b =
ba∗ = 0, we often write a ⊥ b.
Notation 2.2 Let A be a C∗-algebra and S ⊂ A a subset of A. Denote by HerA(S) (or
just Her(S), when A is clear) the hereditary C∗-subalgebra of A generated by S . Denote
by A1 the unit ball of A, and by A+ the set of all positive elements in A. Put A1

+ ∶= A+ ∩ A1 .
Denote by Ã the minimal unitization of A. When A is unital, denote by GL(A) the
group of invertible elements of A, and by U(A) the unitary group of A. Let Ped(A)
denote the Pedersen ideal of A, Ped(A)+ = Ped(A) ∩ A+ , Ped(A)1 = A1 ∩ Ped(A), and
Ped(A)1

+ = Ped(A)+ ∩ Ped(A)1 . Denote by T(A) the tracial state space of A. Except the
Pedersen ideal, all other ideals mentioned in this paper are closed two-sided ideals.
Definition 2.3 Let A and B be C∗-algebras and ϕ ∶ A→ B a linear map. The map ϕ is
said to be positive if ϕ(A+) ⊂ B+. The map ϕ is said to be completely positive contrac-
tive, abbreviated to c.p.c., if ∥ϕ∥ ≤ 1 and ϕ ⊗ id ∶ A⊗ Mn → B ⊗ Mn are positive for all
n ∈ N. A c.p.c. map ϕ ∶ A→ B is called order zero, if for any x , y ∈ A+ , x y = 0 implies
ϕ(x)ϕ(y) = 0 (see Definition 2.3 of [45]).

In what follows, {e i , j}n
i , j=1 (or just {e i , j}, if there is no confusion) stands for a

system of matrix units for Mn , 1n for the identity of Mn , ι ∈ C0((0, 1]) for the identity
function on (0, 1], i.e., ι(t) = t for all t ∈ (0, 1]. We also write {e i , j} for a system of
matrix units for K.
Definition 2.4 A C∗-algebra A is said to have stable rank one [36] if Ã = GL(Ã), i.e.,
GL(Ã) is dense in Ã. A C∗-algebra A is said to have almost stable rank one [38] if, for
any hereditary C∗-subalgebra B ⊂ A, B ⊂ GL(B̃).
Notation 2.5 Let ε, δ > 0. Define continuous functions fε , gδ ∶ [0,+∞) → [0, 1] by

fε(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, t ∈ [0, ε/2],
1, t ∈ [ε,∞),
linear, t ∈ [ε/2, ε],

and gδ(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, t ∈ {0} ∪ [δ,∞),
1, t ∈ [δ/8, δ/2],
linear, t ∈ [0, δ/8] ∪ [δ/2, δ].

(Note that (t − δ/2)+ and fδ have the same support.)

2.2 Cuntz semigroup and quasitraces

Definition 2.6 Let A be a C∗-algebra, and let a, b ∈ (A⊗K)+. We write a ≲ b if
there are xk ∈ A⊗K such that limk→∞ ∥a − x∗k bxk∥ = 0. We write a ∼ b if a ≲ b and
b ≲ a both hold [8]. The Cuntz relation ∼ is an equivalence relation. Set Cu(A) =
(A⊗K)+/ ∼ . Denote by V(A) the subset of those elements in Cu(A) which are
represented by projections.
Definition 2.7 Let A be a C∗-algebra. A densely defined 2-quasitrace is a 2-quasitrace
defined on Ped(A⊗K) (see Definition II.1.1 of [2]). Denote by Q̃T(A) the set of
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densely defined 2-quasitraces on A⊗K. In what follows, we will identify A with
A⊗ e1,1 whenever it is convenient. Note that we require that a 2-quasitrace has finite
value on Ped(A⊗K). In particular, we exclude the function on Ped(A⊗K)with only
∞ value from the consideration.

We endow Q̃T(A)with the topology in which a net {τ i} converges to τ if {τ i(a)}
converges to τ(a) for all a ∈ Ped(A⊗K) (see also (4.1) on page 985 of [13]).

Note that, for each a ∈ (A⊗K)+ and ε > 0, fε(a) ∈ Ped(A⊗K)+. Define, for each
τ ∈ Q̃T(A),

â(τ) ∶= τ(a) ∶= lim
ε→0

τ(a fε(a)) and [̂a](τ) ∶= dτ(a) ∶= lim
ε→0

τ( fε(a)).(e2.1)

We will use properties of 2-quasitraces discussed in [2, 13] (see, in particular, Section
4.1 and Theorem 4.4 of [13]). Denote by T̃(A) the subset of Q̃T(A) consisting of traces.

Definition 2.8 Recall (Theorem 4.7 of [10]) that a σ-unital C∗-algebra A is compact
if and only if A = Ped(A). Every unital C∗-algebra is compact. Let A be a compact
C∗-algebra. Since A = Ped(A), every (densely defined) 2-quasitrace is actually defined
on A. By II 2.3 of [2], every 2-quasitrace on A is bounded. Put QT[0,1](A) = {τ ∈
Q̃T(A) ∶ ∥τ∣A∥ ≤ 1}. Then QT[0,1](A) is a compact convex subset of Q̃T(A) (see
[13, Theorem 4.4]). Denote by QT(A) the set of 2-quasitraces τ with ∥τ∣A∥ = 1. It
is a convex subset of Q̃T(A). Denote by QT(A)

w
the (weak*) closure of QT(A).

Then, in the case that A is compact and Q̃T(A)/{0} /= ∅, R+ ⋅ QT(A)
w
= Q̃T(A)

(if QT(A) = ∅, then QT(A)
w
= ∅).

Let I ⊂ A be an ideal and {eλ} be a quasi-central approximate identity for I.
Suppose that τ ∈ Q̃T(I). Then τ(a) = limλ τ(aeλ) (for a ∈ A) defines a (densely
defined) 2-quasitrace of A. Note that ∥τ∣A∥ = ∥τ∣I∥. If τ ∈ Q̃T(A), then τI(a) =
limλ τ(aeλ) also densely defines a 2-quasitrace of A with ∥τI ∣A∥ ≤ ∥τ∥ (see
Definition 2.5 of [23]). Let a ∈ Ped(A⊗K)+ and Ia be the ideal generated by a. By
[2, II.4.2], every τ in Q̃T(Her(a)) can be uniquely extended to a 2-quasitrace τ in
Q̃T(Ia). In what follows, we will identify Q̃T(Her(a))with {τIa ∶ τ ∈ Q̃T(Her(a))}.

The following is a quasitrace version of Lemma 4.5 of [10].

Proposition 2.9 (Lemma 4.5 of [10]) Let A be a σ-unital compact C∗-algebra. Then
0 /∈ QT(A)

w
and QT(A)

w
is compact.

Proof We may assume that QT(A) /= ∅. By Lemma 4.4 of [10], there is e1 ∈ Mn(A)
with 0 ≤ e1 ≤ 1 and x ∈ Mn(A) such that e1x∗x = x∗xe1 = x∗x and a0 = xx∗ is a
strictly positive element of A (for some n ∈ N). Note that τ(e1) ≥ dτ(a0) = 1 for all
τ ∈ QT(A). Note also that

QT(A) = {τ ∈ Q̃T(A) ∶ dτ(a0) = 1}.(e2.2)

Put S = {τ ∈ QT[0,1](A) ∶ τ(e1) ≥ 1}. Then S is compact and 0 /∈ S . Since τ(e1) ≥
dτ(a0) = 1, QT(A) ⊂ S . So QT(A)

w
⊂ S and 0 /∈ QT(A)

w
. This also implies that

QT(A)
w

is compact. ∎
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6 X. Fu and H. Lin

Proposition 2.10 Let A be a σ-unital C∗-algebra and S1 , S2 ⊂ Q̃T(A) nonempty
compact subsets. Then one has the following (with ∥τ∥ = ∥τ∣A∥):

(1) If R+ ⋅ S1 = Q̃T(A) and 0 /∈ S1 , then there exists L1 ∈ R+ such that

S2 ⊂ {r ⋅ s ∶ s ∈ S1 and r ∈ [0, L1]}.

(2) If a ∈ Ped(A⊗K)1
+, then d = sup{∥τ∣Her(a)∥ ∶ τ ∈ S1} < ∞.

(3) If A is compact, then M1 = sup{∥τ∥ ∶ τ ∈ S1} < ∞.
(4) If a is as in (2), and S1 is as in (1), then QT(Her(a))

w
⊂ {r ⋅ τ ∶ τ ∈ S1 , r ∈ [0, L]}

for some L ∈ R+ (see the last paragraph of Definition 2.8).

Proof To see (1) holds, let us assume otherwise. Then there exist sequences rn ∈ R+ ,
sn ∈ S1 and tn ∈ S2 such that rnsn = tn , n ∈ N and limn→∞ rn = ∞. Since both S1 , S2 are
compact, without loss of generality, we may assume that sn → s ∈ S1 and tn → t ∈ S2 .

Since s /= 0, choose c ∈ Ped(A)1
+ such that s(c) > 0. It follows that there exists

n0 ∈ N such that sn(c) > s(c)/2 > 0 for all n ≥ n0 . Consequently,

tn(c) = rnsn(c) → ∞.(e2.3)

Hence, t(c) = ∞. However, c ∈ Ped(A)+. A contradiction.
For (2), since a ∈ Ped(A⊗K)+, there are b i ∈ (A⊗K)+ and f i ∈ Cc((0,∞))+

(1 ≤ i ≤ m), the set of continuous functions with compact supports, such that
a ≤ ∑m

i=1 f i(b i) (see [30, Theorem 5.6.1]). It follows that a ≲ diag( f1(b1),
f2(b2), ..., fm(bm)). One can choose f ∈ Cc((0,∞))+ with 0 ≤ f ≤ 1 such that
f f i = f i , 1 ≤ i ≤ m. Put b = diag( f (b1), f (b2), ..., f (bm))). Then

τ(b) ≥ dτ(diag( f1(b1), f2(b2), ..., fm(bm))) ≥ dτ(a) for all τ ∈ S .(e2.4)

But b̂ is bounded on the compact subset S1 . Put M = sup{τ(b) ∶ τ ∈ S1}. Then M < ∞
and

sup{∥τ∣Her(a)∥ ∶ τ ∈ S1} = sup{dτ(a) ∶ τ ∈ S1} ≤ M .(e2.5)

To see (3), let a ∈ A be a strictly positive element. Since A = Ped(A), a ∈ Ped(A)+
and Her(a) = A. Thus, (3) follows from (2).

For (4), let Ia be the (closed) ideal of A⊗K generated by a. Then {τI ∶ τ ∈
QT(Her(a))

w
} is a compact subset of Q̃T[0,1](A) (see the last paragraph of

Definition 2.8). Hence, part (4) of the lemma then follows from (1). ∎

2.3 Comparison and canonical map Γ

Definition 2.11 A simple C∗-algebra A is said to have (Blackadar’s) strict comparison,
if, for any a, b ∈ (A⊗K)+, one has a ≲ b, provided

dτ(a) < dτ(b) for all τ ∈ Q̃T(A)/{0}.(e2.6)

2.12 Let A be a σ-unital C∗-algebra and e ∈ Ped(A⊗K)+/{0}. If e is a full element,
put Te = {τ ∈ Q̃T(A) ∶ τ(e) = 1}. Then Te is a compact convex subset and is a basis
for the cone Q̃T(A) (see Proposition 3.4 of [43]). If, in addition, A is simple, then
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e is always full. Put A1 = Her(e). By Brown’s stable isomorphism theorem (see [4]),
A⊗K ≅ A1 ⊗K. So e ∈ Ped(A1 ⊗K)+. Then A1 = Ped(A1) (see, for example, Theorem
2.1(iii) of [43]); in other words, A1 is algebraically simple. Therefore, instead of studying
A⊗K, we will study A1 ⊗K. Throughout the paper, we often consider σ-unital simple
C∗-algebras A with Ped(A) = A (in other words, algebraically simple C∗-algebras).

Definition 2.13 Let A be a C∗-algebra with Q̃T(A)/{0} /= ∅. Denote by L(Q̃T(A))
the family of continuous real-valued functions f on Q̃T(A) such that f (ατ) = α f (τ)
for all α ∈ R+ and τ ∈ Q̃T(A) and f (τ + t) = f (τ) + f (t) for all τ, t ∈ Q̃T(A). Let
S ⊂ Q̃T(A) be a convex subset. Set

Aff+(S) = { f ∣S ∶ f ∈ L(Q̃T(A)), f (τ) > 0 if τ ∈ S/{0}} ∪ {0},(e2.7)

LAff+(S) = { f ∶ S → [0,∞] ∶ ∃{ fn}, fn ↗ f , fn ∈ Aff+(S)}.(e2.8)

Note that if 0 ∈ S , then f (0) = 0 for all f ∈ LAff+(S). For a simple C∗-algebra A
and a ∈ (A⊗K)+ , the function â(τ) = τ(a) (τ ∈ S) is in general in LAff+(S). If
a ∈ Ped(A⊗K)+, then â ∈ Aff+(S). Recall that [̂a](τ) = dτ(a) for τ ∈ Q̃T(A). So
[̂a] ∈ LAff+(Q̃T(A)). Caution: â and [̂a] are not the same in general.

We will write Γ ∶ Cu(A) → LAff+(Q̃T(A)) for the canonical map defined by
Γ([a])(τ) = [̂a](τ) = dτ(a) for all τ ∈ Q̃T(A).

(1) In the case that A is simple and A = Ped(A), Γ also induces a canonical map
Γ1 ∶ Cu(A) → LAff+(QT(A)

w
). Since, in this case, R+QT(A)

w
= Q̃T(A), the map Γ

is surjective if and only if Γ1 is surjective.
(2) In the case that A is stably finite and simple, denote by Cu(A)+ the set of purely

non-compact elements (see Proposition 6.4 of [13]). Suppose that Γ is surjective. Let
p ∈ (A⊗K)+ be a projection (so p ∈ Ped(A⊗K)). There are an ∈ (A⊗K)+ with 0 ≤
an ≤ 1 such that [̂an] = (1/2n)[̂p], n ∈ N. Define b = diag(a1/2, a2/22 , ..., an/2n , ...) ∈
A⊗K. Then 0 is a limit point of sp(b). Therefore, [b] cannot be represented by a
projection. In other words, [b] ∈ Cu(A)+. We compute that [̂b] = [̂p]. It then follows
that Γ∣Cu(A)+ is surjective.

Suppose that A is simple and a is a purely non-compact element and

dτ(a) ≤ dτ(b) for all τ ∈ Q̃T(A).(e2.9)

Then, for any ε > 0 (recall that fε(a) ∈ Ped(A)),

dτ( fε(a)) < dτ(b) for all τ ∈ Q̃T(A).(e2.10)

If A has strict comparison, then fε(a) ≲ b. Since this holds for all ε > 0, we conclude
that a ≲ b.

The reader should be reminded that when A is exact, every 2-quasitrace is a trace
(see [17]). These facts will be used without further explanation.

2.4 Cuntz null sequences and the ideal generated by Cuntz null sequences

Definition 2.14 Let A be a separable non-elementary simple C∗-algebra. Then A
contains a sequence of nonzero elements en ∈ Ped(A) with 0 ≤ en ≤ 1 such that
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en+1 ≲ en for all n ∈ N, and for any finite subset F ⊂ A+/{0}, there exists n0 ∈ N such
that, for all n ≥ n0 ,

n[en] ≤ [d] for all d ∈ F(e2.11)

(see Lemma 4.3 of [15]).
For general C∗-algebra A, a sequence {an} ⊂ A+ is said to be truly Cuntz-null and

written an
c .→ 0 if, for any finite subset F ⊂ A+/{0}, there exists n0 ∈ N such that, for

all n ≥ n0 ,

an ≲ d for all d ∈ F.(e2.12)

This is equivalent to saying that, for any d ∈ A+/{0}, there exists n0 ∈ N such that, for
all n ≥ n0 , an ≲ d . We also write an

c .
↘ 0 if an+1 ≲ an for all n ∈ N and an

c .→ 0.
A sequence {xn} ⊂ A⊗K is said to be Cuntz-null if, for any ε > 0, fε(x∗n xn)

c .→ 0.

Definition 2.15 Let X be a normed space, and let l∞(X) denote the space of bounded
sequences of X . When A is a C∗-algebra, l∞(A) is also a C∗-algebra, and c0(A) =
{{an} ∈ l∞(A) ∶ limn→∞ ∥an∥ = 0} is an ideal of l∞(A). Let A∞ = l∞(A)/c0(A) and
π∞ ∶ l∞(A) → A∞ be the quotient map. We view A as a C∗-subalgebra of l∞(A) via
the canonical map ι ∶ a ↦ {a, a, ...} for all a ∈ A. In what follows, we may identify a
with the constant sequence {a, a, ...} in l∞(A)without further warning. Let {Cn} be
a sequence of C∗-subalgebra s of A. We may also use notation l∞({Cn}) = {{cn} ∈
l∞(A) ∶ cn ∈ Cn} for the infinite product of {Cn}.

Denote by Ncu(A) (or just Ncu) the set of all Cuntz-null sequences in l∞(A).
It follows from Proposition 3.5 of [14] that, if A has no one-dimensional hereditary

C∗-subalgebra s, then Ncu(A) is an ideal of l∞(A). Moreover, if A is non-elementary
and simple, c0(A) ⫋ Ncu(A). Denote by Πcu ∶ l∞(A) → l∞(A)/Ncu(A) the quotient
map and Πcu(A)⊥ = {b ∈ l∞(A)/Ncu ∶ bΠcu(a) = Πcu(a)b = 0 for all a ∈ A}.

Definition 2.16 Let A be a C∗-algebra with Q̃T(A) /= ∅. Fix a compact subset
T ⊂ Q̃T(A). For each x ∈ A, define

∥x∥2,T = sup{τ(x∗x)1/2 ∶ τ ∈ T}.(e2.13)

Then ∥x∗∥2,T = ∥x∥2,T .
By Lemma 3.5 of [17] (one does not need to assume that A is unital),

τ(a + b)1/2 ≤ τ(a)1/2 + τ(b)1/2 for all a, b ∈ Ped(A⊗K)+ and τ∈ T ,(e2.14)

∥x + y∥2/3
2,τ

≤ ∥x∥2/3
2,τ
+ ∥y∥2/3

2,τ
for all x , y ∈ Ped(A⊗K) and τ∈ T .(e2.15)

Then

sup{∥x + y∥2/3
2,τ

∶ τ ∈ T} ≤ sup{∥x∥2/3
2,τ

∶ τ ∈ T} + sup{∥y∥2/3
2,τ

∶ τ ∈ T}.(e2.16)

In other words,

∥x + y∥2/3
2,T

≤ ∥x∥2/3
2,T
+ ∥y∥2/3

2,T
.(e2.17)
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We also have

∥x y∥2,T ≤ ∥x∥∥y∥2,T and ∥x y∥2,T ≤ ∥x∥2,T ∥y∥.(e2.18)

It follows that {a ∈ A ∶ ∥a∥2,T = 0} is a (closed two-sided) ideal of A.
We also have the following inequality for a ∈ Ped(A⊗K)+ ∶

∥a∥2,T ≤ ∥a∥(sup{dτ(a) ∶ τ ∈ T})1/2 .(e2.19)

In fact, for all n ∈ N, we have τ(a2) = τ(a1/2n a2−(1/n)a1/2n) ≤ ∥a2−(1/n)∥τ(a1/n). Let
n →∞. We obtain τ(a2) ≤ ∥a∥2dτ(a). So (e2.19) holds.

Definition 2.17 Suppose that A is a σ-unital C∗-algebra with Q̃T(A)/{0} /= ∅, and
T ⊂ Q̃T(A) is a compact subset with T /= {0}. Define

IT = {{xn} ∈ l∞(A) ∶ lim
n→∞

sup{τ(x∗n xn) ∶ τ ∈ T} = 0}.(e2.20)

Then IT is an ideal of l∞(A).
Suppose that A is a simple non-elementary C∗-algebra. Then it is clear that

Ncu(A) ⊂ I
QT(A)w .(e2.21)

It follows from the proof of Proposition 3.8 of [14] that I
QT(A)w = Ncu(A) if A = Ped(A)

and A has strict comparison. Denote by Π ∶ l∞(A) → l∞(A)/I
QT(A)w the quotient

map.

Proposition 2.18 Let A be a σ-unital algebraically simple C∗-algebra such that
QT(A) /= ∅. Let S ⊂ Q̃T(A)/{0} be a compact subset such that QT(A) ⊂ R+ ⋅ S . Then

IS = I
QT(A)w .(e2.22)

Moreover, if A has strict comparison, then I
QT(A)w = Ncu .

Proof By Proposition 2.10, 0 < s1 = sup{∥τ∣A∥ ∶ τ ∈ S} < ∞. Since S ⊂ Q̃T(A)/{0}
and is compact,

s2 ∶= inf{∥τ∣A∥ ∶ τ ∈ S} > 0.(e2.23)

Suppose that {an} ∈ (I
QT(A)w )1

+ . Then, for any ε > 0, there exists n0 ∈ N such that, if
n ≥ n0 ,

τ(a2
n) < (ε/(s1 + 1))2 for all τ ∈ QT(A)

w
.(e2.24)

Thus, if n ≥ n0 , for any t ∈ S ,

t(a2
n) = ∥t∣A∥(t/∥t∣A∥)(a2

n) < ∥t∣A∥(ε/(s1 + 1))2 ≤ ε2 .(e2.25)

This implies that {an} ∈ IS . It follows that I
QT(A)w ⊂ IS .
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Conversely, if {an} ∈ IS , there exists n1 ∈ N such that, if n ≥ n1 ,

t(a2
n) < s2ε2 for all t ∈ S .(e2.26)

Note that, for all τ ∈ QT(A), there are rτ ∈ R+ and tτ ∈ S such that τ = rτ tτ . Since
rτ∥tτ∥ ≤ 1, we have rτ ≤ 1/∥tτ∥ ≤ 1/s2 . Suppose τ ∈ QT(A)

w
. Then there are tn ∈ S and

rn > 0 such that rn tn ∈ QT(A) and rn tn → τ. As mentioned above, we have rn ≤ 1/s2
for all n ∈ N. Since S is compact (and {rn} is bounded), by choosing a subsequence, we
may assume that tn → tτ ∈ S and rn → rτ . In other words, τ = rτ tτ . Note that ∥τ∥ ≤ 1.
So we also have rτ ≤ 1/s2 . Therefore, for any n ≥ n1 , if τ ∈ QT(A)

w
,

τ(a2
n) = rτ tτ(a2

n) ≤ (1/s2)tτ(a2
n) < ε2 .(e2.27)

Thus, {an} ∈ I
QT(A)w .

To see the last part of the statement, choose b ∈ Ped(A)1
+/{0}. Let S = {τ ∈

Q̃T(A) ∶ τ(b) = 1}. Then S ⊂ Q̃T(A)/{0} is a compact subset and, Q̃T(A) = R ⋅ S .
By (the “Moreover” part of) Proposition 3.8 of [14], Ncu = IS = I

QT(A)w . ∎

Let A be a σ-unital simple C∗-algebra and {en} be an approximate identity with
en+1en = en en+1 (n ∈ N). Recall that A is said to have continuous scale, if, for any
a ∈ A+/{0}, there is n0 ∈ N such that

em − en ≲ a for all m > n ≥ n0 .(e2.28)

This definition does not depend on the choice of {en} (see [22, Definition 2.1] and [19,
Definition 2.5]). With terminology of Definition 2.14, A has continuous scale if and
only if, for any m(n) > n, em(n) − en

c .→ 0 for any {en} for which en+1en = en en+1 = en
(n ∈ N).

The following is known. The proof of it is exactly the same as that of the case
T(A) = QT(A) (see [10, Definition 5.1, Remark 5.2, Theorem 5.3, and Proposition
5.4] for details, and also see the remark after Definition 6.3 of [14]).

Theorem 2.19 (cf. Theorem 5.3 and Proposition 5.4 of [10], also [19]) Let A be a
σ-unital simple C∗-algebra with a strict positive element eA, continuous scale and
QT(A) /= ∅. Then QT(A) is compact and [̂eA] is continuous on Q̃T(A). Assuming A
has strict comparison, then A has continuous scale if and only if [̂eA] is continuous on
Q̃T(A).

Proposition 2.20 Let A be a separable non-elementary simple C∗-algebra. Then A has
continuous scale if and only if Πcu(A)⊥ = {0}.

Proof Suppose that A has continuous scale. Let {bn} ∈ l∞(A)1
+ be such that

b = Πcu({bn}) ∈ Πcu(A)⊥. Fix a truly Cuntz-null sequence of {an} in the unit ball of
A+ such that an /= 0 for all n ∈ N (see Definition 2.14). Let e ∈ A1

+ be a strictly positive
element. Note that, for each k ∈ N, { f1/2k(e)bn}n∈N is a Cuntz-null sequence. For each
k ∈ N, there are l(k), n(k) ∈ N such that

[ f1/2k(b∗n f1/2k(e)2bn)] ≤ [a i] (1 ≤ i ≤ k) for all n ≥ l(k)(e2.29)
and ∥(1 − f1/n(e))bk∥ < 1/k for all n ≥ n(k).(e2.30)
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We may assume that l(k + 1) > l(k) ≥ k and n(k) > 2k for all k ∈ N. Define
c0, i = c1, i = 0 if 1 ≤ i < l(1), and, if l(k) ≤ i < l(k + 1), define

c0, i = f1/2k(e)b i and c1, i = (1 − f1/n(i)(e))b i .(e2.31)

Put b̄ i = b i − c0, i − c1, i , i ∈ N. Note that, if l(k) ≤ i<l(k + 1), b̄ i = ( f1/n(i)(e) −
f1/2k(e))b i (k > 1). By (e2.29), one verifies that {c0,n} ∈ Ncu(A). In fact, for a fixed
1/2 > ε > 0, choose k0 such that 1/k0 < ε. For any finite subset F ⊂ A+/{0}, choose
J ∈ N such that a i ≲ b for all b ∈ F and for all i ≥ J . It follows that, if k1 ≥ J , by (e2.29),
for all l(k) ≤ i < l(k + 1) and k ≥ max{k0 , k1},

fε(c∗0, i c0, i) ≤ f1/2k(c∗0, i c0, i) ≲ aJ ≲ b

for all b ∈ F. Hence, {c0,n} ∈ Ncu(A). Also, by (e2.30), {c1, i} ∈ c0(A). It follows that

Πcu({bn}) = Πcu({b̄n}).(e2.32)

It suffices to show that {b̄n} ∈ Ncu . In fact, for all l(k) ≤ i < l(k + 1),

b̄∗i b̄ i ≲ f1/2n(l(k+1))(e) − f1/2k(e), k ∈ N.(e2.33)

Since A has continuous scale, then f1/2n(l(k+1))(e) − f1/2k(e) c .→ 0 (see [22, Definition
2.1] and [19, Definition 2.5], for example). It follows that {b̄n} ∈ Ncu(A). This implies
that {bn} ∈ Ncu(A). Consequently, Πcu(A)⊥ = {0}.

