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Abstract

A multitype branching process is presented in the framework of marked trees and
its structure is studied by applying the strong branching property. In particular, the
Markov property and the expression for the generator are derived for the process whose
components are the numbers of particles of each type. The filtering of the whole
population, observing the number of particles of a given type, is discussed. Weak
uniqueness for the filtering equation and a recursive structure for the linearized filtering
equation are proved under a suitable assumption on the reproduction law.
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1. Introduction

Branching processes are usually used to model the behaviour of populations of ‘living’
particles [1] and have many applications in the physical and biological sciences. Multitype
branching processes are a natural generalization of branching processes, allowing particles to
be divided into a finite number of types and assuming that particles of different types have
different probabilistic behaviours. These processes also arise in a variety of biological and
physical applications: they could represent genetic types in an animal population; mutant types
in a bacterial population; electrons, photons, and nucleons in a cosmic ray cascade; and so on.

To describe a multitype branching process, we assume that every particle lives an exponen-
tially distributed time with the distribution’s parameter depending on the particle’s type. At its
death, each particle splits into a random number of offspring according to a given reproduction
law that also depends on particle type. Offspring particles have independent behaviours.

For the sake of simplicity, we consider two-type branching processes. To represent this
model, in the first section of the paper, we choose a canonical space that is a modification
of the space of trees marked by lifetimes [8], [14]. On this space we define two probability
measures, labelled by the type of the ancestor, and we prove the branching property in a form
that agrees with the characteristics of our model. This construction parallels that in [14], with
some nontrivial modifications related to the dependence of the probabilistic behaviour of each
particle on its type.

In the second section, by using the strong version of the branching property, we are able to
describe the dynamics of the pair (Xt , Yt ), where, at time t ,Xt is the number of type-1 particles
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Multitype branching processes 447

and Yt is the number of type-2 particles. In particular, we prove that (Xt , Yt ) is a pure-jump
Markov process and we find the structure of its generator.

When the behaviour of the whole population cannot be directly observed, and it is possible
or convenient only to observe the behaviour of a subpopulation, the problem of obtaining
information on the whole population, given the partial observation, has to be studied. In [5]
a homogeneous population was considered, and the observed subpopulation consisted of the
descendants of a given particle. In this paper, we deal with a heterogeneous population and we
observe only the cardinality of the subpopulation consisting of type-2 particles. This problem
reduces to the classical filtering problem of finding the conditional law of the cardinality of
the whole population or, equivalently, the law of the process Xt given the past history of the
process Yt , when both the state process and the observation process are pure-jump processes
with common jump times and unbounded jump intensities. Furthermore, the pair (Xt , Yt ) is
a Markov process. The third section of this paper is devoted to the discussion of this filtering
problem.

The required conditional law is a probability-measure-valued process, and it is a solution
of the filtering equation known as the Kushner–Stratonovich equation [2]. Since Yt is not a
counting process, by following a method proposed in [3] and already used in [5], we introduce a
multivariate point process whose past history coincides with the past history of the observation
process. Thus, we are able to write down the filtering equation and then deal with the problem
of establishing its uniqueness. To this end, we introduce the filtered martingale problem [13].
We first prove that any solution of the Kushner–Stratonovich equation provides a solution for
the filtered martingale problem and then obtain uniqueness in law for the latter problem by
adapting to our model a result given in [4].

Finally, let us observe that the filtering equation for the model studied in [5] was a linear
one. This is not the case for a multitype model. This is the reason why, in order to obtain
explicit representations for the filter, we use a linearization method that is a modification of the
method proposed in [12] and generalized in [3]. By using the linearized equation, we exhibit
two representations for the filter. The first one is obtained by the Feynman–Kac formula and
the second one by a recursive algorithm, under a suitable assumption on the reproduction law.

2. The space of marked trees

We represent multitype branching processes on a space, introduced in [14] and [8], that is a
modification of the space of marked trees. We refer the reader to those papers for any further
details.

A tree is a subset ω̃ of the denumerable set U = {φ} ∪ ⋃∞
n=1(N

∗)n, with N
∗ = N/{0}, and

φ denotes the ancestor, such that

(i) φ ∈ ω̃,

(ii) uv ∈ ω̃ ⇒ u ∈ ω̃ for all u, v ∈ U ,

(iii) uj ∈ ω̃ ⇔ 1 ≤ j ≤ νu(ω̃) for all u ∈ ω̃ and all j ∈ N
∗, with νu(ω̃) := ν1

u(ω̃)+ ν2
u(ω̃),

and ν1
u(ω̃) and ν2

u(ω̃) are N-valued functions defined on U .

Part (iii) means that each particle u of ω̃ has νu(ω̃) children – ν1
u(ω̃) of type 1 and ν2

u(ω̃)

of type 2 – labelled by u1, u2, . . . , uνu(ω̃). We let �̃ be the space of trees and �̃u =
{ω̃ ∈ �̃ : u ∈ ω̃} be the set of trees containing the particle u.

