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In the thesis [Pel] it was introduced, studied and applied a genera theory
of Welerstrass loci for vector bundles on a smooth curve. The results, proofs,
background, examples and motivations of this thesis are contained in [Pe2]. We
believe that this theory, at least in characteristic 0, is the ‘right’ one. The aim of
this paper is to introduce and study an extension of [Pel] to the case of higher
dimensional varieties. At least two possible theories seem to be useful and natural;
see the discussion just after Remark 1.1 and Section 4. We strongly prefer the
‘symmetric’ one (see Definition 1.5). In the first section we introduce the general
theory and give the main general results. In the second section we study in details
the case of P? for three reasons: it is nice; it shows how to use the general theory
and what could be expected in more general situations and (last but not least) to
convincethereader that it istechnically easier and often moreinterestingto work in
the ‘symmetric’ set up. Then in the third section we apply the method of Section 2
to a much more general situation (essentially, any variety X as base of the vector
bundle). In the fourth section we give the set up and start the analysis of specific
examples of what happens near a specific point P of the basevariety X (evenwhen
X issingular at P). Here, except at the first step we are able to work only with the
‘symmetric’ definition.

Many of the main statementsin the first section of this paper are the sameasin
the case of curvesconsidered in [Pel] and [Pe2]. Sometimes, also the proofs are the
same; in this case we will just quote [Pe2]. Sometimes the proofs are different and
we give the details. Sometimes the proofs are just a reduction to the corresponding
statement for curves proved in [Pel] and [Pe2]. In al 3 situations, the main point
of this paper is that the general set-up introduced here is the right one to make life
easy.

We assumethat the algebraically closed base field has characteristic 0. A sheaf
F on anormal schemeis caled reflexive if the natural map from F' to its bidual
F** isanisomorphism. Let X beanormal schemeand U an open subschemewith
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codim(X\U) > 2. Forevery reflexivesheaf /" onU thereisauniquereflexive sheaf
G on X with G|U = F; evenif F islocally free, G need not be locally free. Vice
versa, every reflexive sheaf on X is uniquely determined by its restriction to any
open subschemeof X whose complement hascodimensionat least 2. In our opinion
the natural category will turn out to be the one of ‘normal algebraic schemes up
to codimension 2. Thiswill be our working category in Sections 1 and 3. We will
sometimes call any reflexive sheaf on X abundle and say thatamap v : A — B
between reflexive sheaves on X is surjective if Codim(Supp(coker(u))) > 2.
Furthermore, exact sequences of bundles in this category will be just complexes
of reflexive sheaves whose cohomology has support of codimension > 2. Often
(and in particular in most of the main statements) we will write the words ‘up to
codimension > 2', just as a warning for the reader. A very important technical
motivation for working in th is category is that for the duality theorem and the
‘symmetric’ definition we had to take duals.

The author was partially supported by MURST and GNSAGA of CNR (Italy).

1.

Let X beanormal connected variety, E arank r reflexive sheaf (i.e. a‘bundl€’) on
X andV C HO(X, E) avector space of sections spanning E outside codimension
> 2. We stress again that we are working ‘up to codimension 2. Let f: X —
G := G(V,r) (the Grassmannian of r dimensional quotient spaces of V') be the
associated morphism (i.e. therational map of schemesdefined outside codimension
> 2). On the Grassmannian G thereis a ‘tautological’ exact sequence:

0—-S—>Veg—>Q—0, @

with Vg the trivial vector bundle of rank dim(V'), @ the universal rank r quotient
bundle and S' the universal rank (dim(V') — r) subbundle. By definition of f we
have f*(Q) = E. Let

05Sy —>Vy —=E—=0 ()

be the pull-back of (1) by f. Since TG = Hom(S, Q), the differential TX —
f*(T'G) induces a morphism @' : S — Qx ® E or equivalently a morphism
0:Sg®TX — E.Set Eq := (Coker(9)/Tors(Coker(0)))** and ry := rank(£1);
E; isareflexive sheaf on X. The codimension 1 torsion part of Coker(0) iscalled
the first ramification locus. The surjection Vx — FE factors through the natural
projection from the bundle of first order principal parts P1(E) of E to E. Let

0= Qx®E— PY{E) - E—0 ©)

be the exact sequence associated to P1(E) and u: Vx — PY(E) ‘the first order
Taylor map’ (see for instance [Pe2], Sect. 2). As remarked by the referee, the
following commuitative diagram with exact rows
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Vx E 0