Conversely, suppose that Πcu(A)⊥ = {0}. Let en = f1/2n(e), n ∈ N. Choose any
m(n) > n. Define dn = e4m(n) − f1/n(e). Then, for any a ∈ A, limn→∞ adn = 0. It
follows that Πcu({dn}) ∈ Πcu(A)⊥ = {0}. In other words, {dn} ∈ Ncu(A). Therefore,
for any 0 < δ < 1/4,

fδ(dn)
c .→ 0.(e2.34)

Note that, for all n ∈ N,

f1/4m(n) − f1/2n ≤ fδ( f1/8m(n) − f1/n) in C0((0, 1]).

Thus,

e2m(n) − en ≲ fδ(dn), n ∈ N.(e2.35)

It follows that (e2m(n) − en)
c .→ 0. Hence, A has continuous scale. ∎

3 Comparison and cancellation of projections

Lemma 3.1 Let A be a C∗-algebra and τ ∈ Q̃T(A)/{0}. Let e ∈ A+ and a ∈ A such
that ea = a = ae . Suppose that τ(e) < ∞. Then, for any f ∈ C0(R), it holds that
τ( f (e − a∗a)) = τ( f (e − aa∗)). In particular, ∥e − a∗a∥2,τ = ∥e − aa∗∥2,τ . Moreover,
dτ(g(e − a∗a)) = dτ(g(e − aa∗)) for any g ∈ C0(R), assuming g(e − a∗a) and
g(e − aa∗) are positive.
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Proof Note that since C∗(e , a∗a) and C∗(e , aa∗) are commutative, the restrictions
of τ on them are linear. Let n ∈ N. Then

τ((e − a∗a)n) = τ (en +
n
∑
m=1

n!
m!(n −m)!

(−a∗a)m)

= τ(en) +
n
∑
m=1

n!
m!(n −m)!

τ((−a∗a)m)

= τ(en) +
n
∑
m=1

n!
m!(n −m)!

τ((−aa∗)m)

= τ (en +
n
∑
m=1

n!
m!(n −m)!

(−aa∗)m) = τ((e − aa∗)n).(e3.1)

Thus, for any polynomial P, τ(P(e − a∗a)) = τ(P(e − aa∗)). In particular,
∥e − a∗a∥2,τ = ∥e − aa∗∥2,τ . Therefore, by the continuity of 2-quasitraces (see
[2, Corollary II.2.5]), and the Stone–Weierstrass theorem, τ( f (e − a∗a)) =
τ( f (e − aa∗)) for all f ∈ C0(R). Moreover, for any g ∈ C0(R), assuming g(e − a∗a)
and g(e − aa∗) are positive,

dτ(g(e − a∗a)) = sup
ε>0

τ( fε(g(e − a∗a))) = sup
ε>0

τ( fε(g(e − aa∗))) = dτ(g(e − aa∗)).
(e3.2)

∎

Lemma 3.2 Let A, B be C∗-algebras and π ∶ A→ B be a surjective homomorphism.
Assume p, q ∈ B are projections, and x ∈ B satisfies px = x = xq. Then there are
p̃, q̃ ∈ A1

+ and x̃ ∈ A, such that π(p̃) = p, π(q̃) = q, π(x̃) = x , and p̃x̃ = x̃ = x̃ q̃. More-
over, if p = q, we can take p̃ = q̃.

Proof We may assume that ∥x∥ ≤ 1. Let p1 , q1 ∈ A1
+ such that π(p1) = p, π(q1) =

q. Since p, q are projections, we also have π( f1/2(p1)) = f1/2(π(p1)) = p, and
π( f1/2(q1)) = f1/2(π(q1)) = q. Note x∗x ≤ q. By [30, Proposition 1.5.10], there exists
y ∈ A1 such that π(y) = x and y∗y ≤ f1/2(q1). Put x̃ = f1/2(p1)y. Then

π(x̃) = px = x , x̃ x̃∗ = f1/2(p1)yy∗ f1/2(p1) ≤ f1/4(p1)

and x̃∗x̃ ≤ y∗y ≤ f1/2(q1). Set p̃ = f1/8(p1) and q̃ = f1/8(q1). Then π(p̃) = p, π(q̃) = q.
The facts that f1/8(p1) f1/4(p1) = f1/4(p1) and f1/8(q1) f1/4(q1) = f1/4(q1) imply that
p̃x̃ = x̃ = x̃ q̃. Moreover, if p = q, we can take p1 = q1 , and hence p̃ = q̃. ∎

Proposition 3.3 Let A be a C∗-algebra with Q̃T(A)/{0} /= ∅. Suppose that T ⊂
Q̃T(A)/{0} is a compact subset. Then every projection in l∞(A)/IT(A) is finite (see
Definition 2.17).

Proof Let B = l∞(A)/IT(A) and π ∶ l∞(A) → B be the quotient map. Assume p ∈ B
is a projection, u ∈ B satisfies u∗u = p, and uu∗ ≤ p. We need to show uu∗ = p.

By Lemma 3.2, there are a = {a1 , a2 , ...} ∈ l∞(A)1
+ and v = {v1 , v2 , ...} ∈ l∞(A)

such that π(a) = p, π(v) = u, and av = v = va. Since π(a) = p = π(v∗v), we
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have limn→∞ ∥an − v∗nvn∥2,T = 0. By Lemma 3.1, ∥an − vnv∗n∥2,T = ∥an − v∗nvn∥2,T →
0(n →∞). Hence,

p − uu∗ = π({a1 − v1v∗1 , a2 − v2v∗2 , ...}) = 0,

which shows p is a finite projection. ∎

Proposition 3.4 Let A be a non-elementary simple C∗-algebra with Q̃T(A)/
{0} /= ∅. Let T ⊂ Q̃T[0,1](A)/{0}. Then, for any a ∈ Ped(A)1

+/{0}, any ε > 0, there is
b ∈ Her(a)+ such that b ≤ a, ∥a − b∥2,T < ε, and dτ(b) < dτ(a) for all τ ∈ T .

Proof It follows from the first paragraph of Definition 2.14 that there exists
c ∈ Her(a)+ with ∥c∥ = 1 such that dτ(c) < ε2 for all τ ∈ T . Define b = a1/2(1 −
f1/4(c))a1/2 . Then 0 ≤ b ≤ a. It follows from (e2.17) that

∥a − b∥2,T = ∥a1/2 f1/4(c)a1/2∥2,T ≤ ∥ f1/4(c)∥2,T ≤ (dτ(c))1/2 ≤ ε.

For all τ ∈ T ,

dτ(b) = dτ(a1/2(1 − f1/4(c))a1/2) = dτ((1 − f1/4(c))1/2a(1 − f1/4(c))1/2)
< dτ((1 − f1/4(c))1/2a(1 − f1/4(c))1/2) + dτ( f1/2(c))

(orthogonality)= dτ((1 − f1/4(c))1/2a(1 − f1/4(c))1/2 + f1/2(c)) ≤ dτ(a).

∎

Theorem 3.5 Let A be a non-elementary algebraically simple C∗-algebra with
QT(A) /= ∅. Assume that A has strict comparison. Then l∞(A)/IQT(A)

w has cancel-
lation of projections, i.e., for any projections p, q, r ∈ l∞(A)/IQT(A)

w , if p, q ≤ r and
p ∼ q, then r − p ∼ r − q.

Proof Set B ∶= l∞(A)/I
QT(A)w and let Π ∶ l∞(A) → B denote the quotient map.

Let p, q, r ∈ B be projections with p, q ≤ r, and assume that there is a par-
tial isometry v ∈B such that v∗v = p, vv∗ = q. By Lemma 3.2, there are e ={e1 , e2 , ...} ∈
l∞(A)1

+ and w = {w1 , w2 , ...} ∈ l∞(A) such that π(e) = r, π(w) = v , and ew = w =
we . Then, by Lemma 3.1, we have dτ( f1/4(en −w∗nwn)) = dτ( f1/4(en −wnw∗n)) for
all τ ∈ QT(A)

w
and n ∈ N. By Proposition 3.4, for each n ∈ N, there is bn ∈ A1

+ such
that

∥ f1/4(en −w∗nwn) − bn∥2,QT(A)w < 1/n, and(e3.3)

dτ(bn) < dτ( f1/4(en −w∗nwn)) = dτ( f1/4(en −wnw∗n)) for all τ ∈ QT(A)
w

.(e3.4)

Since A has strict comparison, we have bn ≲ f1/4(en −wnw∗n). By [40, Proposition
2.4(iv)], for each n ∈ N, there is x′n ∈ A such that

(x′n)∗(x′n) = f1/n(bn) and x′n(x′n)∗ ∈ Her( f1/4(en −wnw∗n)).(e3.5)

Note that f1/n(b)(b − 1/n)+ = (b − 1/n)+. Choose xn = x′n(b − 1/n)1/2
+ . Then

x∗n xn = (bn − 1/n)+ and xn x∗n ∈ Her( f1/4(en −wnw∗n)).(e3.6)
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Note ∥xn∥2 = ∥x∗n xn∥ = ∥(bn − 1/n)+∥ ≤ 1. The second part of (e3.6) implies

xn x∗n ≤ f1/8(en −wnw∗n).(e3.7)

Let cn = en −w∗nwn and dn = en −wnw∗n (n ∈ N). Let x = {x1 , x2 , ...},
b = {b1 , b2 , ...}, c = {c1 , c2 , ...}, and d = {d1 , d2 , ...} ∈ l∞(A). Then

Π(x)∗Π(x) (3.3)= Π(b) (3.3)= Π( f1/4(c)) = f1/4(Π(c)) = f1/4(r − p) = r − p,(e3.8)

and

Π(x)Π(x)∗
(3.7)
≤ Π( f1/8(d)) = f1/8(Π(d)) = f1/8(r − q) = r − q.(e3.9)

Let y = v +Π(x). Note that vΠ(x)∗ = v p(r − p)Π(x)∗ = 0 and Π(x)v∗ =
(vΠ(x)∗)∗ = 0. Also, note that v∗Π(x) = v∗q(r − q)Π(x) = 0 and Π(x)∗v =
(v∗Π(x))∗ = 0. Then we compute (using also (e3.8) and (e3.9)) that

r = y∗y ∼ yy∗ = Π(x)Π(x)∗ + q ≤ r.

By Proposition 3.3, r is a finite projection. Hence, Π(x)Π(x)∗ + q = r. Consequently,
Π(x)Π(x)∗ = r − q. Together with (e3.8), we obtain r − p ∼ r − q. The theorem then
follows. ∎

4 Tracial oscillations

In this section, we will introduce the notion of tracial approximate oscillation for
positive elements in a C∗-algebra and present some basics around the notion.

Definition 4.1 Let A be a C∗-algebra with Q̃T(A)/{0} /= ∅. Let S ⊂ Q̃T(A) be a
compact subset. Define, for each a ∈ (A⊗K)+,

ω(a)∣S = inf{sup{dτ(a) − τ(c) ∶ τ ∈ S} ∶ c ∈ Ped(a(A⊗K)a), 0 ≤ c ≤ 1}(e4.1)

(see A1 of [11]). The number ω(a)∣S is called the (tracial) oscillation of a on S .
If a ∈ Ped(A⊗K)+, then ω(a)∣S < ∞ (see (2) of Proposition 2.10). Since

τ( f1/n(a)) ↗ dτ(a) (point-wisely) and ĉ is continuous on compact set S for each
c ∈ Ped(a(A⊗K)a)+, one has

ω(a)∣S = lim
n→∞

sup{dτ(a) − τ( f1/n(a)) ∶ τ ∈ S}.(e4.2)

Note that, exactly as in A1 of [11], if a, b ∈ (A⊗K)1
+ and a ∼ b, then ω(a)∣S =

ω(b)∣S (cf. Proposition 4.2 below). For each h ∈ LAff+(Q̃T(A)), define

ω(h)∣S = inf{sup{h(τ) − f (τ) ∶ τ ∈ S} ∶ 0 < f < h, f ∈ Aff+(Q̃T(A))}.(e4.3)

Recall that, in general, for any real function f defined on S , the oscillation of f at s ∈ S
is defined as

ω( f )(s) = inf{sup{∣ f (s′) − f (s′′)∣ ∶ s′ , s′′ ∈ O(s)} ∶ O(s)},(e4.4)
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where O(s) is an open neighborhood of s and the infimum above is taken among all
such O(s). Denote by ω( f )∣S = sup{ω( f )(s) ∶ s ∈ S}. Then (recall that S is compact)

ω(a)∣S = ω([̂a])∣S .(e4.5)

Let a ∈ (A⊗K)+. For each τ ∈ S , and its neighborhood O(τ), define

ωO(τ)(a)∣S = lim
n→∞

sup{dt(a) − t( f1/n(a)) ∶ t ∈ O(τ) ∩ S}.(e4.6)

One may note that, if O1(τ) ⊂ O2(τ), then ωO1(τ)(a)∣S ≤ ωO2(τ)(a)∣S . Define

ω(a)(τ)∣S = inf{ωO(τ)(a) ∶ τ ∈ O(τ) ∩ S}(e4.7)

(the infimum is taken among all neighborhood O(τ) of τ in S). In other words, when
S is fixed, ω(a)(τ)∣S is the oscillation of the lower-semicontinuous function [̂a] at τ.
In particular, [̂a] is continuous on S if and only if ω(a)(τ)∣S = 0 for all τ ∈ S .

(1) If cn ∈ Her(a)1
+ and τ(cn) ↗ dτ(a) for all τ ∈ S , then

ωO(τ)(a)∣S = lim
n→∞

sup{dt(a) − t(cn) ∶ t ∈ O(τ) ∩ S}.(e4.8)

In general, one checks that

sup{ω(a)(τ)∣S ∶ τ ∈ S} = ω(a)∣S .(e4.9)

(2) For most of the time, we will assume that A is simple and S is a compact
subset of Q̃T(A)/{0} such that R+ ⋅ S = Q̃T(A), for example, S = Tb for some
b ∈ Ped(A)+/{0}. Or, in the case that A = Ped(A), S = QT(A)

w
. When S is under-

stood, we may omit S in the notation. In fact, when A is compact, we may write ω(a)
instead of ω(a)∣QT(A)

w .
(3) Let S1 , S2 ⊂ Q̃T(A)/{0} be compact subsets such thatR+ ⋅ S i = Q̃T(A), i = 1, 2.

If ω(a)∣S1 = 0, then ω(a)∣S2 = 0 (see also Proposition 2.10). In what follows, we write
ω(a) = 0 if ω(a)∣S = 0 for one compact subset of Q̃T(A) such that R+ ⋅ S = Q̃T(A).

Proposition 4.2 [11, A1] Let a, b ∈ (A⊗K)+. Let S ⊂ Q̃T(A) be a compact subset. If
a ∼ b, then ω(a)(τ)∣S = ω(b)(τ)∣S for all τ ∈ S , and ω(a)∣S = ω(b)∣S .

Proof Let τ ∈ S . Let O(τ) be any open neighborhood of τ. For any ε > 0, there is
δ > 0 such that

sup{dt(a) − t( fδ(a)) ∶ t ∈ O(τ) ∩ S} < ωO(τ)(a)∣S + ε.(e4.10)

Since a ∼ b, there exists a sequence xn ∈ A⊗K such that xn x∗n → a and x∗n xn ∈
Her(b) = b(A⊗K)b. Since a1/m aa1/m → a as m →∞, replacing xn by a1/m(n)xn for
some subsequence {m(n)}, we may assume that xn x∗n ∈ Her(a). Note that, for any
δ > 0,

lim
n→∞

∥ fδ(xn x∗n) − fδ(a)∥ = 0.

Since S is compact, by (2) of Proposition 2.10, sup{∥t∣Her(a)∥ ∶ t ∈ S} < ∞. It follows
that there is m ∈ N such that

sup{∣t( fδ(a)) − t( fδ(xm x∗m))∣ ∶ t ∈ S} < ε.(e4.11)
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Note that dt(a) = dt(b) for all t ∈ S because of a ∼ b. Also, note that t( fδ(xm x∗m)) =
t( fδ(x∗m xm)) for all t ∈ S . Then

ωO(τ)(b)∣S ≤ sup{dt(b) − t( fδ(x∗m xm)) ∶ t ∈ O(τ) ∩ S}(e4.12)
= sup{dt(a) − t( fδ(xm x∗m)) ∶ t ∈ O(τ) ∩ S}(e4.13)
≤ sup{dt(a) − t( fδ(a)) ∶ t ∈ O(τ) ∩ S}(e4.14)
+ sup{∣t( fδ(a)) − t( fδ(xm x∗m))∣ ∶ t ∈ O(τ) ∩ S}(e4.15)

≤ ωO(τ)(a)∣S + ε + ε.(e4.16)

Since ε is arbitrary, we have ωO(τ)(b)∣S ≤ ωO(τ)(a)∣S . Exactly the same argument
shows that ωO(τ)(a)∣S ≤ ωO(τ)(b)∣S . Hence, ωO(τ)(a)∣S = ωO(τ)(b)∣S . Since O(τ) is
an arbitrary open neighborhood of τ, we have

ω(b)(τ)∣S = inf{ωO(τ)(b)∣S ∶ τ ∈ O(τ)∩S} = inf{ωO(τ)(a)∣S ∶ τ ∈ O(τ)∩S} = ω(a)(τ)∣S .

For the last identity in the proposition, we note that, by (e4.9),

ω(a)∣S = sup{ω(a)(τ)∣S ∶ τ ∈ S} = sup{ω(b)(τ)∣S ∶ τ ∈ S} = ω(b)∣S . ∎

Definition 4.3 In the case that A does not have strict comparison, we may still want
to consider elements with zero tracial oscillation. We write ωc(a) = 0 if g1/n(a) c .→ 0
(recall Definition 2.5 for gδ , and also see Definition 2.14). Let {an} ∈ l∞(A)+. We
write limn→∞ ωc(an) = 0, if there exists δn ∈ (0, 1/2) such that gδn(an)

c .→ 0.

Note that, by Proposition 2.10, if A is compact, then the number s in part (1) of the
next proposition is always finite. Let τ ∈ S . In the next lemma, we write O(τ) for an
open neighborhood of τ in S .

Proposition 4.4 Let A be a σ-unital C∗-algebra. Let S ⊂ Q̃T(A)/{0} /= ∅ be a
compact subset.

(1) Suppose that s ∶= {∥τ∣A∥ ∶ τ ∈ S} < ∞. If a, b ∈ (A⊗K)1
+, then

ω(a)(τ)∣S − dτ(b)∣S ≤ ω(a + b)(τ)∣S ≤ ω(a)(τ)∣S + dτ(b)∣S for all τ ∈ S ,(e4.17)

where dτ(b)∣S ∶= inf{sup{dt(b) ∶ t ∈ O(τ)} ∶ O(τ) open neighborhoods of τ in S}.
(2) If a ⊥ b, then

max{ω(a)∣S , ω(b)∣S} ≤ ω(a + b)∣S ≤ ω(a)∣S + ω(b)∣S .(e4.18)

Moreover,

max{ω(a)(τ)∣S , ω(b)(τ)∣S} ≤ ω(a + b)(τ)∣S ≤ ω(a)(τ)∣S + ω(b)(τ)∣S for all τ ∈ S .
(e4.19)

(3) For σ-unital simple C∗-algebra A, ωc(a) = 0 if and only if Her(a) has continuous
scale.

Proof (1) For the inequality on the left, let ε > 0. Fix τ ∈ S . Choose an open neigh-
borhood O(τ) of τ in S such that
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ωO(τ)(a + b)∣S ≤ ω(a + b)(τ)∣S + ε, and(e4.20)
sup{dt(b) ∶ t ∈ O(τ)} ≤ dτ(b)∣S + ε.(e4.21)

Note that there is δ > 0 such that

sup{dt(a + b) − t( fδ(a + b)) ∶ t ∈ O(τ)} ≤ ωO(τ)(a + b)∣S + ε.(e4.22)

Note that a + b ≈δ/2 (a − δ/2)+ + b. By [40, Proposition 2.2], we have fδ(a + b) ≲
(a − δ/2)+ + b. Then, for any t ∈ O(τ), we have

t( fδ(a + b)) ≤ dt( fδ(a + b)) ≤ dt((a − δ/2)+ + b) ≤ dt((a − δ/2)+) + dt(b)
(e4.23)

(4.21)
≤ t( fδ/2(a)) + dτ(b)∣S + ε.(e4.24)

Then, for t ∈ O(τ), dt(a) + t( fδ(a + b)) ≤ dt(a + b) + t( fδ/2(a)) + dτ(b)∣S + ε. It
follows that

dt(a) − t( fδ/2(a)) ≤ dt(a + b) − t( fδ(a + b)) + dτ(b)∣S + ε(e4.25)
(4.22)
≤ ωO(τ)(a + b)(τ)∣S + dτ(b)∣S + 2ε(e4.26)

(4.20)
≤ ω(a + b)(τ)∣S + dτ(b)∣S + 3ε for all t ∈ O(τ).(e4.27)

Hence,

ω(a)(τ)∣S ≤ ωO(τ)(a)(τ) ≤ sup{dt(a) − t( fδ/2(a)) ∶ t ∈ O(τ)}(e4.28)

≤ ω(a + b)(τ)∣S + dτ(b)∣S + 3ε.(e4.29)

Let ε → 0, then we have the desired inequality.
Now we turn to the inequality on the right. By definition, for any ε > 0, there are

open neighborhood O(τ) of τ in S , and δ > 0 such that

sup{dt(b) ∶ t ∈ O(τ)} ≤ dτ(b) + ε, and(e4.30)

sup{dt(a) − t( fδ(a)) ∶ t ∈ O(τ)}≤ωO(τ)(a)∣S + ε/2 ≤ ω(a)(τ)∣S + ε.(e4.31)

Note that a ∈ Her(a + b), then there is η > 0 such that fδ(a) ≈ε/(s+1) fη(a +
b) fδ(a) fη(a + b). Hence, for any t ∈ O(τ), by [2, Corollary II.2.5(iii)],

dt(a + b) − t( fη(a + b)) ≤ dt(b) + dt(a) − t( fη(a + b) fδ(a) fη(a + b))
≤ dt(b) + dt(a) − t( fδ(a)) + ε(e4.32)

(4.30),(4.31)
≤ dτ(b) + ω(a)(τ)∣S + 3ε.(e4.33)

Hence,

ω(a + b)(τ)∣S ≤ sup{dt(a + b) − t( fη(a + b)) ∶ t ∈ O(τ)}
≤ dτ(b) + ω(a)(τ)∣S + 3ε.(e4.34)

Let ε → 0, (1) then follows.
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For (2), we have, for any 1/2 > ε > 0, since a ⊥ b,

dτ(a + b) − τ( fε(a + b)) = (dτ(a) − τ( fε(a)) + (dτ(b) − τ( fε(b))(e4.35)

for all τ ∈ S . Thus,

ω(a + b)∣S ≤ ω(a)∣S + ω(b)∣S and(e4.36)

ω(a + b)(τ)∣S ≤ ω(a)(τ)∣S + ω(b)(τ)∣S for all τ ∈ S .(e4.37)

Hence, the inequality on the right in (e4.18) holds.
Now we turn to the inequality on the left of (e4.18). Since a/b, for all τ ∈ S and all

η > 0,

dτ(a) − τ( fη(a)) ≤ (dτ(a) − τ( fη(a))) + (dτ(b) − τ( fη(b))) = dτ(a + b) − τ( fη(a + b)).
(e4.38)

Thus, ω(a)∣S ≤ sup{dτ(a) − fη(a) ∶ τ ∈ S} ≤ sup{dτ(a + b) − fη(a + b) ∶ τ ∈ S}.
Since η can be arbitrary small, we have

ω(a)∣S ≤ inf
η>0

sup{dτ(a + b) − fη(a + b) ∶ τ ∈ S} = ω(a + b)∣S .(e4.39)

Similarly, ω(b)∣S ≤ ω(a + b)∣S . Thus, the inequality on the left of (e4.18) holds. The
estimates (e4.19) can be checked similarly.

