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Abstract. Let A be the product of an abelian variety and a torus over a number field
K, and let m � 2 be a square-free integer. If α ∈ A(K) is a point of infinite order, we consider
the set of primes p of K such that the reduction (α mod p) is well defined and has order
coprime to m. This set admits a natural density, which we are able to express as a finite sum
of products of �-adic integrals, where � varies in the set of prime divisors of m. We deduce
that the density is a rational number, whose denominator is bounded (up to powers of m) in
a very strong sense. This extends the results of the paper Reductions of points on algebraic
groups by Davide Lombardo and the second author, where the case m prime is established.

2010 Mathematics Subject Classification. Primary: 11F80; Secondary: 14L10, 11G05,
11G10

1. Introduction. This article is the continuation of the paper Reductions of points
on algebraic groups by Davide Lombardo and the second author [4]. We refer to this other
work for the history of the problem, which started in the 1960s with work of Hasse on the
multiplicative orders of rational numbers modulo primes.

Let A be the product of an abelian variety and a torus over a number field K, and let
m � 2 be a square-free integer. If α ∈ A(K) is a point of infinite order, we consider the set
of primes p of K such that the reduction (α mod p) is well defined and has order coprime
to m. This set admits a natural density (see Theorem 7), which we denote by Densm(α).

The main question is whether we can write

Densm(α)=
∏
�

Dens�(α), (1.1)

where � varies over the prime divisors of m. Let K(A[m]) be the m-torsion field of A. We
prove that (1.1) holds if K(A[m])=K (i.e. if A(K) contains all m-torsion points) or, more
generally, if the degree [K(A[�]) :K] is a power of � for every prime divisor � of m (see
Corollary 18). Indeed, (1.1) holds if the torsion fields/Kummer extensions of α related to
different prime divisors of m are linearly disjoint over K. In general, (1.1) does not hold:
see Section 7.2 for an explicit example.

We are able to express Densm(α) as an integral over the image of the m-adic repre-
sentation (see Theorem 16) and also as a finite sum of products of �-adic integrals (see
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Theorem 19). The latter decomposition allows us to prove that Densm(α) is a rational
number whose denominator is uniformly bounded in a very strong sense (see Corollary 20).

Finally, we study Serre curves in detail in Section 6. With the partition given in
Section 6.3, one can very easily compute Densm(α) if the mn-Kummer extensions of α
(defined in Section 3) have maximal degree for all n or, more generally, if the degrees of
these extensions are known and are the same with respect to the base fields K and K(A[m]).

In general, to compute the density Densm(α) for the product of an abelian variety and
a torus, we only need information on the Galois group of the mn-torsion fields/Kummer
extensions of α for some sufficiently large n. Thus, a theoretical algorithm to compute the
density exists, because the growth in n of the mn-torsion fields/Kummer extensions of α is
eventually maximal (see Proposition 5 and Remark 6 in view of [4, Lemma 11]).

Finally, we point out that since the category of algebraic groups that we consider is
stable under products, our results allow us to replace α by a finitely generated subgroup of
A(K); see Remark 22.

2. Integration on profinite groups. For every profinite group G, we write μG for
the normalised Haar measure on G. More generally, if X is a G-torsor, we write μX for the
normalised Haar measure on X , defined by transporting μG along any isomorphism G∼= X
of G-torsors.

LEMMA 1. Let G be a profinite group, and let H be an open subgroup of G. Suppose
that we have G=∏

� G�, where � varies in a finite set of prime numbers, and each G�

is a profinite group containing a pro-�-group G′� as an open subgroup. Let G′ =∏
� G′�

and H ′ =H ∩G′. For each x ∈H/H ′, let H(x) be the fibre over x of the quotient map
H→H/H ′.

(1) The subgroup H ′ is open in H, and for each x ∈H/H ′, the normalised Haar
measure on the H ′-torsor H(x) is

μH(x) = (H :H ′)μH |H(x).
(2) We can write

H ′ =
∏
�

H ′�,

where each H ′� is a pro-�-group, and the normalised Haar measures on H ′ and the
H ′� are related by

μH ′ =
∏
�

μH ′� .

(3) We can write the H ′-torsor H(x) as

H(x)=
∏
�

H�(x),

where each H�(x) is a H ′�-torsor, and the normalised Haar measures on H(x) and
the H�(x) are related by

μH(x) =
∏
�

μH�(x).

Proof. The claim that H ′ is open in H holds because G′ is open in G. The measure
μH |H(x) is H ′-invariant and satisfies

∫
H(x) μH = 1

(H :H ′) ; this proves (1). Because G′ is a
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product of pro-�-groups for pairwise different �, every closed subgroup of G′ is similarly
a product of pro-�-groups. This shows the existence of the H ′� as in (2); the claim about
μH ′ follows because

∏
� μH ′� satisfies the properties of the normalised Haar measure on H ′.

Finally, (3) is proved in the same way as (2).

PROPOSITION 2. With the notation of Lemma 1, let f : H→C be an integrable
function.

(1) We have ∫
H

f dμH = 1

(H :H ′)
∑

x∈H/H ′

∫
H(x)

f dμH(x).

(2) Suppose that for each x ∈H/H ′, the restriction of f to H(x) admits a product
decomposition

f |H(x) =
∏
�

fx,�,

where the fx,� : H�(x)→C are integrable functions. Then we have∫
H

f dμH = 1

(H :H ′)
∑

x∈H/H ′

∏
�

∫
H�(x)

fx,� dμH�(x).

Proof. Part (1) follows by rewriting
∫

H f dμH as
∑

x∈H/H ′
∫

H(x) f dμH and applying
Lemma 1(1). Part (2) follows from part (1), Lemma 1(3) and the assumption on f .

3. The arboreal representation. Let K be a number field, and let K be an algebraic
closure of K. Let A be a connected commutative algebraic group over K, and let bA be the
first Betti number of A. We fix a square-free integer m � 2. Below, we let � vary in the set
of prime divisors of m. We also fix a point α ∈ A(K).

We define TmA as the projective limit of the torsion groups A[mn] for n � 1; we can
write TmA=∏

� T�A, where the Tate module T�A is a free Z�-module of rank bA.
We define the torsion fields

Km−n :=K(A[mn]) for n � 1

and

Km−∞ :=
⋃
n�1

Km−n .