0 Qx ® E — PYE) E 0
inducesamap 0" : Sgp — Qx ® E. It was checked in [Pe2], Proposition 2.1,
when X is a smooth curve that, up to asign, &' = 9", giving a geometric reason
for the definition of E1. The same proof works for any normal X because his
proof is based essentially on the fact that the corresponding assertion is true for
the identity morphism of the Grassmannian G. Note that E1, as quotient (outside
codimension 2) of E, isaquotient of V' (outside codimension 2). Hence, if 1 # 0,
we may iterate the construction obtaining another bundle E, as a quotient of E;
and another ramification locus corresponding to the torsion part. Hence we get a
chain of surjections (outside codimension 2)

VE—>FE —-FE—E—---. 4

Set Ep := E. Set r; := rank(E;). As in the case of smooth curves, the bundle
E; is called the ith derived bundle of (X, £, V). The integer r; — r;1 is called
the sth differential rank of (X, £, V'). The non increasing sequence of integers r;
stabilizesto acertain value o > 0.

Remark 1.1. By [Pe2], Remark 6.1.2, if X isasmooth curve (in characteristic
0, as aways) the integer « is exactly the rank of atrivial factor W of E (hence
the geometric situation is determined by (V /W, E/W)); the same proof works for
every X. Alternatively, the result for reflexive sheaves follows formally from the
result for bundleson curves applied to afamily of smooth curves covering aZariski
open subset of X and whose general member is contained in the open subset of
Xreg ONn Which the reflexive sheaf is locally free.

Let PY(E) be the bundle of t-order principal parts of E. We have a chain of

maps
Vx == PYE) - P"YE)—> ... 5 E.

These maps, except thefirst one, are surjections. Theimage G*(E) of Vi in PY(E)
iscalled ([Pi]) the osculating bundle of order ¢.

In our opinion the main drawback of the iterative definition of the bundles E;
comes from the fact that if dim(.X') > 1 in this way one cannot recover from the
theory the integrability condition (i.e. the symmetry condition 8§y = 8§z). Thisis
the reason (both technical and conceptual) why in this paper most of the results on
derived bundles concern just the first derived bundle.

In [Pe2], Proposition 4.4, it was proved that when dim(X) = 1 for every
i > 0 the surjection E — E; factors through the surjection G*(E;) — E;. We
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leave to the reader to check that (thanks to our set up) for 7 = 1 the proof of
[Pe2], Proposition 4.4, works verbatim for arbitrary dim(X), i.e. that we have the
following result.

THEOREM 1.2. The surjection E — E; factorsthrough G1(E;).

Major results contained in [Pel] and [Pe2] are two duality theorems ([Pe2],
7.1 and 7.1.2, for derived bundles, and [Pe2], 8.4.1, for torsion sheaves) for
dim(X) = 1. Now we will prove that the statement of [Pe2], 7.1, and the part
with s = 1 of [Pe2], 8.4.1, hold for arbitrary X, i.e. that (up to codimension 2, as
always) we have the following duality theorems.

THEOREM 1.3 (Duality Theorem for the first derived bundle). The kernel of the
map f1: Vx — Ejisthe dual of the first osculating bundle of Vi — S},. The
kernel of themap V — G1(E) isthedual of the first derived bundle of Vi — Sj,.

Proof. Asin [Pe2], 7.1, the second statement follows in a formal way from
the first one. Let K be the double dual of the cokernel of the natural inclusion
GY(S%)* — Vyx. Wehaveto check that K = E; as quotients of V. Fix asmooth
curve C' C X such that the map Vo — E|C is surjective; denote with E1.- the
corresponding first derived bundle on C. The natural surjection G1(S%) — S%
induces a commutative diagram (5):

0 Sk Vx E 0
Id a (5)
0 GY(SE)* Vy K

We have to check that the map o : £ — K factors through E; and that the
induced map 6 : F1 — K is anisomorphism. Since E is reflexive, to obtain g3
we have to check that Ker(«) contains Im(9). Fix ageneral P € X; since ais
linear it is sufficient to show that for a general tangent vector t to X at P, we
have a(Ep ® t) = 0. We may find a smooth curve C as above with P € C
and t as tangent space to C at P. The natural surjection P (E)|C — PL(E|C)
inducesaninclusion G};(Sac)* — G1(S%)*|C and thisinclusion and the Duality
Theorem for C givethat o(Ep ® t) = 0. Hencewe have 5 : E1 — K which by
construction is surjective (outside codimension 2). To show that 3 is injective we
will use the following diagram chasing. Take a general P € X and an element a
of thefiber £1|P of £ a P with (a) = 0. Liftatob € Vx|P. Since #(a) = 0,
we have b € G1(S%)*|P. There is a smooth curve C with P € C and such that
the natural inclusion G¢(S7,)* — G*(S3)*|C hasb inits image at C; call v/
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the corresponding element of G,( }i;‘c)* |P. By theresult for C, i.e. by the exact
sequence

0— G%;(S}gw)* — VC — El;C — O,

b' goesto 0 into E1.¢. By the definitions and the generality of P, the vector space
E,|Pisaquotient of Eq.c:|P. Hencea = 0, as wanted. O

THEOREM 1.4. (Duality Theorem for the first torsion sheaf). The first torsion
sheaf of (E, V) isthe first torsion sheaf of the pair (G1(S%), V*).