For (3), recall that Her(a) has continuous scale if and only if em(n) − en
c .→ 0 for any

m(n) > n, where en = f1/2n(a), n ∈ N. Suppose that ωc(a) = 0. Then, for each n ∈ N
and any m(n) ≥ n,

em(n) − en ≲ g1/n(a) c .→ 0.(e4.40)

It follows that Her(a) has continuous scale.
Conversely, suppose that Her(a) has continuous scale. For any d ∈ A+/{0}, choose

n0 ∈ N such that, for any m(n) > n ≥ n0 ,

em(n) − en ≲ d .(e4.41)

Suppose that k0 > 2n0 . Fix k ≥ k0 . For any ε ∈ (0, 1/4), there is m(n) > n0 such that

fε(g1/k(a)) ≲ em(n) − en0 .(e4.42)

In other words, for any ε ∈ (0, 1/4), fε(g1/k(a)) ≲ d . It follows that g1/k(a) ≲ d (for
any k ≥ k0). This proves (3). ∎

Lemma 4.5 Let A be a C∗-algebra with a nonempty compact subset S ⊂ Q̃T(A), and
let a ∈ (A⊗K)+ . Then, for any ε > 0, there exists δ0 > 0 such that

ω( fδ(a))∣S < ω(a)∣S + ε for all 0 < δ < δ0 .(e4.43)

Proof We may assume that ω(a)∣S < ∞. There exists δ0 > 0 such that, for all 0 < η ≤
2δ0 ,

dτ(a) − τ( fη(a)) < ω(a) + ε/2 for all τ ∈ S .(e4.44)
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Then, there exists σ0 > 0 such that, if 0 < δ < δ0 ,

dτ( fδ(a)) − τ( fσ0( fδ(a))) ≤ dτ(a) − τ( f2δ0(a)) < ω(a) + ε/2(e4.45)

for all τ ∈ S . Note that dτ( fδ(a)) ≤ τ( fδ/2(a)) for all τ ∈ Q̃T(A). It follows that (see
(2) of Proposition 2.10)

ω( fδ(a))∣S < ω(a)∣S + ε. ∎

Proposition 4.6 Let A be a C∗-algebra with a nonempty compact subset S ⊂ Q̃T(A)
and a ∈ (A⊗K)1

+ with ω(a) < ∞, and 0 < δ < 1/2. Then, for any ε > 0, there is 0 < η <
δ/2 and n0 ∈ N such that

sup{τ( fη(a)) − dτ( fδ(a)) ∶ τ ∈ S} ≥ ω(a)∣S − ε and(e4.46)

sup{τ(a1/n0) − dτ( fδ(a)) ∶ τ ∈ S} ≥ ω(a)∣S − ε.(e4.47)

Proof Fix 0 < δ < 1/2. For any ε > 0, there exists τ0 ∈ S such that

dτ0(a) − τ0( fδ/2(a)) > ω(a)∣S − ε/4.(e4.48)

For this τ0 , choose 0 < η < δ/2 such that dτ0(a) − τ0( fη(a)) < ε/4. Then

τ0( fη(a)) − dτ0( fδ(a)) > dτ0(a) − τ0( fδ/2(a)) − (dτ0(a) − τ0( fη(a)))(e4.49)

> ω(a)∣S − ε/4 − ε/4.(e4.50)

Hence,

sup{τ( fη(a)) − dτ( fδ(a)) ∶ τ ∈ S} ≥ ω(a)∣S − ε/2.(e4.51)

To see the second inequality, choose n0 ∈ N such that

∥a1/n0 fη(a) − fη(a)∥ < ε/4.(e4.52)

It follows that, for all τ ∈ S ,

τ(a1/n0) − dτ( fδ(a)) ≥ τ(a1/n0 fη(a)) − dτ( fδ(a))(e4.53)

≥ τ( fη(a)) − dτ( fδ(a)) − ε/4.(e4.54)

Therefore, by (e4.51), sup{τ(a1/n0) − dτ( fδ(a)) ∶ τ ∈ S} ≥ ω(a)∣S − ε. ∎

Definition 4.7 Let A be a C∗-algebra, let S ⊂ Q̃T(A) be a compact subset, and let a ∈
(A⊗K)+. Put B = Her(a) and IS ,B = {{bn} ∈ l∞(B) ∶ limn→∞ ∥bn∥2,S = 0}. Denote
by ΠS ∶ l∞(B) → l∞(B)/IS ,B and Πcu ∶ l∞(B) → l∞(B)/Ncu(B) (in the case that B
has no one-dimensional hereditary C∗-subalgebra) the quotient maps, respectively.

Let A be a σ-unital C∗-algebra and a ∈ (A⊗K)+ with ∥a∥2,S < ∞. Define (here we
assume that bn ∈ Ped(A⊗K)+ and Her(a) = a(A⊗K)a)

ΩT(a)∣S = inf{∥ΠS(ι(a) − {bn})∥ ∶ {bn} ∈ l∞(Her(a))+ , ∥bn∥ ≤ ∥a∥, lim
n→∞

ω(bn)∣S = 0},

ΩT
T(a)∣S = inf{lim sup

n
∥a − bn∥2,S ∶ bn ∈ Her(a)+ , ∥bn∥ ≤ ∥a∥, lim

n→∞
ω(bn)∣S = 0},

ΩT
C(a)∣S = inf{∥Πcu(ι(a) − {bn})∥ ∶ {bn} ∈ l∞(Her(a))+ , ∥bn∥ ≤ ∥a∥, lim

n→∞
ω(bn)∣S = 0},
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ΩC(a) = inf{∥Πcu(ι(a) − {bn})∥ ∶ {bn} ∈ l∞(Her(a))+ , ∥bn∥ ≤ ∥a∥, lim
n→∞

ωc(bn) = 0} and

ΩN(a)∣S = inf{∥π∞(ι(a) − {bn})∥ ∶ bn ∈ l∞(Her(a))+ , lim
n→∞

ω(bn)∣S = 0}.

(e4.55)

We will focus on ΩT(a).
(1) Note, for the convenience, in the definition above, we always assume that

∥a∥2,S < ∞.
(2) Note also that limn→∞ ∥a f1/n(a) − a∥ = 0 and

a f1/n(a) = a1/2 f1/n(a)a1/2 ∼ f1/n(a), n ∈ N.

Hence, if ω(a)∣S = 0, by Lemma 4.5, then ΩN(a)∣S = ΩT(a)∣S = ΩT
T(a)∣S = 0.

One may call ΩT(a)∣S the tracial approximate oscillation of a (on S). If
ΩT(a)∣S = 0, we say a has approximately tracial oscillation zero (on S). Often, when S
is understood, we may omit S in notation above. In particular, when A is algebraically
simple, we write ΩT(a) ∶= ΩT(a)∣

QT(A)w .
(3) It is, perhaps, convenient to use (1) and (2) of Proposition 4.8 for the definition of

ΩT(a)∣S = 0. We would like to mention that, for the definition of ΩT
C(a) and ΩC(a),

we also require that C∗-algebra A has no one-dimensional hereditary C∗-subalgebra
s (see Definition 2.15).

(4) Moreover, since ω(0)∣S = 0, we have

ΩT(a)∣S ≤ ∥ΠS(ι(a))∥ ≤ ∥a∥, and ΩT
C(a)∣S , ΩC(a), ΩN(a) ≤ ∥a∥.(e4.56)

When A is unital, ΩT(a)∣S = 0 for any a ∈ GL(A) ∩ A+, since ω(1A) = 0.
(5) In the case that A is a σ-unital algebraically simple C∗-algebra with strict

comparison, if S = QT(A)
w

and ΩT
T(a)∣S = 0, then ΩT(a)∣S = ΩN(a)∣S = ΩT

C(a)∣S =
ΩC(a) = 0 (see (2) of Proposition 4.8, (2) after Definition 5.1, and Proposition 5.7).

Proposition 4.8 Let A be a C∗-algebra, a ∈ (A⊗K)1
+, and S ⊂ Q̃T(A) a compact

subset such that ∥a∥2,S < ∞.
(1) If ΩT(a)∣S = 0, then there exists a sequence {bn} ⊂ Ped(Her(a))1

+ such that

lim
n→∞

ω(bn)∣S = 0 and ∥ΠS(ι(a) − {bn})∥ = 0,(e4.57)

and, if ΩT
T(a)∣S = 0, there exists bn ∈ Ped(Her(a))1

+ , n ∈ N, such that

lim
n→∞

ω(bn)∣S = 0 and lim
n→∞

∥a − bn∥2,S = 0.(e4.58)

(2) ΩT(a)∣S = 0 if and only if ΩT
T(a)∣S = 0.

(3) If there exists M ≥ 1 such that

inf{∥ΠS(ι(a) − {bn})∥ ∶ bn ∈ Ped(Her(a))+ , ∥bn∥ ≤ M , lim
n→∞

ω(bn)∣S = 0} = 0,

then ΩT(a)∣S = 0.
(4) If {an} ∈ (IS )1

+, then there is {bn} ∈ (IS )1
+, n ∈ N, such that

lim
n→∞

sup{dτ(bn) ∶ τ ∈ S} = 0 and lim
n→∞

∥an − bn∥ = 0.(e4.59)
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Proof Recall that B = Her(a) and ΠS ∶ l∞(B) → l∞(B)/IS ,B is the quotient map.
For (1), there is, for each k ∈ N, a sequence {c(k)n } ∈ l∞(Ped(Her(a))) with

0 ≤ c(k)n ≤ 1 and limn→∞ ω(c(k)n )∣S = 0 such that

∥ΠS(ι(a) − {c(k)n })∥ < 1/k.(e4.60)

Therefore, for each k ∈ N, there is n(k) ∈ N such that

∥a − c(k)n(k)∥2,S < 2/k and ω(c(k)n(k)) < 1/k.(e4.61)

Define bk = c(k)n(k), k ∈ N. Then 0 ≤ bk ≤ 1, bk ∈ Ped(Her(a)) and limn→∞

ω(bn)∣S = 0. Moreover,

∥a − bn∥2,S < 2/n for all n ∈ N.(e4.62)

It follows that ∥ΠS(ι(a) − {bn})∥ = 0, and (e4.58) holds. A similar proof above shows
that, if ΩT

T(a) = 0 implies that there is bn ∈ Ped(Her(a))1
+ such that (e4.58) holds.

For (2), we note that (e4.58) implies that ι(a) − {bn} ∈ IS . So, if ΩT
T(a)∣S = 0, then

∥ΠS(ι(a) − {bn})∥ = 0. Hence, ΩT(a)∣S = 0. The converse also holds.
To show (3) holds, suppose that there are c(k)n ∈ Ped(Her(a)) such that 0 ≤ c(k)n ≤

M , limn→∞ ω(c(k)n )∣S = 0 and

∥ΠS(ι(a) − {c(k)n })∥ < 1/k for all k ∈ N.(e4.63)

By the proof of (1), one obtains bn ∈ Ped(Her(a))+ with 0 ≤ bn ≤ M such that

lim
n→∞

ω(bn)∣S = 0 and ΠS(ι(a)) = ΠS({bn}).(e4.64)

Define g ∈ C0((0, ∥a∥ + M]) by g(t) = ∥a∥ if t ∈ [∥a∥, ∥a∥ + M] and g(t) = t if
t ∈ [0, ∥a∥]. Since M is fixed and g(a) = a, we have

ΠS(a) = ΠS({g(bn)}).(e4.65)

Put cn = g(bn). Then cn ∈ Ped(Her(a))+ and ∥cn∥ ≤ ∥a∥. Since cn = g(bn) ∼ bn , then
limn→∞ ω(cn)∣S = 0. Therefore, by (e4.65), ΩT(a)∣S = 0.

(4) Since {an} ∈ (IS )1
+, limn→∞ ∥an∥2,S = 0. Choose δn ∶=

√
∥an∥2,S + 1/n and

bn = (an − δn)+, n ∈ N. Then ∥bn∥ ≤ 1, n ∈ N, ∥bn∥2,S ≤ ∥an∥2,S → 0 and limn→∞
∥an − bn∥ = 0.

Note that

fη((x − δn)2
+) ≤ χ[δn ,+∞)(x) ≤ (1/δ2

n)x2 for all x ∈ R+,(e4.66)

where η ∈ (0, 1) and χ[δn ,+∞) is the characteristic function of [δn ,+∞). Then, for all
τ ∈ S ,

dτ(bn) = dτ(b2
n) = sup

η>0
τ( fη((an − δn)2

+)) ≤ (1/δ2
n)τ(a2

n) ≤ (1/δ2
n)∥an∥2

2,S
= ∥an∥2,S .

(e4.67)

It follows that limn→∞ sup{dτ(bn) ∶ τ ∈ S} = 0. ∎
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The next proposition also justifies that we often write ΩT(a) = 0 instead of
ΩT(a)∣S for some compact set S ⊂ Q̃T(A)/{0} such that R+ ⋅ S = Q̃T(A).

Proposition 4.9 Let A be a C∗-algebra and S1 , S2 ⊂ Q̃T(A)/{0} be nonempty com-
pact subsets such that R+ ⋅ S1 = R+ ⋅ S2 = Q̃T(A). Suppose that a ∈ (A⊗K)1

+. Then
ΩT(a)∣S1 = 0 (ΩT

C(a)∣S1 = 0, or ΩN(a)∣S1 = 0) if and only if ΩT(a)∣S2 = 0 (ΩT
C(a)∣S2 =

0, or ΩN(a)∣S2 = 0). Moreover, if a ∈ Ped(A⊗K)+ and ΩT(a)∣Sa = 0, where
Sa = {τ ∈ Q̃T(A) ∶ ∥τ∣Her(a)∥ = 1}

w
, then ΩT(a)∣S1 = 0.

Proof It follows from (1) of Proposition 2.10 that there is L ∈ R+ such that

S2 ⊂ {rs ∶ s ∈ S1 and r ∈ [0, L]}.

If ΩT(a)∣S1 = 0, then, by Proposition 4.8, there exists a sequence bn ∈ Ped(Her(a))
with ∥bn∥ ≤ ∥a∥ such that limn→∞ ω(bn)∣S1 = 0 and limn→∞ ∥a − bn∥2,S1

= 0. It fol-
lows that

lim
n→∞

ω(bn)∣S2 ≤ lim
n→∞

L ⋅ ω(bn)∣S1 = 0 and lim
n→∞

∥a − bn∥2,S2
≤ lim

n→∞
L∥a − bn∥2,S1

= 0.

Then ΩT(a)∣S2 = 0. Exactly the same argument shows that if ΩT
C(a)∣S1 = 0 (or

ΩN(a)∣S1 = 0), then ΩT
C(a)∣S2 = 0 (or ΩN(a)∣S2 = 0).

To see the last statement, we note that (S1)∣Her(a) is bounded (see (2) of
Proposition 2.10). In other words, there is L > 0 such that (S1)∣Her(a) ⊂ {r ⋅ τ ∶ τ ∈ Sa ,
r ∈ [0, L]}. ∎

Lemma 4.10 Let A be a C∗-algebra, a ∈ (A⊗K)+, and S ⊂ Q̃T(A) a compact subset.
Suppose e ∈ Her(a)+ . Then e ∼ a1/2ea1/2 ∼ e1/2ae1/2 , and

ω(e)(τ)∣S = ω(a1/2ea1/2)(τ)∣S = ω(e1/2ae1/2)(τ)∣S for all τ ∈ S , and(e4.68)

ω(e)∣S = ω(a1/2ea1/2)∣S = ω(e1/2ae1/2)∣S .(e4.69)

Proof Since e ∈ Her(a)1
+ , we compute that

lim
n→∞

∥(a + 1/n)−1/2a1/2ea1/2(a + 1/n)−1/2 − e∥ = 0.(e4.70)

It follows that e ∼ a1/2ea1/2 ∼ e1/2ae1/2 ≤ e . Therefore, by Proposition 4.2, (e4.68) and
(e4.69) hold. ∎

Let us end this section with the following fact. The proof could be simplified
when QT(A) = T(A). Recall that when A = Ped(A), we write ω(a) = ω(a)∣

QT(A)w and
ΩT

T(a) = ΩT
T(a)∣

QT(A)w .

Proposition 4.11 Let A be an algebraically simple C∗-algebra with QT(A) /= ∅.
Suppose that A has strict comparison and Γ is surjective (see Definition 2.13). Then, for
any a ∈ Ped(A⊗K)+,

ΩT
T(a) ≤ ∥a∥

√
ω(a).(e4.71)

Proof Fix a ∈ Ped(A⊗K)+/{0}. Let ε > 0. If there is a subsequence {nk} ⊂ N

such that f1/4nk(a) − f1/nk(a) = 0, then f1/4nk(a) is a projection. Consequently,
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ω( f1/4nk(a)) = 0 for all k ∈ N. Note that a f1/4nk(a) ∼ f1/4nk(a). It follows that
ω(a f1/4nk (a)) = 0, k ∈ N. Since limk→∞ ∥a − a f1/4nk(a)∥ = 0, ΩT(a) = 0. Hence,
(e4.71) holds.

Next, we assume that for some n0 ∈ N, f1/4n(a) − f1/n(a) /= 0 for all n ≥ n0 .
Moreover,

sup{dτ(a) − τ( f1/n(a)) ∶ τ ∈ QT(A)
w
} < ω(a) + ε/2 for all n ≥ n0 .(e4.72)

For the rest of this proof, we will assume n ≥ n0 . Since the map Γ is surjective, there
is cn ∈ (A⊗K)1

+ such that dτ(cn) = τ( f1/n(a)) for all τ ∈ QT(A)
w

. Since f̂1/n(a) is
continuous on QT(A)

w
, ω(cn) = 0. Choose 0 < δn < 1 such that (by also Lemma 4.5),

dτ(cn) − τ( fδn(cn)) < 1/2n for all τ ∈QT(A)
w

and ω( fδn(cn)) < 1/2n .(e4.73)

Note that we have

dτ(cn) =τ( f1/n(a)) < dτ( f1/4n(a)) for all τ ∈ QT(A)
w

.(e4.74)

Since A has strict comparison, cn ≲ f1/4n(a). By Proposition 2.4 of [40], there is xn ∈
A⊗K such that

x∗n xn = fδn(cn) and xn x∗n ∈ Her( f1/4n(a)).(e4.75)

Put bn = a1/2xn x∗n a1/2 . Then ∥bn∥ ≤ ∥a∥ and bn ∈ Her( f1/4n(a)). By Lemma 4.10 and
(e4.73), ω(bn) = ω(xn x∗n) = ω(x∗n xn) = ω( fδn(cn)) ≤ 1/2n → 0. Note that

f1/8n(a)(xn x∗n) = xn x∗n = xn x∗n f1/8n(a).(e4.76)

Put an = a1/2 f1/8n(a)a1/2 and dn = f1/8n(a) − xn x∗n . Then 0 ≤ dn ≤ 1 and 0 ≤ an −
bn , n ∈ N. For all τ ∈ QT(A)

w
, we compute that

τ((an − bn)2) = τ(a1/2dn adn a1/2) ≤ ∥a∥τ(a1/2d2
n a1/2)

(e4.77)

≤ ∥a∥τ(a1/2dn a1/2) ≤ ∥a∥2τ(dn)(e4.78)
(4.76)= ∥a∥2(τ( f1/8n(a)) − τ(xn x∗n)) ≤ ∥a∥2(dτ(a) − τ(x∗n xn))(e4.79)
= ∥a∥2(dτ(a) − τ( f1/n(a)) + τ( f1/n(a)) − τ( fδn(cn)))(e4.80)
= ∥a∥2(dτ(a) − τ( f1/n(a)) + dτ(cn) − τ( fδn(cn)))(e4.81)
(4.72),(4.73)

≤ ∥a∥2((ω(a) + ε/2) + 1/2n).(e4.82)

Note that ∥a − an∥ < 1/n. It follows that, by (e2.17), (e2.19), and (e4.82),

∥a − bn∥2/3
2,QT(A)w ≤ ∥a − an∥2/3

2,QT(A)w + ∥an − bn∥2/3
2,QT(A)w(e4.83)

< (1/n)2/3 sup{dτ(a)1/3 ∶ τ ∈ QT(A)
w
} + (ω(a) + ε/2 + 1/2n)1/3 .(e4.84)
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Hence (by also (2) of Proposition 2.10),

lim sup
n→∞

∥a − bn∥2,QT(A)w ≤ ∥a∥
√

ω(a) + ε/2.(e4.85)

Let ε → 0. We then obtain (e4.71) (recall that limn→∞ ω(bn) = 0). ∎

5 C∗-algebras with tracial approximate oscillation zero

In this section, we will introduce the notion of T-tracial approximate oscillation zero
for C∗-algebras with non-trivial 2-quasitraces. We also present some examples of
simple C∗-algebras with tracial approximate oscillation zero (see Proposition 5.8 and
Theorems 5.9 and 5.10).

Definition 5.1 Let A be a C∗-algebra with Q̃T(A)/{0} /= ∅ and S ⊂ Q̃T(A)/{0}
a compact convex subset of A such that R+ ⋅ S = Q̃T(A).C∗-algebra A is said to
have norm approximate oscillation zero (relative to S) if for any a ∈ Ped(A⊗K)+,
ΩN(a)∣S = 0. It is said to have tracial approximate oscillation zero (relative to S),
if for any a ∈ Ped(A⊗K)+, ΩT

C(a)∣S = 0. We say that A has T-tracial approximate
oscillation zero (relative to S) if ΩT(a)∣S = 0 for all a ∈ Ped(A⊗K)+. We say that A
has C-tracial approximate oscillation zero if ΩC(a) = 0 for all a ∈ Ped(A⊗K)+.

Note that, by Proposition 4.9, these definitions do not depend on the choices of S .
Therefore, we often omit S in the notation.

(1) If A is a σ-unital simple C∗-algebra and a ∈ Ped(A⊗K)1
+, then QT(Her(a))

may be viewed as a convex subset of Q̃T(A). Put S1 = QT(Her(a))
w

. Therefore (see
also Proposition 2.9), ΩT(a)∣S = 0 if and only if ΩT(a)∣S1 = 0.

(2) By Proposition 4.8, ΩT
T(a)∣S = 0 if and only if ΩT(a)∣S = 0 for all a ∈ (A⊗K)+

with ∥a∥2,S < ∞. By Proposition 5.7 below, that A has norm approximate oscillation
zero is the same as that A has T-tracial approximate oscillation zero.

If A is σ-unital, non-elementary, and simple and has strict comparison, then,
by Proposition 2.18, for any nonzero a ∈ Ped(A⊗K)+, one has I

QT(Aa)
w = Ncu(Aa),

where Aa = Her(a). It follows that, in this case, the notion of tracial approximate
oscillation zero, the notion of T-tracial approximate oscillation zero, the notion of
C-tracial approximate oscillation zero, and that of norm approximate oscillation zero
all coincide (see also Proposition 5.7).

(3) Note also that, if A has (T-) tracial approximate oscillation zero, then Mn(A)
also has (T-) tracial approximate oscillation zero.

If we view ∥ ⋅ ∥
2,QT(A)w as an L2-norm, then that A has T-tracial approximate

oscillation zero has an analogue to that “almost” continuous functions are dense in
the L2-norm. It is worth mentioning that a σ-unital simple C∗-algebra has (T-) tracial
approximate oscillation zero, if, for some e ∈ Ped(A)+/{0}, Her(e) has (T-) tracial
approximate oscillation zero.

Definition 5.2 Let A be a σ-unital C∗-algebra with Q̃T/{0} /= ∅. Define

O(A) = sup{ΩT(a)∣Sa ∶ a ∈ Ped(A⊗K)1
+},(e5.1)
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where Sa = QT(Her(a))
w

(see the last paragraph of Definition 2.8). Note that, since
ΩT(a)∣Sa

≤ ∥a∥ for any a ∈ Ped(A⊗K)1
+ and for any C∗-algebra A, one has that

0 ≤ O(A) ≤ 1. The number O(A) is called T-tracial approximate oscillation of A.
Suppose that S ⊂ Q̃T(A)/{0} is a compact convex set such that R+ ⋅ S = Q̃T(A).

By (the “Moreover” part of) Proposition 4.9, if O(A) = 0, then A has T-tracial
approximate oscillation zero. Conversely, if A has T-tracial approximate oscillation
zero, then O(A) = 0 (see (4) of Proposition 2.10).

The next example shows that there are (commutative) C∗-algebras A of stable rank
one such that O(A) > 0. By Theorem 1.1, if A is a separable simple C∗-algebra which
has strict comparison but does not have stable rank one, then O(A) > 0. However, we
do not have any such examples.

Example 5.3 Let A = C([0, 1]). Then T(A) is compact and Q̃T(A) = T̃(A). Let
a ∈A+/{0} be such that 0 ≤ a ≤ 1 that is not invertible. Let G = {t ∈ [0, 1] ∶ a(t) > 0}.
Then G is an open subset. Note 0 ∈ sp(a). Since A has no nontrivial projection,
there are tn ∈ sp(a)with limn→∞ tn = 0. For any 0 < δ < 1/2, let b = fδ(a). Let sn ∈ G
such that a(sn) = tn , n ∈ N. Then, for some 0 < η < δ/2, there is sn in the support
of c = fη(a) − fδ/2(a). There is a Borel probability measure μn on [0, 1] such that
μ({sn}) = 1. Let τμn be the tracial state induced by μn , then τμn( fη/2(a) − b) = 1. This
implies that ω(a)∣Sa = 1. This also holds for any nonzero g ∈ Her(a)+ ⊂ A+. In other
words, for any g ∈ Her(a)+ , ω(g)∣Sa = 1. Therefore, ΩT(a) = 1. It follows O(A) = 1.
Recall that A has stable rank one.

Proposition 5.4 If A is a simple C∗-algebra which has (T-) tracial approximate oscil-
lation zero, then every hereditary C∗-subalgebra of A also has (T-) tracial approximate
oscillation zero.

Proof This follows from the definition immediately. ∎

Definition 5.5 Let S be a compact subset of Q̃T(A)/{0} such that Q̃T(A) = R+ ⋅ S
and B ⊂ A be a hereditary C∗-subalgebra. A sequence of elements {en} ⊂ Ped(B)1

+ is
said to be tracial approximate identity for B, if, for any b ∈ B,

∥Πcu(ι(b) − ι(b){en})∥ = 0,(e5.2)

and {en} is said to be T-tracial approximate identity for B (relative to S), if, for any
b ∈ B with ∥b∥2,S < ∞,

lim
n→∞

∥b − ben∥2,S = lim
n→∞

∥b − enb∥2,S = 0.(e5.3)

We do not require that {en} is increasing.

Proposition 5.6 Let A be a C∗-algebra, a ∈ (A⊗K)+ with ∥a∥2,S < ∞, and
S ⊂ Q̃T(A)/{0} be a compact subset.

(1) Then ΩN(a)∣S = 0 if and only if Her(a) has a (not necessarily increasing)
approximate identity {en} such that limn→∞ ωn(en)∣S = 0.

(2) Moreover, ΩT(a)∣S = 0 (or ΩT
C(a)∣S = 0) if and only if Her(a) admits a T-tracial

(or tracial) approximate identity (relative to S) {en} with limn→∞ ω(en)∣S = 0.
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Proof For (1), let us assume that {en} is a (not necessarily increasing) approximate
identity for Her(a) such that limn→∞ ω(en) = 0. Then

lim
n→∞

∥a − e1/2
n ae1/2

n ∥ = 0.(e5.4)

By Lemma 4.10, ω(e1/2
n ae1/2

n )∣S ≤ ω(en)∣S → 0. Thus, ΩN(a)∣S = 0.
Conversely, suppose that a ∈ (A⊗K)1

+ and {bn} ∈ l∞(Her(a))+ such that

lim
n→∞

∥a − bn∥ = 0 and lim
n→∞

ω(bn)∣S = 0.(e5.5)

Note that limn→∞ ∥bn∥ = ∥a∥ ≤ 1. Let g ∈ C([0,∞))1
+ such that g(t) = t if t ∈ [0, 1]

and g(t) = 1 if t > 1. Then, for any n ∈ N, g(bn) ∼ bn . We also have limn→∞ ∥g(a) −
g(bn)∥ = 0. But g(a) = a. Then, replacing bn by g(bn), we may assume that ∥bn∥ ≤ 1.
For each k ∈ N, choose nk such that

∥b1/k
nk
− a1/k∥ < 1/k, k ∈ N.(e5.6)

Put ek = b1/k
nk , k ∈ N. Then, for any x ∈ Her(a),

∥x − xek∥ ≤ ∥x − xa1/k∥ + ∥x∥∥a1/k − ek∥ ≤ ∥x − xa1/k∥ + ∥x∥
k

.(e5.7)

This shows that {ek} is a (not necessarily increasing) approximate identity for Her(a).
Since ek = b1/k

nk , we have that ω(ek) = ω(bnk) and

lim
k→∞

ω(ek)∣S = lim
k→∞

ω(bnk)∣S = 0.