The Galois action on the m-power torsion points of A gives the m-adic representation of
A, which maps Gal(K/K) to the automorphism group of TmA. We can also speak of the
mod mn representation, which describes the Galois action on A[mn]. Choosing a Z�-basis
for T�A for every prime divisor � of m, we can identify the image of the m-adic representa-
tion with a subgroup of

∏
� GLbA(Z�) and the image of the mod mn representation with a

subgroup of
∏
� GLbA(Z/�

nZ).
For n � 1, let m−nα be the set of points in A(K) whose mnth multiple equals α. We

also write

m−∞α = lim←−
n�1

m−nα.
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This is the set of sequences β = {βn}n�1 such that mβ1 = α and mβn+1 = βn for every
n � 1; it is a torsor under TmA. We note that m−n0= A[mn] and m−∞0= TmA.

We define the fields

Km−nα :=K(m−nα) for n � 1

and

Km−∞α :=
⋃
n�1

Km−nα.

We call the field extension Km−nα/Km−n the mn-Kummer extension defined by the point α.
We view the m-adic representation as a representation of Gal(Km−∞α/K).

We fix an element β ∈m−∞α and define the arboreal representation

ωα,m∞ : Gal(Km−∞α/K)−→ TmA � Aut(TmA)

σ 
−→ (t,M),

where M is the image of σ under the m-adic representation and t= σ(β)− β. Then,
ωα,m∞ is an injective homomorphism of profinite groups identifying Gal(Km−∞α/K) with a
subgroup of

TmA � Aut(TmA)∼=
∏
�

Z
bA
� �

∏
�

GLbA(Z�)
∼=

∏
�

(Z
bA
� � GLbA(Z�)).

Likewise, for each n � 1, the choice of β defines a homomorphism

ωα,mn : Gal(Km−nα/K)−→ A[mn]� Aut(A[mn])
σ 
−→ (t,M),

where t and M are defined in a similar way as above. This identifies Gal(Km−nα/K) with a
subgroup of

A[mn]� Aut(A[mn])∼=
∏
�

((Z/�nZ)bA � GLbA(Z/�
nZ)).

We denote by G(�∞) the image of the �-adic representation in Aut(T�A)∼=GLbA(Z�)

and by G(�n) the image of the mod �n representation in Aut(A[�n])∼=GLbA(Z/�
nZ).

Similarly, we denote by G(m∞) the image of the m-adic representation in Aut(TmA)∼=∏
� GLbA(Z�) and by G(mn) the image of the mod mn representation in Aut(A[mn])∼=

GLbA(Z/m
nZ).

We write dA,� for the dimension of the Zariski closure of G(�∞) in GLbA,Q�
, and we put

DA,m =
∏
�|m
�dA,� .

We note that the dA,� and DA,m do not change when replacing K by a finite extension.
Moreover, assuming the Mumford–Tate conjecture, all dA,� are equal to dA, the dimension
of the Mumford–Tate group, implying DA,m =mdA . This is known, for example, when A is
an elliptic curve; in this case, dA equals 2 if A has complex multiplication, and 4 otherwise.

DEFINITION 3. We say that (A/K,m) satisfies eventual maximal growth of the torsion
fields if there exists a positive integer n0 such that for all N � n � n0 we have

[Km−N :Km−n ] =DN−n
A,m .
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We say that (A/K,m, α) satisfies eventual maximal growth of the Kummer extensions if
there exists a positive integer n0 such that for all N � n � n0 we have

[Km−Nα :Km−nα] = (mbA DA,m)
N−n. (3.1)

REMARK 4. Condition (3.1) means that there is eventual maximal growth of the
torsion fields, that Km−nα and Km−N are linearly disjoint over Km−n and that we have

[Km−Nα :Km−N (m−nα)] =mbA(N−n).

If there is eventual maximal growth of the Kummer extensions, the rational number

Cm :=mbAn/[Km−nα :Km−n ] (3.2)

is independent of n for n � n0. In fact, Cm is an integer because ωα,mn maps
Gal(Km−nα/Km−n) injectively into A[mn] ∼= (Z/mZ)bA .

PROPOSITION 5. If A is a semiabelian variety, then (A/K,m) satisfies eventual maxi-
mal growth of the torsion fields. If A is the product of an abelian variety and a torus and Zα

is Zariski dense in A, then (A/K,m, α) satisfies eventual maximal growth of the Kummer
extensions.

Proof. By [4, Lemma 12], if A is a semiabelian variety and � is a prime divisor of m,
then (A/K, �, α) satisfies eventual maximal growth of the torsion fields. We also know that
the degree [K�−n :K�−1] is a power of � for each n. Therefore, the extensions Km−1 K�−n for
� |m are linearly disjoint over Km−1 and the first assertion follows. By [4, Remark 9], the
second assertion holds for (A/K, �, α), where � is any prime divisor of m. We conclude
because the degrees of these Kummer extensions are powers of �.

4. Relating the density and the arboreal representation.

4.1. The existence of the density. Let (A/K,m, α) be as in Section 3. From now on,
we assume that (A/K,m, α) satisfies eventual maximal growth of the Kummer extensions.

REMARK 6. This is not a restriction if A is the product of an abelian variety and a torus
by Proposition 5. Indeed, consider the number of connected components of the Zariski
closure of Zα. If this number is not coprime to m, then the density Densm(α) is zero by
[5, Main Theorem] while if it is coprime to m we may replace α by a multiple to reduce
to the case where the Zariski closure of Zα is connected. Finally, we may replace A by the
Zariski closure of Zα and reduce to the case where Zα is Zariski dense. Also notice that
if A is simple (i.e. has exactly two connected algebraic subgroups), then eventual maximal
growth of the Kummer extensions is satisfied as soon as α has infinite order.

The TmA-torsor m−∞α from Section 3 defines a Galois cohomology class

Cα ∈H1(Gal(Km−∞α/K), TmA).

For any choice of β ∈m−∞α, this is the class of the cocycle

cβ : Gal(Km−∞α/K) −→ TmA

σ 
−→ σ(β)− β.
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We also consider the restriction map with respect to the cyclic subgroup generated by some
element σ ∈Gal(Km−∞α/K):

Resσ : H1
(
Gal(Km−∞α/K), TmA

)−→H1(〈σ 〉, TmA).

