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Rudiments of Statistical Learning Theory

In the scenario considered in the next few chapters, data reach a learner in the
form

yi = f (x(i)), i ∈ [1 : m].

Both the instances x(i) ∈ X and the targets yi ∈ Y are known to the learner. It
is often the case that X ⊆ Rd is made of vectors containing d features, over-
looking here how these features are created, and that Y is a discrete set whose
elements represent certain classes, in which case the yi are called labels. The
postulate of statistical learning theory is that x(1), . . . , x(m) come as independent
realizations of a single random variable—whose distribution is not available to
the learner. The implicit assumption that the targets yi depend deterministically
on the instances x(i) via yi = f (x(i)) for some function f : X → Y could be
relaxed. It is indeed usual, although not examined in this book, to consider the
couples (x(i), yi) ∈ X×Y as independent realizations of a random variable (x, y)
with a distribution on X ×Y for which E[y|x] = f (x).

1.1 True and Empirical Risks

The learner’s objective is to exploit the data given through the training sample
S = ((x(1), y1), . . . , (x(m), ym)) and to produce a function hS : X → Y, called
a predictor, as a substitute for the unknown function f : X → Y. The map
Δ : S ∈ (X × Y)m �→ hS ∈ F(X,Y) does not need to be computationally
feasible at this point, so Δ is referred to as a learning map rather than a learning
algorithm. The performance of a given predictor h ∈ F(X,Y) is assessed by
how small its risk is. The latter, also called the generalization error, is defined
relative to a loss function by

Risk f (h) := E[Loss(h(x), f (x))], (1.1)
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where the expectation is taken over a random variable x whose distribution is
the one that generated the x(i). The loss function, defined on Y ×Y and taking
values in [0,∞), should be small when its two inputs are close and large when
they are far. For binary classification, i.e., the situation where Y = {0, 1} or
Y = {−1,+1}, a popular choice is the 0/1-loss, given by

Loss0/1(y, y′) = �{y�y′} =

{
1 if y � y′,
0 if y = y′.

For regression, i.e., the situation where Y = R, a popular choice is the square
loss, given by

Losssq(y, y′) = (y − y′)2.

Notice that the learner does not have access to the true risk defined in (1.1),
since the distribution generating x(1), . . . , x(m) is not available. But the training
sample S = ((x(1), y1), . . . , (x(m), ym)) supplies an ersatz known as the empirical
risk, which is defined by

R̂iskS(h) :=
1
m

m∑
i=1

Loss(h(x(i)), yi).

Without constraint on h ∈ F(X,Y), minimizing the empirical risk is easy: one
can create a predictor hS yielding R̂iskS(hS) = 0 by forcing hS(x(i)) = yi for
each i ∈ [1 : m] and choosing hS(x) arbitrarily for x � {x(1), . . . , x(m)}, e.g. as a
constant there. However, such a predictor will not generalize well, in the sense
that the true risk (aka generalization error) will not be small.

This phenomenon is attenuated by calling upon a prior belief that realistic
predictors are close to functions from a certain hypothesis class H ⊆ F(X,Y).
Thus, with the constraint that h belongs to H , the empirical risk minimization
strategy offers the natural learning map defined by

Δerm
H : S ∈ (X ×Y)m �→ argmin

h∈H
R̂iskS(h) ∈ H .

The risk of this empirical risk minimizer decomposes as

Risk f (Δerm
H (S)) = εapp + εest,

i.e., as the sum of the approximation error εapp ≥ 0 and the estimation error
εest ≥ 0, respectively given by

εapp := inf
h∈H

Risk f (h),

εest := Risk f (Δerm
H (S)) − inf

h∈H
Risk f (h).

The approximation error εapp is independent of the sample S and reflects how
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well f can be approximated by elements from the given hypothesis class. The
estimation error εest is the object of the considerations that follow.

1.2 PAC-Learnability

In the probably approximately correct (PAC for short) framework, one attempts
to make εest smaller than a prescribed accuracy ε ∈ (0, 1) with a prescribed
confidence δ ∈ (0, 1). It is sometimes required to do so via an efficient learning
algorithm, i.e., an algorithm whose runtime is polynomial in ε−1, δ−1, and the
sizes of the problem. This is not enforced in the formal definition below, in
which the probability is taken over x(1), . . . , x(m), understood as independent
random variables.

Definition 1.1 A hypothesis classH ⊆ F(X,Y) is called PAC-learnable with
respect to a loss function Loss : Y ×Y → [0,∞) if there exists a learning map
Δ : S ∈ (X ×Y)m �→ hS ∈ H such that, for all f : X → Y and all ε, δ ∈ (0, 1),

P

[
Risk f (hS) − inf

h∈H
Risk f (h) ≤ ε

]
≥ 1 − δ,

independently of the probability distribution on X, provided that

m ≥ mH (ε, δ)

for some mH : (0, 1)2 → N∗ growing at most polynomially in ε−1 and δ−1.

The smallest possible function mH appearing in this definition is referred to
as the sample complexity. For binary classification with the 0/1-loss, it would
have been equivalent to state the definition with Δ specifically taken to be the
empirical risk minimization map. This will be revealed by the fundamental
theorem of PAC-learning in Chapter 3. As a prelude to this theorem, the next
result shows that a class of boolean functions that is finite is automatically
PAC-learnable for the 0/1-loss. This is an example of a distribution-free result,
since no assumption on the underlying probability distribution is made.