In order to consider a branching process in which each particle u has a lifetime σu, we
need the notion of marked tree: a marked tree is a pair ω = (ω̃, (σu)u∈ω̃) with ω̃ ∈ �̃ and
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448 C. CECI AND A. GERARDI

σu ∈ (0,∞), for all u ∈ U . We denote by� the set of marked trees, and we endow� with the
σ -algebra

F = σ {�u; u ∈ U}, �u := {ω ∈ � : u ∈ ω̃}.
Hence, the functions

(ν1
u, ν

2
u) : �u → N

2 and σu : �u → (0,∞)

are random variables with respect to the σ -algebra F ∩�u, and

F = σ {(ν1
u, ν

2
u), σu; u ∈ U}.

The birth time of each particle u is defined recursively as

Sφ = 0,

Su = Sv + σv,
(2.1)

where v is the parent of u. Then, the line of the particles living at time t is given by

Lt = {u : Su ≤ t < Su + σu}
and the past of Lt is described by the σ -algebra

Ft = σ {Ls; s ≤ t} = σ {(ν1
u, ν

2
u), σu; u ∈ U such that Su + σu ≤ t}.

Finally, we define the type of each particle, denoting by γφ the type of the ancestor and
setting

γuj =
{

1, j ≤ ν1
u,

2, ν1
u < j ≤ ν1

u + ν2
u = νu.

That is, we assume that the first ν1
u children of the particle u (labelled u1, u2, . . . , uν1

u) are of
type 1, while the remaining ν2

u children are of type 2.
The shifted tree Tu,s at u is the marked tree beginning at node u when u is s-old. More

precisely, Tu,s(ω̃, (σv)v∈ω̃), for u ∈ ω̃ and s < σu(ω̃), contains all the particles v such that
uv ∈ ω̃, and its marks are given by

σφ ◦ Tu,s = σu − s, (2.2)

σv ◦ Tu,s = σuv, v �= φ, (2.3)

(ν1
v , ν

2
v ) ◦ Tu,s = (ν1

uv, ν
2
uv). (2.4)

We now have to construct a probability measure on the space of marked trees in order
to describe the dynamics of a two-type branching process. To this end, a reproduction law
of a two-type branching process has to be given. This reproduction law is defined by the
pair ({p1(i, j)}(i,j)∈N2 , {p2(i, j)}(i,j)∈N2), where, for γ = 1, 2, pγ (i, j) is the probability
that a particle of type γ has i offspring of type 1 and j offspring of type 2. We denote by
mh1 = ∑

i,j≥0 ip
h(i, j) andmh2 = ∑

i,j≥0 jp
h(i, j), h = 1, 2, the expected number of type-1

particles borne by a particle of type h and the expected number of type-2 particles borne by a
particle of type h, respectively. Throughout this paper, we assume {mhk}h,k=1,2 to be finite.

Theorem 2.1. Given α1, α2 > 0 and two probability distributions

{p1(i, j)}(i,j)∈N2 and {p2(i, j)}(i,j)∈N2

on N
2 with finite first moments {mhk}h,k=1,2, for each γ ∈ {1, 2} there exists a unique probability

measure Pγ on (�,Ft ,F ) such that the following statements hold.
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(i) The pair (ν1
φ, ν

2
φ) has law {pγ (i, j)}(i,j)∈N2 ; γφ = γ ; σφ is a random variable exponentially

distributed with parameter αγ ; and the pair (ν1
φ, ν

2
φ) and σφ are independent.

(ii) (Branching property.) The shifted trees {Tu,t−Su}u∈Lt are conditionally independent with
law Pγu given Ft , i.e. for all bounded measurable functions fu, u ∈ U , on �,

Eγ

( ∏
u∈Lt

fu ◦ Tu,t−Su
∣∣∣∣ Ft

)
=

∏
u∈Lt

Eγu(fu).

Proof. Consider the product space

�∗ = (N2 × R
+)U

equipped with the σ -algebra F ∗ generated by the coordinates denoted by (ν1∗
u , ν

2∗
u ) and σ ∗

u . Let
S∗
u denote the random variables defined on �∗ by the rule analogous to that proposed in (2.1),

and let us set γ ∗
uj = ξ(j, ν1∗

u ), where, for all n > 0,

ξ(j, n) =
{

1 if 0 < j ≤ n,

2 otherwise.

We claim that, for each γ ∈ {1, 2}, a probability measure P∗
γ on (�∗,F ∗) can be defined as

follows.

(i∗) P∗
γ ((ν

1∗
φ , ν

2∗
φ ) = (h, k), σ ∗

φ > t) = pγ (h, k)e−αγ t for (h, k) ∈ N
2 and t ≥ 0.

(ii∗) P∗
γ (

⋂n
i=1{(ν1∗

ui
, ν2∗
ui
) = (hi, ki), σ

∗
ui
> ti} | F ∗

u1,u2,...,un
) = ∏n

i=1 p
γ ∗
ui (hi, ki)e

−αγ ∗
ui
ti

for
all (hi, ki) ∈ N

2 and ti ≥ 0, i = 1, . . . , n. Here u1, u2, . . . , un are particles such that no
one of them is an ancestor of any other, and

F ∗
u1,u2,...,un

= σ {ν1∗
v , ν

2∗
v , σ

∗
v : v is an ancestor of some ui, i = 1, . . . , n}

⊇ σ {γ ∗
u1
, . . . , γ ∗

un
}.

