INJECTIVE MODULES OVER PRUFER RINGS

EBEN MATLIS

The purpose of this paper is to find out what can be learned about valu-
ation rings, and more generally Prufer rings, from a study of their injective
modules. The concept of an almost maximal valuation ring can be reformulated
as a valuation ring such that the images of its quotient field are injective.
The integral domains with this latter property are found to be the Prufer rings
with a (possibly) weakened form of linear precompactness for their quotient
fields. The Prufer rings with linearly compact quotient fields are found to be
exactly the maximal valuation rings, and may be characterized as those integral
domains R with quotient field @ such that the images of @ are injective and
Hom: (Q/R, @/R) = R; or, alternatively, as those integral domains for which
a torsion-free submodule S of rank one of a module B is a direct summand
whenever B/S is also torsion-free. We are able to rederive many of the results
of [2] and [4] by homological methods. Finally, among Noetherian integral
domains we characterize the Dedekind rings as those for which every finitely

generated torsion module is a direct sum of cyclic modules.

Notation and Definitions. Any ring considered will be commutative with
an identity element which acts as the identity operator on any module over the
ring. If A is any module, we will denote by E(A) the injective envelope of A
[6]. A module A is said to be indecomposable, if it has no proper direct
summands. An ideal 7 of a ring is said to be irreducible, if it is not an inter-
section of two properly larger ideals. A module over an integral domain will
be said to be divisible, if multiplication by any non-zero element of the ring is
an epimorphism of the module onto itself; and a module will be said to be
torsion-free, if any such multiplication is a monomorphism of the module into
itself.

A Prufer ring is an integral domain in which every finitely generated ideal

is invertible. A wvaluation ring is an integral domain in which every two ele-
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ments have a greatest common divisor which is equal to one of them. A valu-
ation ring is a local 7ing in the sense that it has a single maximal ideal. It is
easily seen that a ring is a valuation ring if and only if it is a local, Prufer
ring. It is also readily verified that an integral domain R with quotient field
@ is a valuation ring if and only if the lattice of R-submodules of @ (or of R)
is simply ordered. If R is a valuation ring and S a proper submodule of @,

then there exists an element @ = 0 in R such that aS is an ideal of R.

ProrosiTiON 1. Let R be a valuation ring with quotient field Q. Then

1) E(R/I) is an indecomposable, injective R-module for every ideal I of R;
and every indecomposable, injective R-module is of this form.

2) If 1Iis a proper ideal of R, then E(R/I) = E(Q/I).

3) If I and J are proper ideals of R, then E(R/1) = E(R/]), if and only if
I~].

Proof. 1) Since the ideals of R are simply ordered, they are irreducible;
and the result follows from [6, Thm. 2.4].

2) As in 1) E(Q/I) is an indecomposable, injective R-module. Since R/I
is a non-zero submodule of E(Q/I), it follows from [6, Prop. 2.2] that E(R/I)
= E(Q/D.

3) If I =], then there exists g% 0 in @ such that /=gqJ. Hence Q/I=Q/],
and by 2) E(R/I) = E(R/]J). Conversely, if E(R/I) = E(R/]), there exists
submodules A and B of E(R/I) such that A = R/I and B=R/]J. Since E(R/I)
is an indecomposable, injective R-module, AN B =0 [6, Prop. 2.2]. If x %0
€ AN B, then the order ideal of x is isomorphic to I and to J. Thus I and J
are isomorphic.

It follows readily from Proposition 1 that if S and T are R-submodules of
Q, then @/S= Q/T, if and only if S= T. It is also an easy corollary of Propo-
sition 1 that if A is any injective R-module, then any element of A is contained
in an indecomposable, injective direct summand of A. Thus if B is a finitely
generated R-module, then E(B) is a finite direct sum of indecomposable, injec-

tive R-modules.

Definition. Let A be a module over a commutative ring R. A is said to

be linearly compact if every finitely solvable set of congruences:

X=Xy (mod A.)
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(where x. € A, and the A.,’s are submodules of A) has a simultaneous solution
in A. (See [2] and [8D).

We say that A is semi-compact, if the above congruence condition holds
whenever the submodules A. are annihilators of ideals of R.

A is said to be linearly pre-compact, if every proper homomorphic image
of A is linearly compact.