Proof. Itissufficient to check that the two sheaveson X in the statements have
the same restriction to any general member of any large family of curves. This
follows from the corresponding result for curves ([Pe2], Prop. 8.4.1) and the way
we proved the Duality Theorem for thefirst derived bundle. O

Motivated by Theorem 1.3, the discussion just after Remark 1.1 and the duality
theoremsfor curves ([Pe2], Cor. 7.2.1 and Prop. 8.4.1), we introduce the following
definition.

DEFINITION 1.5. The ith symmetric differential bundle E* of E is the double
dual of the cokernel of the natural inclusion of G?(S%)* into Vi ; theith symmetric
torsion sheaf is the first torsion sheaf of the surjection Vy — G*(S%).

Thuswetook the duality theoremsasthe definition of sth symmetric differential
bundle and ith torsion sheaf. We hope to convince the reader that in this way we
will obtain avery powerful notion. In this way we loose any hope to obtain also a
positive characteristic theory, because St (E)* # S'(E*) in characteristic < ¢.

If X, F and V are clear from the context, s; will denote the rank of the ith
symmetric differential bundle of (E, V') (with sg := r := rank(E)).

PROPOSITION 1.6. Assumethe existence of a dense open subset U of X suchthat
the Taylor seriesmap V' — Pi(E) issurjectiveon U. Then E; = 0 and the first
torsion sheaf is supported on X \U.

Proof. By the discussion just after equation (3) the map 0 is the composition
of (¢',ldrx): SE @ TX — E ® Q ® TX with the surjective map (Idg,c) :
E®Q®TX — E induced by the contraction morphismQ® T X — O. Theresult
follows from the surjectivity of themap 0': S — E ® Q. O

Using [L], Theorem 1.3, it would be easy to apply 1.6 for the case X = P? and
r = 2. However, in the next section we will obtain stronger results.

2.

In this section we will consider in detail the case X = P2. The aim isto convince
the reader that it is technically easy to work with the notions of ith symmetric
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differential bundles and torsion sheaves. In this section X will denote P?. We will
look for stable vector bundles on P2. If we drop the requirement of stability (either
for E or for Sg) it is much easier to obtain the corresponding results (in a much
wider range) for every X. Thiswill be the content of Section 3. For all integersr,
c1 and ¢y let M (r; c1, ¢2) bethe moduli scheme of rank r stable vector bundles on
P2 with Chern classes ¢; and c,. Thetriples (r, 1, cp) such that M (r; c1, ¢c2) # 0
are completely described in [DL] and [HL]. It isknown ([El]) that M (r; c1, ¢c2) iS
always irreducible and smooth (if not empty). For any P € X, let P(k + 1) be
the kth infinitesimal neighborhood of P in X, i.e. define P(k + 1) by therelation
| pe+1)Y = (Ip)**1. By [Br], Theorem 5.1, there is a Zariski open dense subset
U of M(2;¢1,cp) such that for every F' € U and every integer ¢t we have either
RO(F(t)) = 0 or h1F(t)) = 0; this open set U will be called the open stratum.
Any bundle U satisfying the cohomology condition ‘for each integer ¢ at most 1
of the integers h*(X,U(t)),i = 0, 1 and 2, is # O’ is said to have the natural
cohomology. A stable bundle U with rank(U) = 2 has the natural cohomology if
and only if it isin the open stratum because V* = V(—c1(V)) for every rank 2
bundle V. We stress that Remarks 2.14, 2.16, 2.17.1 and Theorem 2.15 are just
examples and that with more effort other related statements could be proved. We
will need the following computations of Chern classes.