For (2), let us prove one case.
Fix a ∈ Ped(A⊗K)+. Without loss of generality, we may assume that 0 ≤ a ≤ 1.

Suppose that {en} is a T-tracial approximate identity of Her(a) relative to S . Then

lim
n→∞

∥a − en a∥2,S = lim
n→∞

∥a − aen∥2,S = 0 and

lim
n→∞

∥a − en aen∥2/3
2,S

≤ lim
n→∞

(∥a − en a∥2/3
2,S
+ ∥en a − en aen∥2/3

2,S
)

≤ lim
n→∞

∥en(a − aen)∥2/3
2,S

≤ lim
n→∞

(∥e2
n∥1/3∥a − aen∥2/3

2,S
) = 0.

By Lemma 4.10, ω(en aen)∣S ≤ ω(e2
n)∣S = ω(en)∣S → 0. Thus, ΩT(a)∣S = 0.

Conversely, suppose that ΩT(a)∣S = 0. Then, by Proposition 4.8, there exists
{bn} ⊂ Ped(Her(a))1

+ such that

lim
n→∞

∥a − bn∥2,S = 0 and lim
n→∞

ω(bn)∣S = 0.(e5.8)

Let B = Her(a) and ΠS ∶ l∞(B) → l∞(B)/IS ,B be the quotient map (see Definition 4.7
for IS ,B ). Then

ΠS(ι(a)) = ΠS({bn}).(e5.9)

For each k ∈ N, we have

ΠS(ι(a)1/k) = ΠS({bn}1/k).(e5.10)
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It follows that, for each k ∈ N, there exists n(k) ∈ N such that

∥a1/k − b1/k
n(k)∥2,S < 1/2k.(e5.11)

Choose ek = b1/k
n(k), k ∈ N. Then, for any c ∈ Her(a),

∥c − ce ∶ k∥2/3
2,S

≤ ∥c − ca1/k∥2/3
2,S
+ ∥c(a1/k − b1/k

n(k))∥
2/3
2,S

→ 0, as k →∞.(e5.12)

Since bn(k) ∼ ek ,

lim
k→∞

ω(ek)∣S = 0.(e5.13)

The proposition then follows. ∎

Proposition 5.7 Let A be a σ-unital C∗-algebra, let S ⊂ Q̃T(A) be a compact subset,
and let a ∈ Ped(A⊗K)+. Then ΩT(a)∣S = 0 if and only if ΩN(a)∣S = 0.

Proof For the “if ” part, let us assume ΩN(a)∣S = 0. By the definition there is
{bn} ∈ l∞(Her(a))+ such that ω(bn)∣S < 1/n and ∥a − bn∥ < 1/n. Let b′n =

∥a∥bn
∥bn∥+1/n .

Then ∥b′n∥ ≤ ∥a∥,

lim
n→∞

ω(b′n)∣S = lim
n→∞

ω(bn)∣S = 0, lim
n→∞

∥bn − b′n∥ = 0 and(e5.14)

0 ≤ ΩT(a)∣S ≤ ∥ΠS(ι(a) − {b′n})∥ ≤ lim sup
n→∞

∥a − b′n∥≤ lim sup
n→∞

∥a − bn∥ = 0.
(e5.15)

For the “only if ” part, let us assume that ΩT(a)∣S = 0. Then, by Proposition 5.6,
there are en ∈ Her(a)1

+ such that

lim
n→∞

ω(en)∣S = 0 and lim
n→∞

∥a − a1/2en a1/2∥2,S = 0.(e5.16)

It follows that {bn} = {a − a1/2en a1/2} ∈ (IS )+ (see Definition 2.16 for the definition
of IS ). By (4) of Proposition 4.8, there exists {cn} ∈ (IS )+ such that

lim
n→∞

sup{dτ(cn) ∶ τ ∈ S} = 0 and lim
n→∞

∥bn − cn∥ = 0.(e5.17)

Put dn = a1/2en a1/2 + cn , n ∈ N. Then dn ≥ 0. Put d̄n = ∥a∥dn
∥dn∥+1/n , n ∈ N. Then

∥d̄n∥ ≤ ∥a∥ for all n ∈ N. Since limn→∞ ∥a − dn∥ = 0, we have limn→∞ ∥dn∥ = ∥a∥.
It follows that

lim
n→∞

∥a − d̄n∥ = 0.(e5.18)

On the other hand, by Proposition 4.4(1) (see also (2) of Proposition 2.10) for all
τ ∈ S,

ω(dn)(τ)∣S ≤ ω(a1/2en a1/2)(τ)∣S + dτ(cn)∣S ≤ ω(a1/2en a1/2)∣S + sup{dτ(cn) ∶ τ ∈ S}
(e5.19)

for all n ∈ N. By Lemma 4.10, limn→∞ ω(a1/2en a1/2) = limn→∞ ω(en) = 0. By the fact
that d̄n ∼ dn and Proposition 4.2, we have
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lim
n→∞

ω(d̄n) = lim
n→∞

ω(dn)
(4.9)= lim

n→∞
sup
τ∈S
{ω(dn)(τ)∣S}

(5.19)
≤ lim

n→∞
ω(a1/2en a1/2)∣S + lim

n→∞
sup{dτ(cn) ∶ τ ∈ S} = 0.(e5.20)

Then (e5.18) and (e5.20) show that ΩN(a)∣S = 0. ∎
Let us present some examples of C∗-algebras which have norm approximate

oscillation zero.

Proposition 5.8 Let A be a C∗-algebra of real rank zero. Then A has norm approximate
oscillation zero.

Proof Let a ∈ Ped(A) with 0 ≤ a ≤ 1. Put B = Her(a). Then B has an approximate
identity {en} consisting of projections. Note that, since en is a projection, [̂en] = ên is
continuous on S . The proposition follows from Proposition 5.6. ∎

Let Tb = {s ∈ Q̃T(A) ∶ s(b) = 1} for some nonzero b ∈ (Ped(A⊗K))+. It is a
compact convex subset and Tb is a basis for the cone Q̃T(A) if A is simple. The proof
of the following is taken from Lemma 4.8 of [20] (see also Remark 4.7 of [20]).

Theorem 5.9 Let A be a C∗-algebra with countable ∂e(Tb) (for some b ∈
Ped(A)+/{0}), where ∂e(Tb) is the set of extremal points of Tb . Then

ΩN(a) = 0 for all a ∈ Ped(A⊗K)+.(e5.21)

In particular, A has norm approximate oscillation zero.

Proof We may assume that a ∈ Ped(A⊗K)+/{0} and 0 ≤ a ≤ 1. If 0 ∈ R+/sp(a),
then ΩN(a) = 0. To see this, let sn ∈ R+/sp(a) such that sn ↘ 0. Then the charac-
teristic function χ[sn ,1] is continuous on sp(a). Therefore, pn = χ[sn ,1](a) ∈ C∗(a) ⊂
Her(a) is a projection. Note that pn ≤ pn+1 for all n ∈ N. Then

∥a − pn a∥≤sn → 0.(e5.22)

In other words, {pn} is an approximate identity for Her(a). Moreover, ω(pn) = 0.
So this case follows from Proposition 5.6.

Therefore, without loss of generality, we may assume that [0, r] ⊂ sp(a) for some
0 < r < 1. Let r/2 > η > 0.

Note that, since a ∈ Ped(A⊗K)+, sup{dτ(a) ∶ τ ∈ Tb} = M < ∞ (see Proposition
2.10). For each τ ∈ ∂e(Tb), τ induces a Borel measure μτ on sp(a) which is bounded
by M .

We claim that there is s ∈ (r − η, r] such that

sup{μτ({s}) ∶ τ ∈ Tb} = 0.(e5.23)

To see this, write ∂e(Tb) = {τn}n∈N′ , where N′ is a subset of N. For each k ∈ N′ , and
n ∈ N, define

Sk ,n = {s ∈ (r − η, r] ∶ μτk({s}) ≥ 1/n}.(e5.24)

Since μτk(sp(a)) ≤ M , Sk ,n must be finite. It follows that Sk = ∪∞n=1Sk ,n is countable.
Thus, S = ∪k∈N′Sk is countable. Therefore, there must be s ∈ (r − η, r] such that s /∈ S .
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In other words, there must be s ∈ (r − η, r] such that

μτ({s}) = 0 for all τ ∈ ∂e(Tb).(e5.25)

Since Tb is compact, by the Krein–Milman theorem, this implies that

μτ({s}) = 0 for all τ ∈ Tb .(e5.26)

This proves the claim.
By the claim, for each integer n ∈ N, there is δ > 0 such that 1/2n+1 < δ < 1/2n and

μτ({δ}) = 0 for all τ ∈ Tb .(e5.27)

Note that

dτ((a − δ)+) = μτ((δ, 1] ∩ sp(a)) for all τ ∈ Tb(e5.28)

is a lower semi-continuous function. By Portmanteau Theorem, the function
h ∶ Tb → R+ given by

h(τ) ∶= μτ([δ, 1] ∩ sp(a))(e5.29)

is an upper semi-continuous function.1
By (e5.27),

h(τ) = dτ((a − δ)+) for all τ ∈ Tb .(e5.30)

It follows that dτ((a − δ)+) is continuous.
To prove the lemma, let ε > 0. Choose n ∈ N such that 1/2n < ε. Choose 1/2n+1 <

δn < 1/2n such that μτ({δn}) = 0 for all τ ∈ S as above. Put dn = (a − δn)+. Then

∥a − dn∥ < ε.(e5.31)

Since dτ(dn) = dτ((a − δn)+), we have that ω(dn)(τ)∣Tb = 0 for all τ ∈ Tb . The
lemma follows. ∎

The following is a restatement of Lemma 7.2 of [10] with the same proof (and with
some necessary modification and correcting a typo).

Theorem 5.10 Let A be a σ-unital simple C∗-algebra which has strict comparison and
almost stable rank one. Suppose that the canonical map Γ ∶ Cu(A) → LAff+(Q̃T(A))
is surjective (see Definition 2.13). Then A has norm approximate oscillation zero.

Proof Let eA ∈ Ped(A)+/{0} and A1 = Her(eA). Then Ped(A1) = A1 . Since A is
σ-unital, A⊗K ≅ A1 ⊗K by Brown’s stable isomorphism theorem [4]. Therefore, it
suffices to show that A1 has norm approximate oscillation zero. To simplify notation,
we may assume that A = A1 (and A = Ped(A)).

Let a ∈ Ped(A⊗K)1
+. It follows from the proof of Lemma 7.2 of [10] that, since

Her(a) also has strict comparison, almost stable rank one, and Γ is surjective, Her(a)
has an approximate identity consisting of elements {en} such that ên is continuous
on QT(A)

w
. Then the theorem follows from Proposition 5.6. Since we do not assume

1This can be directly obtained as follows: Let f (n) ∈ C0((0, ∥a∥])1
+ be such that f (n)(t) = 1 for t ∈

[δ, ∥a∥], f (n) = 0 if t ∈ [0, δ − δ/2n] and linear in [δ − δ/2n , δ]. Then τ( f (n)(a)) ↘ h(τ).
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that QT(A) = T(A), to be complete, let us repeat some of the argument in the proof
of Lemma 7.2 of [10] which will be, again, used in the proof of Lemma 8.9.

By Proposition 5.6, it suffices to show that, for any ε ∈ (0, 1/2), there is e ∈ Her(a)1
+

such that fε(a) ≤ e and [̂e] is continuous. By the first part of the proof of Theorem 5.9,
we may assume that [0, ε0) ⊂ sp(a) for some ε0 ∈ (0, ε).

Note that, without loss of generality, we may assume that

dτ( fε/2(a)) < τ( fδ1(a)) < dτ( fη1(a)) < τ( fδ2(a)) < dτ( fη(a)) for all τ ∈ QT(A)
w

,
(e5.32)

where ε/4 > δ1 , δ1/2 > η1 , η1/2 > δ2 , and δ2/2 > η > 0. Put h i(τ) =
τ( fδ i (a)) for all τ ∈ QT(A)

w
, i = 1, 2. Then h i ∈ Aff+(QT(A)

w
). Since Γ is

surjective, there is c ∈ (A⊗K)1
+ such that dτ(c) = h2(τ) for all τ ∈ QT(A)

w
. Since

A has strict comparison, (e5.32) and the choice of c implies c ≲ fη(a). Since A has
almost stable rank one, by Lemma 3.2 of [10] and (e5.32), there is x ∈ A⊗K such that

x∗x = c and xx∗ ∈ Her( fη(a)).(e5.33)

Put c0 = xx∗ . Then 0 ≤ c0 ≤ 1. Note that dτ(c0) = dτ(c) for all τ ∈ QT(A)
w

.
Since h1 is continuous, h1(τ) < h2(τ) = dτ(c) = dτ(c0) = limn→∞ τ( f1/n(c0)) for all
τ ∈ QT(A)

w
, and QT(A)

w
is compact, there is an integer m > 2 such that

h1(τ) < τ( f1/m(c0)) for all τ ∈ QT(A)
w

.(e5.34)

By (e5.32) and Lemma 3.2 of [10], there is a unitary u in the unitization of Her( fη(a))
such that

u∗ fε/8( fε/2(a))u ∈ Her( f1/m(c0)).(e5.35)

Set c1 = uc0u∗ . Then

fε/8( fε/2(a)) ∈ Her( f1/m(c1)) ⊂ Her(c1).(e5.36)

There is g ∈ C0((0, 1]) such that 0 ≤ g ≤ 1, g(t) > 0 for all t ∈ (0, 1], and

g f1/2m = f1/2m .(e5.37)

Put e = g(c1). Then [e] = [c1] = [c0] = [c]. In particular, dτ(e) is continuous on
QT(A)

w
. But we also have, by (e5.36),

fε(a) ≤ fε/8( fε/2(a)) ≤ e .(e5.38)

This completes the proof. ∎

6 C∗-algebra l∞(A)/I
QT(A)w

Definition 6.1 Let A be a compact C∗-algebra, and let p ∈ l∞(A)/I
QT(A)w (or in

l∞(A)/Ncu(A)) be a projection and {en} ∈ l∞(A)1
+ such that Π({en}) = p (recall
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that Π ∶ l∞(A) → l∞(A)/I
QT(A)w is the quotient map). The sequence {en} is said to

be a permanent projection lifting, if for any sequence of positive integers {m(n)},

Π({e1/m(n)
n }) = p (or Πcu({e1/m(n)

n }) = p).(e6.1)

Proposition 6.2 Let A be a compact C∗-algebra with Q̃T(A)/{0} /= ∅ and {en} ∈
l∞(A)1

+.
(1) Let p = Π({en}) (or p = Πcu({en})) be a projection. Then { fδ(en)} is a perma-

nent projection lifting of p for any 0 < δ < 1/2 (for both cases) and

lim
n→∞

sup{τ(en − fδ(en)en) ∶ τ ∈ QT(A)
w
} = 0 (or {en − e1/2

n fδ(en)e1/2
n } ∈ Ncu).

(e6.2)

(2) If {en} is a permanent projection lifting, then limn→∞ ω(en) = 0. Moreover, an
element {en} is a permanent projection lifting (from l∞(A)/I

QT(A)w ) if and only if

lim
n→∞

sup{dτ(en) − τ(e2
n) ∶ τ ∈ QT(A)

w
} = 0.

(3) If {en} ∈ l∞(A)1
+ and limn→∞ ω(en) = 0, then for some l(k) ∈ N,

p = Π({e1/l(k)
k }) is a projection, and {e1/l(k)

k } is a permanent projection lifting
of p.

(4) Suppose that p =Πcu({en}) is a projection for some {en} ∈ l∞(A)1
+. Then {en}

is a permanent projection lifting (from l∞(A)/Ncu) if gδ(en)
c .→ 0 for some δ ∈ (0, 1/4).

(5) If {en} is a permanent projection lifting of p ∈ l∞(A)/I
QT(A)w , then

l∞({Her(en)})/IQT(A)w = p(l∞(A)/I
QT(A)w )p

(see Definition 2.15 for l∞({Her(en)})).
(6) If A is algebraically simple and QT(A) /= ∅ and e ∈ A1

+ is a strictly positive element
such that [̂e] is continuous on QT(A)

w
, then l∞(A)/I

QT(A)w is unital.
(7) A σ-unital simple C∗-algebra A has continuous scale if and only if l∞(A)/Ncu is

unital.

Proof (1) Note that Π( fδ({en})) = fδ(Π({en})) = p for any 0 < δ < 1/2. Therefore,
Π( fδ/2({en})) = p. Put bn = fδ(en), n ∈ N. For any integers {m(n)}, we have

b1/m(n)
n ≤ fδ/2(en), n ∈ N.(e6.3)

It follows that

p = Π({ fδ(en)}) ≤ Π({b1/m(n)
n }) ≤ Π({ fδ/2(en)}) = p.(e6.4)

This proves the first part of (1) (the proof for p = Πcu({ fδ(en)}) is similar).
Since Π({ fδ(en)}) = p (or Πcu({ fδ(en)}) = p), we have

en − fδ(en)en ∈ I
QT(A)w , hence (en − fδ(en)en)1/2 ∈ I

QT(A)w(e6.5)

(or en − fδ(en)en , (en − fδ(en)en)1/2 ∈ Ncu).(e6.6)
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Part (1) follows.
(2) If

lim
n→∞

sup{dτ(en) − τ(e2
n) ∶ τ ∈ QT(A)

w
} = 0,

then, for any {m(n)} ⊂ N,

sup{τ(e1/m(n)
n ) − τ(e2

n) ∶ τ ∈ QT(A)
w
} ≤ sup{dτ(en) − τ(e2

n) ∶ τ ∈ QT(A)
w
} → 0.

(e6.7)

It follows that {e1/m(n)
n − e2

n} ∈ I
QT(A)w . Since e2

n ≤ en for all n ∈ N, this also implies
that {en − e2

n} ∈ I
QT(A)w . Hence, Π({en}) is a projection and {en} is a permanent

projection lifting.
Now suppose that {en} is a permanent projection lifting of p = Π({en}). Let us

show first that limn→∞ ω(en) = 0. Otherwise, there exists a subsequence {l(k)} such
that ω(e l(k)) > σ for some σ > 0. Fix any δ ∈ (0, 1/4). By Proposition 4.6, for each of
these l(k), there are m(l(k)) such that

sup{τ(e1/m(l(k))
l(k) ) − τ( fδ(e l(k))) ∶ τ ∈ QT(A)

w
} > ω(e l(k)) − σ/4 > σ/2.(e6.8)

Choose a sequence m(n) of integers which extends m(l(k)). Then

lim sup
n

∥(e1/m(n)
n − fδ(en))1/2∥

2,QT(A)w ≥ σ/2.(e6.9)

Therefore, Π({e1/m(n)
n }) /= Π( fδ({en})) = p. A contradiction. Hence, limn→∞

ω(en) = 0.
Therefore, there exists a sequence {m(n)} such that

sup{dτ(en) − τ(e1/m(n)
n ) ∶ τ ∈ QT(A)

w
} < 1/n, n ∈ N.(e6.10)

Then, since {(e1/m(n)
n − e2

n)1/2} ∈ I
QT(A)w (for any {m(n)}), we also have that

sup{dτ(en) − τ(e2
n) ∶ τ ∈ QT(A)

w
}

≤ sup{dτ(en) − τ(e1/m(n)
n ) ∶ τ ∈ QT(A)

w
} + sup{τ(e1/m(n)

n − e2
n) ∶ τ ∈ QT(A)

w
}

< 1/n + ∥(e1/m(n)
n − e2

n)1/2∥
2,QT(A)w → 0 as n →∞.

(e6.11)

(3) In this case, since limn→∞ ω(en) = 0, there are l(n) ∈ N such that

lim
n→∞

sup{dτ(en) − τ(e1/l(n)
n ) ∶ τ ∈ QT(A)

w
} = 0.(e6.12)

It follows that

{e1/m(n)
n − e1/l(n)

n } ∈ I
QT(A)w(e6.13)

for any integers m(n) ≥ l(n). Since

∥e1/2l(n)
n − (e1/2l(n)

n )2∥2
2,QT(A)w ≤ sup{dτ(en) − τ(e l(n)

n ) ∶ τ ∈ QT(A)
w
} → 0,

(e6.14)
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as n →∞, Π({e1/2l(n)
n }) = p is a projection. By (e6.13), for any integers m(n) ≥ l(n),

Π({e1/m(n)
n }) = Π({e1/l(n)

n })= (Π({e1/2l(n)
n }))2 = p.(e6.15)

It follows that {e1/l(n)
n } is a permanent projection lifting of p.

(4) Suppose that gδ(en)
c .→ 0 for some 0 < δ < 1/4. We have, for any m(n) ∈ N,

e1/m(n)
n − fδ/2(en)e1/m(n)

n ≲ gδ(en) for all n ∈ N.(e6.16)

It follows that {e1/m(n)
n − fδ/2(en)e1/m(n)

n } ∈ Ncu . One then checks that

p ≤ Πcu({e1/m(n)
n }) = Πcu({ fδ/2(en)e1/m(n)

n }) ≤ Πcu({ fδ/2(en)})= fδ/2(Πcu({en})) = p.
(e6.17)

Thus, (4) follows.
For (5), let B = l∞(A)/I

QT(A)w . It is clear that pBp ⊂ Π(l∞({Her(en)})).
Suppose that g ∈Π(l∞({Her(en)}))1

+. Then we may write g = Π({gn}) such that
gn ∈ (Her(en))1

+, n ∈ N. For any ε > 0, there exists m(n) ∈ N such that

∥e1/m(n)
n gn e1/m(n)

n − gn∥ < ε for all n ∈ N.(e6.18)

Thus,

∥Π({e1/m(n)
n })gΠ({e1/m(n)

n }) − g∥ < ε.(e6.19)

However, since {en} is a permanent projection lifting of p, Π({e1/m(n)
n }) = p. Thus,

∥pg p − g∥ < ε.(e6.20)

It follows g ∈ pBp. This shows that C = pBp = Π(l∞({Her(en)})).
(6) In this case, ω(e) = 0. Therefore, by (3), {e1/l(n)} is a permanent projection

lifting for p = Π({e1/l(n)}) (for some l(n) ∈ N).
For any {xn} ∈ l∞(A), there is a sequence {m(n)} of integers such that

∥xn e1/m(n) − xn∥ < 1/n and ∥e1/m(n)xn − xn∥ < 1/n, n ∈ N.(e6.21)

Hence p{xn} = {xn}p = {xn}. So p is the unit of l∞(A)/I
QT(A)w .

For (7), suppose that A has continuous scale. Let e ∈ A1
+ be a strictly positive

element. By (3) of Proposition 4.4, ωc(e) = 0. Then, for any ε > 0 and n ∈ N, there
exists an integer l(n) ∈ N such that

fε(e1/(m(n) − e1/l(n)) ≲ g1/n(e) for any m(n) > l(n).(e6.22)

Since g1/n(e) c .→ 0 (see Definition 4.3), we conclude that {e1/(m(n) − e1/l(n)},
{e1/2l(n) − e1/l(n)} ∈ Ncu . It follows that p = Π({e1/l(n)}) is a projection and {e1/l(n)}
is a permanent projection lifting.

Let {bn} ∈ l∞(A). Then, for each n ∈ N, there is m(n) ∈ N with m(n) ≥ l(n)
such that ∥e1/m(n)bn − bn∥ < 1/n. Recall that p = Π({e1/m(n)}). Thus, pΠ({bn}) =
Π({bn}). It follows l∞(A)/Ncu is unital.

Conversely, let p ∈ l∞(A)/Ncu be the unit. Let {en} ∈ l∞(A)1
+ such that

Π({en}) = p. We claim that Π(A)⊥ = {0}. Otherwise, for each n, there exists bn ∈ A+
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with ∥bn∥ = 1 such that ∥enbn∥ < 1/n. Then pΠ({bn}) = 0. Impossible. Thus,
Π(A)⊥ = {0}. By Proposition 2.20, A has continuous scale. ∎

Lemma 6.3 Let A be a compact C∗-algebra with QT(A) /= ∅. If A has T-tracial
approximate oscillation zero, then, for any x ∈ (l∞(A)/I

QT(A)w )+, there is a projection
p ∈ l∞(A)/I

QT(A)w such that px = x = x p.

Proof Let B = l∞(A)/I
QT(A)w and Π ∶ l∞(A) → B be the quotient map. Let x ∈ B+.

Without loss of generality, we may assume that 0 ≤ x ≤ 1.
Let y = {yn} ∈ l∞(A) with 0 ≤ y ≤ 1 such that Π(y) = x . Since A has T-tracial

approximate oscillation zero, there are dn ∈ Her(yn)1
+ and δn∈ (0, 1/4n) such that

∥yn − dn∥2,QT(A)w < 1/4n, and(e6.23)

dτ(dn) − τ( fδn(dn)) < 1/4n for all τ ∈ QT(A)
w

and n ∈ N.(e6.24)

Define d = {dn} ∈ l∞(A). Then Π(d) = Π(y) = x . Put en = fδn/2(dn), n ∈ N and
e = {en}. Then e ∈ l∞(A)1

+. Moreover,

lim
n→∞

∥endn − dn∥ = 0.(e6.25)

It follows that

Π(e)x =Π(e)Π(d) = Π(d) = x .(e6.26)

It remains to show that p ∶= Π(e) is a projection. To do this, we compute that

τ(en − e2
n) ≤ τ(en − fδn(dn)) < dτ(dn) − τ( fδn(dn)) < 1/n for all n ∈ N.(e6.27)

It follows that

∥en − e2
n∥2,QT(A)w < 1/

√
n → 0.(e6.28)

Thus, p = Π(e) = Π(e)2 , or p ∈ B is a projection. ∎

Theorem 6.4 Let A be a compact C∗-algebra with non-empty QT(A). If A has
T-tracial approximate oscillation zero, then l∞(A)/IQT(A)

w (A) has real rank zero.