THEOREM 7. If (A/K,m, α) satisfies eventual maximal growth of the Kummer exten-
sions, then the density Densm(α) exists and equals the normalised Haar measure in
Gal(Km−∞α/K) of the subset

Sα := {σ ∈Gal(Km−∞α/K) |Cα ∈ ker(Resσ )}
= {σ ∈Gal(Km−∞α/K) | σ(β)= β for some β ∈m−∞α}.

Proof. The generalisations of [2, Theorem 3.2] and [4, Theorem 7] to the composite
case are straightforward.

Similarly to [4, Remark 21], we may equivalently consider Sα as a subset of either
Gal(K/K) or Gal(Km−∞α/K) with their respective normalised Haar measures.

PROPOSITION 8. If L/K is any Galois extension that is linearly disjoint from Km−∞α
over K, then we have DensL(α)=DensK(α).

Proof. The generalisation of [4, Proposition 22] to the composite case is straightfor-
ward.

4.2. Counting elements in the image of the arboreal representation. By
Theorem 7, computing Densm(α) comes down to computing the Haar measure of Sα
in Gal(Km−∞α/K). This is why we now investigate the Galois groups Gal(Km−nα/K) for
positive integers n.

For M ∈ G(mn) we define

Wmn(M) := {t ∈ A[mn] | (t,M) ∈Gal(Km−nα/K)} (4.1)

and

wmn(M) := #
(
Im(M − I)∩Wmn(M)

)
# Im(M − I)

∈Q. (4.2)

We note that Wmn(M) is a Gal(Km−nα/Km−n)-torsor and in particular satisfies

#Wmn(M)= [Km−nα :Km−n ].
For every prime divisor � of m and every n � 1, we consider the Galois group of the

compositum K�−nαKm−1 over K and the inclusion

ια,�n : Gal(K�−nαKm−1/K) ↪→ (
A[�n]� G(�n)

)× G(m).
For all x ∈ G(m) and V ∈ G(�n), we define

Wx,�n(V) := {τ ∈ A[�n] | (τ, V , x) ∈ Im ια,�n} (4.3)

and

wx,�n(V) := #
(
Im(V − I)∩Wx,�n(V)

)
# Im(V − I)

∈Z[1/�]. (4.4)

We denote by π∗ the projection onto G(∗).
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PROPOSITION 9. If x ∈ G(m) and M ∈ G(mn) are such that πmM = x, then we have

Wmn(M)=
∏
�

Wx,�n(π�n M)

and

wmn(M)=
∏
�

wx,�n(π�n M).

Proof. Since the extensions K�−nαKm−1/Km−1 have pairwise coprime degrees and hence
are linearly disjoint, giving an element of Gal(Km−nα/K)mapping to x ∈ G(m) is equivalent
to giving, for each prime � | n, an element of Gal(K�−nαKm−1/K)mapping to x. Hence, given
an element t=∑

� t� in A[mn] =⊕
� A[�n], we have t ∈Wmn(M) if and only if for every �

we have t� ∈Wx,�n(π�n M). Therefore (t,M) is in Gal(Km−nα/K) if and only if (t�, π�n M, x)
is in the image of ια,�n for all �. This implies the first claim. The second claim follows
because we have Im(M − I)=⊕

� Im(π�n M − I).

LEMMA 10. For all x ∈ G(m) and V ∈ G(�∞), the value wx,�n(V) is constant for n
sufficiently large.

Proof. This is proved as in [4, Lemma 25].

By Lemma 10, we can define

wx,�∞(V)= lim
n→∞wx,�n(V) ∈Z[1/�]. (4.5)

From Proposition 9 we deduce that for all M ∈ G(m∞), the value wmn(M) is also constant
for n sufficiently large, so we can analogously define

wm∞(M)= lim
n→∞wmn(M) ∈Q. (4.6)

PROPOSITION 11. If M ∈ G(m∞) is such that πmM = x, then we have

wm∞(M)=
∏
�

wx,�∞(π�∞M).

Proof. Taking the limit as n→∞ in Proposition 9 yields the claim.

The following lemma gives sufficient conditions for the sets Wmn(M) and the func-
tions wmn(M) and wm∞(M) to admit product decompositions without a dependence on the
element x ∈ G(m). It will not be used in the remainder of this article.

LEMMA 12. For all primes � |m and all n � 1, the following conditions are
equivalent:

(1) The intersection of the fields Km−1 and K�−nα is contained in K�−n .
(2) The intersection of the fields Km−1 K�−n and K�−nα equals K�−n .
(3) The fields Km−1 K�−n and K�−nα are linearly disjoint over K�−n .
(4) We have [Km−1 K�−nα :Km−1 K�−n] = [K�−nα :K�−n].
(5) We have [Km−n K�−nα :Km−n ] = [K�−nα :K�−n ].

If these conditions are satisfied for all primes � |m and all n � 1, then the following
statements hold:

(6) We have Cm =∏
� C�.

(7) For all n � 1 and all M ∈ G(mn) we have Wmn(M)=∏
�W�n(π�n M).
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(8) For all n � 1 and all M ∈ G(mn) we have wmn(M)=∏
� w�n(π�n M).

(9) For all M ∈ G(m∞) we have wm∞(M)=∏
� w�∞(π�∞M).

Proof. The equivalence of the conditions (1)–(4) follows from Galois theory, using the
fact that all the fields involved are Galois extensions of K. The conditions (4) and (5) are
equivalent because [Km−1 K�−nα :Km−1 K�−n] is a power of � and [Km−n :Km−1 K�−n] is prime
to �. If condition (5) holds for a given n � 1 and all primes � |m, then we have

[Km−nα :Km−n ] =
∏
�

[Km−n K�−nα :Km−n ]

=
∏
�

[K�−nα :K�−n ].

This implies that if (5) is true for all primes � |m and all n � 1, then (6) and (7) hold.
Finally, it is clear that (7) implies (8) and (9).

4.3. Partitioning the image of the m-adic representation. We view elements of
G(m∞) as automorphisms of A[m∞]=⋃

n�1 A[mn]. We then classify elements M ∈ G(m∞)
according to the group structure of ker(M − I) and according to the projection πm(M) ∈
G(m). Note that if ker(M − I) is finite, then it is a product over the primes � |m of finite
abelian �-groups that have at most bA cyclic components.

Let F be a group of the form
∏
�|m F�, where F� is a finite abelian �-group with at most

bA cyclic components. We define the set

MF := {M ∈ G(m∞) | ker
(
M − I : A[m∞]→ A[m∞])∼= F}, (4.7)

and for every x ∈ G(m) we define the set

Mx,F := {M ∈ G(m∞) | ker
(
M − I : A[m∞]→ A[m∞])∼= F, πm(M)= x}.