Fix integers r and k£ with » > 2, £ > 0. Note that for every rank s vector
bundle U and every integer t we have c(U) = s + c1(U)(c1(U) + 3)/2 — c2(U)
(Riemann—Roch), c1(U(t)) = c1(U) + st and co(U (t)) = c2(U) + (s — L)ea(U) -
t + (s(s — 1)/2)t2. Consider the following exact sequence of vector bundles:

0O—+F—=(r+20—-E—=0 (6)

with rank(£) = r and rank(F) = 2. Set ¢; 1= ¢;(E). We have F* = F(c1),
ci(F) = —c1, ca(F) = ¢ — ¢, ¢i(F)*) = (=1)'ci(F), ca(F*(—k)) = c1 — 2k,
c2(F*(=k)) = & — co + key + k2 and c(F*(—k)) = 2+ (c1 — 2k)
(c1—2k+3)/2—c2 +cp — key — K2

Let A be a set of vector bundles on X; we will say that A is ‘generic’ at
M € Aif A contains aneighborhood of a versal deformation space of E. Thisis
roughly consistent with the notion of generic used in [HL]. Let A, B be two sets
of vector bundlesand b: A — B amap (of sets); we will say that b is‘generic’ at
M € Aif Ais‘generic’ at M, B is‘generic’ at b(M ) and b sendsasmall (versal)
neighborhood of M in A onto a versal neighborhood of b(A). We will use the
following map a from two sets of vector bundles respectively of rank s and rank r.
Set v := s+ r. Let M be arank s vector bundle such that 2°(M) = 0 and M is
embedded in arank v trivial vector bundle, V ® O, i.e. such that h°(M*) > v and
M* is spanned by its global sections. Then we have an exact sequence

O-M—-V®O0O—-N-—=>0 @)

with NV rank r vector bundle; set N := a(M). If RO(M*) = v, then N is uniquely
determined by M; if h9(M*) > v, we make this construction a for all such pairs
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(M, V). Vice versa, starting with a spanned rank r vector bundle with h°(N) > v
and N spanned, we have an exact sequence (7) and we set M := & (N). Now
assumethat theinclusion M — V' ® O is not an embedding as vector bundles, but
only an inclusion of sheaveswith torsion free quotient NV (i.e. it is an embedding
in the category of sheaves up to codimension two). Note that h2(N) = h?(N**)
and h1(N) > h1(N**) because Supp(N**/N) isfinite. ThusLemmas 2.1 and 2.2
below hold even in this more general set up. However, ca(N**) is not uniquely
determined by the Chern classes of M.

LEMMA 2.1. Assumethat the constructionaisdefinedat M. If h1(M*) = 0, then
aisdefined over a ‘generic’ bundle near M.

Proof. Since ht(M*) = 0, by semicontinuity we have h%(G*) = hO(M*) for
all bundles G near M. Since the spannedness condition is an open condition in a
family of bundles with constant 4%, we conclude. O

LEMMA 2.2. Assumethat theconstructionaisdefinedat M. Assumeht(M*) = 0
and h'(a(M)) = 0. Then a is ‘generic’ at M. Furthermore, hi(a(M)) = 0 if
h?(M) = 0, i.e. by Serreduality if h2(M*(—3)) = 0.

Proof. By semicontinuity weseethat h°(A) = h%(a(M)) for al bundles A near
a(M). Hence the reverse construction & is defined on aneighborhood of a(M) in
its versal deformation space. Hence ais ‘generic’. The last assertion follows from
the cohomology of the exact sequence (7). O

Now we will give some criteria to check that the kth principal part bundle P*(A)
of abundle A is spanned or is generically spanned by the global sections of A.
First, we have three obvious remarks and an easy lemma. Wefix theinteger & > 0.
Note that for apoint P € X wehavelength(P(k + 1)) = (k + 2)(k + 1)/2.

First, the obvious rank 1 case (e.g. use the homogeneity of every line bundle
on X).

Remark 2.3. The kth principal part bundle of aline bundle O(z) is generically
spanned if and only if it is spanned and thisisthe caseif and only if z > k.

Remark 2.4. Let A beavector bundle. Then P*(A(t)) isspanned by HO(A(t))
for large t. If A is spanned, then P*(A(t)) is spanned for ¢ > k.

Remark 2.5. Set s := rank(A). Assume that P*(A) is generically spanned by
HO(A). Then for a general vector space V- C H°(A) with dim(V) > s(k + 2)
(k+1)/2, P*(A) isgenerically spanned by V.

LEMMA 2.6. Set s := rank(A). Assume that P*(A) is spanned by H°(A). Then

for ageneral vector spaceV C HO(A) withv := dim(V) > 2+s(k+2)(k+1)/2,
P¥(A) isspanned by V.
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Proof. Thisis adimensional count similar to a proof of Bertini theorem. Fix
P € X. Note that length(P*(A)|P) = s(k + 2)(k + 1)/2. Hence the set of all
subspaces W of H(A) with dim(7W) = v and such that 17 does not span P*(A)
a P hascodimensionv — s(k+2)(k+1)/2—1in the Grassmannian G (v, H(A)).
Thenusedim(X) = 2. O