A valuation ring R with quotient field @ is said to be maximal (almost
maximal), if @ is linearly compact (linearly precompact). It is easily seen that
a valuation ring R is maximal (almost maximal), if and only if R itself is

linearly compact (linearly pre-compact) as an R-module.

ProrosiTioN 2. Let C be an injective module over a commutative ring R.

Then C is semi-compact.

Proof. Let x = x, (mod C,) be a finitely solvable set of congruences, where
% € C and C, is the annihilator in C of an ideal I, of R. Let I be the ideal
of R generated by all of the I’s. If a€ ] then ac,,+---+1,,. Let v=C
be a solution of the » congruences for the indices «y, ..., an. We define an
R-homomorphism f: - C by f(a)=ay. It is easily verified that / is a well-
defined homomorphism. Since C is injective, there exists z € C such that f(a)
=az for every a< I. Then z is a solution of the congruences.

It follows from Proposition 2 that if C is an injective R-module such that
every submodule of C is the annihilator of some ideal of R, then C is linearly
compact. In particular, if R is a commutative, complete, Noetherian, local ring,
with maximal ideal M, then E(R/M) is linearly compact [6, Thm. 4.2].

The following proposition is due to I. Fleischer [2, Lemma 1]; but we

include a proof for the sake of completeness.

ProrositioN 3. A divisible, semi-compact module D over a Prufer ring R
is injective.

Proof. Let I be an ideal of R and f : I > D an R-homomorphism. Let I,
be a finitely generated ideal contained in I, and let D, be the annihilator in D
of I,. Then by [1, prop. 7.3.4] there exists an element x. in D such that

f(a) = ax, for every a in I,. The set of congruences:

X=Xy (mod D.)
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(ranging over all of the annihilators of finitely generated ideals contained in I)
is finitely solvable. Hence there exists a simultaneous solution y in D. Then
f(a) =ay for every a in I. Thus D is injective.

The proof of the ‘if’ part of the following theorem was communicated to
me by I. Kaplansky.

TueoreM 4. Let R be a valuation ring with quotient field Q. Then R is
almost maximal, if and only if Q/R is an injective R-module. In this case Q/I
is an indecomposable, injective R-module for every ideal I of R, and if I R,
then Q/I = E(R/I).

Proof. If R is an almost maximal valuation ring, then the assertions follow
from Proposition 3 and Proposition 1.

Conversely, assume that @/R is an injective R-module. Suppose that the

following set of congruences is finitely solvable:
X =7 (mod I,),

where 7,€ R, I, is an ideal of R, and I=N1,%x0. If I,=1 for some 3, then
7; is a solution of the congruences. Hence we can assume that I, = for all a.

Take ¢ %0 in I, and define J={b<€ R|bIs=cR}. ] is an ideal of R, and
for every be J there exists an index as such that 5l,, CcR. We define an R-
homomorphism f : J » Q/¢R by f(b) = br,,+ cR for every b€ J. Since Q/cR is
injective, there is an element ¢<= @ such that f(6)=bg+ cR for every be].
We will show that ¢ is a solution of the congruences.

Take any index «, and take d€ .~ 1 Then ¢=dy for some y€ R. In
fact, ye J. For if y& J, then yI D ¢R, ¢ = yz for some z€ I, and then d=ze1;
which is a contradiction. Now there exists an index j3 such that I; C I,, and
such that y7;+cR=/f(») =yq+cR. Thus y(#s—¢q) =7rc=ryd for some r <€ R,
and so r,—qe I,. Therefore, 7, —g= (7o —7) + (s~ q) 1,. Hence ¢ is an
element of R, and is a solution of the congruences. This proves that R is
linearly precompact, and thus is almost maximal.

As a consequence of Theorem 4 and Proposition 1 we see that if D is a
homomorphic image of an injective module over an almost maximal valuation

ring, then every element of D is contained in an indecomposable, injective
direct summand of D,
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TuEOREM 5. Let R be an integral domain with quotient field Q. Then
every R:homomorphic image of Q is injective, if and only if R is a Prufer ring
and every R-homomorphic image of @ is semi-compact. In this case Ru is an

almost maximal valuation ring for every maximal ideal M of R.