In particular, we can choose particles belonging to the same generation, i.e. particles such that
|ui | = m for all i = 1, . . . , n, where |u| is the length of the sequence u. Writing

F ∗
m = σ {(ν1∗

u , ν
2∗
u ), σ

∗
u : |u| < m},

we obtain

P∗
γ ((ν

1∗
u1
, ν2∗
u2
) = (h1, k1), σ

∗
u1
> t1, . . . , (ν

1∗
un
, ν2∗
un
) = (hn, kn), σ

∗
un
> tn | F ∗

m)

=
n∏
i=1

p
γ ∗
ui (hi, ki)e

−αγ ∗
ui
ti

and, by recursivity on the generations, P∗
γ is completely defined on F ∗ = ∨

m F ∗
m .

We now introduce the mapψ : �∗ → � that associates to anyω∗ ∈ �∗ the marked tree built
with the coordinates (ν1∗

u , ν
2∗
u ) and σ ∗

u (see [14]). The probability measure Pγ we are looking
for in this theorem is then given by

Pγ (A) := P∗
γ (ψ

−1(A)) for all A ∈ F .
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Condition (i) is clearly satisfied. To verify condition (ii), we define the shifted operators
T ∗
u,s : �∗ ∩ {σ ∗

u > s} → �∗, as in (2.2)–(2.4). By the definition of P∗
γ , we can prove that

E∗
γ

( ∏
u∈L∗

t

f ∗
u ◦ T ∗

u,t−S∗
u

∣∣∣∣ F ∗
t

)
=

∏
u∈L∗

t

E∗
γ ∗
u
(f ∗
u ), (2.5)

where

L∗
t = {u : S∗

u ≤ t < S∗
u + σ ∗

u },
F ∗
t = σ {L∗

s ; s ≤ t} = σ {(ν1∗
u , ν

2∗
u ), σ

∗
u ; u ∈ U such that S∗

u + σ ∗
u ≤ t}.

To obtain (2.5) we have to verify that, for any finite subset V of U ,

E∗
γ

( ∏
u∈L∗

t

∏
v∈V

1{(ν1∗
uv,ν

2∗
uv)=(huv,kuv),σ ∗

uv>tuv}
∣∣∣∣ F ∗

t

)
=

∏
u∈L∗

t

E∗
γ ∗
u

(∏
v∈V

1{(ν1∗
v ,ν

2∗
v )=(huv,kuv),σ ∗

v >tuv}
)

but, for the sake of simplicity, we just consider the case in which V = {v} for a fixed v ∈ N
∗.

If we let

G∗v
t = F ∗

t ∨ σ {γ ∗
uv; u ∈ L∗

t } ⊇ σ {ν1∗
u , ν

2∗
u , σ

∗
u ; u ∈ L∗

s , s ≤ t},
then

E∗
γ

( ∏
u∈L∗

t

1{(ν1∗
uv,ν

2∗
uv)=(huv,kuv),σ ∗

uv>tuv}
∣∣∣∣ F ∗

t

)

= E∗
γ

(
E∗
γ

( ∏
u∈L∗

t

1{(ν1∗
uv,ν

2∗
uv)=(huv,kuv),σ ∗

uv>tuv}
∣∣∣∣ G∗v

t

) ∣∣∣∣ F ∗
t

)

= E∗
γ

( ∏
u∈L∗

t

pγ
∗
uv (huv, kuv)e

−αγ ∗
uv
tuv

∣∣∣∣ F ∗
t

)

=
∏
u∈L∗

t

∑
j≥0

pξ(v,j)(huv, kuv)e
−αξ(v,j)tuv P∗

γ (ν
1∗
u = j | F ∗

t ).

Since

P∗
γ (ν

1∗
u = j | F ∗

t ) = P∗
γ (ν

1∗
u = j | γ ∗

u ) = P∗
γ ∗
u
(ν1∗
φ = j),

we find that

E∗
γ

( ∏
u∈L∗

t

1{(ν1∗
uv,ν

2∗
uv)=(huv,kuv),σ ∗

uv>tuv}
∣∣∣∣ F ∗

t

)
=

∏
u∈L∗

t

E∗
γ ∗
u
(pγ

∗
v (huv, kuv)e

−αγ ∗
v
tuv )

=
∏
u∈L∗

t

E∗
γ ∗
u
(1{(ν1∗

v ,ν
2∗
v )=(huv,kuv),σ ∗

v >tuv})

and we recover (2.5).
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Furthermore,

Eγ

( ∏
u∈Lt

fu ◦ Tu,t−Su
∣∣∣∣ Ft

)
(ω) = E∗

γ

(( ∏
u∈Lt

fu ◦ Tu,t−Su
)

◦ ψ
∣∣∣∣ ψ−1(Ft )

)
(ψ−1(ω))

and, observing that

ψ ◦ T ∗
u,t−S∗

u
= Tu,t−Su ◦ ψ, L∗

t = Lt ◦ ψ, ψ−1(Ft ) = F ∗
t ,

we finally obtain

Eγ

( ∏
u∈Lt

fu ◦ Tu,t−Su
∣∣∣∣ Ft

)
(ω) = E∗

γ

( ∏
u∈L∗

t

fu ◦ ψ ◦ T ∗
u,t−S∗

u

∣∣∣∣ F ∗
t

)
(ψ−1(ω))

=
∏

u∈L∗
t (ψ

−1(ω))

E∗
γ ∗
u (ψ

−1(ω))
(fu ◦ ψ)

=
∏

u∈Lt (ω)
Eγu(ω)(fu).