We denote by MF(∗) and Mx,F(∗), respectively, the images of these sets under the
reduction map G(m∞)→ G(∗). We also write

M :=
⋃

F

MF =
⋃
x,F

Mx,F, (4.8)

the union being taken over all x ∈ G(m) and over all groups F=∏
� F� as above, up to

isomorphism.

PROPOSITION 13. The following holds:

(1) The sets Mx,F are measurable in G(m∞), and the set M of (4.8) is measurable in
G(m∞).

(2) If n> v�(exp F) for all � |m, then we have

μG(m∞)(Mx,F)=μG(mn)(Mx,F(m
n)).

(3) We have μG(m∞)(Mx,F)= 0 if and only if Mx,F =∅.
(4) If (A/K,m) satisfies eventual maximal growth of the torsion fields, then we have

μG(m∞)(M)= 1.

Proof. This is proved as in [4, Lemma 23].
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5. The density as an integral. Suppose that (A/K,m, α) satisfies eventual maximal
growth of the Kummer extensions. Recall from Remark 6 that this is not a restriction if A is
the product of an abelian variety and a torus. By Theorem 7, computing Densm(α) comes
down to computing the Haar measure of Sα in Gal(Km−∞α/K). The generalisation of [4,
Remark 19] to the composite case gives

Sα = {(t,M) ∈Gal(Km−∞α/K) |M ∈ G(m∞) and t ∈ Im(M − I)}.
In view of (4.8), we consider the sets

Sx,F := {(t,M) ∈Gal(Km−∞α/K) |M ∈Mx,F and t ∈ Im(M − I)}.
By assertion (4) of Proposition 13 and our assumption that (A/K,m, α) satisfies eventual
maximal growth of the torsion fields, the set Sα is the disjoint union of the sets Sx,F up to
a set of measure 0. To see that the Haar measure of Sx,F is well defined and to compute it,
we define for every n � 1 the set

Sx,F,mn = {(t,M) ∈Gal(Km−nα/K) |M ∈Mx,F(m
n) and t ∈ Im(M − I)}.

PROPOSITION 14. Suppose n> n0 and n>max�{v�(exp F)} for every �, where n0

is as in Definition 3. Then the set Sx,F,mn is the image of Sx,F under the projection to
Gal(Km−nα/K).

Proof. The set Sx,F,mn clearly contains the reduction modulo mn of Sx,F. To prove
the other inclusion, consider (tmn ,Mmn) ∈ Sx,F,mn and a lift (t,M) ∈Gal(Km−∞α/K). Since
n is sufficiently large with respect to F, we have ker(M − I)∼= F. Clearly, Mmn and M
have the same projection x ∈ G(m). To conclude, it suffices to ensure t ∈ Im(M − I). Take
τmn ∈ A[mn] satisfying (Mmn − I)(τmn)= tmn , and some lift τ of τmn to Tm(A): we may
replace t by (M − I)τ because the difference is in mnTm(A) and since n> n0 we know
that Gal(Km−∞α/K) contains mnTm(A)× {I}.

THEOREM 15. We have

μ(Sx,F)= Cm

#F

∫
Mx,F

wm∞(M) dμG(m∞)(M),

where Cm is the constant of (3.2) and wm∞ is as in (4.6).

Proof. Choose n large enough so that n> n0 and n>max�{v�(exp F)} for every �,
where n0 is as in Definition 3. By definition (see (4.1)) we can write

#Sx,F,mn =
∑

M∈Mx,F(mn)

#
(
Im(M − I)∩Wmn(M)

)
.

By definition (see (4.2)), we can express the summand as

# Im(M − I) ·wmn(M)= wmn(M) ·mbn

#F
,

so from (3.2), we deduce

#Sx,F,mn

# Gal(Km−nα/K)
= 1

#G(mn)

∑
M∈Mx,F(mn)

Cm

#F
·wmn(M).

By (3.1), the left-hand side is a non-increasing function of n, and therefore, it admits a
limit for n→∞, which is μ(Sx,F). The right-hand side is an integral over Mx,F(mn) with
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respect to the normalised counting measure of G(mn), and the matrices in Mx,F are exactly
the matrices in G(m∞) whose reduction modulo mn lies in Mx,F(mn). Taking the limit over
n, we thus find the formula in the statement.

THEOREM 16. We have

Densm(α)=Cm

∑
F

1

#F

∫
MF

wm∞(M) dμG(m∞)(M)

=Cm

∫
G(m∞)

wm∞(M)

# ker(M − I)
dμG(m∞)(M), (5.1)

where the function wm∞ is as in (4.6), the constant Cm is as in (3.2), and F varies over the
products over the primes � |m of finite abelian �-groups with at most bA cyclic components.

Proof. To prove the first equality, note that MF is the disjoint union of the Mx,F for x ∈
G(m). By Theorem 7, we may write Densm(α)=μ(Sα)=∑

x,F μ(Sx,F) and then it suffices
to apply Theorem 15. The second equality follows because the union of the sets MF from
(4.7) has measure 1 in G(m∞) by Proposition 13.

COROLLARY 17 ([4, Theorem 1 and Remark 27]). In the special case m= �, we have

Dens�(α)=C�
∑

F

1

#F

∫
MF

w�∞(M) dμG(�∞)(M)

=C�

∫
G(�∞)

w�∞(M)

# ker(M − I)
dμG(�∞)(M), (5.2)

where F varies among the finite abelian �-groups with at most bA cyclic components.

Notice that we have # ker(M − I)= �v�(det(M−I)) for every M ∈ G(�∞); this shows the
equivalence with [4, Theorem 1].

COROLLARY 18. Let � vary among the prime divisors of m. If the fields K�−∞α are
linearly disjoint over K, then we have

Densm(α)=
∏
�

Dens�(α).

Proof. Note that we have Cm =∏
� C�. By assumption, we also have G(m∞)=∏

� G(�∞), which implies μG(m∞) =∏
� μG(�∞), and wm∞(M)=∏

� w�∞(π�∞M). We con-
clude that (5.1) is the product of the expressions (5.2) for � |m.

The conditions of Corollary 18 are satisfied, for example, if Km−1 =K, or more gener-
ally if the degree [K�−1 :K] is a power of � for each �. Under weaker conditions, Densm(α)

is not in general the product of the Dens�(α), but we can still express it as a sum of products
of �-adic integrals, as the following result shows.