Proof. If R is a Prufer ring and every image of @ is semi-compact, then
every image of @ is injective by Proposition 3. Conversely, suppose that every
image of @ is injective. Then each of these images is semi-compact by Propo-
sition 2. We will prove that R is a Prufer ring.

Let A be any R-module, and I an ideal of R. Suppose that Tors (4, R/I)
% 0. Then there exists a maximal ideal M of R such that Hompg (Tory (A, R/I),
Q/M) 0. Now Homgz(R/I, Q/M) = S/M, where S is an R-submodule of Q.

From the exact sequence:
0->S/M->Q/M->Q/S-0

we see that S/M has injective dimension one, or less. Therefore, by [1, Prop.
6.5.1], 0 =Ext% (A4, S/M) ~Extk (A, Homg (R/I, Q/M)) = Homz (Tor¥ (A, R/I),
Q/M). This contradiction shows that Tors (A, R/I) =0. Hence w.gl.dim. R=1.
By [3, Thm. 2] R is a Prufer ring.

If M is a maximal ideal of R, then w.gl.dim. Ry = w.gl.dim.R<1; and
so Ry is a local, Prufer ring. Therefore Ry is a valuation ring. From [1,
Prop. 6.4.1.3] we see that Q/Rs is an injective Ry-module. Thus Ry is an

almost maximal valuation ring by Theorem 4.

Remarks. 1) It can be shown that if R is a Noetherian integral domain,
then R is a Dedekind ring if and only if @/I is injective for every ideal I of
R. However, it is not sufficient merely to assume, even for Noetherian local
domains, that @/R is injective as the following example due to I. Kaplansky
shows. Let R be the ring of formal power series in one variable over a field
with the first degree term missing. Then Q/R is injective, but R is not a
Dedekind ring. 7 am indebted to A. Rosenberg and D. Zelinsky for the remark
that if R is Noetherian, gl.dim.R < =, and @Q/R is injective, then it follows
easily from [1, Ch. 6, Ex. 9] that R is a Dedekind ring.

2) The following questions remain unanswered. If Ry is an almost maximal
valuation ring for every maximal ideal M of R, is it true that every image of

the quotient field of R is injective? For a Prufer ring is the linear precompact-
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ness of it quotient field @ equivalent to the semi-compactness of every image
of @? Is a Prufer ring with linearly precompact quotient field either an almost
maximal valuation ring or a Dedekind ring? For similar questions concerning
maximal valuation rings we shall be able to provide the answers.

LEmMMA 6. Let R be an integral domain with quotient field @ = R, and
K=Q/R. Then Homg (K, K) = R, if and only if Extz(Q, R)=0. In this case
Ext: (Q, I) =0 for every ideal I of R.

Proof. From the exact sequence:
0-R-Q->K->0

we readily obtain first that Homg (K, K) =~ Extz (K, R), and then the exact
sequence :

0> R > Homg (K, K) - Extz (@, R) - 0.
Thus if Extk(Q, R) =0, then Homz (K, K) = R; whereas if Homg (K, K) = R,

then Extk (Q, R) is cyclic, divisible, and torsion-free, and hence is zero. The
remaining assertion follows easily.

LEMMA 7. Let R be an almost maximal valuation ring with quotient field
Q and maximal ideal M. Let K=Q/R and E= Q/M (ie., E=E(R/M)). Then
Homz (K, K) = R, if and onlv if Homg (E, E) = R.

Proof. Assume that Homg(E, E) =~ R. Then using [1, Prop. 7.2.3;
Prop. 6.5.1; Prop. 7.2.2] we obtain: Homg (K, K) = Extk (K, R) = Extk (K,
Homg (E, E)) = Homz (Torf (K, E), E) =~ Homz (E, E) = R.

Conversely, assume that Homz (K, K) = R. If M is principal, the result
is trivial; hence assume that M is not principal. Then Homz (R/M, K) =0.
Therefore, from the exact sequence:

0— R/IM— E-2> K—>0,
where P is the canonical map, we obtain the exact sequence:
*
0 —> Homg (K, K) —> Homgz (E, K) —> Homgz (R/M, K) =0.