As in [7] and [6], we can prove that this property (called the strong branching property) is
also valid for the line of particles alive at an Ft -stopping time.

Theorem 2.2. (Strong branching property.) Let τ be an Ft -stopping time, and let

Lτ = {u : Su ≤ τ < Su + σu}

denote the line of particles living at time τ . Then, for all bounded measurable functions fu,
u ∈ U , on �,

Eγ

( ∏
u∈Lτ

fu ◦ Tu,τ−Su
∣∣∣∣ Fτ

)
=

∏
u∈Lτ

Eγu(fu).

3. Dynamics of the model

This section is devoted to proving that the process (Xt, Yt ), defined above, is a Markov
process and to finding the structure of its generator; that is, to finding the operator L such that

f (Xt , Yt )− f (X0, Y0)−
∫ t

0
Lf (Xs, Ys) ds

is a (Pγ ,Ft )-martingale (γ = 1, 2), for a suitable class of functions f .
To this end, we introduce the integer-valued random measure on (0,∞)×N×N associated

with the jump process (Xt , Yt ), namely

m(dt, dx, dy) =
∑
n≥1

δ{τn,Xτn ,Yτn }(dt, dx, dy) 1{τn<∞},

where δ{t,x,y} is the Dirac measure concentrated at (t, x, y). We recall that the predictable
projection of m is the random measure p(dt, dx, dy) such that [2], [11], for all nonnegative

https://doi.org/10.1239/jap/1118777181 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777181


452 C. CECI AND A. GERARDI

Ft -predictable (N × N)-indexed processes H(s, x, y), the process

∫ t

0

∫
N×N

H(s, x, y)(m(ds, dx, dy)− p(ds, dx, dy))

is a (Pγ ,Ft )-martingale whenever

Eγ

(∫ t

0

∫
N×N

H(s, x, y)p(ds, dx, dy)

)
< ∞.

In particular, for any bounded measurable function f ,

f (Xt , Yt )

= f (X0, Y0)+
∫ t

0

∫
N×N

(
f (x, y)− f (Xs−, Ys−)

)
m(ds, dx, dy) (3.1)

= f (X0, Y0)+
∫ t

0

∫
N×N

(
f (x, y)− f (Xs−, Ys−)

)
p(ds, dx, dy)+ (Pγ ,Ft )-martingale.

Thus, our problem reduces to computing the random measure p(dt, dx, dy), whose structure
[11] is given by

p(dt, dx, dy) =
∑
n≥0

Pγ (τn+1 ∈ dt, Xτn+1 ∈ dx, Yτn+1 ∈ dy | Fτn)

Pγ (τn+1 − τn ≥ t − τn | Fτn)
1{τn<t≤τn+1} . (3.2)

Here, {τn}n≥0 are the splitting times of the process Zt = Xt + Yt , representing the cardinality
of the whole population at time t , and are defined as

τ0 = 0, τn+1 = min{Su + σu : Su + σu > τn}.

In order to perform this computation, we need two preliminary results, which are generalizations
of Propositions 3.1 and 3.2 of [5].

Proposition 3.1. The conditional law of the random variables τn+1 − τn, n ≥ 0, given Fτn , is
an exponential law with parameter α1Xτn + α2Yτn .

Proof. The decomposition

{τn+1 ≤ t} = {τn ≤ t} − {τn ≤ t, τn+1 > t}
= {τn ≤ t} − {τn ≤ t}

⋂
v∈Lτn

{σφ ◦ Tv,τn−Sv > t − τn}

and the strong branching property allow us to compute

Pγ (τn+1 ≤ t | Fτn) =
{

1 − exp{−(α1Xτn + α2Yτn)(t − τn)} if τn ≤ t,

0 if τn > t.
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Proposition 3.2. For any n ≥ 0, the joint law of (Xτn+1 , Yτn+1 , τn+1), conditioned on Fτn , is
given by

Pγ (Xτn+1 = x, Yτn+1 = y, τn+1 ≤ t | Fτn)

= 1 − exp{−(α1Xτn + α2Yτn)(t − τn)}
α1Xτn + α2Yτn

1{τn≤t}

×
{
α1Xτn

x+1∑
h=1

y∑
k=0

p1(x − h+ 1, y − k) 1{Xτn=h,Yτn=k}

+ α2Yτn

x∑
h=0

y+1∑
k=1

p2(x − h, y − k + 1) 1{Xτn=h,Yτn=k}
}
. (3.3)

Proof. First observe that, in the event {Zτn = 0}, the claim is trivially true. Then, we
perform the following computations in the event {Zτn > 0}.

Pγ (Xτn+1 = x, Yτn+1 = y, τn+1 ≤ t | Fτn)

=
∑
u∈Lτn

∑
h>0,k≥0

Pγ (Su + σu = τn+1 ≤ t, Xτn+1 −Xτn = x − h,

Yτn+1 − Yτn = y − k | Fτn) 1{Xτn=h,Yτn=k} 1{γu=1}

+
∑
u∈Lτn

∑
h≥0,k>0

Pγ (Su + σu = τn+1 ≤ t, Xτn+1 −Xτn = x − h,

Yτn+1 − Yτn = y − k | Fτn) 1{Xτn=h,Yτn=k} 1{γu=2} .