THEOREM 19. Denote by H(x)=∏
� H�(x) the set of matrices in G(m∞)⊆∏

� G(�∞)
mapping to x in G(m). We then have

Densm(α)= Cm

#G(m)
∑

x∈G(m)

∏
�

∫
H�(x)

wx,�∞(M)

# ker(M − I)
dμH�(x)(M), (5.3)

where wx,�∞ is as in (4.5).
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Proof. Write Sx =⋃
F Sx,F and recall from Proposition 13 that the set of matrices M

for which ker(M − I) is infinite has measure zero in G(m∞). By Theorem 15, we have

μ(Sx)=
∑

F

μ(Sx,F)=Cm

∫
H(x)

wm∞(M)

# ker(M − I)
dμG(m∞)(M).

The assertion follows from Propositions 2 and 11.

COROLLARY 20. The density Densm(α) is a rational number. Moreover, for every
positive integer b, there exists a non-zero polynomial pb(t) ∈Z[t] with the following prop-
erty: whenever K is a number field and A is the product of an abelian variety and a torus
such that the first Betti number of A equals b, then for all α ∈ A(K) and all square-free
integers m � 2 such that (A/K,m, α) satisfies eventual maximal growth of the Kummer
extensions, we have

Densm(α) ·
∏
�

pb(�) ∈Z[1/m],

where � varies over the prime divisors of m.

Proof. Recall that Cm is an integer. In view of Lemma 10, we can consider each �-adic
integral in (5.3) and proceed as in the proof of [4, Theorem 36].

REMARK 21. For elliptic curves, it is also possible to bound the minimal denomina-
tor of Densm(α). Indeed, let us consider (5.3), recalling that Cm is an integer. Each of the
finitely many functions wx,�∞ takes only finitely many values: these are rational numbers
whose minimal denominator divides �2n0 , where n0 is large enough so that condition (3.1)
holds for all N � n � n0. If M ∈M�(a, b) (see Section 6.2), then # ker(M − I)= �2a+b.
The crucial fact is the independence of the number of lifts [3, Theorem 28]; the case dis-
tinction for the normaliser of a Cartan subgroup does not matter because we separately
count the matrices in the Cartan subgroup and those in its complement. This means that
the measure of M�(a, b)∩H�(x) is a fraction of that of M�(a, b): this ratio can take only
finitely many values and can be understood by working modulo �n0 . We may then need
to multiply the denominator in the measure of M�(a, b) by an integer which is at most
# GL2(�

n0). Essentially we need to evaluate finitely many geometric series because of the
eventual maximal growth of the torsion fields (the degrees [K(E[�n]) :K] for n sufficiently
large form a geometric progression) and we may reason as in [4, Theorems 5 and 6].

REMARK 22. We may replace the point α by a finitely generated subgroup G of
A(K). Indeed, let α1, . . . , αr be generators for G. We may then consider the point β =
(α1, . . . , αr) in the product Ar(K). Then the density Densm(β) for the single point β is
exactly the density of primes p of K such that the order of (G mod p) is coprime to m.

6. Serre curves.

6.1. Definition of Serre curves. Let E be an elliptic curve over a number field K.
We choose a Weierstrass equation for E of the form

E : y2 = (x− x1)(x− x2)(x− x3), (6.1)

where x1, x2, x3 ∈K(E[2]) are the x-coordinates of the points of order 2. The discriminant

of the right-hand side of (6.1) is �=√�2
, where
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√
�= (x1 − x2)(x2 − x3)(x3 − x1).

We thus have K(
√
�)⊆K(E[2]), and we define a character

ψE : Gal(K(E[2])/K)−→{±1}
σ 
−→ σ(

√
�)/
√
�.

For any choice of basis of the 2-torsion of E, we have the 2-torsion representation

ρE,2 : Gal(K(E[2])/K)−→GL2(Z/2Z).

Let ψ be the unique non-trivial character GL2(Z/2Z)→{±1}; this corresponds to the sign
character under any isomorphism of GL2(Z/2Z) with S3. The character ψE factors as

ψE =ψ ◦ ρE,2.

From now on, we take K =Q. All number fields that we will consider will be subfields
of a fixed algebraic closure Q of Q.

Let d be an element of Q×. Let md be the conductor of Q(
√

d); this is the smallest
positive integer such that

√
d lies in the cyclotomic field Q(ζmd ). Let dsf be the square-free

part of d. We have

md =
⎧⎨⎩ |dsf| if dsf ≡ 1 mod 4,

4|dsf| otherwise.

We define a character

εd : Gal(Q(ζmd )/Q)−→{±1}
σ 
−→ σ(

√
d)/
√

d.

If σ is the automorphism of Q(ζmd ) defined by σ(ζmd )= ζ a
md

with a ∈ (Z/mdZ)×, then

εd(σ ) equals the Jacobi symbol
( dsf

a

)
. We view εd as a character of GL2(Z/mdZ) by

composing with the determinant.
For all n � 1, we have a canonical projection

πn : GL2(Ẑ)→GL2(Z/nZ).

Fixing a Ẑ-basis for the projective limit of the torsion groups E[n](Q), we have a torsion
representation

ρE : Gal(Q/Q)→GL2(Ẑ).

The image of ρE is contained in the subgroup

H� = {M ∈GL2(Ẑ) |ψ(π2(M))= ε�(πm�
(M))}

of index 2 in GL2(Ẑ). This expresses the fact that
√
� is contained in both Q(E[2]) and

Q(E[m�]). An elliptic curve is said to be a Serre curve if the image of ρE is equal to H�.
As proven by N. Jones [1], almost all elliptic curves over Q are Serre curves.

6.2. Counting matrices. Let � be a prime number. For all integers a, b � 0, we
write M�(a, b) for the set of matrices M ∈GL2(Z�) such that the kernel of M − I as an
endomorphism of (Q�/Z�)

2 is isomorphic to Z/�aZ×Z/�a+bZ.
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If N is a non-empty subset of M�(a, b) that is the preimage in M�(a, b) of its reduc-
tion modulo �n (which means that N contains the intersection of M�(a, b) with the set of
preimages of (N mod �n) in GL2(Z�)), then we have

μGL2(Z�)(N )
μGL2(Z�)(M�(a, b))

= μGL2(Z/�nZ)(N mod �n)

μGL2(Z/�nZ)(M�(a, b) mod �n)
(6.2)

by [3, Theorem 27] (where the number of lifts is independent of the matrix). Notice that if
a � n, then (N mod �n) consists of the identity.