Proof Let B = l∞(A)/I
QT(A)w (A) and Π ∶ l∞(A) → B be the quotient map.

We claim that, if p ∈ B is a nonzero projection, then C ∶= pB̃p = pBp has real rank
zero.

Let {en} ∈ l∞(A)1
+ such that Π({en}) = p. Upon replacing en by f1/4(en), by

Lemma 6.2, we may assume that {en} is a permanent projection lifting of p. By (5)
of Proposition 6.2, C = pBp = Π(l∞({Her(en)})).

Let a, b ∈ C+ be such that ab = 0. We may assume that ∥a∥, ∥b∥ ≤ 1.
Then, by Proposition 10.1.10 of [28], for example, we may assume that a = Π({an})

and b = Π({bn}), where an , bn ∈ Her(en)+ and {an}, {bn} ∈ l∞({Her(en)}) such
that anbn = bn an = 0 for all n ∈ N. Since A has T-tracial approximate oscillation zero,
there are dn ∈ Her(an)1

+ and δn∈ (0, 1/4n) such that
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∥an − dn∥2,QT(A)w < 1/4n and(e6.29)

∣dτ(dn) − τ( fδn(dn))∣ < 1/4n for all τ ∈ QT(A)
w

and n ∈ N.(e6.30)

Define d = {dn} ∈ l∞({Her(an)}). Then a = Π({an}) = Π(d). Put

gn = fδn/2(dn), n ∈ N and g′ ∶= {gn} ∈ l∞({Her(an)}) ⊂ l∞({Her(en)}) ⊂ l∞(A).
(e6.31)

Put g = Π(g′). Recall that l∞({Her(en)}) = pBp. Thus, g ∈ pBp+ . Since dn ∈
Her(an), we have gnbn = bn gn = 0. In other words,

gb = 0.(e6.32)

Note that fδn(dn)gn = fδn(dn) for all n ∈ N. It follows that

g2
n ≥ fδn(dn) for all n ∈ N.(e6.33)

We compute that

τ(gn − g2
n) ≤ τ(gn − fδn(dn)) < dτ(dn) − τ( fδn(dn)) < 1/n for all n ∈ N.(e6.34)

It follows that

∥gn − g2
n∥2,QT(A)w < 1/

√
n → 0.(e6.35)

Thus, g = g2 , or g ∈ pBp is a projection. Recall that

lim
n→∞

∥gndn − dn∥ = lim
n→∞

∥ fδn/2(dn)dn − dn∥ = 0.(e6.36)

In other words,

ga = gΠ(d) = Π(d) = a.(e6.37)

This and (e6.32) imply that pBp has real rank zero and the claim is proved.
To show that B has real rank zero, let x ∈ Bs .a . and let ε > 0. Put z = x2 . Then, by

Lemma 6.3, there is a projection p ∈ B such that pz = z = zp. Hence, x ∈ pBp. By the
claim that we have just shown, pBp has real rank zero. Then there is y ∈ (pBp)s .a . with
finite spectrum such that ∥x − y∥ < ε. By Theorem 2.9 of [6], B has real rank zero. ∎

If A is unital, then l∞(A) is the multiplier algebra of c0(A). Thus, l∞(A)/c0(A) is
a corona algebra. Therefore, l∞(A)/I

QT(A)w is an SSAW*-algebra (see Proposition 3 of
[31] and Section 3 of [33]). The above theorem also implies that, for non-unital case,
we also have the next corollary. (One may also compare Corollaries 6.5 and 6.7 (at
least in unital case) with those of Lemma 1.8, Theorem 1.9, and Corollary 1.10 of [21].)

Corollary 6.5 Let A be a σ-unital compact C∗-algebra with QT(A) /= ∅. Suppose that
A has T-tracial approximate oscillation zero. Then l∞(A)/I

QT(A)w is an SSAW*-algebra
with real rank zero.

Proof This is contained in the proof of Lemma 6.4. Since Mn(A) also has T-tracial
approximate oscillation zero, it suffices to show that B ∶= l∞(A)/IQT(A)

w is an
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SAW*-algebra. Consider elements a, b ∈ B+ such that ab = ba = 0. By Lemma 6.4,
there is a projection p ∈ B such that

p(a + b) = (a + b)p = a + b.

Then the first part of the proof of Theorem 6.4 provides a projection g ∈ B such that
ga = a and gb = 0. Consequently, B is an SAW*-algebra of real rank zero. ∎
Theorem 6.6 Let A be an algebraically simple C∗-algebra with QT(A) /= ∅.
Suppose that A has strict comparison and T-tracial approximate oscillation zero. Then
l∞(A)/IQT(A)

w has stable rank one.

Proof Put B = l∞(A)/I
QT(A)w . We first show that pBp has stable rank one if p is

a nonzero projection. By Theorem 6.4, pBp has real rank zero. Let q, f ∈ pBp be
projections such that q ∼ f . Then, by Theorem 3.5, p − q ∼ p − f . By Proposition
2.4(III) of [2] and Theorem 2.6 of [6], pBp has stable rank one.

To show B has stable rank one, let x ∈ B̃ and ε > 0. Write x = λ + y, where λ ∈ C
and y ∈ B. By Lemma 6.3, there is a projection p ∈ B such that p(y∗y + yy∗) = (y∗y +
yy∗). It follows that y ∈ pBp. From what has been shown, pBp has stable rank one.
Choose z1 ∈ GL(pBp) such that

∥λp + y − z1∥ < ε.(e6.38)

Define z2 = z1 + λ(1 − p), if λ /= 0, and z2 = z1 + ε(1 − p), if λ = 0. Then z2 ∈ GL(B̃)
and

∥x − z2∥ < ε. ∎

Corollary 6.7 Let A be an algebraically simple C∗-algebra with QT(A) /= ∅.
Suppose that A has strict comparison and T-tracial approximate oscillation zero. Then
l∞(A)/I

QT(A)w has unitary polar decomposition.

Proof This follows from Corollary 6.5 above and Theorem 3.5 of [33]. ∎

7 Range of dimension functions

In this section, we will show that if A has T-tracial approximate oscillation zero,
then the image of Γ is “dense,” and if, in addition, A has strict comparison, then Γ
is surjective.

Lemma 7.1 Let 0 ≤ a ≤ 1, b, c ∈ A1 be such that

a ≤ (b + c)∗(b + c)(e7.1)

(or a ≤ b + c, b, c ∈ A1
+). Then, for any δ ∈ (0, 1/2),

[ fδ(a)] ≤ [ fδ/4(b∗b)] + [ fδ/4(c∗c)](e7.2)

(or [ fδ(a)] ≤ [ fδ/4(b)] + [ fδ/4(c)]).
Proof Note that

(b + c)∗(b + c) ≤ 2(b∗b + c∗c).(e7.3)
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Let 0 < η < 1/4. Then, by Lemma 1.7 of [34],

((b + c)∗(b + c) − δ/2)+ ≲ (2(b∗b + c∗c) − δ/2)+ ≲ fδ/2(b∗b + c∗c)(e7.4)

(recall Notation 2.5). Put z = (b 0
c 0) . Then

z∗z = diag(b∗b + c∗c, 0) and zz∗ ≤ 2diag(bb∗ , cc∗).

Hence (see Lemma 1.7 of [34], for example, for the first “≲” sign below),

fδ/2(b∗b + c∗c) ∼ fδ/2(zz∗) ∼ (zz∗ − δ/4)+(e7.5)
≲ diag( fδ/4(bb∗), fδ/4(cc∗)) ∼ diag( fδ/4(b∗b), fδ/4(c∗c)).(e7.6)

We then have (see also (e7.4))

fδ(a) ∼ (a − δ/2)+ ≲ ((b + c)∗(b + c) − δ/2)+ ≲ diag( fδ/4(b∗b), fδ/4(c∗c)).
(e7.7)

For the case that a ≤ b + c, as computed above, there is z ∈ M2(A) such that

z∗z = diag(b + c, 0) and zz∗ ≤ 2diag(b, c).(e7.8)

One then sees the proof of the second part is exactly the same as that of the first
part. ∎

Lemma 7.2 Let A be a non-elementary simple C∗-algebra with Ped(A) = A and with
QT(A) /= ∅. Let {en}, {bn} ∈ l∞(Ped(A)1

+). Recall that Π ∶ l∞(A) → l∞(A)/I
QT(A)w

is the quotient map.
(1) Suppose that Π({en}) ≤ Π({bn}) (or Πcu({en}) ≤ Πcu({bn})). Then, any

integer m ∈ N and ε > 0, (any d ∈ Ped(A)1
+/{0}), there exists k0 ∈ N such that, for all

k ≥ k0 ,

[ fε(ek)] ≤ [bk] + [dk],(e7.9)

where dk ∈ A+ and sup{dτ(dk) ∶ τ ∈ QT(A)
w
} < 1/m (or dk ≲ d and sup{dτ(dk) ∶ τ ∈

QT(A)
w
} < 1/m).

(2) Suppose that p = Π({en}) is a projection (or p = Πcu({en}) is a projection and
ωc(en) → 0), {en} is a permanent projection lifting of p and

p ≤ Π({bn}) (or p ≤ Πcu({bn})).(e7.10)

Then, any integer m ∈ N, and ε ∈ (0, 1) (and any nonzero d ∈ Ped(A)+), there exists
k0 ≥ N such that, for all k ≥ k0 ,

[ek] ≤ [bk] + [dk],(e7.11)

where 0 ≤ dk ≤ 1, dk ∈ (A⊗K)+ and

dτ(ek) < dτ(bk) + dτ(dk) + ε for all τ ∈ QT(A)
w

,(e7.12)

where sup{dτ(dk) ∶ τ ∈ QT(A)
w
} < 1/m (or, dk ≲ d and sup{dτ(dk) ∶ τ ∈

QT(A)
w
} < 1/m).
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Proof We will use the following easy claim: If B is a C∗-algebra and I ⊂ B is a (closed
two-sided) ideal, and, if x , y ∈ B+ such that π(x) ≤ π(y), then there exists j ∈ I+ such
that x ≤ y + j. In fact, there is z ∈ A+ such that (y − x) − z ∈ I. Put c = −y + x + z ∈ I.
Then

x = y − z + c ≤ y + c ≤ y + c+ .

Choose j = c+ ∈ I+ . This proves the claim.
Since A is a non-elementary simple C∗-algebra, one may choose d0 ∈ Her(d)1

+/{0}
such that 2(m + 1)[d0] ≤ [d]. By the easy claim above, there is {hn} ∈ (I

QT(A)w )1
+ (or

{hn} ∈ Ncu(A)1
+) such that, in all cases,

bn + hn ≥ en for all n ∈ N.(e7.13)

To show (1), we apply Lemma 7.1 to obtain

fε(en) ≲ diag( fε/8(bn), fε/8(hn)).(e7.14)

Since hn is in (I
QT(A)w )+ (or in (Ncu)+), there exists k0 ∈ N such that, for all k ≥ k0 ,

dτ( fε/8(hk)) < 1/m for all τ ∈ QT(A)
w

(e7.15)

(or fε/8((hk)+) ≲ d0). Therefore, with dk = fε/8(hk), for all k ≥ k0 ,

[ fε(ek)] ≤ [bk] + [dk] and sup{dτ(dk) ∶ τ ∈ QT(A)
w
} < 1/m.(e7.16)

Part (1) follows.
For (2), we keep the same dk and hk as described above. Since now {en} is

a permanent projection lifting, we may assume that limn→∞ ω(en) = 0, by (2) of
Proposition 6.2. Thus, we may assume that there exists η0 > 0 and n1 ∈ N such that

sup{dτ(gη(en)) ∶ τ ∈ QT(A)
w
} ≤ sup{dτ(gη0(en)) ∶ τ ∈ QT(A)

w
} < ε/2m(e7.17)

(see Notation 2.5) for all n ≥ n0 and 0 < η ≤ η0 (or we assume that ωc(en) → 0, and
then

gη(en) ≲ gη0(en) ≲ d0 for all n ≥ n0 and 0 < η ≤ η0(e7.18)

for all n ≥ n0 and 0 < η ≤ η0).
There exists n2 ∈ N such that (recall that hn ∈ (I

QT(A)w )1
+) (or hn ∈ (Ncu)1

+)

dτ( fη0/8((hn))) < ε/2m for all τ ∈ QT(A)
w

and n ≥ n2(e7.19)

(or fη0/8((hn)) ≲ d0 for n ≥ n2). We have, by Lemma 7.1,

fη0/2(en) ≲ diag( fη0/8(bn), fη0/8((hn))).(e7.20)

Put k0 = max{n1 , n2}. Then, if n ≥ k0 , we have

[en] ≤ [gη0(en)] + [ fη0/2(en)] ≤ [gη0(en)] + [ fη0/8(bn)] + [ fη0/8((hn))](e7.21)
≤ [bn] + [dn],(e7.22)
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where dn = diag(gη0(en), fη0/8((hn))), n ∈ N. Recall (by (e7.17) and (e7.19)) that
dτ(dn) < 1/m for all τ ∈ QT(A)

w
(or, in the second case, [dk] ≤ 2[d0] ≤ [d]). Part (2)

then follows. ∎

Lemma 7.3 Let A be a non-elementary algebraically simple C∗-algebra with
QT(A) /= ∅.

(1) Suppose that A has tracial approximate oscillation zero. Then, for any
a ∈ A1

+/{0}, there exists a sequence 0 ≤ en ≤ 1 in Her(a) such that Πcu({en}) is full
in l∞(A)/Ncu(A) and

lim
n→∞

ω(en) = 0.(e7.23)

(2) Suppose that A has T-tracial approximate oscillation zero. Then, for any
a ∈ A1

+/{0}, there exists a sequence 0 ≤ en ≤ 1 in Her(a) such that Πcu({en}) is full
in l∞(A)/Ncu(A) and

lim
n→∞

ω(en) = 0.(e7.24)

Proof (1) Since A has tracial approximate oscillation zero, by Proposition 5.6,
there exists a tracial approximate identity {en} for Her(a) (with ∥en∥ ≤ 1) such that
limn→∞ ω(en) = 0. Note that

Πcu(ι(a)) = Πcu(ι(a1/2){en}ι(a1/2)).(e7.25)

Since A = Ped(A), by Proposition 5.6 of [10], ι(a) is full in l∞(A). Hence, Πcu(ι(a))
is full in l∞(A)/Ncu(A), and so is Π({en}).

The proof of (2) is exactly the same. We omit it. ∎

Lemma 7.4 Let A be a non-elementary algebraically simple C∗-algebra with
QT(A) /= ∅. Suppose that A has T-tracial approximate oscillation zero. Then, for any
n ∈ N, there is a full projection p ∈ l∞(A)/I

QT(A)w with p = Π({e j}) for some e j ∈ A1
+

( j ∈ N) such that

sup{dτ(e j) ∶ τ ∈ QT(A)
w
} < 1/(n + 1) for all j ∈ N,(e7.26)

and there is a sequence of mutually orthogonal full projections p1 , p2 , ..., pk , ... in
l∞(A)/I

QT(A)w such that pp j = 0, j ∈ N and

22k[pk] ≤ [p], k ∈ N.(e7.27)

Moreover, for each k ∈ N, there are mutually orthogonal and mutually equivalent full
projections pk ,1 , pk ,2 , ..., pk ,2k+1 in pk(l∞(A)/IQT(A)

w )pk .

Proof Fix n ∈ N. Since A is a non-elementary simple C∗-algebra, we may choose two
mutually orthogonal elements a1 , a2 ∈ Ped(A)1

+/{0} and x ∈ A+ such that

x∗x = a1 , xx∗ = a2 and sup{dτ(a1) ∶ τ ∈ QT(A)
w
} < 1/(n + 1).(e7.28)

Find four mutually orthogonal and mutually Cuntz equivalent elements a2,1 , ..., a2,4 ∈
Her(a2)1

+/{0}. By Lemma 7.3, there exists a sequence {e′n} in Her(a1)1 such that
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Π({e′n}) is full and limn→∞ ω(e′n) = 0. There exists, by (3) of Lemma 6.2, a sequence
of integers m( j) such that p = Π({e′j)1/m( j)}) is a full projection. Note that

sup{τ(e j) ∶ τ ∈ QT(A)
w
} < 1/(n + 1),(e7.29)

where e j = (e′j)1/m( j) , j ∈ N.
In B = Her(a2,1), one finds a sequence of mutually orthogonal nonzero positive

elements {yn} such that

22k[yk+1] ≤ [yk], k ∈ N.(e7.30)

To see this, choose mutually orthogonal nonzero elements b1 , b′1 ∈ B1
+ and c1 ∈ B

such that c∗1 c1 = b1 and c1c∗1 = b′1 . Choose y1 = b1 . There are mutually orthogonal
and mutually Cuntz equivalent nonzero elements b2, i ∈ Her(b′1) (1 ≤ i ≤ 22). Choose
y2 = b2,1 . We then proceed to divide b2,4 . A standard induction argument produces
the desired sequence {yk}.

For each k, there are 2k+1 mutually orthogonal nonzero elements
yk ,1 , yk ,2 , ..., yk ,2k+1 in Her(yk) and elements zk ,1 , zk ,2 , ..., zk ,2k+1 in Her(yk)
such that

z∗k , jzk , j = yk ,1 and zk , jz∗k , j = yk , j , 1 ≤ j ≤ 2k+1 .(e7.31)

Applying Lemma 7.3, one obtains, for each k ∈ N, a sequence {ek ,1,n} ⊂ Her(yk ,1)1
+

such that Π({ek ,1,n}n∈N) is full in l∞(A)/I
QT(A)w and limn→∞ ω(ek ,1,n) = 0.

Since limn→∞ ω(ek ,1,n) = 0, by (3) of Lemma 6.2, there is also, for each k, a
sequence m(n, k) ∈ N such that

pk ,1 ∶= Π({e1/m(n ,k)
k ,1,n }n∈N)(e7.32)

is a full projection in l∞(A)/IS ,0 . Write zk , j = uk , j ∣zk , j ∣ as polar decomposition of zk , j
in A∗∗ , (1 ≤ j ≤ 2k+1). Put

vk , j = Π({uk , j e1/m(n ,k)
k ,1,n }) and pk , j = vk , jv∗k , j , 1 ≤ j ≤ 2k+1 .(e7.33)

Then v∗k , jvk , j = pk ,1 (see (e7.31)). Thus, we obtain mutually orthogonal and mutually
equivalent full projections pk , j , j = 1, 2, ..., 2k+1 . By the construction, we also have
pk , j pk′ , j′ = 0, if k /= k′ , as well as ppk , j = 0 for all k, j ∈ N . Put pk ∶= ∑2k+1

j=1 pk , j . Note
also

22k[pk] ≤ [p]. ∎
The following two lemmas are variations of S. Zhang’s halving projection lemma.

We need some modification as we do not assume the C∗-algebra is simple.

Lemma 7.5 (Zhang [48, Theorem I(i)]) Let A be a C∗-algebra of real rank zero and
r a full projection of A. Suppose that p ∈ A is a nonzero projection such that [p] /≤ [r].
Then, there are mutually orthogonal projections p1 , p2 , p3 ∈ A such that

p = p1 + p2 + p3 , p1 ∼ p2 , and p3 ≲ r.(e7.34)

Proof We begin with the following claim which is extracted from the proof of [48,
Theorem I(i)].
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Claim: Let C be a C∗-algebra, and let v1 , ..., v2m ∈ C be partial isometries such that
v iv∗i ⊥ v jv∗j (i ≠ j) and v∗i v i ≥ v∗i+1v i+1 (1 ≤ i ≤ 2m − 1). Then there is a partial isometry
v ∈ C such that v∗v ⊥ vv∗ and 0 ≤ ∑2m

i=1 v iv∗i − (v∗v + vv∗) ≤ v1v∗1 .
Proof of the claim: We use induction on m. When m = 1, let v ∶= v1v∗2 . Then v∗v ⊥

vv∗ because v1v∗1 ⊥ v2v∗2 , and v∗v = v2v∗1 v1v∗2 = v2v∗2 because v∗1 v1 ≥ v∗2 v2 . Note that
vv∗ = v1v∗2 v2v∗1 . Thus,

v1v∗1 + v2v∗2 − (v∗v + vv∗) = v1v∗1 − v1v∗2 v2v∗1 = v1(1 − v∗2 v2)v∗1 ≤ v1v∗1 .(e7.35)

The last equation above also shows that v1v∗1 + v2v∗2 − (v∗v + vv∗) is positive. Hence,
the claim holds for m = 1.

Assume that the claim holds for m ≥ 1. Let v1 , ..., v2m+1 be partial isometries such
that v iv∗i ⊥ v jv∗j (i ≠ j) and v∗i v i ≥ v∗i+1v i+1 (1 ≤ i ≤ 2m+1 − 1). Define e i ∶= v∗i v i and
w i = v i(e i − e2m+1−i+1), i = 1, ..., 2m . For i = 1, ..., 2m − 1, we have

w∗i w i = (e i − e2m+1−i+1)e i(e i − e2m+1−i+1)(e7.36)
= e i − e2m+1−i+1 ≥ e i+1 − e2m+1−i = w∗i+1w i+1 .(e7.37)

Note that the above also shows that w∗i w i are projections for all i . Since w iw∗i ≤ v iv∗i ,
we have that w iw∗i are mutually orthogonal.

Consider w i , 1 ≤ i ≤ 2m . By induction, there is a partial isometry w ∈ C such that
w∗w ⊥ ww∗ and

0 ≤
2m

∑
i=1

w iw∗i − (w∗w +ww∗) ≤ w1w∗1 (≤ v1v∗1 ).(e7.38)

Hence, ww = 0. Note that

w∗w +ww∗ ≤
2m

∑
i=1

w iw∗i =
2m

∑
i=1

v i(e i − e2m+1−i+1)v∗i

(e7.39)

=
2m

∑
i=1

v iv∗i − v i e2m+1−i+1v∗i ∈
⎛
⎝

2m

∑
i=1

v i e2m+1−i+1v∗i
⎞
⎠

⊥

∩
⎛
⎝

2m

∑
i=1

v2m+1−i+1v∗2m+1−i+1
⎞
⎠

⊥

,

where b⊥ = {a ∈ A ∶ ab = ba = 0}. Recall that v∗2m+1−i+1v2m+1−i+1 = e2m+1−i+1 (1 ≤ i ≤
2m) and v∗i v i ≥ v∗i+1v i+1 (1 ≤ i ≤ 2m+1 − 1). Hence,

2m

∑
i=1

v i e2m+1−i+1v∗i =
2m

∑
i=1

v iv∗2m+1−i+1(v iv∗2m+1−i+1)∗ and(e7.40)

2m

∑
i=1

v2m+1−i+1v∗2m+1−i+1 =
2m

∑
i=1
(v iv∗2m+1−i+1)∗v iv∗2m+1−i+1 .(e7.41)

Thus,

ww∗ +w∗w ∈
⎛
⎝

2m

∑
i=1

v iv∗2m+1−i+1(v iv∗2m+1−i+1)∗
⎞
⎠

⊥

∩
⎛
⎝

2m

∑
i=1
(v iv∗2m+1−i+1)∗v iv∗2m+1−i+1

⎞
⎠

⊥

.
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It follows that, for 1 ≤ i ≤ 2m ,
w ⊥ v iv∗2m+1−i+1 .(e7.42)

Define v ∶= w +∑2m

i=1 v iv∗2m+1−i+1 . By (e7.42) and the fact that w2 = 0 together with
v iv∗i ⊥ v jv∗j (i ≠ j), we compute that

v2 =
⎛
⎝

w +
2m

∑
i=1

v iv∗2m+1−i+1
⎞
⎠
⎛
⎝

w +
2m

∑
i=1

v iv∗2m+1−i+1
⎞
⎠
= 0,(e7.43)

v∗v = w∗w +
2m

∑
i=1

v2m+1−i+1v∗i v iv∗2m+1−i+1 = w∗w +
2m

∑
i=1

v2m+1−i+1v∗2m+1−i+1 , and(e7.44)

vv∗ = ww∗ +
2m

∑
i=1

v iv∗2m+1−i+1v2m+1−i+1v∗i = ww∗ +
2m

∑
i=1

v i e2m+1−i+1v∗i .(e7.45)

Then
2m+1

∑
i=1

v iv∗i − (v∗v + vv∗) =
2m

∑
i=1

v iv∗i −
⎛
⎝

w∗w +ww∗ +
2m

∑
i=1

v i e2m+1−i+1v∗i
⎞
⎠

(e7.46)

=
2m

∑
i=1
(v iv∗i − v i e2m+1−i+1v∗i ) − (w∗w +ww∗)(e7.47)

(7.39)=
2m

∑
i=1

w iw∗i − (w∗w +ww∗)(e7.48)

(7.38)
≤ w1w∗1 ≤ v1v∗1 .(e7.49)

By induction, the claim holds for all m ∈ N.
For the proof of the lemma, applying Lemma 1.1 of [47], we obtain partial isometries

v1 , v2 , ..., vn ∈ A such that
r ≥ v∗1 v1 ≥ v∗2 v2 ≥ ⋅ ⋅ ⋅ v∗nvn and(e7.50)
p = v1v∗1 ⊕ v2v∗2 ⊕ ⋅ ⋅ ⋅ ⊕ vnv∗n .(e7.51)

Since [p] /≤ [r], n ≥ 2. By adding 0 if necessary, we may assume that n = 2m for some
m ∈ N. Then, by (e7.50), (e7.51), and the claim, there is a partial isometry v ∈ A such
that v∗v ⊥ vv∗ , 0 ≤ p − (v∗v + vv∗) ≤ v1v∗1 ≲ r. Then the lemma holds (by choosing
p1 = vv∗ and p2 = v∗v). ∎
Lemma 7.6 (S. Zhang) Let A be a C∗-algebra of real rank zero and r be a full projection
of A such that B = (1 − r)A(1 − r) contains, for each k ∈ N, a sequence of mutually
orthogonal full projections {r′n , j ∶ 1 ≤ j ≤ 2n+1 , n ∈ N} such that 2k+n[r′n] ≤ [r], where
r′n = ∑2n+1

j=1 r′n , j , and r′n ,1 , r′n ,2 , ..., r′n ,2n+1 are mutually equivalent (n ∈ N). Suppose that
p ∈ A is a nonzero projection such that [p] /≤ [r]. Then, for any m ∈ N, there are mutually
orthogonal projections p1 , p2 , ..., p2m , p2m+1 ∈ A such that

p =
2m

∑
j=1

p j + p2m+1 , p j ∼ p1 , 1 ≤ j ≤ 2m , and p2m+1 ≲ r + r′ ,(e7.52)

where r′ is a finite sum of r′n , js and 2[r′] < r.
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Proof We use the induction on m. If m = 1, the lemma follows from Lemma 7.5.
Suppose that the lemma holds for m≥ 1. Then there are mutually orthogonal

projections p1 , p2 , ..., p2m , p2m+1 ∈ A such that

p =
2m

∑
j=1

p j + p2m+1 , p j ∼ p1 , 1 ≤ j ≤ 2m , and p2m+1 ≲ r + r′′ ,(e7.53)

where r′′ is a finite sum of r′n , i s and 2[r′′] < [r]. Choose r′K ,1 among {r′n , j} but not
those which have been used for the sum of r′′ . We choose K such that K > 2m. Note
that

2[r′′] + 2K+1[r′K ,1] < [r].