On the other hand,

γu = 1 ⇒ Xτn+1 −Xτn = ν1
u − 1 and Yτn+1 − Yτn = ν2

u,

γu = 2 ⇒ Xτn+1 −Xτn = ν1
u and Yτn+1 − Yτn = ν2

u − 1,

meaning that

Pγ (Xτn+1 = x, Yτn+1 = y, τn+1 ≤ t | Fτn)

=
∑
u∈Lτn

x+1∑
h=1

y∑
k=0

Pγ (Su + σu = τn+1 ≤ t, ν1
u − 1 = x − h, ν2

u = y − k | Fτn)

× 1{Xτn=h,Yτn=k} 1{γu=1}

+
∑
u∈Lτn

x∑
h=0

y+1∑
k=1

Pγ (Su + σu = τn+1 ≤ t, ν1
u = x − h, ν2

u − 1 = y − k | Fτn)

× 1{Xτn=h,Yτn=k} 1{γu=2},

where, for u ∈ Lτn , by introducing the shifted trees {Tv,τn−Sv ; v ∈ Lτn} and recalling the
definitions given in (2.2)–(2.4), we have

{Su + σu = τn+1 ≤ t} =
⋂
v∈Lτn

{Su + σu ≤ t, Su + σu ≤ Sv + σv}

=
⋂
v∈Lτn

{σφ ◦ Tu,τn−Su ≤ t − τn, σφ ◦ Tu,τn−Su ≤ σφ ◦ Tv,τn−Sv },

{ν1
u = h1, ν

2
u = h2} = {ν1

φ ◦ Tu,τn−Su = h1, ν
2
φ ◦ Tu,τn−Su = h2}.
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Thus, writing P̄ = ⊗
w∈Lτn Pγw , we can use the strong branching property to obtain

Pγ (Xτn+1 = x, Yτn+1 = y, τn+1 ≤ t | Fτn)

=
∑
u∈Lτn

x+1∑
h=1

y∑
k=0

Pγu(ν
1
φ − 1 = x − h, ν2

φ = y − k)

× P̄(σ (ωu) ≤ t − τn, σ (ωu) ≤ σ(ωv) for all v ∈ Lτn)
× 1{Xτn=h,Yτn=k} 1{γu=1}

+
∑
u∈Lτn

x∑
h=0

y+1∑
k=1

Pγu(ν
1
φ = x − h, ν2

φ − 1 = y − k)

× P̄(σ (ωu) ≤ t − τn, σ (ωu) ≤ σ(ωv) for all v ∈ Lτn)
× 1{Xτn=h,Yτn=k} 1{γu=2} .

The statement of the proposition follows, since

Pγu(ν
1
φ − 1 = x − h, ν2

φ = y − k) 1{γu=1} = p1(x − h+ 1, y − k) 1{γu=1},
Pγu(ν

1
φ = x − h, ν2

φ − 1 = y − k) 1{γu=2} = p2(x − k, y − k + 1) 1{γu=2},
P̄(σ (ωu) ≤ t − τn, σ (ωu) ≤ σ(ωv) for all v ∈ Lτn)

= αγu

α1Xτn + α2Yτn
(1 − exp{−(α1Xτn + α2Yτn)(t − τn)}) 1{τn≤t} .

Furthermore, notice that, for any n ≥ 0, the random variables (Xτn+1 , Yτn+1) and τn+1 are
conditionally independent, given Fτn , i.e.

Pγ (Xτn+1 = x, Yτn+1 = y, τn+1 ≤ t | Fτn)

= Pγ (Xτn+1 = x, Yτn+1 = y | Fτn)Pγ (τn+1 ≤ t | Fτn).

Finally, we have all the tools to prove that the pair (Xt , Yt ) is a Markov process with generator
given by

Lf (x, y) = α1x
∑
h,k≥0

p1(h, k){f (x + h− 1, y + k)− f (x, y)}

+ α2y
∑
h,k≥0

p2(h, k){f (x + h, y + k − 1)− f (x, y)}.

Theorem 3.1. For any bounded and measurable function f on N × N,

f (Xt , Yt )− f (X0, Y0)−
∫ t

0
Lf (Xs, Ys) ds

is a (Pγ ,Ft )-martingale (γ = 1, 2).
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Proof. Recalling the definition of p(dt, dx, dy) given by (3.2), by Propositions 3.1 and 3.2
we first obtain

Pγ (τn+1 ∈ dt, Xτn+1 ∈ dx, Yτn+1 ∈ dy | Fτn)

Pγ (τn+1 − τn ≥ t − τn | Fτn)
1{τn<t≤τn+1}

= (α1Xτn + α2Yτn)

×
∑

(x′,y′)∈N×N

Pγ (Xτn+1 = x′, Yτn+1 = y′ | Fτn)δ{x′}(dx)δ{y′}(dy) dt 1{τn<t≤τn+1} .

Then,

p(dt, dx, dy) =
∑
n≥0

1{τn<t≤τn+1}
{
α1Xτn

x′+1∑
h=1

y′∑
k=0

p1(x′ − h+ 1, y′ − k) 1{Xτn=h,Yτn=k}

+ α2Yτn

x′∑
h=0

y′+1∑
k=1

p2(x′ − h, y′ − k + 1) 1{Xτn=h,Yτn=k}
}

× δ{x′}(dx)δ{y′}(dy) dt

= α1Xt−
∑
i,j≥0

p1(i, j)δ{Xt−+i−1}(dx)δ{Yt−+j}(dy) dt

+ α2Yt−
∑
i,j≥0

p2(i, j)δ{Xt−+i}(dx)δ{Yt−+j−1}(dy) dt

and, recalling (3.1), the proof is complete.