There is a natural monomorphism of R into Homg (E, E) sending an
element of R into multiplication by that element. We will prove that the
mapping is onto. Let f< Homg(E, E). Then Pf€ Homg(E, K), and thus
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from the above exact sequence Ff=gP, where g€ Home (K, K ). Now g is
multiplication in K by an element  of R; hence Pf=gP= Ph, where h is
multiplication by 7 in E. Thus Im(f—h) C Ker P= R/M. Therefore, since £
is divisible, f — k=0, and Homg (E, E) = R.

TueoreM 8. (Duality) Let R be an almost maximal valuation ring with
quotient field Q@ and maximal ideal M. Let K=Q/R, E=E(R/M) =Q/M, and
assume that Homg (K, K) = R. If A (or I) is a submodule of E (or R), let
A* (or I*) be the annihilator of A (or I) in R (or E). Then:

1) A¥™=A; and I** =1
2) Homg (E/A, E) =~ A*; and Homz (R/I, E) =~ I*.
3) Homg (A, E) =~ R/A*; and Homy (I, E) = E/I*.

Thus Homg (Homz (B, E), E) = B whenever B is a submodule or factor module
of either R or E.

Proof. By Lemma 7 Homr (E, E) = R. Then the proof is essentially the
same as [6, Thm. 4.2]. For a more general result see [7, Thm. 5.2].

Theorem 9 will show that Theorem 8 is a duality assertion for maximal
valution rings. For a discussion of duality for complete, discrete valuation

rings see [5].

THEOREM 9. Let R be an integral domain with quotient field @ = R and

K=Q/R. Then the following statements are equivalent :

1) R is a maximal valuation ring.

2) R is a Prufer ring with linearly compact quotient field.

3) All R-homomorphic images of @ are injective; and Homgz (K, K) = R.
4) R is an almost maximal valuation ring; and Homg (K, K) = R.

5) Extk (A, S) =0 for A any torsion-free module and S any torsion-free

module of rank one.

Proof. 1) = 2). Trivial.

2) = 3). Every image of @ is injective by Proposition 3. There is a
natural monomorphism of R into Homx (X, K) sending an element of R into
multiplication by that element. We will prove that this mapping is onto. Let
f€Homz (K, K), and ax0€ R Let f(1/a+ R) =g+ R, where g€ Q. Then

aq=7,.€ R, and f agrees with multiplication by 7, on the submodule of K
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generated by 1/a+ R. Thus the set of congruences:
X=7a (mod aR)

is finitely solvable in R. Since R is linearly compact, there exists a simultane-
ous solution 7 in R. Thus f is multiplication by » and Homz (K, K) = R.

3) => 4). It is sufficient to prove that R is a valuation ring, for then 4)
will follow from Theorem 4. Let J be any ideal of R. Suppose that Q/I is
not indecomposable. Then there exists a submodule S of @, S= I, @, such

that S/I is an injective module. From the exact sequence:
0-I-S->S/I-0
we derive the exact sequence:
0=Homg (@, S) > Homg (Q, S/I) - Extr (Q, I).
By Lemma 6 Exti (@, I) =0. Therefore, Homg (@, S/I) =0; which is a contra-

diction, since S/I is a non-zero injective module. Thus Q/I is an indecomposa-
ble, injective module. By [6, Prop. 2.2] any two non-zero submodules of Q/I
have a non-zero intersection. It follows that I is not the intersection of two

properly larger ideals. Thus the ideals of R are simply ordered, and R is a
valuation ring.

4)=5). If S=¢Q, then Extx (A, S)=0. If S= @, then since R is a valu-
ation ring, we can assume that SC R. From the exact sequence:

0-A->-AQRQR->ARK~-0
we obtain the exact sequence:
Ext: (A® Q, S) —» Ext; (4, S) » Ext: (A ® K, S).

But Ext; (A®Q, S)=0 by Lemma 6; and Exth(A® K, S) =0, since S has
injective dimension one by Theorem 4. Therefore, Ext: (A4, S) =0.
5) = 3). Let B be any R-module and S an R-submodule of @. Consider

an exact sequence:
0-A->F->B-0,
where F is free. From this we obtain the exact sequence:
0= Extk (A4, S) - Extk (B, S) - Ext (F, S) =0.