(2.7) In this subsection we will consider the case rank(A) = 2 and set d :=
c1(A), d" := ¢2(A). Note that if M = A* and M and N are related by (7), we
have c1 (M) = —d, co(M) = d" and d" = ¢1(N)? — cp(N). We fix an integer
k > 0 and we assumethat A fitsin an exact sequence

0—-0Ok) - A—=lwy(d—Fk)—0 (8)
with W general finite subset of X with w := card(W) = d" — k(d — k). Hence
O<w<d —k(d—k). ©)

Assume 2k < d, i.e. that (8) is not a destabilizing sequence for A. The Cayley—
Bacharach condition for (8) which gives the existence of such locally free A with
W generd isw > 1+ h%(O(d — 2k — 3)), i.e.

w > 14 (d— 2k —1)(d— 2k — 2)/2. (10)
Hence (9) and (10) may be simultaneously satisfied if and only if
d? — (2k + 3)d + 2k* + 6k + 4 < 2d". (11)

Now we study the conditions of Lemmas 2.1 and 2.2 and the local freeness of the
corresponding sheaf N (when A = M™).

LEMMA 2.8. We have x(A) = 2+ d(d — 3)/2 — d", x(A(=3)) = 2 + (d — 6)
(d—9)/2—d"+3d — 9= x(A) — 3d + 18, x(A(—2)) = x(A) — 2d + 10.

Hencewe have x(A(—3)) < 0if and only if

d? —9d + 40 < 2d" (12)
and we have ssimultaneously x(A(—3)) < 0and x(A(—2)) > 0if and only if

d?> —9d +40 < 2d" < d? — 7d + 24. (13)
However, by the Cayley—Bacharach type condition (11), the inequality (13) may
be satisfied only if

k?+ 3k —10< (k — 2)d. (14)

Since 2k < d, this inequality is often satisfied. However, even for the values of
(d, k) satisfying (14) the condition (13) for large k gives strong restrictions on the
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alowable pairs (d, d"). The condition ‘x(A(—2)) > 0’ would give easily in our
setting the spannedness of a suitable A and hence very explicit examples for the
construction a with a(A) locally free and good integers s;(a(M)). However, this
condition is too strong and we prefer to give a condition (see Lemma 2.12) for the
spannednessof ageneral M € M (2,d,d"). An easy condition (seethefirst part of
the proof of Theorem 2.15 or, alternatively, use the exact sequence (8) for k = 1)
would be‘ x(A(-1)) > 0", i.e.2d" < d?— 2.

LEMMA 2.9. Assumed > 2k (resp.d > 2k)andw > 1+ (d — 2k — 1)(d — 2k —
2)/2. Then for ageneral W every locally free A fitting in the exact sequence (8) is
semistable (resp. stable).

Proof. Since by the generality of W and the Cayley—Bacharach condition (10)
we have h9(lyy (d — 2k — 3)) = 0, we seethat thereis no inclusion of O(z) into A
withz > k and 2z > d. O

LEMMA 2.10. Fix a locally free A given by (8) for a general W. Assume d >
2k > Oand

d? — (2k — 3)d — 4k + 2 > 2w. (15)

Then P¥—1(A) is generically spanned by H°(A).

Proof. Fix P € X andtensor (8) by I p(). If P ¢ W wehavely ® I py) =
lwup(k)- Notethat (15) isequivalentto (d—k+2)(d—k+1)/2 > w+k(k+1)/2.
Hence, moving W, by the generality of W and the assumptions on d, k& and
w we have h(ly,p)(d — k)) = 0. Hence we have h°(A ® I p(jy(d — k)) =
hO(A) — 2 - length(P(k)), as wanted. O

By Riemann—Roch and [Br], Theorem 5.1 (i.e. the fact that a general M €
M (2,d,d") hasnatural cohomology) we have the following lemma.

LEMMA 2.11. Ageneral M € M(2,d,d") hash®(M) = h%(A) if and only if
2w = (d—Fk+2)(d—k+1). (16)

LEMMA 2.12. Assumed > 4,4d" > d? andd(d — 3)/2 > 2+ d". Then a general
M € M(2,d,d") is spanned by its global sections.