PROPOSITION 23. If N is a subset of M�(a, b) that is the preimage in M�(a, b) of
its reduction modulo �, then we have

μGL2(Z�)(N )=μGL2(Z/�Z)(N mod �) ·

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if a= b= 0

�−b(�− 1) if a= 0, b � 1

�−4a · �(�− 1)2(�+ 1) if a � 1, b= 0

�−4a−b · (�− 1)2(�+ 1)2 if a � 1, b � 1.

Proof. We are working with GL2(Z�), so we can apply [3, Proposition 33] (see also
[3, Definition 19]). This gives the assertion for the set M�(a, b); we can conclude because
of (6.2).

We now collect some results in the case �= 2. From [3, Theorem 2], we know

μGL2(Z2)(M2(a, b))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/3 if a= b= 0

1/2 · 2−b if a= 0, b � 1

2−4a if a � 1, b= 0

3/2 · 2−4a−b if a � 1, b � 1.

We consider the action of GL2(Z/23Z) on Q(ζ23) defined by Mζ23 = ζ det M
23 . The matri-

ces M ∈GL2(Z/23Z) that fix
√−1 are those with det(M)= 1, 5. The ones that fix

√
2 are

those with det(M)= 1, 7. The ones that fix
√−2 are those with det(M)= 1, 3.

For a, b ∈ {0, 1, 2, 3} and z ∈ {−1, 2,−2}, we write N2(a, b, z) for the set of matrices
in M2(a, b) that fix

√
z.

LEMMA 24. We have

μGL2(Z2)(N2(a, b; −1))

μGL2(Z2)(M2(a, b))
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/2 for a= 0, b � 0

2/3 for a= 1, b= 0

1/3 for a= 1, b � 1

1 for a � 2, b � 0
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and

μGL2(Z2)(N2(a, b; ±2))

μGL2(Z2)(M2(a, b))
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/2 for a � 1, b � 0

2/3 for a= 2, b= 0

1/3 for a= 2, b � 1

1 for a � 3, b � 0.

Proof. For a, b ∈ {0, 1, 2, 3} and d ∈ (Z/23Z)×, let h(a, b, d) be the number of matri-
ces M ∈GL2(Z/23Z) such that det(M)= d and ker(M − I)∼=Z/2aZ×Z/2a+bZ. Using
[9] one can easily count these matrices:

� h(0, 0, d)= 128, h(0, 1, d)= 96 and h(0, 2, d)= h(0, 3, d)= 48 for all d;
� h(1, 0, d)= 32 for d = 1, 5 and h(1, 0, d)= 16 for d = 3, 7;
� for b= 1, 2 we have h(1, b, d)= 12 for d = 1, 5 and h(1, b, d)= 24 for d = 3, 7;
� h(2, 0, 1)= 4, h(2, 0, 5)= 2 and h(2, 0, d)= 0 for d = 3, 7;
� h(2, 1, 1)= 3, h(2, 1, 5)= 6 and h(2, 1, d)= 0 for d = 3, 7;
� h(3, 0, 1)= 1 (the identity matrix) and h(3, 0, d)= 0 for d = 3, 5, 7.

This classification and (6.2) lead to the measures in the statement.

LEMMA 25. For all a, b≥ 0 and all M ∈M2(a, b), we have

ψ(M)=
{−1 if a= 0 and b � 1,

1 otherwise.

Proof. Consider matrices M ∈GL2(Z/2Z). The matrices

M ∈
⎧⎨⎩

⎛⎝1 0

0 1

⎞⎠ ,

⎛⎝0 1

1 1

⎞⎠ ,

⎛⎝1 1

1 0

⎞⎠⎫⎬⎭
satisfy ψ(M)= 1 and dimF2 ker(M − I) ∈ {0, 2}. The matrices

M ∈
⎧⎨⎩

⎛⎝0 1

1 0

⎞⎠ ,

⎛⎝1 1

0 1

⎞⎠ ,

⎛⎝1 0

1 1

⎞⎠⎫⎬⎭
satisfy ψ(M)=−1 and dimF2 ker(M − I)= 1. This implies the claim.

Now let � be an odd prime number. We write

�∗ = (−1)(�−1)/2�,

so ε�∗ is a character of (Z/�Z)× and also of GL2(Z/�Z) via the determinant.

LEMMA 26. Let M vary in GL2(Z/�Z) \ {I}, where � is an odd prime number.

(1) There are 1
2 (�+ 1)2(�− 2) matrices M satisfying ε�∗(M)= 1 and � | det(M − I).

(2) There are 1
2�(�

3 − 2�2 − �+ 4) matrices M satisfying ε�∗(M)= 1 and � �
det(M − I).

(3) There are 1
2�(�

2 − 1) matrices M satisfying ε�∗(M)=−1 and � | det(M − I).
(4) There are 1

2�(�
2 − 1)(�− 2) matrices M satisfying ε�∗(M)=−1 and � �

det(M − I).
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Proof. (1) Write χ(M) for the characteristic polynomial of M . The condition
ε�∗(M)= 1 is equivalent to det(M)= χ(0) being a square in (Z/�Z)×, and the
condition � | det(M − I) is equivalent to χ(1)= 0 in Z/�Z. Thus, the matrices M
satisfying both conditions are those for which there exists s ∈ (Z/�Z)× with

χ(M)= (x− 1)(x− s2).

The matrices with χ(0) �= 1 (giving �−1
2 − 1 possibilities for χ ) are diagonalisable,

and we only have to choose the two distinct eigenspaces; this gives (�+ 1)� matri-
ces for every such χ . The matrices with χ(0)= 1 are the identity (which we are
excluding) and the �2 − 1 matrices conjugate to

( 1 1
0 1

)
. Note that (1) can also be

obtained from [7, Table 1].
(2) There are 1

2 # GL2(Z/�Z) matrices satisfying ε�∗ = 1, and we only need to subtract
the identity and the matrices from (1).

(3) There are �3 − 2� matrices in GL2(Z/�Z) having 1 as an eigenvalue (see for exam-
ple [3, Proof of Theorem 2]), and we only need to subtract the identity and the
matrices from (1).