Proposition 1.2 Given a finite set H ⊆ F(X, {0, 1}) and a loss function with
values in [0, 1], the empirical risk minimization strategy provides a learning
mapS ∈ (X×Y)m �→ hS ∈ H such that, for all boolean functions f : X → {0,1}
and all ε, δ ∈ (0,1),

P

[
Risk f (hS) − inf

h∈H
Risk f (h) ≤ ε

]
≥ 1 − δ (1.2)
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provided that

m ≥
2 ln(2|H|/δ)

ε2 . (1.3)

Proof The inequality (1.2) shall be established in the equivalent form

P := P
[
Risk f (hS) − Risk f (h∗) > ε

]
≤ δ, (1.4)

where h∗ ∈ H is chosen so that Risk f (h∗) is equal to infh∈H Risk f (h) (or is
arbitrarily close to it in case the infimum is not achieved). From the definition
of empirical risk minimization, one observes that R̂iskS(hS) ≤ R̂iskS(h∗) and,
in turn, that

Risk f (hS) − Risk f (h∗) =
(

Risk f (hS) − R̂iskS(hS)
)
+
(
R̂iskS(hS) − Risk f (h∗)

)
≤
(

Risk f (hS) − R̂iskS(hS)
)
+
(
R̂iskS(h∗) − Risk f (h∗)

)
≤ 2 sup

h∈H
|R̂iskS(h) − Risk f (h)|.

As a consequence, one has

P ≤ P

[
sup
h∈H

|R̂iskS(h) − Risk f (h)| >
ε

2

]
= P

[
|R̂iskS(h) − Risk f (h)| >

ε

2
for some h ∈ H

]
. (1.5)

For a fixed h ∈ H , the Hoeffding inequality (see Theorem B.6) yields

P

[
|R̂iskS(h) − Risk f (h)| >

ε

2

]
= P

[∣∣∣∣ 1m
m∑

i=1

Loss(h(x(i)), f (x(i))) − E[Loss( f (x), h(x))]
∣∣∣∣ > ε2

]
≤ 2 exp

(
−
ε2m

2

)
,

having used the fact that the random variables Loss(h(x(i)), f (x(i))) take values
in [0, 1]. A union bound in (1.5) now implies that

P ≤ 2|H| exp
(
−
ε2m

2

)
.

This is bounded above by δ exactly when m ≥ 2 ln(2|H|/δ)/ε2, i.e., when
Condition (1.3) is fulfilled. �
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1.3 Validation

With m and δ being fixed, it is apparent from (1.3) that enlarging the class H
has the effect of increasing (a bound on) the estimation error εest. At the same
time, enlarging the classH has the effect of decreasing the approximation error
εapp. Thus, in order to keep the total error εapp + εest low, a compromise is to
be found for the size of H . This observation exemplifies the bias-complexity
tradeoff. In more general situations, it remains intuitive that a small hypothesis
class is not flexible enough to perform well on the sample (this phenomenon
is called underfitting), while a large hypothesis class can match the sample
perfectly but perform poorly on other datapoints (this phenomenon is called
overfitting); see Figure 1.1 for an illustration.

Figure 1.1 Data fitting with univariate polynomials results in underfitting when
the degree is low (left) and in overfitting when the degree is high (right).

Even after having decided on a hypothesis class H and a learning map Δ,
the learner will still find it difficult to evaluate the true risk of the predictor
h = Δ(S), as the definition (1.1) involves two unknown entities: the function f
and the distribution over which the expectation is taken. The natural ersatz
R̂iskS is not a reliable substitute for Risk f (h) because the learning map Δ
is designed to make this empirical risk small, yet its performance on unseen
datapoints remains uncertain. A heuristic workaround consists in partitioning
the sample S into a training set T and a validation set V. The training set T is
used to produce the predictor h = Δ(T ), whose performance is then assessed
by the empirical risk R̂iskV(h) relative to the validation setV. Cross-validation
actually consists in partitioning S into K groups U1, . . . ,UK of roughly equal
size and to repeat, for each k ∈ [1 : K], the above procedure with S \ Uk and
Uk as training and validation sets, respectively.
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Exercises

1.1 Given h ∈ F(X,Y), verify that the expectation of the empirical risk over
the independent random variables x(1), . . . , x(m) agrees with the true risk,
i.e., that E[R̂iskS(h)] = E[Loss(h(x), f (x))]. Verify also that its variance
satisfies V[R̂iskS(h)] = V[Loss(h(x), f (x))]/m.

1.2 Let H be the hypothesis class of affine functions on Rd, i.e., of functions
of the form

x ∈ Rd �→ a0 + a1x1 + · · · + ad xd ∈ R.

For the square loss, observe that the empirical risk minimization strategy
reduces to the least-squares problem of minimizing ‖y − Xa‖2

2 over all
a ∈ Rd+1 for some matrix X ∈ Rm×(d+1) to identify.

1.3 Let a sampleS be partitioned into a training setT and a validation setV.
Considering the hypothesis class of affine functions and the square loss,
let hT denote the empirical risk minimizer relative to T . Prove that the
expected empirical risk of hT is no larger on T than on V, i.e., that

E
[
R̂iskT (hT )

]
≤ E

[
R̂iskV(hT )

]
,

with expectation taken over all the independent random variables x(i).
1.4 When (x, y) is a random variable over X × Y, the risk of a predictor

h : X → Y is defined relative to a loss function via

Risk(h) := E[Loss(h(x), y)],

with expectation now taken jointly over x and y.
For regression with the square loss, defining f (x) := E[y|x] to be the
conditional probability of y given x, establish the identity

Risk(h) = Risk( f ) + E
[
(h(x) − f (x))2

]
,

showing that f is an optimal predictor.
For classification with the 0/1-loss, prove that an optimal predictor is

given by the Bayes predictor defined for x ∈ X by

f (x) =
{

1 if P[y = 1|x] ≥ P[y = 0|x],
0 otherwise.
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