Therefore, Ext% (B, S) =0, S is of injective dimension one or less, and /S is
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injective. Since Ext}: (@, R) =0 by assumption, Homz (K, K) = R by Lemma 6.
4) = 1). 'We must prove that R is linearly compact. Let

X =7 (mod I.)

be a finitely solvable set of congruences, where 7. € R and the I.’s are ideals
of R. Since R is already linearly precompact, we can assume that NI, =0.
Now Q/M=E(R/M)=E, and Homg(E, E) = R by Lemma 7. _Let B. be the
annihilator of I, in E. Then Homgz (B., E) = R/I, and U B, =E by Theorem
8. Hence, R=Homgr(E, E) = 1:_1_21 Homg (B,, E) = I‘ﬂn R/I,. The finite solva-
bility of the congruences says that (fa+la)u.el(.:il_nR/I¢. Hence there exists
7 € R such that (7 + I,)e = (7. + I).. Thus 7 is a solution of the congruences.
Therefore, R is linearly compact, and so R is a maximal valuation ring. This
concludes the proof of the theorem.

We note that Theorems 13 and 14 of [4] and Propositions 3 and 4 of [2]

now follow immediately from Theorem 9 : (5) and an easy induction.

ProrosiTioN 10. Let R be a ring (not necessarily commutative), and {A:}
a countable family of R-modules such that every homomorphic image of each A;
is injective. Let B be a homomorphic image of S ® A;. Then B=3ad B;,
where B; is a homomorphic image of Ai, and thus is an injective submodule of
B. Therefore, if the family is finite, every homomorphic image of 3@ A; is

injective.

Proof. Let f: 2@ A; > B be an R-homomorphism onto B. Let Ci=f(A)),
and D,=C;+ -+ +C,. We will prove by induction on »n that D,=B: ®. ..
@ Bj, where B; is an image of A;, and is therefore injective. Let B; = C,, and
assume that the assertion is true for n—1=1. Thus D,.1=B:&...®Bu-1.
Since D,-, is injective, D, = D,_1 ® B,, where B, is a submodule of D,. Thus
Bp=Dn/Dn-y=(Dn-1+Cp)/Dp-1=Cn/(Dn-yNCr); and so Bn is a homo-
morphic image of A, and the induction is verified. Since the D,’s are an
increasing sequence of submodules of B and B = U D,, it follows that B = 3@ B;.

Let R be an integral domain with quotient field @ such that every image
of @ is injective. Let @" denote a direct sum of # copies of @, and @ a direct
sum of denumerably infinite number of copies of @. Then by Proposition 10
every image of @” (or @) is a direct sum of a finite (or a countable) number
of injective modules; and thus every image of Q" is injective. It follows that
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every torsion-free module of finite rank has injective dimension =1. Therefore,
every image of a torsion-free module of finite rank has injective dimension =1
also. This generalizes [2, Lemma 4]. In general images of @ are not injec-
tive, even though they are direct sums of injective modules, as will be seen

from the following proposition. But first we have a definition.

Definition. Let R be a valuation ring and I an ideal of R We say that I
is Archimedean if al = I for every non-unit a€ R. Clearly, every principal
ideal of R is Archimedean. The terminology stems from the fact that it can
be shown that if every non-zero ideal of R is Archimedean, then the value

group associated with R is Archimedean.

ProposiTION 11. Let R be a non-discrete valuation ring. Let {I,} be a
countable family of Archimedean ideals, En=E(R/I,) and C=E O E® . ...
Then C is injective, if and only if the family is finite.

Proof. Assume that the family is infinite. Since R is not Noetherian,
there exists an ideal I of R which is generated by an infinite set of elements
{71, 72, . . .} such that 7;+; properly divides 7;; i.e. there exists non-units @;+1ER
such that 7; = @;+17i+1 for every 4.

We define a mapping f from the generators of 7 to C by induction. Let
f(r1) = x;; be any non-zero element of E:., Assume that we have defined f(7;)
for =1, 2,..., »n such that:

1) f(#i)) =%+ -+ * + x%i, where xj; % 0< Ej.
2) aixji=xj,i-1for j=1,...,7i—1and i=2,..., n.

3) agixi=0for =2, ..., n.