We also note that [p1] /≤ [r′K ,1]. (Otherwise, [p] ≤ 2m[r′K ,1] ≤ 2K[rK ,1] ≤ [r], a contra-
diction.) Applying Lemma 7.5 to p1 (as p) and the full projection r′K ,1, we may write

p1 = p1,1 + p1,2 + p1,3 , p1,1 ∼ p1,2 and p1,3 ≲ r′K ,1 .(e7.54)

Since p j ∼ p1 , we also have mutually orthogonal projections p j,1 , p j,2 , p j,3 such that

p j = p j,1 + p j,2 + p j,3 , p j,2 ∼ p j,1∼ p1,1 and p j,3 ≲ r′K ,1 .(e7.55)

Note that

p j, i ∼ p j′ , i′ , i , i′ = 1, 2, j = 1, 2, ...., 2m .(e7.56)

Put s ∶= ∑2m

j=1 p j,3 . Then

s ≲ r + r′′ +
2m

∑
j=1

r′K , j , 2
⎡⎢⎢⎢⎢⎣

r′′ +
2m

∑
j=1

r′K , j

⎤⎥⎥⎥⎥⎦
≤ [r] and p =

2m

∑
j=1
(p j,1 + p j,2) + s.(e7.57)

This completes the induction. ∎

Recall that, if Cn ⊂ A (n ∈ N), then l∞({Cn}) = {{cn} ∈ l∞(A) ∶ cn ∈ Cn}.

Lemma 7.7 Let A be a non-elementary, σ-unital, and algebraically simple C∗-algebra
with QT(A) /= ∅ and with T-tracial approximate oscillation zero. Let {ek} be a sequence
in A1

+/{0} such that {ek} /∈ I
QT(A)w , and {ek} is a permanent projection lifting of the

projection p = Π({ek}), and let n > 1 be an integer and ε > 0.
Then, there are mutually orthogonal and mutually (Cuntz) equivalent elements

{ fk ,1}, { fk ,2}, ..., { fk ,n} ∈ l∞({Her(ek)}) such that

lim
k→∞

ω( fk , j) = 0, 1 ≤ j ≤ n, and ,(e7.58)

for k ≥ k0 (for some k0),

sup{∣dτ(ek) − ndτ( fk ,1)∣ ∶ τ ∈ QT(A)
w
} < ε.(e7.59)
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Proof Let m ≥ 1 be an integer, and let ε > 0. Put B = l∞(A)/I
QT(A)w . Since A has

T-tracial oscillation zero, by Theorem 6.4, B has real rank zero. Since {ek} /∈ I
QT(A)w ,

σ0 ∶= lim sup
k

(sup{τ(ek) ∶ τ ∈ QT(A)
w
}) > 0.(e7.60)

If r = Π({rn}) (is full) and rn ∈ A1
+, and

sup{τ(rn) ∶ τ ∈ QT(A)
w
} < σ0/4 for all n ∈ N,(e7.61)

then [Π({ek})] /≤ [r]. It then follows from Lemmas 7.4 and 7.6 that, there are 2m + 1
mutually orthogonal projections p1 , p2 , ..., p2m , s ∈ B such that s is full, s = Π({sn}),
where sn ∈ A1

+,

p =
2m

∑
i=1

p i + s, p1 ∼ p j , 1 ≤ j ≤ 2m and(e7.62)

sup{dτ(sn) ∶ τ ∈ QT(A)
w
} < ε/2.(e7.63)

Recall that {ek} is a permanent projection lifting of p. Then, by (5) of Proposition
6.2, pBp = l∞({Her(ek)})/IQT(A)w . Define a homomorphism ϕ ∶ C0((0, 1]) ⊗ M2m →
pBp such that

ϕ(ı ⊗ e i , i) = p i , i = 1, 2, ..., 2m .(e7.64)

Since C0((0, 1]) ⊗ M2m is semiprojective, there is a homomorphism

ψ ∶ C0((0, 1]) ⊗ M2m → l∞({Her(en)}) such that Π(ψ(e i , i)) = p i , i = 1, 2, ..., 2m .
(e7.65)

Write ψ = {Ψk}, where Ψk ∶ C0((0, 1]) ⊗ M2m → Her(ek) is a homomorphism. Put

gk , i = f1/4(Ψk(e i , i))∈ Her(ek), i = 1, 2, ..., 2m , k ∈ N.

Then {gk ,1}, {gk ,2}, ..., {gk ,2m} are mutually orthogonal and mutually equivalent.
Note that Π(gk , i)} = p i and {gk , i} is a permanent projection lifting of p i , and by
(2) of Lemma 6.2, limk→∞ ω(gk , i) = 0.

Then, by Lemma 7.2, there is k1 ∈ N, such that, for all k ≥ k1 ,

dτ(ek) < dτ
⎛
⎝

2m

∑
j=1

gk , j
⎞
⎠
+ dτ(sk) + ε/2 ≤ 2mdτ(gk ,1) + ε for all τ ∈ QT(A)

w
.

(e7.66)

Also, by Lemma 7.2, we may assume that, for all k ≥ k1 ,

2mdτ(gk ,1) ≤ dτ
⎛
⎝

2m

∑
j=1

gk , j + sk
⎞
⎠
≤ dτ(ek) + ε for all τ ∈ QT(A)

w
.(e7.67)

We choose a large m such that 2m = ln +m0 , where l ∈ N and m0 ∈ N ∪ {0} such
that m0/2m < ε/4. Note that, since {gk ,1}, {gk ,2}, ..., {gk ,2m} are mutually orthogonal,
for any sum fk , j of some l many {gk , i}′s, limk→∞ ω( fk , j) = 0. For each 1 ≤ j ≤ n, by
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(e7.66) and (e7.67), and by choosing fk , j to be a sum of l many (different) g′k , i s, we see
(e7.58) and (e7.59) hold. ∎

Corollary 7.8 Let A be a non-elementary, σ-unital, and algebraically simple C∗-
algebra with QT(A) /= ∅ and T-tracial approximate oscillation zero. Let ek ∈ A1

+/{0}
(k ∈ N) be such that {ek} /∈ IQT(A)

w and {ek} is a permanent projection lifting of
p = Π({ek}), and let n > 1 be an integer and ε > 0.

Then, there is k0 ∈ N such that, for any k ≥ k0 and for any 1 ≤ i ≤ n, there exists hk , i ∈
Her(ek)+ such that

sup{∣ i
n

dτ(ek) − dτ(hk , i)∣ ∶ τ ∈ QT(A)
w
} < ε.(e7.68)

Proof By the proof of Lemma 7.7, for k ≥ k0 ,

sup{∣ 1
n

dτ(ek) − dτ( fk ,1)∣ ∶ τ ∈ QT(A)
w
} < ε/n.(e7.69)

So, for any 1 ≤ i ≤ n, choose hk , i = ∑i
j=1 fk , j . Then

sup{∣ i
n

dτ(ek) − dτ(hk , i)∣ ∶ τ ∈ QT(A)
w
} < ε. ∎

Definition 7.9 Let A be a C∗-algebra with Q̃T(A)/{0} /= ∅. Define

Rτ , f (A) = {â ∶ a ∈ Ped(A⊗K)+} ⊂ Aff+(Q̃T(A)).(e7.70)

Lemma 7.10 Let A be a non-elementary, σ-unital, and simple C∗-algebra with
Q̃T(A)/{0} /= ∅. Suppose that A has T-tracial approximate oscillation zero. Then the
image of the canonical map Γ (see Definition 2.13) is dense in Rτ , f (A).

Proof Fix a nonzero element 0 ≤ e ≤ 1 in Ped(A)+. Let A1 = Her(e). Then A1 =
Ped(A1). By Brown’s stable isomorphism theorem [4], A1 ⊗K ≅ A⊗K. It suffices to
show that the image of the map Γ1 ∶ Cu(A1) = Cu(A) → LAff+(QT(A1)

w
) is dense in

Rτ , f (A1) = {â ∶ a ∈ Ped(A1 ⊗K)+} ⊂ Aff+(QT(A1)
w
) (see Definition2.13).

Fix a ∈ Ped(A1 ⊗K)+ . Let ε > 0. It suffices to show that there is f ∈ Cu(A1) such
that

sup{∣τ(a) − f̂ (τ)∣ ∶ τ ∈ QT(A1)
w
} < ε.(e7.71)

Without loss of generality, we may assume that 0 ≤ a ≤ 1. Since a ∈ Ped(A1 ⊗K)+,
there exists r ≥ 1 such that r[ fδ(e)] ≥ [a] for some δ ∈ (0, 1/4). Therefore, we may
assume that a ∈ Mr(A1) for some integer r ≥ 1.

Put B ∶= l∞(A1)/IQT(A1)
w . Then, by Theorem 6.4, B has real rank zero.

Therefore, for any ε > 0, there are mutually orthogonal projections p1 , p2 , ..., pm ∈
Mr(B) and λ1 , λ2 , ..., λm ∈ (0, 1) such that

∥Π(ι(a)) −
m
∑
i=1

λ i p i∥ < ε/16.(e7.72)

https://doi.org/10.4153/S0008414X24000099 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000099


46 X. Fu and H. Lin

We may assume that λ i ∈ (0, 1) ∩Q. There are mutually orthogonal elements
{en , i} ∈ l∞(Mr(A1)) (i = 1, 2, ..., m) such that Π({en , i}) = p i , i = 1, 2, ..., m. By
Proposition 6.2, we may assume that {en , i} is a permanent projection lifting. By (2) of
Proposition 6.2, limn→∞ ω(en , i) = 0. Without loss of generality, we may assume that,
for all n ∈ N,

dτ(en , i) − τ(en , i) < ε/16(m + 1)2 for all τ ∈ QT(A1)
w

, i = 1, 2, ..., m.(e7.73)

Applying Corollary 7.8, without loss of generality, we may also assume that, there
are permanent projection liftings { fn , i} such that

sup{∣λ i dτ(en , i) − dτ( fn , i)∣ ∶ τ ∈ QT(A1)
w
} < ε/16(m + 1)2 , i = 1, 2, ..., m.(e7.74)

By (e7.72), there exists {cn} ∈ I
QT(A1)

w and n1 ∈ N such that, for all n ≥ n1 ,

∥a −
m
∑
i=1

λ i e i ,n + cn∥ < ε/8.(e7.75)

Then, for n ≥ n1 ,

sup{∣τ (a −
m
∑
i=1

λ i en , i + cn)∣ ∶ τ ∈ QT(A1)
w
} < ε/8.

Since {cn} ∈ I
QT(A1)

w , we have {∣cn ∣1/2} ∈ I
QT(A1)

w . It follows that

lim
n→∞

sup{∣τ(cn)∣ ∶ τ ∈ QT(A1)
w
} = 0.

Therefore, there exists n2 ≥ n1 such that

∣τ (a −
m
∑
i=1

λ i en , i) ∣ < ∣τ(cn)∣ + ε/8 < ε/4 for all τ ∈ QT(A1)
w

and for all n ≥ n2 .

(e7.76)

Thus, by (e7.73) and (e7.74), for n ≥ n2 ,

∣τ(a) −
m
∑
i=1

dτ( fn , i)∣ < ε/2 for all τ ∈ QT(A1)
w

.(e7.77)

Put e = diag( fn ,1 , fn ,2 , ..., fn ,m). Then

∣τ(a) − dτ(e)∣ < ε for all τ ∈ QT(A1)
w

.(e7.78)

This completes the proof. ∎
Theorem 7.11 Let A be a non-elementary and σ-unital simple C∗-algebra with
Q̃T(A)/{0} /= ∅ and strict comparison. Suppose that A has T-tracial approximate
oscillation zero. Then Γ is surjective (see Definition 2.13).

Proof We keep the same setting as in the proof of Theorem 7.10.
Let b ∈ Ped(A1 ⊗K)+ with 0 ≤ b ≤ 1. Choose bn = (1 − 1/(n + 1))b. Then hn ∶=

bn+1 − bn ∈ Ped(A1 ⊗K)+/{0}. Put

σn ∶= inf{τ(hn) ∶ τ ∈ QT(A1)
w
} > 0.(e7.79)
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Applying Theorem 7.10, for each n ∈ N, we obtain fn ∈ Ped(A1 ⊗K)+ such that

ηn ∶= sup{∣τ(bn) − dτ( fn)∣ ∶ τ ∈ QT(A1)
w
} <

min{σ j ∶ 1 ≤ j ≤ n + 1}
2n+2 .(e7.80)

In particular, for all n ∈ N,

dτ( fn) < ηn + τ(bn) < τ(b) for all τ ∈ QT(A1)
w

.(e7.81)

Then, for all τ ∈ QT(A1)
w

(note that bnbn+1 = bn+1bn),

dτ( fn+1) − dτ( fn) > (τ(bn+1) − ηn+1) − (τ(bn) + ηn)(e7.82)
= τ(hn) − ηn+1 − ηn > τ(hn) − σn/2 > 0.(e7.83)

It follows from the strict comparison that [ fn] is an increasing sequence in Cu(A).
Let f be the supremum of {[ fn]} in Cu(A). We also have, for all τ ∈ QT(A1)

w
,

dτ( fn+1) − τ(bn) > τ(bn+1) − ηn+1 − τ(bn)(e7.84)
≥ τ(hn) − σn/2n+1 > 0.(e7.85)

It follows that f̂ (τ) ≥ τ(bn) for all τ ∈ QT(A1)
w

and for each n ∈ N. Hence,

f̂ (τ) ≥ τ(b) for all τ ∈ QT(A1)
w

.

Let ε > 0. By Theorem 7.10, there is cε ∈ Cu(A1) such that

sup{∣τ(b + (ε/2)b) − Γ1(cε)(τ)∣ ∶ τ ∈ QT(A1)
w
} < εσ1/8.(e7.86)

Then, for all n ∈ N (see also (e7.81)),

Γ1(cε)(τ) > τ(b + ε/2b) − εσ1/8 > τ(b) > dτ( fn) for all τ ∈ QT(A1)
w

.(e7.87)

Hence, [ f ] ≤ [cε]. It follows that

f̂ (τ) ≤ ĉε(τ) < τ(b) + ε for all τ ∈ QT(A1)
w

.(e7.88)

Let ε → 0. We conclude that f̂ (τ) = τ(b) for all τ ∈ QT(A1)
w

.
So far we have shown that, for any b ∈ Ped(A⊗K)+, there is f ∈ Cu(A) such

that f̂ (τ) = τ(b) for all τ ∈ QT(A)
w

. Note that, for any a ∈ (A⊗K)+, (a − ∥a∥/n)+ ∈
Ped(A⊗K). Thus, there are fn ∈ Cu(A) such that f̂n(τ) = τ((a − ∥a∥/n)+) for all
τ ∈ QT(A)

w
. Since (a − ∥a∥/n)+ ↗ a, we conclude, using the similar argument used

above, that there is f ∈ Cu(A) such that f̂ (τ) = τ(a) for all τ ∈ QT(A)
w

. Apply-
ing Theorem 5.7 of [13] and repeating the argument above, we conclude that Γ is
surjective. ∎

8 Tracially matricial property

Definition 8.1 Let A be a C∗-algebra and S ⊂ Q̃T(A)/{0} be a nonempty com-
pact subset. C∗-algebra A is said to have property (TM) relative to S , if for any
a ∈ Ped(A⊗K)+, any ε > 0, any n ∈ N, there is a c.p.c. order zero map ϕ ∶ Mn →
Her(a) such that ∥a − ϕ(1n)a∥2,S < ε.
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A σ-unital simple C∗-algebra A with Q̃T(A)/{0} /= ∅ is said to have property
(TM), if for some e ∈ Ped(A)1

+/{0}, Her(e) has property (TM) relative to QT(A)
w

.
From the definition, it is clear that, if A is a σ-unital simple C∗-algebra which has

property (TM), then A⊗K has property (TM), and by Brown’s stable isomorphism
theorem [4], every σ-unital hereditary C∗-subalgebra has property (TM). Since
we only need to consider Her(a) for each a ∈ Ped(A⊗K)1

+, it follows that every
hereditary C∗-subalgebra has property (TM).

In the absence of strict comparison, one may also define the following:
A C∗-algebra A is said to have property (CM), if, for any n ∈ N and any a ∈ Ped(A⊗

K)1
+, there is a c.p.c. order zero map ϕ ∶ Mn → l∞(C)/Ncu(C) such that

ι(b)ϕ(1n) = ι(b) for all b ∈ C ,(e8.1)

where C = a(A⊗K)a.

Remark 8.2 In Definition 8.1, let ψ ∶ C0((0, 1]) ⊗ Mn → Her(a) be the homomor-
phism induced by ϕ, i.e., ψ(ι ⊗ e i , j) = ϕ(e i , j) (1 ≤ i , j ≤ n). Then Her(a) has some
“tracially large” matricial structure (see Proposition 8.3).

Let x ∈ Ped(A⊗K). Then a0 = x∗x + xx∗ ∈ Ped(A⊗K)+. Note x ∈ Her(a0). Let
F ⊂Her(a0)1 be a finite set. For any 1 > ε > 0, there is a ∈ Her(a0)1

+ such that

∥ay − y∥ < (ε/4)3 and ∥ya − y∥ < (ε/4)3 for all y ∈ F.(e8.2)

If A has property (TM) relative to S such that ∥τ∥ ≤ 1 for all τ ∈ S , then there is a c.p.c.
order zero map ϕ ∶ Mn → Her(a0) such that ∥a − ϕ(1n)a∥2,S < (ε/2)3 . Then, for all
y ∈ F,

∥y − ϕ(1n)y∥2/3
2,S

≤ ∥y − ya∥2/3
2,S
+ ∥ya − yaϕ(1n)∥2/3

2,S
(e8.3)

< (ε/2)2 + ∥y∥∥a − aϕ(1n)∥2/3
2,S

< ε.(e8.4)

Similarly,

∥y − ϕ(1n)y∥2/3
2,S

< ε.(e8.5)

The following fact is well known. For completeness, we include a proof here.

Proposition 8.3 Let A be a C∗-algebra, n ∈ N, and ϕ ∶ Mn → A be a c.p.c. order zero
map. Then Her(ϕ(1n)) ≅ Her(ϕ(e1,1)) ⊗ Mn .

Proof Let ψ ∶ C0((0, 1]) ⊗ Mn → A be the homomorphism defined by ψ(ı ⊗ e i j) =
ϕ(e i , j), where ı is the identity function on (0, 1], i , j ≤ n. In particular, ψ(ı ⊗ 1n) =
ϕ(1n). Write ψ(ı ⊗ e i , j) = u i , jr j as a polar decomposition of ϕ(ı ⊗ e i , j) in A∗∗ .
Hence, r j = ∣ψ(ı ⊗ e i , j)∣ and u i , j is a partial isometry in A∗∗ . Note that au i , jb ∈ A for
all a ∈ p i A∗∗p i ∩ A and b ∈ p j A∗∗p j ∩ A, where p i is the open projection of r i , i , j =
1, 2, ..., n. Since ψ is a homomorphism, we compute that p i = u i , i , i = 1, 2, ..., n, and
{u i , j}1≤i , j≤n forms a system of matrix units for Mn .

Define Φ ∶ Mn(Her(φ(e1,1))) ≅ Her(ϕ(e1,1)) ⊗ Mn → Her(ϕ(1n)) by defining
Φ(a ⊗ e i , j) = u i ,1au1, j for all a ∈ Her(φ(e1,1)), i , j = 1, 2, ..., n. Then Φ is a homomor-
phism. Since Φ is the identity map on Her(ϕ(e1,1)) and Mn is simple, the map Φ is
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injective. Put B = Φ(Mn(Her(φ(e1,1)))). To see Φ is surjective, let x ∈ A, then, for
any i , j = 1, 2, ..., n, b i , j = u1, i r i xr ju j,1 ∈ Her(ϕ(e1,1)). Therefore,

ϕ(1n)xϕ(1n) = ∑
1≤i , j≤n

u i , i r i xr ju j, j(e8.6)

= ∑
1≤i , j≤n

u i ,1(u1, i xr ju j,1)u1, j = ∑
1≤i , j≤n

u i ,1b i , ju1, j ∈ B.(e8.7)

It follows that Her(ϕ(1n)) = B. The lemma follows. ∎

Lemma 8.4 Let A be a simple C∗-algebra with Q̃T(A)/{0} /= ∅. Suppose that A =
Ped(A), A has strict comparison and Γ is surjective. Suppose that b ∈ Ped(A⊗K)1

+.
Then, for any ε > 0 and any integer n ≥ 1, there is a c.p.c. order zero map ϕ ∶ Mn →
Her(b) such that

∥b − ϕ(1n)b∥
2,QT(A)w < ∥b∥

√
ω(b) + ε.(e8.8)

Moreover, if QT(A) = T(A), then

∥b − ϕ(1n)b∥
2,T(A)w < min{∥b∥, ∥b∥

2,T(A)w }
√

ω(b) + ε.(e8.9)

Proof Fix ε ∈ (0, 1/2) and n ∈ N. Since Γ ∶ Cu(A) → LAff+(QT(A)
w
) is surjective,

Γ∣Cu(A)+ is also surjective (see (2.13)). Note that (1/n)[̂b] ∈ LAff+(QT(A)
w
). We may

choose b1 ∈ (A⊗K)1
+ such that dτ(b1) = (1/n)dτ(b) for all τ ∈ QT(A)

w
and b1 is not

Cuntz equivalent to a projection. We compute that ω(b1) = (1/n)ω(b) (see (e4.5)).
Choose δ > 0 such that

sup{dτ(b1) − τ( f2δ(b1)) ∶ τ ∈ QT(A)
w
} < ω(b1) + ε/4n.(e8.10)

Put b2 = fδ(b1) and d1 = diag(
n

IJJJJJJJJJJJJJJJJJJJJJJJKJJJJJJJJJJJJJJJJJJJJJJL
b1 , b1 , ..., b1) ∈ A⊗K. Then

fδ(d1) = diag(
n

IJJJJJJJJJJJJJJJJJJJJJJJJJJJKJJJJJJJJJJJJJJJJJJJJJJJJJJJL
b2 , b2 , ...., b2) ∈ A⊗K.(e8.11)

Since b1 is not Cuntz equivalent to a projection, for any 0 < η < δ/2, dτ( fη(d1)) <
dτ(b) for all τ ∈ QT(A)

w
. Since A has strict comparison, by [40, Proposition 2.4(iv)],

there is x ∈ A⊗K such that

x∗x = fδ(d1) and xx∗ ∈ Her(b).(e8.12)

Then one obtains an isomorphism

ψ ∶ Her(x∗x) → Her(xx∗) ⊂ Her(b) such that ψ( f (x∗x))
= f (xx∗) for all f ∈ C0((0, ∥x∥2]).

It induces a homomorphism ϕc ∶ C0(sp( fδ(b1))) ⊗ Mn → Her(b) such that
ϕc(ı ⊗ 1n) = xx∗ , where ı ∈ C0( fδ(b1)) is the identity function on sp( fδ(b1)). Define
a c.p.c. order zero map ϕ ∶ Mn → Her(b) by ϕ(e i , j) = ϕc(ı ⊗ e i , j) (1 ≤ i , j ≤ 1).

Let p be the open projection in A∗∗ corresponding to b which may be identified
with the identity of H̃er(b). We extend each τ ∈ QT(A)

w
to a 2-quasitrace on
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H̃er(b) (see II.2.5 of [2]) such that τ(p) = ∥τ∣Her(b)∥ = dτ(b). Then, we have, for all
τ ∈ QT(A)

w
,

τ((p − ϕ(1n))2) ≤ τ(p − ϕ(1n)) = τ(p) − τ(ϕ(1n))(e8.13)
= dτ(b) − τ( fδ(d1)) < ω(b) + ε.(e8.14)

It follows that

∥b − ϕ(1n)b∥
2,QT(A)w ≤ ∥b∥∥p − ϕ(1n)∥2,QT(A)w < ∥b∥

√
ω(b) + ε.(e8.15)

In the case that QT(A) = T(A), one can also apply Cauchy–Bunyakovsky–Schwarz
inequality (and (e8.14)) to obtain (e8.9). ∎

Theorem 8.5 Let A be a σ-unital simple non-elementary C∗-algebra with
QT(A)/{0} /= ∅. Suppose that A has strict comparison and T-tracial approximate
oscillation zero. Then A has property (TM).

Proof Choose e ∈ Ped(A)+/{0} and define A1 = Her(e). By Brown’s stable isomor-
phism theorem [4], A1 ⊗K ≅ A⊗K. To show that A has property (TM), it suffices to
show that A1 has property (TM). To simplify notation, without loss of generality, we
may assume that A = Ped(A).