Proof. By assumption M (2,d,d") # V. Since by [Br], Theorem 5.1, ageneral
M € M(2,d,d") has natural cohomology, by Riemann—Roch the last condition
of the lemma is equivalent to the condition ‘h°(M) > 4 for general M’. Fix a
general M € M (2,d,d"). By [Br] it is given as an extension (8) with £ = 0 and
W general. By (8) it issufficient to show that | i (d) is spanned. By assumptionwe
haved > 4and x(lw(d)) > 3. If x(Iw(d)) > 6, thisisa particular case of [AH],
Theorem 2.3. If we assume only x (I (d)) > 3 the proof of [AH], Theorem 2.3,
(i.e. essentialy the quotation [BH], g.1) works taking N + 1 instead of N (hence
with fibers of thefirst projection of dimension 2). O

Now we will consider the case of unstable rank 2 kernel bundles.
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Remark 2.13. Fix integers z, a, w With0 < w, 0 < a < z. Let W C X bea
general subset with card(W) = w. Then for ageneral P € X the restriction map
HO(X,ly(x)) — HO(P(a),ly (z)|P(a)) issurjective (i.e. rank G* (I (z)) =
a(a + 1)) if andonly if 2w + a(a + 1) < (z + 2)(z + 1).

Since HY(X,0(t)) = 0 for every t, the previous remark gives the following
remark.

Remark 2.14. Fix arank 2 vector bundle A fitting in the exact sequence (8) with
W generd. Assume 2k > d (i.e. A not stable). If 2k = d assumew := card(W) >
0,i.e. A # 20(d/2). Let e be the maximal integer with

O<e<d—Fk and 2w+ (e+2)(e+1) < (d—k+2)(d—k+1). (17)

Then rank(G®(A)) = (b+ 2)(b + 1) for every b < e and rank(G®(A)) = (e +
2)(e+1)+(b—e)(b—e+1)/2foreverye < b < k.

THEOREM 2.15. Fix integers r, d, ¢ with d > r > 0, M(r,d,cp) # 0,
d(d+3)/2 > 2+ c. Then a general N € M(r,d,cp) is spanned. Hence we
may consider a general exact sequence (7) with vV C H(X, N), dim(V) =r +2
and N € M (r,d,cp). Assume5d? — 6d — 16 > 8cp. Then M is stable and general
in M (2, —d,d") with d" := d? — c,.

Proof. By [HL], Remarque 1 at p. 94 (i.e. by [HL], Cor. 3.2 a p. 93 which is
based on the proof of [HL], Prop. 1.5 at p. 89), ageneral N € M (r,d, cz) hasthe
natural minimal free resolution and the natural cohomology. Since ¢ (N (—1)) =
d—r > 0, thisimpliesthat if x(N(—1)) > Owehave h%(X, N(-1)) # Oand N,
being aquotient of adirect sum of line bundles of non negative degree, is spanned.
Hencewe may assume (N (—1)) < 0. Look at the proof of [HL], Proposition 1.5,
which gives the minimal free resolution of N. In thefirst case of that proof, N is
spanned. Hence we may assume to be in the second casg, i.e. to have a minimal
free resolution

0— (b+2+n)0(=2)L%60(—1) @ (r + 2+ n)O = N — 0, (18)

with n > 0. Now we follow the referee. The morphism of vector bundles
fi(b+2+n)0(-2) — bO(—1) isinjective if and only if N is spanned. We
claim the injectivity of f for general N, i.e. for general (f,g). This is proved
by computing the dimension of the linear subspaces of H°(IV) consisting of the
sections vanishing at a given point 2 of P?. This subspaceis exactly g, (ker(f.)).
Since g isinjective on ker(f) by the injectivity (as map of bundles) of the map
(f,9), thislinear subspaceis of dimension n + 2. By the claim ageneral N given
by (18) is spanned, as wanted.

Since N* is stable and d > 0, we have h?(X, N(-3)) = h%(X,N*) = 0.
Hence by (7) h1(X, M(—3)) = 0, i.e. h}(X, M*) = 0. Hence M is ‘generic’ by
Lemma2.1. Since N isgeneral, by [HL], Remarque 1 at p. 94, N has the natural
cohomology, i.e. k1 X, N) = 0, iO(X,N) = x(N) = d(d +3)/2+r > r + 2.

https://doi.org/10.1023/A:1000144331280 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000144331280

ON THE DIFFERENTIAL PROPERTIES OF ALGEBRAIC MORPHISMS INTO GRASSMANNIANS 81

Assume M not stable and hence A := M™ not stable. Fix a destabilizing exact
sequence (8) for A with 2k > d > 0. Sinced — 2k — 3 < 0, the Cayley—Bacharach
conditionistrivially satisfied and any locally complete intersection W with

w = length(W) = d" — k(d — k) (19)

correspondsto alocally free sheaf. Since A is*generic’ we may assume W reduced
and W general. Since A is spanned we have h°(X, 1y (d — k)) # 0. Since W is
general thisimplies

w<l+(d—k+2)(d—k+1)/2 (20)

Since 2k > d, by (19) and (20) we find d? — ¢ := d" < (3)d? + (3)d + 2,
contradiction. O

Remark 2.16. The union of 2.15 and 2.10 gives examples of stable spanned
E with stable kernel bundle and with a few symmetric derived bundles with the
smallest possible rank.