Furthermore, the result given in Proposition 1.2 of [4] applies to our model. Thus, we can
claim the following.

Proposition 3.3. For any initial condition (X0, Y0) with finite first moments, the martingale
problem for the operator L has a unique solution with sample paths inDN×N[0,∞), the space
of càdlàg (N × N)-valued functions defined on [0,∞). The solution (Xt , Yt ) is a Markov
process with finite first moments.

Remark 3.1. As a consequence, if we denote by

LXf (x, y) = α1x
∑
h,k≥0

p1(k, h){f (x+k−1)−f (x)}+α2y
∑
h,k≥0

p2(k, h){f (x+k)−f (x)}

the operator L restricted to functions depending on x only, it is easy to prove that

m
f
t := f (Xt )− f (X0)−

∫ t

0
LXf (Xs, Ys) ds (3.4)

is a (Pγ ,Ft )-martingale, for any real-valued, bounded measurable function f .

4. The Kushner–Stratonovich equation

In this section, (Xt, Yt ) denotes the solution for the martingale problem for the operator
L on the space DN×N[0,∞) endowed with its canonical filtration. The probability measure

https://doi.org/10.1239/jap/1118777181 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1118777181


456 C. CECI AND A. GERARDI

P is the law of (Xt, Yt ) on DN×N[0,∞), for any initial condition (X0, Y0) with finite first
moments.

The problem of finding the conditional law of the processXt , given the history ofYt , amounts
to characterizing the filter of Xt with respect to the σ -algebra F Y

t = σ {Ys; s ≤ t}, i.e.

πt (f ) = E(f (Xt ) | F Y
t )

for any real-valued, bounded measurable function f . To this end, following a procedure
suggested in [3] and already used in [5], we introduce the sequence of point processes {vht }h≥0
given by

vht =
∑
i≥0

1{Si≤t} 1{YSi=h},

where {Sn}n≥0 denotes the sequence of jump times of the process Yt . The following proposition
can be proved as in [5], observing that

Yt = Y0 +
∫ t

0

∑
h≥0

(h− Ys−) dvhs . (4.1)

Proposition 4.1. The σ -algebra F Y
t coincides with the σ -algebra

∨
h≥0

F vh

t = σ {vhs ; s ≤ t, h ≥ 0}.

Thus, πt (f ) = E(f (Xt ) | F Y
t ) = E(f (Xt ) | ∨

h≥0 F vh

t ). The process vt = {vht }h≥0 is
a multivariate point process. In order to obtain the filtering equation, we need the following
lemma.

Lemma 4.1. The (P,Ft )-predictable intensity of vht is given, for all h ≥ 0, by

mht = mh(Xt−, Yt−),

where

piY (k) =
∑
h∈N

pi(h, k), i = 1, 2, k ∈ N,

mh(x, y) = α1x 1{y<h} p1
Y (h− y)+ α2y 1{y≤h+1} 1{y �=h} p2

Y (h+ 1 − y).

Proof. By the generalized Itô formula, we can compute the operator Lh describing the joint
dynamics of (Xt , Yt , vht ) in the sense that

F(Xt , Yt , v
h
t )− F(X0, Y0, v

h
0 )−

∫ t

0
LhF(Xs, Ys, v

h
s ) ds
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is a (P,Ft )-martingale for any real-valued, bounded measurable function F . The operator Lh

is defined by

LhF(x, y, v)

= α1x
∑
i≥0

[F(x + i − 1, y, v)− F(x, y, v)]p1(i, 0)

+ α2y
∑
i≥0

[F(x + i, y, v)− F(x, y, v)]p2(i, 1)

+ α1x
∑

i≥0, j>0

[F(x + i − 1, y + j, v)− F(x, y, v)] 1{y+j �=h} p1(i, j)

+ α2y
∑

i, j≥0, j �=1

[F(x + i, y + j − 1, v)− F(x, y, v)] 1{y+j−1�=h} p2(i, j)

+ α1x
∑

i≥0, j>0

[F(x + i − 1, y + j, v + 1)− F(x, y, v)] 1{y+j=h} p1(i, j)

+ α2y
∑

i, j≥0, j �=1

[F(x + i, y + j − 1, v + 1)− F(x, y, v)] 1{y+j−1=h} p2(i, j).

By setting F(x, y, v) = v, we obtain

mv
h

t = vht − vh0 −
∫ t

0
mhs ds,

which is a (P,Ft )-martingale.

Remark 4.1. The process

Nt =
∑
i≥0

1{Si≤t},

which counts all the jumps of Yt up to time t , has (P,Ft )-predictable intensity

λt ≡ λ(Xt−, Yt−),

where
λ(x, y) =

∑
h≥0

mh(x, y) = α1x(1 − p1
Y (0))+ α2y(1 − p2

Y (1)).