Fix a ∈ Ped(A⊗K) such that 0 ≤ a ≤ 1. Since A has T-tracial approximate oscilla-
tion zero, ΩT(a) = 0. It follows that there is a sequence ck ∈ Her(a) with 0 ≤ ck ≤ 1
such that

Π(ι(a)) = Π(c) and lim
k→∞

ω(ck) = 0,(e8.16)

where c = {ck} and Π ∶ l∞(A) → l∞(A)/I
QT(A)w is the quotient map. By Theorem 7.11,

Γ is surjective. Then, applying Lemma 8.4, we obtain a c.p.c. order zero map ϕk ∶ Mn →
Her(ck) ⊂ Her(a) such that

∥ck − ϕk(1n)ck∥2,QT(A)w ≤
√

ω(ck) + 1/k2 , k = 1, 2, ....(e8.17)

Fix 1 > ε > 0. Choose k0 ≥ 1 such that
√

ω(ck) + 1/k2 < (ε/3)3 .(e8.18)

Since Π(ι(a)) = Π(c), there exists k1 ≥ k0 such that

∥a − ck∥2,QT(A)w < (ε/3)3 for all k ≥ k1 .(e8.19)

Choose b = ck1+1 . Then, for k ≥ k1 ,

∥a − ϕk(1n)a∥2/3
2,QT(A)w ≤ ∥a − b∥2/3

2,QT(A)w + ∥b − ϕk(1n)b∥2/3
2,QT(A)w

+ ∥ϕk(1n)(b − a)∥2/3
2,QT(A)w

< ε/3 + ε/3 + ε/3 < ε. ∎

Lemma 8.6 Let A be a σ-unital algebraically simple C∗-algebra with QT(A) /=∅.
Suppose that A has property (TM) and a ∈ Ped(A⊗K)1

+/{0}. Then, for any inte-
ger n, r ∈ N, any k ∈ N (k ≥ 2) and ε > 0, there exist an integer mk ≥ r ∈ N and
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mutually orthogonal elements bk ,1 , bk ,2 , ..., bk ,n ∈ Her(a)1
+ such that [bk , i] = [bk ,1],

i = 1, 2, ..., n,

dτ( f1/k(a1/mk))<ndτ( f1/k(bk ,1)) + ε for all τ ∈ QT(A)
w

(e8.20)

and an integer l(k) ∈ N such that

ndτ( f1/k(bk ,1)) ≤ dτ( f1/l(k)(a)) for all τ ∈ QT(A)
w

.(e8.21)

Proof Fix n ∈ N. Since A has property (TM), for each m ∈ N, there exists a c.p.c.
order zero map ϕm ∶ Mn → Her(a) such that

∥a1/m − a1/m ϕm(1n)∥2,QT(A)w < 1/2m .(e8.22)

Define c ∶= Π({a1/m}m∈N) and ϕ ∶ Mn → l∞(A)/I
QT(A)w such that ϕ( f ) =

Π({ϕm( f )}) for all f ∈ Mn . Then

c = cϕ(1n) = ϕ(1n)c = c.(e8.23)

It follows that c = c f1/2(ϕ(1n)) = f1/2(ϕ(1n))c = c. Thus, c ≤ f1/2(ϕ(1n)).
Let ε > 0. By (1) of Lemma 7.2, for each integer k ≥ 2, there exists mk≥ r ∈ N such

that, for all m ≥ mk ,

[ f1/k(a1/m)] ≤ [ f1/2(ϕm(1n))] + [dm]
(e8.24)

≤ [ f1/k(ϕm(e1,1)) + f1/k(ϕm(e2,2)) + ⋅ ⋅ ⋅ + f1/k(ϕm(en ,n))] + [dm],(e8.25)

where sup{dτ(dm) ∶ τ ∈ QT(A)
w
} < ε/2. Put bk , i = ϕmk(e i , i)1 ≤ i ≤ n and k ∈ N.

Then (e8.20) holds. On the other hand, since ϕmk(1n) ∈ Her(a), for each k, there is
l(k) ∈ N such that

∥ f1/l(k)(a)ϕmk(1n) f1/l(k)(a) − ϕmk(1n)∥ < 1/4k.(e8.26)

It follows that (see Proposition 2.2 of [40]), for k ≥ 2,

f1/k(ϕmk(1n)) ≲ f1/l(k)(a) and n[ f1/k(bk ,1)] = [ f1/k(ϕmk(1n))].(e8.27)

Then (e8.21) holds. ∎

Theorem 8.7 Let A be a σ-unital simple C∗-algebra with QT(A) /= {0}. If A has strict
comparison and property (TM), then Γ is surjective (see Definition 2.13).

Proof It suffices to prove the proposition for the case that A = Ped(A).
We claim that, for any a ∈ Ped(A⊗K)1

+/{0} and any integer n ∈ N, there exists
b ∈ (A⊗K)+ such that

n[̂b] ≤ [̂a] ≤ (n + 1)[̂b].(e8.28)

Case (1): 0 is an isolated point of sp(a). In this case, we may assume that a = p for
some projection p. Choose

η ∶= ( 1
(n + 1)2 ) inf{τ(p) ∶ τ ∈ QT(A)

w
} > 0.(e8.29)
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Note that f1/k(p) = p for all k > 1. Applying Lemma 8.6, we obtain b ∈ Her(a)+ such
that

ndτ(b) ≤ dτ(p) < ndτ(b) + η for all τ ∈ QT(A)
w

.(e8.30)

Then we compute that

n[̂b] ≤ [̂a] ≤ (n + 1)[̂b].(e8.31)

Case (2): 0 is not an isolated point of sp(a). We will use Lemma 8.6 for an induction
argument. Put

σ0 ∶= inf{τ(a) ∶ τ ∈ QT(A)
w
} > 0.(e8.32)

Fix n ∈ N . Since 0 is a not an isolated point of sp(a), for each integer k, there is a
smallest integer J(k) > k such that

f1/J(k)(a) − f1/k(a) /= 0.(e8.33)

Define, for each k,

σk ∶= inf{dτ( f1/J(k)(a)) − dτ( f1/k(a)) ∶ τ ∈ QT(A)
w
} > 0 and(e8.34)

ηk ∶= min{σ j ∶ 0 ≤ j ≤ k + 1}/2k+1(n + 1).(e8.35)

Applying Lemma 8.6, there are mutually orthogonal elements b1,1 , b1,2 , ..., b1,n ∈
Her(a)1

+ such that [b1, i] = [b1,1], i = 1, 2, ..., n, and, for some m1 ∈ N,

dτ( f1/2(a1/m1))<ndτ( f1/2(b1,1)) + η1 for all τ ∈ QT(A)
w

,(e8.36)

and an integer l(1) ∈ N such that

ndτ( f1/2(b1,1)) ≤ dτ( f1/l(1)(a)) for all τ ∈ QT(A)
w

.(e8.37)

Put c1 ∶= f1/2(b1,1). Then, for all τ ∈ QT(A)
w

,

̂[ f1/2(a1/m1)](τ) ≤ n[̂c1](τ) + η1 and n[̂c1](τ) ≤ ̂[ f1/l(1)(a)](τ).(e8.38)

Choose k2 > l(1) such that k2 ≥ J(l(1)). Applying Lemma 8.6, we obtain m2 ≥ m1
and mutually orthogonal b2,1 , b2,2 , ..., b2,n ∈ Her(a)1

+ with b2, j ∼ b2,1 (1 ≤ j ≤ n) and
l(k2) ∈ N such that

dτ( f1/k2(a1/m2)) < ndτ( f1/k2(b2,1)) + η l(1) and(e8.39)

ndτ(b2,1) ≤ dτ( f1/l(2)(a)) for all τ ∈ QT(A)
w

.(e8.40)

Put c2 = f1/k2(b2,1). Then, for all τ ∈ QT(A)
w

,

[ f1/k2(a1/m2 )̂](τ) ≤ n[̂c2](τ) + η l(1) and n[̂c2](τ) ≤ [ f1/l(2)(a)̂](τ).(e8.41)

We compute that, for all τ ∈ QT(A)
w

, by (e8.39), (e8.37), and (e8.34) (recall that
k2 > J(l(1))),
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ndτ( f1/k2(b2,1)) > dτ( f1/k2(a1/m2)) − η l(1)

(e8.42)

= dτ( f1/l(1)(a)) + (dτ( f1/k2(a1/m2)) − dτ( f1/l(1)(a))) − η l(1)(e8.43)

≥ ndτ( f1/2(b1,1)) + (dτ( f1/k2(a1/m2)) − dτ( f1/l(1)(a))) − η l(1)(e8.44)
> ndτ( f1/2(b1,1)) + σl(1) − η l(1) > ndτ( f1/2(b1,1)).(e8.45)

Since A has strict comparison, we obtain

[c1] ≤ [c2].(e8.46)

Suppose that we have constructed integers k i , m i , l(i) ∈ N and b i ,1 ∈ Her(a)1
+ , 1 ≤

i ≤ I such that, for all 2 ≤ i ≤ I and τ ∈ QT(A)
w

(with l(0) = 1 and η l(0) = η1),

k i > J(l(i − 1)) > l(i − 1),(e8.47)

[ f1/k i (a)̂](τ) < n[ f1/k i (b i ,1)̂](τ) + η l(i−1) and(e8.48)

n[ f1/k i (b i ,1)̂](τ) ≤ [ f1/l(i)(a)̂](τ),(e8.49)

and verified that [ f1/k i (b i ,1)] ≤ [ f1/k i+1(b i+1,1)], 1 ≤ i ≤ I − 1.
Define c i = f1/k i (b i ,1), 1 ≤ i ≤ I. By applying Lemma 8.6, there is kI+1 > J(l(i)) >

l(i), l(I + 1) ≥ kI+1 , mI+1 ≥ mI , and bI+1,1 ∈ Her(a)1
+ such that, for all τ ∈ QT(A)

w
,

[ f1/kI+1(a1/m(I+1))̂](τ) < n[ f1/kI+1(bI+1,1)̂](τ) + η l(I) and(e8.50)

n[ f1/kI+1(bI+1,1̂](τ) ≤ [ f1/l(I+1)(a)̂](τ).(e8.51)

Then, for all τ ∈ QT(A)
w

,

ndτ( f1/kI+1(bI+1,1)) > dτ( f1/kI+1(a1/mI+1)) − η l(I)

= dτ( f1/l(I)(a)) + (dτ( f1/kI+1(a1/mI+1)) − dτ( f1/l(I)(a))) − η l(I)

≥ ndτ( f1/kI(bI ,1)) + (dτ( f1/kI+1(a1/mI+1)) − dτ( f1/l(I)(a))) − η l(I)

> ndτ( f1/kI(bI ,1)) + σl(I) − η l(I) > ndτ( f1/kI(bI ,1)).(e8.52)

Put cI+1 = f1/kI+1(bI+1,1). Then, by the strict comparison, estimates above imply that

[cI] ≤ [cI+1].(e8.53)

Thus, by induction, we obtain an increasing sequence c i ∈ Her(a)1
+ such that, for all

τ ∈ QT(A)
w

,

[ f1/k i (a)̂](τ) < n[̂c i](τ) + η l(i−1) and(e8.54)

n[̂c i](τ) ≤ [ f1/l(i)(a)̂](τ), i ≥ 2.(e8.55)

Let c ∈ (A⊗K)+ be such that [c] is the supremum of {[c i]}. Then, by (e8.54), for all i ,

dτ( f1/k i (a))<n[̂c](τ) + η l(i−1) ≤ n[̂c](τ) + σ0/2i+1(n + 1) for all τ ∈ QT(A)
w

.
(e8.56)

https://doi.org/10.4153/S0008414X24000099 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000099


54 X. Fu and H. Lin

Thus (recall that A is simple), for all sufficiently large i ,

dτ( f1/k i (a))<(n + 1)[̂c](τ) for all τ ∈ QT(A)
w

.(e8.57)

It follows that (let i →∞)

dτ(a) ≤ (n + 1)[̂c](τ) for all τ ∈ QT(A)
w

.(e8.58)

On the other hand, by (e8.55),

n[̂c i] ≤ [̂a] for all i ∈ N.(e8.59)

For any ε > 0, choose a nonzero element e ∈ A+ such that dτ(e) < ε/2 for all τ ∈
QT(A)

w
. Then, by the strict comparison,

n[c i] ≤ [a] + [e] for all i ∈ N.(e8.60)

If follows that n[c] ≤ [a] + [e]. Hence,

n[̂c] < dτ(a) + ε for all τ ∈ QT(A)
w

.(e8.61)

Let ε → 0. We also obtain

n[̂c] ≤ [̂a] for all τ ∈ QT(A)
w

.(e8.62)

Combining (e8.62) and (e8.58), the claim also holds for Case (2).
We now show that the proved claim implies that Cu(A) has the property D

stated in the proof of Proposition 6.21 of [37]. Let x′ ≪ x , where x = [a] for some
a ∈ (A⊗K)+. Since

x = sup{[(a − ∥a∥/k)+] ∶ k ∈ N},

then

x′ ≤ [(a − ∥a∥/k)+] for k ∈ N.

Note (a − ∥a∥/k)+ ∈ Ped(A⊗K)+. Then the claim implies that there is y ∈ Cu(A)
such that

x̂′ ≤ [(a − ∥a∥/k)+]̂ ≤ (n + 1) ŷ and nŷ ≤ [(a − ∥a∥/k)+]̂ ≤ [a] = x .(e8.63)

Therefore, as observed by L. Robert (see Property D in the proof of Proposition 6.21
of [37]), following Corollary 5.8 of [13], Γ is surjective. ∎

Lemma 8.8 Let A be a C∗-algebra and a, b ∈ A1
+ . Suppose that there is x ∈ A such that

x∗x = a and xx∗ ∈ Her(b).(e8.64)

Then, for any ε > 0, there exists a unitary U ∈ M2(Ã) such that

U∗diag( fε(a), 0)U ∈ Her(diag(b, 0)).(e8.65)
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Proof First, we claim that, for any y ∈ A, dist(diag(y, 0), GL(M2(Ã))) = 0. To see

this, let ε > 0. Choose V = (0 1
1 0) which is a unitary in M2(C). Then

Y ∶= (0 1
1 0)(

y 0
0 0) = (

0 0
y 0) ,

which is a nilpotent. Therefore, Y + ε ⋅ 12 ∈ GL(M2(Ã)). Then

diag(y, 0) ≈ε V∗(Y + ε) ∈ GL(M2(Ã)).

This proves the claim.
To prove the lemma, we will combine the claim with an argument of Rørdam. By

Proposition 2.4 of [40], for any ε > 0, there exist δ > 0 and r ∈ A such that

fε/2(a) = r fδ(b)r∗ .(e8.66)

Put z = r fδ(b)1/2 and Z = diag(z, 0). By the claim and Theorem 5 of [32], there is a
unitary U ∈ M2(Ã) such that

U∗ f1/2(ZZ∗)U = U∗ f1/2(diag(zz∗ , 0))U = diag( f1/2(z∗z), 0) = f1/2(Z∗Z).
(e8.67)

Note that Z∗Z ∈ Her(b̄), where b̄ = diag(b, 0). Moreover (with ā = diag(a, 0)),

U∗ fε(ā)U ≤ U∗ f1/2( fε/2(ā))U = U∗ f1/2(ZZ∗)U = f1/2(Z∗Z). ∎

Lemma 8.9 Let A be an algebraically simple C∗-algebra which has strict comparison.
Suppose that QT(A) /= ∅ and the canonical map Γ is surjective.

Suppose that a, a′ ∈ Ped(A)1/{0} with a ∈ Her(a′). Then, there exists 1/2 > ε0
satisfying the following: For any 0 < η < ε < ε0 , any σ > 0, there exist c ∈ Her( fη(a))1

+

with ∥c∥ ≤ ∥a∥ and unitary U ∈ M2(Her(a′)∼) such that (with b = U∗diag(c, 0)U)

(1) diag( fε(a), 0) ≤ b,(e8.68)

(2) dτ( fε(a)) ≤ dτ(b) ≤ dτ( fη(a)) for all τ ∈ QT(A)
w

,(e8.69)

and, for some 1 > δ > 0,

(3) ∣dτ(b) − τ( fδ(b))∣ < σ for all τ ∈ QT(A)
w

.(e8.70)

Moreover,

(4) U∗diag(gη/2(a), a′)U ∈ B,(e8.71)

where B ∶= Her(b)⊥ ∩Her(diag(a, a′)) and gη(t) ∈ C0((0, 1]) is defined as in
Notation 2.5.

Consequently, if e is a strictly positive element in (Her(b)⊥ ∩Her(diag(a, a′))), then

dτ(e) > dτ(a′) + dτ(gη(a)) for all τ ∈ QT(A)
w

.(e8.72)

Proof Without loss of generality, we may assume that ∥a∥ ≤ 1. Let us first assume
that [0, ε0) ⊂ sp(a) for some ε0 > 0.
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Fix 0 < ε < ε0 . Note that, without loss of generality, we may assume that

dτ( fε(a)) < τ( fδ1(a)) < dτ( fη1(a)) < τ( fδ2(a)) < dτ( fη(a)) for all τ ∈ QT(A)
w

,
(e8.73)

where ε/2 > δ1 , δ1/2 > η1 , η1/2 > δ2 , δ2/2 > η. Put h i(τ) = τ( fδ i (a)) for all
τ ∈ QT(A)

w
, i = 1, 2. Then h i ∈ Aff+(QT(A)

w
), i = 1, 2.

Since Γ is surjective, there is c0 ∈ (A⊗K)+ such that dτ(c0) = h2(τ) for all τ ∈
QT(A)

w
. Choose δ0 > 0 such that (as h2 is continuous)

dτ(c0) − τ( fδ0(c0)) < σ/2 for allτ ∈ QT(A)
w

.(e8.74)

Since h1 < h2 are continuous, we may also assume, by choosing smaller δ0, that

dτ( fδ0(c0)) > dτ( fη1(a))> dτ( fε(a)) for all τ ∈ QT(A)
w

.(e8.75)

Since A has strict comparison, by (e8.73), there is x ∈ A⊗K such that

x∗x = fδ0/4(c0) and xx∗ ∈ Her( fη(a)).(e8.76)

Choose c = xx∗ . Then 0 ≤ c ≤ 1 and dτ(c) = dτ( fδ0/4(c0)) for all QT(A)
w

. Let
C = Her( fη(a)). By (e8.75), the strict comparison and Lemma 8.8, we obtain a unitary
U ∈ M2(C̃) such that

Udiag( fη1(a), 0)U∗ ∈ Her(c̄),(e8.77)

where c̄ = diag(c, 0). Let b = U∗ c̄U . Then

diag( fε(a), 0) ≤diag( fη1(a), 0) ≤ b.(e8.78)

(so (1) holds). Moreover, dτ(b) = dτ(c) for all τ ∈ T(A)
w

. Consequently,

dτ( fη1(a)) ≤ dτ(b) ≤ dτ( fη(a)) for all τ ∈ QT(A)
w

(e8.79)

(so (2) holds). Moreover, there is 1 > δ > 0 such that

dτ( fδ(b)) ≥ τ( fδ0(c)) for all τ ∈ QT(A)
w

.(e8.80)

It then follows from (e8.74) that

∣dτ(b) − τ( fδ(b))∣ = ∣dτ( fδ0/4(c0)) − τ( fδ(b))∣ < σ for all τ ∈ QT(A)
w

(e8.81)

(so (3) holds). To show the “Moreover” part, put

B = Her(b)⊥ ∩Her(diag(a, a′)) and e′ = U∗diag(gη/2(a), a′)U .

Since gη/2(a) ⊥ fη(a), we have

diag(gη/2(a), a′) ⊥ diag( fη(a), 0) and e′ ⊥ b.
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It follows that U∗diag(gη/2(a), a′)U ∈ B. If e is a strictly positive element in
Her(b)⊥ ∩Her(diag(a, a′)), then

dτ(e) ≥ dτ(e′) = dτ(a′) + dτ(gη/2(a)) for all τ ∈ QT(A)
w

.(e8.82)

This proves the case that [0, ε0] ⊂ sp(a).
If there exists rn ∈ (0, 1] with

rn > rn+1 and lim
n→∞

rn = 0 such that rn /∈ sp(a),

then bn = f2rn(a) has the property that ω(bn) = 0. Then the lemma follows by
choosing U = diag(1, 1) and b = bn for some sufficiently large n. ∎

Lemma 8.10 Let A be a σ-unital algebraically simple C∗-algebra with QT(A)/=∅.
Suppose that A has strict comparison and Γ is surjective. Suppose that a =
diag(0, a1 , a2 , ..., an) in Mn+1(A)1

+ for some integer n ≥ 1. Then, for any 1/2 > ε > 0 and
1/2 > σ > 0, there exists d ∈ Mn+1(A)1

+ such that

fε(a) ≤ d≤ 1 and ω(d) < σ .(e8.83)

Proof For n = 1, this follows immediately from Lemma 8.9.
Assume that the lemma holds for n ≥ 1.
Let 0 ≤ eA ≤ 1 be a strictly positive element of A. Fix 1/2 > ε > 0. Choose η =

ε/4(n + 2) and σ0 ∶= σ/2(n + 2). We will apply Lemma 8.9 with a j ∈ Her(eA) (1 ≤ j ≤
n + 1), η as above, and σ0 (in place of σ).

By Lemma 8.9, there is c1 ∈ Her( fη(a1))1
+, a unitary U1 ∈ M2(Ã), and b′1 =

U∗1 diag(0, c1)U1 such that

diag(0, fε(a1)) ≤ b′1 ,(e8.84)

dτ( fε(a1)) ≤ dτ(b′1) ≤ dτ( fη(a1)) for all τ ∈ QT(A)
w

,(e8.85)
ω(b1) < σ0 and U∗1 diag(eA, gη/2(a1))U1 ∈ B1 ,(e8.86)

where B1 ∶= (Her(b′1)⊥ ∩Her(diag(a1 , eA)))+. Put

V1 = diag(U1 ,
n−1

IJJJJJJJJJJJJKJJJJJJJJJJJJL
1Ã, ..., 1Ã), α2 = V∗1 diag(0, 0, a2 , ..., an+1)V1 and(e8.87)

b1 = V∗1 (0, c1 , 0, ..., 0)V1 .(e8.88)

Define C1 = Her(V∗1 (eA, 0, eA, ..., eA)V1). Then

b1 ∈ C⊥1 and C1 ≅ Mn+1(A).(e8.89)

In C1 , we may write α2 = diag(0, a2 , a3 , ..., an+1) (the number of possible nonzero
elements is now reduced to n).

By the induction assumption, there is b2 ∈ C1 with 0 ≤ b2 ≤ 1 such that

fε(α2) ≤ b2 and ω(b2) < σ0 .(e8.90)
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Define d ∶= b1 + b2 . Note that b1 ⊥ b2 . Then

fε(a) = diag(0, fε(a1), fε(a2), ..., fε(an+1)) ≤ b1 + b2 ,(e8.91)

and (by (2) of 4.4)

ω(d) ≤ ω(b1) + ω(b2) < 2σ0 < σ .(e8.92)

This completes the induction. The lemma follows. ∎

Theorem 8.11 Let A be a σ-unital simple C∗-algebra with Q̃T(A)/{0} /= ∅. Suppose
that A has strict comparison and property (TM). Then A has T-tracial approximate
oscillation zero.

Proof Choose e ∈ Ped(A)+/{0} and A1 = Her(e). Then Ped(A1) = A1 . To prove the
theorem, without loss of generality, we may assume that A = Ped(A). By Theorem 8.7,
Γ is surjective.

Fix a ∈ Ped(A⊗K)1
+. We claim that Her(a) has a T-tracial approximate identity

{dn} such that limn→∞ ω(dn) = 0.
Put B = Her(a). Then Ped(B) = B and B ⊗K ≅ A⊗K. Therefore, to simplify

notation, without loss of generality, we may also assume that a ∈ A.
Let ε > 0 and let n ∈ N such that 1/n < (ε/8)2 . Since A has property (TM), there is

a c.p.c. order zero map ϕ ∶ Mn+1 → Her(a) such that

∥a − ϕ(1n+1)a∥
2,QT(A)w < (ε/8)3 .(e8.93)

By Proposition 8.3, let C = Her(ϕ(1n+1)) ≅ Mn+1((Her(ϕ(e1,1))). Write

ϕ(1n+1) = diag(c, c, ..., c) ∈ Mn+1(Her(ϕ(e1,1))).(e8.94)

Choose 0 < η < (ε/16)2 . Put cn = diag(0, c, c, ..., c). It follows from Lemma 8.10 that
there exists d ∈ C1

+ such that

fη(cn) ≤ d ≤ 1 and ω(d) < 1/2n .(e8.95)

Hence,

0 ≤ (cn − 2η)+(1 − d)(cn − 2η)+ ≤ (cn − 2η)+(1 − fη(cn))(cn − 2η)+ = 0.(e8.96)

Hence, d(cn − 2η)+ = (cn − 2η)+ = (cn − 2η)+d . It follows that (we now working in
a commutative C∗-subalgebra)

(1 − d)2 ≤ (1 − (cn − 2η)+)2 .(e8.97)

Note that

∥ϕ(1n+1) − cn∥2,QT(A)w <
1

n + 1
.(e8.98)

Then (see also (2.16)), by (e8.97), (e8.98), and (e8.93),

∥a − da∥2/3
2,QT(A)w = (sup

τ∈QT(A)w {τ(a(1 − d)2a)})1/3

≤ sup
τ∈QT(A)w {τ(a(1 − (cn − 2η)+)2a)})1/3 = ∥a − (cn − 2η)+a∥2/3

2,QT(A)w

≤ ∥a − cn a∥2/3
2,QT(A)w + ∥(cn − (cn − 2η)+)a∥2/3

2,QT(A)w
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< ∥a − ϕ(1n+1)a∥2/3
2,QT(A)w + (

1
n + 1

)
2/3
+ (2η)2/3(e8.99)

< (ε/8)2 + (ε/8)2 + (ε/8)2 = 3(ε/8)2 .(e8.100)

Since ω(d) < 1/2n , this proves the claim. The theorem then follows from the claim
and Lemma 5.6. ∎

9 Stable rank one

Let A be a C∗-algebra and n ∈ N. Recall that we view Mn(A) as a C∗-subalgebra of
Mn+1(A) in the canonical way, i.e., Mn(A) is the upper left block of Mn+1(A).

Recall an element a = (a i , j)n×n in Mn(A) is called upper (resp. lower) triangular,
if a i , j = 0 whenever i < j (resp. i > j), and a is called strictly upper (resp. lower)
triangular, if a i , j = 0 whenever i ≤ j (resp. i ≥ j).

The following proposition is a generalization of an elementary fact in linear algebra.

Proposition 9.1 Let A be a C∗-algebra such that A ⊂ GL(Ã). Then, for any n ∈ N, any
a ∈ Mn(A), and any ε > 0, there is an upper triangular matrix x ∈ Mn(A) and a lower
triangular matrix y ∈ Mn(A) such that a ≈ε x y.

Proof We prove this by induction on n. For n = 1, let a ∈ Mn(A) = A and ε > 0. By
the existence of approximate identity, there is e ∈ A+ such that a ≈ε ae . Note that a
and e are triangular matrices in Mn(A). Thus, the proposition holds for n = 1.