(2.17) In this subsection we will consider briefly the case of homogeneous
vector bundles. Since we are in characteristic O by atheorem of Matsushima they
arein principle known from the representation theory of SL(3). If ahomogeneous
bundle is spanned and the map to the Grassmannian is given by a complete linear
system, the kernel bundle is homogeneous. Since all the associated maps are
equivariant, they have everywhere constant rank. In particular all torsion sheaves
and all symmetric torsion sheavesvanish. Here are the exampleswith aline bundle
as kernel rank.

EXAMPLE2.17.1. Fixaninteger k > Oandsetv := (k+2)(k+1)/2,4r .= v—1.
Let (k) be the embedding of O(—F) into O%? induced by HO(X,O(k)). Set
J{k} := Coker(i(k)). The bundles on P" corresponding to J{k} were studied
in recent years for many different reasons (see e.g. [Pa] and references therein).
J{k} is a homogeneous rankr vector bundle. Since T X (—1) is spanned and
rank(G™(O(k)) = (m + 1)(m + 2)/2 for every m > 0, by Remarks 2.3 and 2.4
wehaver — s, = (m + 1)(m + 2)/2 for every m < k and s, = .

3.

In this section we will consider the same problem on an arbitrary X but taking as
kernel bundle an unstable vector bundle built using direct sums of line bundles.
In this way we will cover a very large range of possible Chern classes for E, a
range containing an aerea for which no stable bundle exists (see Remark 3.4). As
in Section 2 it issufficient to find abundle E such that S, has good cohomological
properties. This will be done in the proof of Theorem 3.3 for dim(X) = 2 and in
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3.1for dim(X) > 2. Recall that in this section we work in the category of sheaves
on X ‘upto codimension 2'.

(3.1) Wedescribeherethe construction of vector bundlesmadein [BC]. Assume
(to be on the safe side) X smooth. Fix aninteger s := v — r and arank (s — 1)
vector bundle F on X with H2(X, F) = 0. LetY bealocally completeintersection
subschemeof codimension 2 of X. Let Ny x beitsnormal bundle and assume that
det(Ny,x) ® F (considered as arank (s — 1) vector bundle on Y') has a nowhere
vanishing global section on Y. Then there exists an algebraic vector bundle S of
rank s on X given as an extension

O—-F—S5—=>1y—0 (21)

Forevery M € Pic(X) cal {Y'; M } thecontributioninthe Chow ring of X madeby
thetotal Chern character of thesheaf |y ® M (taking aresolutionof it by locally free
sheaves). Thenthe Chernclassc;(.S) of S iscomputedin termsof the Chern classes
of Fandof {Y'; Ox }. For instanceif either dim(X) = 3or s < 3wehaveci(S) =
c1(F), c2(S) = c2(F)+[Y]andc3(S) = (c1(F)+c1(TX))[Y]—2¢(Oy ) +c3(F).

We will state ‘explicitely’ only the caseinwhich F'in 3.1isadirect sum of line
bundles.

THEOREM 3.2. Assume X smooth. Fixintegersm > 0,s =v —r > 2and s line
bundles ;,1 < j < s on X. Assume H?(L; ® L) = Ofor everyi with1 < i < s.
Let Y bealocally completeintersection subscheme of codimension 2 of X. Assume
that det( Ny, x ) ® (®1<i<sLi ® L) hasanowherevanishing sectionon Y. Assume
that everylinebundle L; ® L%, 1 < i < s, isspanned by its global sections. Assume
that the map HO(1 ; ® Ls) — P(Ls) is surjective.Then thereis a rank s vector
bundle A on X whose total Chern character is the product of {Y; L,} and the
product of the total Chern characters of the line bundles ;, 1 < ¢ < s, and such
that the map H°(A) ® Ox — P*(A) is surjective. Hence, taking A* as kernel
bundle we have s,, = max{0,r — s - ((z + m)!/(z!m!)}, where z := dim(X),
and there is no mth symmetric torsion.

Since very often in interesting ranges of Chern classes the assumptions of 3.1
and 3.2 arenot satisfiedif dim(X) = 2, wewill consider now thecasedim(X) = 2.