(4) There are 1
2 # GL2(Z/�Z)matrices satisfying ε�∗ =−1, and we only need to subtract

the matrices from (3). Alternatively, there are # GL2(Z/�Z)− (�3 − 2�) matri-
ces that do not have 1 as eigenvalue, and we only need to subtract the matrices
from (2).

6.3. Partitioning the image of the m-adic representation. Let E be a Serre curve
over Q. Let � be the minimal discriminant of E, and let �sf be its square-free part. We
write �sf = zu, where z ∈ {1,−1, 2,−2} and where u is an odd fundamental discriminant.
Then |u| is the odd part of m�, and we have ε� = εz · εu as characters of (Z/m�Z)×.

Now let m be a square-free positive integer. If m= 2, or if m is odd, or if u does not
divide m, then we have

G(m∞)=
∏
�

G(�∞).

If m �= 2 is even and u divides m, then G(m∞) has index 2 in
∏
� G(�∞). The defining

condition for the image of the m-adic representation is then ψ = ε�, or equivalently

ψ · εz = εu.

We may then partition G(m∞)⊆∏
�|m G(�∞) into two sets that are products, namely

(G(2∞)∩ {ψ · εz = 1})× (G(|u|∞)∩ {εu = 1})× G
(∣∣∣ m

2u

∣∣∣∞)
and

(G(2∞)∩ {ψ · εz =−1})× (G(|u|∞)∩ {εu =−1})× G
(∣∣∣ m

2u

∣∣∣∞)
.

The set G(|u|∞)∩ {εu = 1} is the disjoint union of sets of the form
∏
�|u(G(�∞)∩ {ε�∗ =±1}), choosing an even number of minus signs; for the set G(|u|∞)∩ {εu =−1} we have to

choose an odd number of minus signs. Since each � | u is odd, the two sets G(�∞)∩ {ε�∗ =
±1} can be investigated with the help of Lemma 26. Finally, the two sets G(2∞)∩ {ψ · εz =
±1} can be investigated using Lemmas 24 and 25.
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7. Examples.

7.1. Example (non-surjective mod 3 representation). Consider the non-CM ellip-
tic curve

E : y2 + y= x3 + 6x+ 27

of discriminant −319 · 17 and conductor 153= 32 · 17 over Q [8, label 153.b2]. The group
E(Q) is infinite cyclic and is generated by the point

α = (5, 13).

We will compute the following values (by testing the primes up to 106, we have computed
an approximation to Dens6(α) using [9]):

Point Dens2 Dens3 Dens6 primes < 106

α = (5, 13) 11/21 23/104 253/2184= 11.584 . . .% 11.624%

2α = (−1, 4) 16/21 23/104 46/273= 16.849 . . .% 16.885%

3α = (−7/4,−31/8) 11/21 77/104 121/312= 38.782 . . .% 38.730%

6α = (137/16, 1669/64) 16/21 77/104 22/39= 56.410 . . .% 56.373%

4α = (3,−9) 37/42 23/104 851/4368= 19.482 . . .% 19.479%

9α = ( 19649
12100 ,− 9216643

1331000 ) 11/21 95/104 1045/2184= 47.847 . . .% 47.791%

The image of the 3-adic representation is the inverse image of its reduction modulo
3, the image of the mod 3 representation is isomorphic to the symmetric group of order
6 and the 3-adic Kummer map is surjective [4, Example 6.4]. The image of the mod 3
representation has a unique subgroup of index 2, so the field Q(E[3]) contains as its only
quadratic subextension the cyclotomic field Q(

√−3).
The image of the 2-adic representation is GL2(Z2); see [8]. By [2, Theorem 5.2], the

2-adic Kummer map is surjective: the assumptions of that result are satisfied because the
prime p= 941 splits completely in E[4], but the point (α mod p) is not 2-divisible over Fp.
Since the image of the mod 2 representation has a unique subgroup of index 2, the field
Q(E[2]) contains as its only quadratic subextension the field Q(

√−51) (the square-free
part of the discriminant of E is −51).

We have Q(E[2])∩Q(E[9])=Q because the residual degree modulo 22699 of the
extension Q(E[2], E[9])/Q(E[9]) is divisible by 3 and the degree of this extension is even
because Q(

√−51) is not contained in Q(E[3]). We deduce Q(E[2])∩Q(E[3∞])=Q by
applying [4, Theorem 14 (i)] (where K =Q(E[2])).

Moreover, we have Q(E[3])∩Q(E[4])=Q because Q(
√−3) is not contained in

Q(E[4]): the prime 941 is not congruent to 1 modulo 3 and splits completely in Q(E[4]).
By [4, Theorem 14 (i)], we conclude that Q(E[3])∩Q(E[2∞])=Q.

The 2-adic Kummer extensions of α have maximal degree also over Q(E[3]), in view
of the maximality of the 2-Kummer extension, because the prime 4349 splits completely
in Q(2−2α) but not in Q(

√−3); see [4, Theorem 14 (ii)] (where K =Q(
√−3)).

The 3-adic Kummer extensions of α have maximal degree also over Q(E[2]) because
the prime 217981 splits completely in Q(3−2α) but 3 divides the residual degree of
Q(E[2]); see [4, Theorem 14 (ii)] (where K =Q(E[2])).
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We thus have G(6∞)= G(2∞)× G(3∞), the 2∞ Kummer extensions are independent
from Q(E[3]), and the 3∞ Kummer extensions are independent from Q(E[2]). We are thus
in the situation that the fields Q(2−∞α) and Q(3−∞α) are linearly disjoint over Q. We
deduce from Corollary 18 that the equality

Dens6(α)=Dens2(α) ·Dens3(α)

holds for α and for its multiples. The 2-densities can be evaluated by [4, Theorem 35], for
the 3-densities see [4, Example 6.4].

7.2. The Serre curve y2 + y = x3 + x2. The elliptic curve

E : y2 + y= x3 + x2

of discriminant −43 and conductor 43 over Q [8, label 43.a1] is a Serre curve [6, Example
5.5.7]. The group E(Q) is infinite cyclic and is generated by the point

α = (0, 0).

The point α satisfies

Dens2(α) ·Dens43(α) �=Dens2·43(α)

because, as we will show below, we have

Dens2(α)= 11

21
, Dens43(α)= 143510179

146927088
,

Dens2(α) ·Dens43(α)= 143510179

280497168
∼ 51.16279%,

Dens2·43(α)= 526206455

1028489616
∼ 51.16303%.