Since E; is divisible, we can find % »+1 € E; such that %j» = a@n+1%j,n+1 for j=1,
.., n Since I+ is Archimedean, we can find an element g€ (1/@n+1) In+1
and g€ Inv1. Let Xpi1,ne1=q+ In+1 € Q/Ins1C En+r, and define f(7n+1) = X1, ne1+
¢+« +%ns1,ne1. Then f(7n4+;) satisfies the above three conditions. It is easily
verified that / induces an R-homomorphism f from I to C. By construction
the image of 7 is not contained in any finite number of the E;’s. Thus f can

not be extended to all of R, and so C is not injective.
As a consequence of Proposition 11 we see that if R is an almost maximal,

non-discrete, valuation ring with quotient field @ and K= Q/R, then a direct
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sum of copies of K is injective if and only if the number of summands is finite.

LemMA 12. Let R be an integral domain with quotient field Q. Let B be
an R-module with torsion submodule T of bounded order (i.e. *T =0 for some
7% 0€ R) and such that B/T is divisible. Then T is a direct summand of B.
Thus Ext: (Q, T) =0.

Proof. It is clear that TN 7B=0. Let x= B; then there exists y€ B
such that x+ T =7(y+T). Hence x€ T @ 7B, and so B=T & 7B.
Parts 1) and 2) of the following proposition are known for almost maximal

valuation rings and Dedekind rings [4].

ProrosiTiON 13. Let R be an integral domain with quotient field € such
that every homomorphic image of & is injective. Let B be a module over R

with torsion submodule T. Then:

1) If T is finitely generated, it is a direct summand.

2) If T is of bounded order and R is a Dedekind ring, T is a direct
summand.

3) If T is a homomorphic image of a torsion-free module of finite rank,

and if R is an almost maximal valuation ring, then T is a direct summand.
Proof. Let B/T=S; then from the exact sequence:
0-S-Q®S~-Q/RRS-0
we derive the exact sequence :
Ext: (Q® S, T) - Ext: (S, T) » Extk (Q/R® S, T).

In the first two cases T is of bounded order; while in the third case, we can
assume without loss of generality that 7 is of bounded order also. Hence,
Exti (Q®S, T) =0 by Lemma 12. For cases 1) and 3) T has injective di-
mension =1 by the remarks following Proposition 10. Thus in all cases
Extk (Q/R® S, T)=0. Therefore, Ext; (S, T)=0; which proves the propo-

sition.

ProposITION 14. Let R be a valuation ring with quotient field Q; let A,
«.., An be (not necessarily proper) homomorphic images of Q; and let

A=A DD As. Then if B is any finitely generated submodule of A, B is
a direct sum of cyclic modules.
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Proof. The proof will be by induction on #. If »=1, then B is a cyclic

module. Assume the proposition is true for n—1x>1. Let %, ..., %n be the

generators of B, where % = (%), x/” € A;.. Without loss of generality we can

assume that the order ideal of x, is equal to the order ideal of xi", and that

there exist elements 7je R such that 7jxi" =«
yi=rixi—%;, and C={%, ..., ym). Then CC A:® - -+ ® An, and hence, by
induction, C is a direct sum of cyclic modules. Clearly B=Rx;+C. If axi+z
=0 for a€ R and z€ C, then axi =0, and so ax;=0. Thus B=Rx,;®C is a

direct sum of cyclic modules.

' for j=2,...,m. Let

We note that Theorem 14 [4] (i.e. any finitely generated module over an
almost maximal valuation ring is a direct sum of cyclic modules) follows
directly from Proposition 14 and Theorem 4. For Noetherian integral domains
this direct sum property for finitely generated torsion modules characterizes
Dedekind rings.

ProrosiTioN 15. Let R be a Noetherian integral domain. Then every
finitely generated torsion R-modula is a direct sum of cyclic modules, if and only
if R is a Dedekind ring.

Proof. If R is a Dedekind ring, the result is known [4]. For the converse
let M be any maximal ideal of R, E = E(R/M), and A; be the annihilator in E
of M'. Now A; is a finitely generated torsion module [6, Thm. 3.11]; and
since E is an indecomposable, injective R-module, A; must be a cyclic module.
Therefore, M/M? is one dimensional over R/M [6, Thm. 3.10], and hence Ry
is a discrete valuation ring. Since gl. dim.R=sgp gl.dim. Ry =1, we see that

R is hereditary; and, therefore, R is a Dedekind ring.
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