Theorem 4.1. The filter πt (f ) is a solution of the equation

πt (f ) = π0(f )+
∫ t

0
πs(LXf (·, Ys)) ds

+
∫ t

0

∑
h≥0

1

πs(mh(·, Ys)) {α1 1{Ys<h} p1
Y (h− Ys)[πs(ϕf )− πs(ϕ)πs(f )]

+ πs(R
h
Xf (·, Ys))}|s=s−(dvhs − πs(m

h(·, Ys)) ds), (4.2)

where ϕ(x) = x for all x, i.e. ϕ is the identity function, and RhX is defined in (4.3) below.
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Proof. By the well-known innovation method [9], the filtering equation can be written as

πt (f ) = π0(f )+
∫ t

0
πs(LXf (·, Ys)) ds

+
∫ t

0

∑
h≥0

π+
s (m

h(·, Ys))

× [πs(fmh(·, Ys))− πs(f )πs(m
h(·, Ys))+ πs(R

h
Xf (·, Ys))]|s=s−

× (dvhs − πs(m
h(·, Ys)) ds),

where, as usual, a+ = (1/a) 1{a>0}, mft is defined in (3.4), and RhX(Xs, Ys) is such that

〈
mv

h

,mf
〉
t
=

∫ t

0
RhXf (Xs, Ys) ds. (4.3)

Taking into account the fact that

|πs(fmh(·, Ys))− πs(f )πs(m
h(·, Ys))+ πs(R

h
Xf (·, Ys))| ≤ const. ‖f ‖πs(mh(·, Ys)),

where ‖f ‖ denotes the supremum norm of the function f , we recover (4.2).

Corollary 4.1. The filtering equation can also be written as

πt (f ) = π0(f )+
∫ t

0
{πs(L0

Xf (·, Ys)) ds − α1(1 − p1
Y (0))[πs(ϕf )− πs(ϕ)πs(f )]} ds

+
∫ t

0

∑
h≥0

1

πs(mh(·, Ys))
× {α1 1{Ys<h} p1

Y (h− Ys)[πs(ϕf )− πs(ϕ)πs(f )]
+ πs(R

h
Xf (·, Ys))}|s=s− dvhs ,

where

L0
Xf (x, y) = α1x

∑
i≥0

[f (x+i−1)−f (x)]p1(i, 0)+α2y
∑
i≥0

[f (x+i)−f (x)]p2(i, 1). (4.4)

Proof. The joint dynamics of (X, Y, vh) described by the operator Lh, and (4.3), give us

RhXf (x, y) = α1x
∑

i≥0, j>0

[f (x + i − 1)− f (x)] 1{y+j=h} p1(i, j)

+ α2y
∑

i,j≥0, j �=1

[f (x + i)− f (x)] 1{y+j−1=h} p2(i, j)

and
L0
Xf (x, y) = LXf (x, y)−

∑
h≥0

RhXf (x, y).

In the remaining part of this section, we discuss uniqueness in law for the solutions of (4.2).
We want to show that any two weak solutions of (4.2) have the same law, where a ‘weak solution’
is defined as follows.
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Definition 4.1. The pair (π, Y ), on the probability space (�,F ,P), is a weak solution of (4.2)
if the following statements hold.

• Y is an N-valued jump process with càdlàg trajectories.

• Processπ is�(N)-valued and F Y
t -adapted with càdlàg trajectories (where�(N) denotes

the space of probability measures on N). Furthermore, πt (|ϕ|) = ∫
N

|x|πt (dx) < ∞ for
all t ≥ 0.

• If we set vht = ∑
i≥0 1{Si≤t} 1{YSi=h} for any h ≥ 0, where {Sn}n≥0 denotes the se-

quence of jump times of Y , then the (P,F Y
t )-minimal intensity of vh is given by

πt (m
h(·, Yt )).

• The triple (π, Y, vh) satisfies (4.2), and all terms in this equation are well defined.

Weak uniqueness for the filtering equation can be obtained by the filtering martingale problem
(FMP) approach, introduced in [13] and widely used in the filtering literature (see, for example,
[4] and references therein). First we recall the well-known definition.

Definition 4.2. A process (πt , Yt ) with sample paths inD�(N)×N[0,∞) solves the FMP for L
if πt is F Y

t -adapted and

πt (F (·, Yt ))−
∫ t

0
πs(LF(·, Ys)) ds (4.5)

is an F Y
t -local martingale for any real-valued, bounded measurable function F .

As in Proposition 2.3 of [4], by a direct computation we can see that any weak solution
of (4.2) provides a solution of the FMP. Thus, uniqueness for the FMP with a given initial
condition implies weak uniqueness of the filtering equation.

Proposition 4.2. Let (π, Y ) be a weak solution of the filtering equation. Then (π, Y ) satisfies
(4.5).

Proof. Without loss of generality, we can choose F(x, y) = f (x)g(y) in (4.5). Then
πt (F (·, Yt )) = πt (f )g(Yt ), where πt (f ) is given by (4.2) and, as in (4.1),

g(Yt ) = g(Y0)+
∫ t

0

∑
h≥0

(g(h)− g(Ys−)) dvhs

= g(Y0)+
∫ t

0

∑
h≥0

(g(h)− g(Ys−)) ds

+
∫ t

0

∑
h≥0

(g(h)− g(Ys−))(dvhs − πs−(mh(·, Ys−)) ds). (4.6)

The statement of the proposition follows by applying the product formula to (4.2) and (4.6).