Assume the proposition holds for n ≥ 1. Let a = ∑n+1
i , j=1 a i , j ⊗ e i , j ∈ A⊗ Mn+1 ,

where a i , j ∈ A and {e i , j} is the matrix units of Mn+1 , i , j = 1, ..., n + 1. Let ε > 0. Since
A ⊂ GL(Ã), there is ã ∈ GL(Ã) such that

an+1,n+1 ≈ε/2 ã.

In what follows in this proof, 1 is the identity of Ã and 1n+1 is the identity of Mn+1(Ã).
Let b(0) ∶= ∑n

i=1 a i ,n+1 ã−1 ⊗ e i ,n+1 and c(0) ∶= ∑n
j=1 ã−1an+1, j ⊗ en+1, j . Then b(0)

and c(0) are nilpotents. Put

a′ ∶= a + (ã − an+1,n+1) ⊗ en+1,n+1 ,(e9.1)

b ∶= 1n+1 − b(0) and c ∶= 1n+1 − c(0) .(e9.2)

Let s ∶= ba′c. Note that a′ , b, c, s are in Mn+1(Ã). Let a′i , j (resp. b i , j , c i , j , s i , j) be the
(i , j)th entry of a′ (resp. b, c, s), 1 ≤ i , j ≤ n + 1. Note that

s i , j =
n+1
∑
m=1

(
n+1
∑
k=1

b i ,k a′k ,m cm , j) (1 ≤ i , j ≤ n + 1).(e9.3)

If A = Ã, then s i , j ∈ A. Otherwise, denote by π ∶ Mn+1(Ã) → Mn+1 the quotient map.
Then

π(b) = π(1n+1) = π(c) and π(a′) = π(ã ⊗ en+1,n+1).

It follows that π(s) = π(ã ⊗ en+1,n+1). Thus,

s i , j ∈ A (1 ≤ i , j ≤ n).(e9.4)
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Note that bn+1,k = 0 for 1 ≤ k ≤ n and cm , j = 0 for m ∉ { j, n + 1}, if 1 ≤ j ≤ n. By (e9.3),
we have, for 1 ≤ j ≤ n,

sn+1, j = bn+1,n+1a′n+1, jc j, j + bn+1,n+1a′n+1,n+1cn+1, j(e9.5)

= an+1, j + ã ⋅ (−ã−1an+1, j) = 0.(e9.6)

If 1 ≤ i ≤ n, then b i ,k = 0 for k ∉ {i , n + 1} and cm ,n+1 = 0 for 1 ≤ m ≤ n. By (e9.3),
we compute

s i ,n+1 = b i , i a′i ,n+1cn+1,n+1 + b i ,n+1a′n+1,n+1cn+1,n+1(e9.7)
= a i ,n+1 + (−a i ,n+1 ã−1) ⋅ ã = 0.(e9.8)

We also have

sn+1,n+1 =
n+1
∑
m=1

(
n+1
∑
k=1

bn+1,k a′k ,m cm ,n+1) = bn+1,n+1a′n+1,n+1cn+1,n+1 = ã.(e9.9)

Therefore (e9.4), (e9.6), (e9.8), and (e9.9) show that

ba′c = d + ã ⊗ en+1,n+1 ,

where d ∈ Mn(A). Note that b and c are invertible in Mn+1(Ã), as both b(0) and c(0)
are nilpotents. Let ε1 = ε

4(1+∥b−1∥⋅∥c−1∥)
. By our assumption, there is an upper triangular

matrix x1 and a lower triangular matrix y1 in Mn(A) such that

d ≈ε1 x1 y1 .(e9.10)

Let e ∈ Mn+1(A)1
+ be a diagonal matrix such that a ≈ε/4 eae .

Note that b−1 = 1n+1 + b(0) and x∶ = eb−1(x1 + ã ⊗ en+1,n+1) are upper triangular
matrix in Mn+1(A). Similarly, c−1= 1n+1 + c(0) is a lower triangular matrix in Mn+1(Ã),
and

y ∶= (y1 + 1⊗ 1n+1,n+1)c−1e

is a lower triangular matrix in Mn+1(A). Then

a ≈ε/4 eae ≈ε/2 ea′e = eb−1ba′cc−1e = eb−1(d + ã ⊗ en+1,n+1)c−1e(e9.11)
≈ε/4 eb−1(x1 y1 + ã ⊗ en+1,n+1)c−1e(e9.12)
= eb−1(x1 + ã ⊗ en+1,n+1) ⋅ (y1 + 1⊗ en+1,n+1)c−1e = x y.(e9.13)

Thus, the proposition holds for n + 1. By induction, the proposition holds. ∎

Proposition 9.2 Let A be a C∗-algebra such that A ⊂ GL(Ã) and let n ∈ N. Then, for
any a ∈ Mn(A) and any ε > 0, there is a strictly upper triangular matrix x ∈ Mn+1(A)
and a strictly lower triangular matrix y ∈ Mn+1(A) such that a ≈ε x y.

In particular, any element in Mn(A) can be approximated in norm by product of two
nilpotent elements in Mn+1(A).

Proof By Proposition 9.1, there is an upper triangular matrix x1 ∈ Mn(A) and a lower
triangular matrix y1 ∈ Mn(A) such that a ≈ε x1 y1 . Let v = ∑n

i=1 1Ã ⊗ e i , i+1 ∈ Mn+1(Ã).
Then x = x1v ∈ Mn+1(A) is a strict upper triangular matrix and y = v∗y1 ∈ Mn+1(A) is
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a strict lower triangular matrix, and x y = x1vv∗y1 = x1 y1 ≈ε a. (Recall that we identify
Mn(A) with the upper left n × n corner of Mn+1(A).)

The last part of the proposition follows from the fact that strictly triangular matrices
are nilpotents. ∎

Lemma 9.3 Let A be a σ-unital algebraically simple non-elementary C∗-algebra with
QT(A) /= ∅ which has strict comparison. Suppose that A also has the property (TM). Let
a ∈ A. If there are b1 , b2 ∈ A+/{0} such that a∗a + aa∗ , b1 , b2 are mutually orthogonal,
then, for any ε > 0, there are two nilpotents x , y ∈ A such that ∥a − x y∥ < ε.

Proof Let B = l∞(A)/I
QT(A)w . Recall that Π ∶ l∞(A) → B is the quotient map and

ι ∶ A→ l∞(A) is the canonical embedding. Denote ῑ ∶= Π ○ ι. Fix a ∈ A. Without loss
of generality, we may assume ∥a∥ ≤ 1. Put a0 = a∗a + aa∗ . Assume that there are
b1 , b2 ∈ A+ such that 0 = b1b2 = ab1 = b1a = ab2 = b2a. Let ε > 0. Since A is simple
and non-elementary, one can choose n ∈ N such that

1/n < inf{dτ(b i) ∶ τ ∈ QT(A)
w
}, i = 1, 2.

Since A has property (TM), by Theorem 8.11, A has T-tracial approximate oscillation
zero. Then, by Theorem 6.6, B has stable rank one. Also, by the last part of Remark 8.2,
for each m ∈ N, there is a c.p.c. order zero map ϕm ∶ Mn → Her(a0) such that

∥a − ϕm(1n)a∥
2,QT(A)w < 1/m.(e9.14)

Let ϕ ∶ Mn → l∞(A) be the map induced by {ϕm}m∈N and ϕ̄ ∶= Π ○ ϕ. Then (e9.14)
shows that

ϕ̄(1n)ῑ(a) = ῑ(a).(e9.15)

Denote by {e i , j ∶ 1≤ i , j≤ n} a system of matrix units for Mn and {e i , j ∶ 1≤ i , j≤ n+1}
an expanded system of matrix units for Mn+1 . In particular, we view Mn generated by
{e i , j ∶ 1 ≤ i , j ≤ 1} as a C∗-subalgebra of Mn+1 generated by {e i , j ∶ 1 ≤ i , j ≤ n + 1}.

Since A has strict comparison, and for all m ∈ N,

sup{dτ(ϕm(e1,1)) ∶ τ ∈ QT(A)
w
} ≤ 1/n < inf{dτ(b2) ∶ τ ∈ QT(A)

w
},(e9.16)

we have ϕm(e1,1) ≲ b2 for all m ∈ N. By [40, Proposition 2.4(iv)], there are vm ∈ A

v∗mvm = (ϕm(e1,1) − 1/m)+ and vmv∗m ∈ HerA(b2) (m ∈ N)(e9.17)

(see (e3.5)) and (e3.6)). Note that

∥vm∥2 = ∥v∗mvm∥ = ∥(ϕm(e1,1) − 1/m)+∥ ≤ 1.

Let v = {v1 , v2 , ...} ∈ l∞(A). Since ∥(ϕm(e1,1) − 1/m)+ − ϕm(e1,1)∥ ≤ 1/m (m ∈ N), we
have

Π(v∗v) = ϕ̄(e1,1).(e9.18)

The facts that ϕm(1n) ∈ Her(a0), Her(a0)/Her(b2), and vmv∗m ∈ Her(b2) show that
ϕm(1n)/vmv∗m for all m ∈ N. Hence,

Π(vv∗)ϕ̄(1n) = 0.(e9.19)
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Let h ∶ C0((0, 1]) ⊗ Mn → B be the homomorphism defined by h(ı ⊗ e i , j) = ϕ̄(e i , j)
(1 ≤ i , j ≤ n). Extend h̃ ∶ C0((0, 1]) ⊗ Mn+1 → B by h̃(ı ⊗ e i , j) = h(ı ⊗ e i , j) and h̃(ı ⊗
e1,n+1) = v∗ . By (e9.18) and (e9.19), h̃ is indeed a homomorphism. Define ϕ̃(e i , j) =
h̃(ı ⊗ e i , j) for 1 ≤ i , j ≤ n + 1.

As we view Mn as a C∗-subalgebra of Mn+1 , ϕ̃ is an extension of ϕ̄, i.e., ϕ̃∣Mn = ϕ̄.
By Proposition 8.3,

HerB(ϕ̃(1n+1)) ≅ HerB(ϕ̃(e1,1)) ⊗ Mn+1 = HerB(ϕ̄(e1,1)) ⊗ Mn+1 ,(e9.20)

and

HerB(ϕ̄(1n)) ≅ HerB(ϕ̄(e1,1)) ⊗ Mn .(e9.21)

Moreover, as {e i , j ∶ 1 ≤ i , j ≤ n} ⊂ {e i , j ∶ 1 ≤ i , j ≤ n + 1}, we also write

HerB(ϕ̄(1n)) ⊂ HerB(ϕ̃(1n+1)).

Since B has stable rank one, by [5, Corollary 3.6], HerB(ϕ̃(1n+1)) also has sta-
ble rank one. Note, by (e9.15), ῑ(a) ∈ HerB(ϕ̄(1n)) ≅ HerB(ϕ̄(e1,1)) ⊗ Mn , Then, by
Proposition 9.2, there are nilpotents

x1 , y1 ∈ HerB(ϕ̃(1n+1))≅ HerB(ϕ̄(e1,1)) ⊗ Mn+1 such that ∥ῑ(a) − x1 y1∥ < ε/8.

Recall that Π(vv∗ + ϕ(1n)) = ϕ̃(1n+1). Thus,

HerB(ϕ̃(1n+1)) = Π(Herl∞(A)(vv∗ + ϕ(1n))).(e9.22)

Also, note that (vv∗ + ϕ(1n))/ι(b1). Thus,

Herl∞(A)(vv∗ + ϕ(1n)) ⊂ {ι(b1)}� .(e9.23)

By (e9.22) and the fact that nilpotents can be lifted (see [29, Theorem 6.7]), there are
nilpotents x2 , y2 ∈ Herl∞(A)(vv∗ + ϕ(1n)) such that

Π(x2) = x1 , Π(y2) = y1 .(e9.24)

It follows from (e9.23) that we also have

x2/ι(b1), and y2/ι(b1).(e9.25)

Since ∥ῑ(a) − x1 y1∥ < ε/8, there is z̄ ∈ IQT(A)
w such that

ι(a) − x2 y2 ≈ε/8 z̄.

Note that ι(a) − x2 y2 ∈ {ι(b1)}� . Hence, there is d ∈ {ι(b1)}� such that

ι(a) − x2 y2 ≈ε/8 d(ι(a) − x2 y2)d ≈ε/8 dz̄d .

Let

z ∶= dz̄d ∈ {ι(b1)}� ∩ I
QT(A)w .(e9.26)

Then

∥ι(a) − (x2 y2 + z)∥ < ε/4.
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Choose δ > 0 such that ∥z fδ(∣z∣) − z∥ < ε/8. Then

∥ι(a) − (x2 y2 + z fδ(∣z∣))∥ < ε/2.(e9.27)

Write z = {z1 , z2 , ...} with z i ⊥ b1 (i ∈ N). Since z ∈ I
QT(A)w , there is i ∈ N such that

(note that the first inequality of the following always holds)

sup
τ∈QT(A)

w
{dτ( fδ/2(∣z i ∣))} ≤

4
δ

sup
τ∈QT(A)

w
τ(∣z i ∣) < inf

τ∈QT(A)
w
{dτ(b1)}.(e9.28)

Since A has strict comparison, fδ/2(∣z i ∣) ≲ b1 . By [40, Proposition 2.4(iv)], there is
r ∈ A such that

r∗r = fδ(∣z i ∣) and rr∗ ∈ Her(b1).(e9.29)

Write x2 = {x2, j} j∈N and y2 = {y2, j} j∈N . By (e9.25), x2, i/b1 and y2, i/b1 . Together
with (e9.29), we have

x2, i r = r∗x2, i = y2, i r = r∗y2, i = 0.(e9.30)

Thus,

x2, i y2, i + z i fδ(∣z i ∣) = x2, i y2, i + z i r∗r = (x2, i + z i r∗)(y2, i + r).(e9.31)

Since x2 and y2 are nilpotents, so are x2, i , y2, i . By (e9.26) and (e9.29), r∗z i = 0.
Hence,

(z i r∗)2 = z i r∗z i r∗ = 0.

By (e9.29), r2 = 0. By (e9.30),

(z i r∗)x2, i = 0 and y2, i r = 0.

Let α1 ∶= x2, i , α2 ∶= z i r∗ , β1 ∶= y2, i , and β2 ∶= r. Then the last paragraph shows that
α1 , α2 , β1 , β2 are all nilpotents, and α2α1 = β1β2 = 0. Then it is standard to conclude
that x ∶= α1 + α2 and y ∶=β1 + β2 are nilpotents (see the proof of Claim 1 in the proof
of [16, Lemma 5.6]).

By (e9.27) and (e9.31),

a ≈ε/2 x2, i y2, i + z i fδ(∣z i ∣) = (x2, i + z i r∗)(y2, i + r)= x y.(e9.32)

The lemma follows. ∎

Theorem 9.4 Let A be a σ-unital simple C∗-algebra with Q̃T(A)/{0} /= ∅. If A has
strict comparison and has T-tracial approximate oscillation zero, then A has stable rank
one.

Proof We may assume that A is non-elementary. There are two cases.
Case 1. A has a nonzero projection p.
Set A1 ∶= pAp. Then A1 is unital, simple, has nonempty QT(A1), and has strict

comparison as well as T-tracial approximate oscillation zero. Hence, l∞(A1)/IQT(A1)

has stable rank one (see Theorem 6.6). Let a ∈ A1 be a non-invertible element, and let
ε > 0. Since A1 is simple and finite, by [39, Proposition 3.2 and Lemma 3.5], there is a
unitary u ∈ U(A1), an element ā ∈ A1 , and a positive element b ∈ (A1)+/{0} such that
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∥a − ā∥ < ε/4 and b(uā) = (uā)b = 0. Note that Her(b) is also infinite-dimensional.
Hence, there are two nonzero orthogonal positive elements b1 , b2 ∈ Her(b).

By Theorem 8.5, A has property (TM). We then apply Lemma 9.3 to obtain two
nilpotent elements x , y such that

uā ≈ε/4 x y.

Let δ > 0 be such that

x y ≈ε/4 (x + δ)(y + δ).

Note that x + δ and y + δ are invertible since x , y are nilpotents. Then that

a ≈ε/4 u∗uā ≈ε/2 u∗(x + δ)(y + δ)

shows that a can be approximated by an invertible element u∗(x + δ)(y + δ) up to the
tolerance ε. Hence, A1 has stable rank one. It follows that A also has stable rank one.

Case 2. A has no nonzero projections. By Theorem 7.11, the canonical map Γ is
surjective. Choose e ∈ (A⊗K)+ with 0 ≤ e ≤ 1 such that [̂e] is continuous on Q̃T(A).
By Theorem 2.19, C = Her(e) has continuous scale. By Brown’s stable isomorphism
theorem [4], C ⊗K ≅ A⊗K. Therefore, it suffices to show that C has stable rank one
(see [36, Theorem 6.4]). Hence, without loss of generality, we may assume that A has
continuous scale (and QT(A) /= ∅).

Let A1 be a σ-unital hereditary C∗-subalgebra of A. Let a ∈ A1
1 and let ε > 0. Let

a1 ∶= a∗a + aa∗ . Then there is δ > 0 such that

∥a − fδ(a1)a fδ(a1)∥ < ε/2.

Let ā ∶= fδ(a1)a fδ(a1). Since A1 has no nonzero projections, we may assume that
[0, δ] ⊂ sp(a1). Let g ∈ C0((0, 1])+ with supp(g) ⊂ [δ/4, δ/2], then

b∶ = g(a1) ≠ 0 and bā = āb = 0.

Let us consider A2 = HerA1( fδ/8(a1)). Note that A2 is simple, A2 = Ped(A2) and
QT(A2) /= ∅ and has strict comparison. Moreover, by Proposition 5.4, A2 has T-tracial
approximate oscillation zero. Hence, by Theorem 6.6, l∞(A2)/IQT(A2)

w has stable
rank one. Note that ā, b ∈ A2 . Note also that, since A is non-elementary, HerA2(b) is
infinite-dimensional. It follows that there are b1 , b2 ∈ HerA2(b)+/{0} such that b1/b2 .
Since ā∗ ā + āā∗ , b1 , b2 are mutually orthogonal, applying Lemma 9.3, we get two
nilpotents x , y ∈ A2 ⊂ A1 such that ∥ā − x y∥ < ε/2. It follows that ∥a − x y∥ < ε.

Therefore, for any σ-unital hereditary C∗-subalgebra A1 ⊂ A, any a ∈ A1 , and any
ε > 0, there are nilpotents x , y ∈ A1 such that ∥a − x y∥ < ε. Together with the facts that
A is projectionless and assumed to have continuous scale, applying [14, Theorem 6.4],
we conclude that A has stable rank one. ∎

The proof of Theorem 1.1

Proof For (1) ⇒ (2), applying Theorem 7.11, we know that Γ is surjective. Then (2)
follows from Theorem 9.4.

Both (2) ⇒ (3) and (2) ⇒ (4) are obvious. That (3) ⇒ (2) follows from [1].
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For (4) ⇒ (1), we apply Theorem 5.10. That (1) ⇔ (5) follows from Theorems 8.5
and 8.11. This ends the proof of Theorem 1.1. ∎

Note that the separability condition is only used in the implication of (3) ⇒ (2).
We learned that the following is also obtained by S. Geffen and W. Winter.

Corollary 9.5 Let A be a σ-unital stably finite simple C∗-algebra of real rank zero
which has strict comparison. Then Γ is surjective and A has stable rank one.

Proof Let p ∈ A be a nonzero projection and B = pAp. It suffices to show the
statement holds for B. Note that B is unital and stably finite. By the paragraph right
after the proof of Theorem 3.3 of [3], B has a 2-quasitrace (see also 1.3(III) of [2]). By
Proposition 5.8, A has tracial approximate oscillation zero. Then the corollary follows
from Theorem 9.4. ∎

Let A be a separable simple C∗-algebra with Q̃T(A)/{0} /= ∅. Let
e ∈ Ped(A)+/{0}. Recall that Te = {τ ∈ Q̃T(A) ∶ τ(e) = 1} is a compact convex
set which is also a basis for the cone Q̃T(A).

Corollary 9.6 Let A be a σ-unital simple C∗-algebra with QT(A) /= ∅ which has
strict comparison. Suppose that, for some e ∈ Ped(A)1

+/{0}, ∂e(Te) has countably
many points. Then Γ is surjective, A has stable rank one, property (TM) and T-tracial
approximate oscillation zero.

Proof It follows from Theorem 5.9 that A has norm approximate oscillation zero.
Thus, the corollary follows from Theorem 9.4 immediately. ∎

The following is perhaps known, but we are not able to locate it in the literature.

Proposition 9.7 Let A be a separable C∗-algebra which has local finite nuclear dimen-
sion. Then every hereditary C∗-subalgebra B ⊂ A also has local finite nuclear dimension.

Proof Let B be a hereditary C∗-subalgebra of A. Let ε > 0 andF ⊂ B be a finite subset.
To simplify notation, without loss of generality, we may assume that F ⊂ B1 and there
is eB ∈ B1

+ such that eBx = xeB = x for all x ∈ F.
Choose δ > 0 as in Lemma 3.3 of [10] associated with ε/4 (in place of ε) and σ = ε/4.

We may assume that δ < ε/4.
Since A has local finite nuclear dimension, there is a C∗-subalgebra C ⊂ A with

finite nuclear dimension, say k (k ∈ N∪{0}), such that

x ∈δ/2 C for all x ∈ F ∪ {eB}.(e9.33)

Choose d ∈ C1
+ such that ∥eB − d∥ < δ. Then, by Lemma 3.3 of [10], there is a partial

isometry w ∈ A∗∗ such that

ww∗ fε/4(d) = fε/4(d)ww∗ = fε/4(d), w∗cw ∈ Her(eB) ⊂ B and(e9.34)

∥w∗cw − c∥ < (ε/4)∥c∥ for all c ∈ fε/4(d)Afε/4(d).(e9.35)

Set C1 = w∗ fε/4(d)C fε/4(d)w ⊂ B. By Proposition 2.5 of [46], fε/4(d)C fε/4(d) has
nuclear dimension k. Since C1 ≅ fε/4(d)C fε/4(d), C1 has nuclear dimension k. We
then estimate that
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x ∈ε C1 for all x ∈ F.(e9.36)

Thus, B has local finite nuclear dimension. ∎

As in [42], we have the following (note that, by [17], since A is exact, T̃(A) =
Q̃T(A)).

Corollary 9.8 Let A be a separable exact simple C∗-algebra with T̃(A)/{0} /= ∅.
Suppose that A has strict comparison, T-tracial approximate oscillation zero and has
local finite nuclear dimension. Then A⊗Z ≅ A.

Proof Choose e ∈ Ped(A)1
+/{0} and B = Her(e), Then Ped(B) = B. It suffices to

show (see Corollary 3.1 of [44]) that B is Z-stable. Note that B has strict comparison,
and, by Proposition 9.7, has local finite nuclear dimension. Since B also has T-tracial
approximate oscillation zero (see Proposition 5.4), by Theorem 7.11, Γ is surjective. It
follows that B has m-almost divisibility for some m (in fact m can be zero). By [43,
Theorem 8.5(iii)], B is Z-stable. ∎

Remark 9.9 At least in the unital case, the condition that A has local finite nuclear
dimension in Corollary 9.8 can be further weakened to that A is amenable and has
weak tracial finite nuclear dimension (see Definition 8.1 and Theorem 8.3 of [24]).

Remark 9.10 (1) Note that, in Theorem 1.1 and Corollary 9.6, we do not assume that
A is amenable or even exact.

(2) Usually, the condition that A has strict comparison implies that A has at least
one densely defined nonzero 2-quasitrace. However, one may insist that the condition
that A has strict comparison means that, if A has no nonzero 2-quasitraces, A is
purely infinite. In that case, the assumption in Theorem 1.1 (part of the assumption
of Corollary 9.8) may be replaced by that A is finite and has strict comparison.

(3) On the other hand, if one assumes that Cu(A) is almost unperforated and A
is not purely infinite, then, by [41], A has strict comparison (in the usual sense) (see
also Remark 2.5 and Proposition 4.9 of [16]). Conversely, if A has strict comparison
(in usual sense), Cu(A) is almost unperforated. Therefore, if one prefers not to
mention 2-quasitraces in Theorem 1.1, one could use the condition that A is finite and
Cu(A) is almost unperforated.

(4) If A is a unital stably finite simple C∗-algebra, then, by [40, Theorem 6.1]
(see also [8, Corollary 4.7] and [2, Theorem II.2.2]), A has at least one nontrivial
2-quasitrace. So, in the unital case, we may assume that A is stably finite instead assume
that A has a nontrivial 2-quasitrace. This also works for the case that A is not unital but
K0(A)+ /= {0}. However, when A is stably projectionless, the situation is somewhat
different. Nevertheless, we may proceed this as follows:

We assume that A is a separable simple C∗-algebra. Recall that an element
a ∈ Ped(A)+ is infinite, if there are nonzero elements b, c ∈ Ped(A)+ such that
bc = 0, b + c ≲ c and c ≲ a.A is said to be finite, if there are no infinite elements in
Ped(A)+.A is said to be stably finite, if Mn(A) is finite for each n (see Definition 1.1 of
[27] and Definition 4.7 of [16], for example).

Choose e ∈ Ped(A)+/{0} and consider B = Her(e). Without loss of generality,
we may well assume that A = B for convenience. Define K∗0 (A) (using W(A) not
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Cu(A)) exactly the same way as in Section 4 of [8]. Note that Lemma 4.1 of [8] holds
automatically with the definition above. The same definition of order there (before
Proposition 4.2 of [8]) also works in this case. In other words, so defined K∗0 (A) is
a (directed) ordered group and the stably finiteness ensures that K∗0 (A) is not zero.
Since A is simple, Proposition 4.2 of [8] still holds. We now return to the paragraph
right after the proof Theorem 3.3 of [3]. Note that (K∗0 (A), K∗0 (A)+, [e]) is a scaled
ordered group which has a state, and which gives a dimension function. By [2, II.2.2],
the dimension function just mentioned gives a 2-quasitrace on A. Therefore, we may
replace the condition that Q̃T(A)/{0} /= ∅ by the condition that A is stably finite
(recall that we assume that A is simple) in Theorem 1.1 (see also [18] for the case that
A is exact).

(5) One may notice that the condition that A has strict comparison and
Γ is surjective implies that there is an isomorphism Γ∼ ∶ Cu(A) → V(A) ⊔
(LAff+(Q̃T(A))/{0}) (see also Definition 2.13).
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