We will also compute the following values (by testing the primes up to 106, we have
computed an approximation to Dens2·43(α) using [9]):

Point Dens2·43 primes < 106

α= (0, 0) 526206455/1028489616= 51.163 . . .% 51.136%

2α = (−1,−1) 42521603/57138312= 74.418 . . .% 74.397%

4α = (2, 3) 1769960107/2056979232= 86.046 . . .% 86.072%

By looking at the reduction modulo 293, we see that α is not divisible by 2 over the
4-torsion field of E. Therefore, by [2, Theorem 5.2], for every prime number � and for
every n � 1, the degree of the �n-Kummer extension is maximal, i.e.

[Q�−nα :Q�−n] = �2n.

The 43-adic Kummer extensions have maximal degree also over Q(E[2]), i.e.

[Q43−nα(E[2]) :Q43−n(E[2])] = 432n,

because the degree [Q(E[2]) :Q] = 6 is coprime to 43.
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The extensions Q(2−1α) and Q(E[2 · 43]) are linearly disjoint over Q(E[2]), as can
be seen by investigating the residual degree for the reduction modulo the prime 29327,
which splits completely in Q(E[2]). Indeed, the residual degree of the extension Q(2−1α)

equals 4, while the residual degree of the extension Q(E[2 · 43]) is odd because the prime is
congruent to 1 modulo 43, and there are points of order 43 in the reductions (the subgroup
of the upper unitriangular matrices in GL2(Z/43Z) has order 43).

The 2-adic Kummer extensions have maximal degree also over Q(E[43]), i.e.

[Q2−nα(E[43]) :Q2−n(E[43])] = 22n.

To see this, we consider the intersection L of Q2−nα and Q(E[43]). This is a Galois exten-
sion of Q, and the group G=Gal(L/Q) is a quotient of both (Z/2nZ)2 � GL2(Z/2nZ) and
GL2(Z/43Z). Because SL2(Z/43Z) has no non-trivial quotient that can be embedded into
a quotient of (Z/2nZ)2 � GL2(Z/2nZ), the quotient map GL2(Z/43Z)→G factors as

GL2(Z/43Z)
det−→ (Z/43Z)× −→G

This implies that L is a subfield of Q(ζ43). Furthermore, L contains Q(
√−43). Because

(Z/2nZ)2 � GL2(Z/2nZ) does not have any quotient group of odd order, the maximal sub-
field of Q(ζ43) that can be embedded into Q2−nα is Q(

√−43), and we conclude that L
equals Q(

√−43).
It follows that for m= 2 · 43, we have the maximal degree [Qm−nα :Qm−n ] =m2n and,

more generally, that for every multiple P of α we have [Qm−nP :Qm−n ] = [Q2−nP :Q2−n ] ·
[Q43−nP :Q43−n ]. We may then apply [4, Example 28] and various results in this paper to
compute the exact densities in the above table, and we use [9] to numerically verify them
for the primes up to 106.

We conclude by sketching the computations for the point α. The 43-adic represen-
tation is surjective, and the 43-Kummer extensions have maximal degree. By parts (3)
and (4) of Lemma 26, we find that 1

2·42 (respectively, 41
2·42 ) is the counting measure in

GL2(Z/43Z) of the matrices such that ε−43 =−1 and that are in (M43(0, b) mod �) for
some b> 0 (respectively, for b= 0). By multiplying this quantity by 43−b · 42, we obtain
by Proposition 23 that μGL2(Z43)(M43(0, b))= 1

2 43−b for b> 0. By [4, Example 28], the
contribution to Dens43 coming from the matrices in G(43∞) such that ε−43 =−1 is then

Dens43(ε−43 =−1)= 41

2 · 42
+

∑
b>0

1

2
· 43−2b = 1805

2 · 42 · 44
.

From [4, Theorem 35] we know that Dens43(α)= 143510179/146927088, and hence the
contribution to Dens43(α) coming from the matrices in G(43∞) such that ε−43 =+1 equals

Dens43(ε−43 = 1)= 3261637

6678504
.

Now we work with the 2-adic representation, which is surjective and restrict to count-
ing the contribution to Dens2(α) coming from the matrices satisfying ψ =−1. In view of
Lemma 25 and Proposition 23, we find μGL2(Z2)(M2(0, b))= 1/2 · 2−b for b> 0. By [4,
Example 28], the contribution to Dens2(α) coming from the matrices in G(2∞) such that
ψ =−1 is therefore

Dens2(ψ =−1)=
∑
b>0

1/2 · 2−2b = 1/6. (7.1)
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From [4, Theorem 35] we know that Dens2(α)= 11/21, and hence the contribution to
Dens2 coming from the matrices in G(2∞) such that ψ = 1 is

Dens2(ψ = 1)= 5/14.

Finally, by the partition in Section 6.3, we can compute the requested density as the
following combination of the above quantities:

Dens2·43(α)= 2
(
Dens2(ψ = 1) ·Dens43(ε−43 = 1)

+Dens2(ψ =−1) ·Dens43(ε−43 =−1)
)
. (7.2)

Indeed, let us consider Theorem 19, recalling that Cm = 1. Let us call H+ the subset of
G(m∞) consisting of elements whose image in G(2) satisfies ψ = 1 and whose image
in G(43) satisfies ε−43 = 1 and define analogously H− with ψ =−1 and ε−43 =−1.
Write H+ =H2,+ ×H43,+, where H2,+ ⊆ G(2∞) and H43,+ ⊆ G(43∞). Similarly, write
H− =H2,− ×H43,−. The formula of Theorem 19, considering the two contributions for
Dens2·43(α) coming from H+ and H−, gives

Dens+ = #G(2)#G(43)

#G(2 · 43)

∫
H2,+

w2∞(M)

# ker(M − I)
dμG2∞ (M) ·

∫
H43,+

w43∞(M)

# ker(M − I)
dμG43∞ (M),

and similarly for Dens−. This yields formula (7.2).
For the point 2α, by [4, Example 28], we only need to scale (7.1) by a factor 2, giving

1/3 and 3/7 as the two contributions to Dens2(2α) by [4, Theorem 35]. For the point 4α,
we adapt (7.1) as 2 · 1/2 · 2−2 +∑

b>1 4 · 1/2 · 2−2b and obtain 5/12 and 13/28 as the two
contributions to Dens2(4α).
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