Finally, uniqueness for the FMP can be proved by observing that the process (Xt , Yt ) satisfies
the assumptions (H1), (H3), and (H5) of Theorem 2.8 of [4].
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5. Construction of the filter

In this section, we will try to find an explicit solution of (4.2). With this in mind, at a jump
time Si , we have

πSi (f ) =

⎧⎪⎪⎨
⎪⎪⎩
πSi−(f ) if πSi−(mYSi (·, YSi−1)) = 0,

πSi−(mYSi (·, YSi−1)f )+ πSi−(R
YSi
X f (·, YSi−1))

πSi−(mYSi (·, YSi−1))
otherwise;

observe that πSi is completely determined by the knowledge of πt , t ∈ [Si−1, Si). The problem
now arises of constructing πt for t ∈ [Si, Si+1). By Corollary 4.1,

πt (f ) = πSi (f )+
∫ t

Si

{πs(L0
Xf (·, Ys))− α1(1 − p1

Y (0))[πs(ϕf )− πs(ϕ)πs(f )]} ds,

where L0
X is as defined in (4.4).

The uniqueness in law for the filtering equation, proved in the last section, allows us to give
a computable representation for the filter, following a method proposed in [12] and [3].

Lemma 5.1. Let M(N) be the space of positive finite measures on N and let ρit be an M(N)-
valued process solving

ρit (f ) = πSi (f )+
∫ t

Si

{ρis(L0
Xf (·, Ys))− α1(1 − p1

Y (0))ρ
i
s(ϕf )} ds. (5.1)

Then, it is easy to verify that

πt (f ) = ρit (f )

ρit (1)
, t ∈ [Si, Si+1).

We describe two methods of finding a solution of (5.1) belonging to M(N). The first
one is based on the Feynman–Kac formula while the second one, under the assumption that
p1(0, 0) = 0, provides a recursive computation of the atoms of ρit .

Method 1. For any fixed y ∈ N, let ξt be the (unique) solution to the martingale problem for
the operator L0

X, with initial condition (s, x), s ∈ R
+, x ∈ N. Let Py(s,x) be its law on the space

DN[0,∞) endowed with the canonical filtration Ft . Setting

�t(s, x, y)(f ) = Ey(s,x)

(
f (ξt ) exp

{
−α1(1 − p1

Y (0))
∫ t

s

ξu du

})

for any real-valued, bounded measurable functionf , we can prove the following properties.

(i) For f ≥ 0, we have �t(s, x, y)(f ) ≥ 0 and, for f > 0, we have �t(s, x, y)(f ) > 0.

(ii) For fixed f , y, s, and x, �t(s, x, y)(f ) is càdlàg.

(iii) For any f , �t(s, x, y)(f ) is jointly measurable with respect to (s, x, y).

Properties (i) and (ii) are quite obvious, by the definition of �t . To prove property (iii), we
can apply Theorem 4.6, Chapter 4 of [10] to obtain measurability with respect to the initial
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data (s, x). The claimed joint measurability then follows, recalling that y belongs to a discrete
space. Finally, from properties (i), (ii), and (iii) we can show that

ρit (f ) =
∫

N

�t(Si, x, YSi )(f )πSi (dx)

is a solution of (5.1) belonging to M(N), as required in Lemma 5.1.

Method 2. Whenp1(0, 0) = 0, we set fj (x) = 1{x=j} and appeal to the following proposition.

Proposition 5.1. When p1(0, 0) = 0, the sequence {ρit (fj )}i≥0,j≥0 can be recursively com-
puted.

Proof. The sequence {ρit (fj )}j≥0, t ∈ [Si, Si+1), satisfies the system of equations

ρit (fj ) = πSi (j)+
∫ t

Si

[
α1j (p

1(1, 0)− 1)− α2YSi

∑
k≥1

p2(k, 1)

]
ρis(fj ) ds

+
∫ t

Si

j∑
k=1

[α1(j − k)p1(k + 1, 0)+ α2YSip
2(k, 1)]ρis(fj−k) ds. (5.2)

Actually, for suitable functions c(j, YSi ) and a(j, k, YSi ), we can write the solution of (5.2)
explicitly as

ρit (fj ) = πSi (fj ) exp{−c(j, YSi )(t − Si)}

+
j∑
k=1

a(j, k, YSi )

∫ t

Si

ρis(fj−k) exp{−c(j, YSi )(s − Si)} ds.

Thus, ρit (fj ) ≥ πSi (fj ) exp{−c(j, YSi )(t − Si)}, which, in turn, implies that ρit (1) > 0.
Furthermore,

ρit (1) = 1 − α1(1 − p1
Y (0))

∫ t

Si

ρis(ϕ) ds ≤ 1. (5.3)

If we set ρit (f ) = ∑
j∈N

f (j)ρit (fj ) then, by (5.2) and (5.3), we see that ρit ∈ M(N) and that
Lemma 5.1 applies. Then ρit (f )/ρ

i
t (1) solves (4.2) for t ∈ [si, si+1).

In Proposition 5.1, we claim that the filter can be computed recursively, at least from a
theoretical point of view. Let us observe, however, that since the proposed computation requires
increasing memory (storage capacity), it does not provide an efficient computational method
from a practical, numerical point of view.
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