THEOREM 3.3. Let X be a Gorenstein projective surface. Fix integers m >
0,s:=v—r>1landslinebundlesL;, 1< j < s,with HY(Kx ® L; ® L}) =
H'(L,) = Ofor everyiwith 1 < i < s. Fixaninteger z > 0 and a O-dimensional
locally complete inter section subscheme Z of X with length z. Assume that every
linebundle L; ® L%, 1 < i < s, isspanned by its global sections. Assume that the
map H(1 ; ® L) — PP(Ls) issurjective. Thenthereisarank s vector bundle A
on X with c1(A) = X1¢jcsLj, c2(A) = B1cjcr<sLj - Ly, + z, and such that the
map H(A) ® Ox — P{*(A) issurjective. Hence, taking A* as kernel bundle we
haves,, = max0,r — s(m + 2)(m + 1)/2 and thereisno mth symmetric torsion.
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Proof. We will find A as an extension of the following type:
0— ®icicsLi = A= 17,0 L; = 0. (22

To prove the existence of alocally trivial sheaf A fitting in (22) just note that the
Cayley—Bacharach condition istrivially satisfied (with no restriction on Z). Then,
asin Section 2, any such bundle A proves 3.3. O

Remark 3.4. Even in the case X = P? the range of Chern classes covered by
Theorem 3.3 is much wider than the one covered by Theorem 2.15 and Remark
2.16. For instance taking z very small we obtain often (r — 1)c1(Sg)? > 2rca(SE)
(hence E cannot be stable), while in Theorem 2.15 and Remark 2.16 we have
adways c1(Sg)? < 4cz(SE). As an example we discussin detail the case X = P2,
Fix theintegersr, s, m and z > 0. Fix any line bundle L, with deg(L;) > z + m.
TakeasL;,1 < i < s,anylinebundlewithdeg(L;) > deg(L;). Thecohomological
conditions HY(Kx®L;® L;Y) = H(L,) = Oareawayssatisfied, whiletheother
conditions are satisfied by the assumptions on the integers deg( L) and deg(L;).

Remark 3.5. Note that the proof of Theorem 3.3 gives families of bundles E
with large dimension.

We stress again that (as clear from 3.1) we may iterate the construction used in
the proof of Theorems 3.2 and 3.3 to cover larger ranges of bundles with maximal
drops of ranks.

4.

In this section X may be singular. Wefix P € X; in this section we are interested
in the situation near P (or even at P); hence we do not work ‘up to codimension
2'. We allow that P is asingular point of X. Of course, for the first step (from
E to E1) we do not need to work up to codimension 2. For the other steps the
non-inductive ‘symmetric’ Definition 1.5 allows us to consider the situation also
for higher order invariants. In this paper we give the general set up and consider it
in afew examples. A joint paper is planned (not for the near future, however) with
afiner analysisfor low-dimensional singular X .

Let X be an integra variety, P € X, E arankr vector bundle on X spanned
by av-dimensional vector space of global sectionsand f: X — G := G(r,v) the
associated morphism. Sincethemap 7T’ X — f*1T'G isdefined under no assumption
on X, we have againamorphismo: TX ® Sg — E.

DEFINITION 4.1. Fix X, E, V andamorphism f: C' — X with C' smooth curve.
Let r;;; or r;;c be the rank of the ith derived bundle on C for (f*(£), f*V),; set
i -= Min{r;  }, wherethe minimum istaken among all such f (with the curve C
not fixed); r — r;.. iscalled theith curvilinear differential rank. Fix apoint P € X
such that E is spanned by V' at P; set ;. p := min{r; ;}, where the minimum is
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taken among all such f (C is not fixed) with P € f(C) and E spanned by V' at
every point of f(C);r — ;. p iscalled theith curvilinear differential rank at P.

Thesameinvariants are obtained if wetake as f only the embeddings. Note that
Tie = Min{r;.. } and that r;;. p = ;.. for P inaZariski dense open subset of X.

Note that for a smooth curve C' and every P € C [Pe2] gives vector bundles,
E;,i > 1, spanned at P, plusthe part of the ith torsion sheaf supported at P. Using
the symmetric definition, it is possible to do the same essentialy on any X.

DEFINITION 4.2. The ith symmetric derived datum at P of (E,V) is atriple
(F;, M;, t;) where: (8) F; isthe germ at P of the cokernel of the natural inclusion
of GY(Sy)** into V; (b) M; := (F;)**/F; = E'/Fy; (c) t; isthe germ at P of the
ith symmetric torsion sheaf.

We will consider this definition in afew easy examples (see Examples 4.3, 4.4
and 4.5) related to the following general theme. Fix amorphism f: Y — X. For us
the most interesting cases are if f is the normalization map or a desingularization
map. We would like to know the relations between the pull-back of the derived data
of (X, E,V) and the derived data of (Y, f*(E), f*V). By [Pi], Theorem 6.2(iii),
we have a natural morphism u: f*P¢(S5) — Py (f*(Sy)). If Sislocally free
(e.g.if Eislocaly freeat P and V spans E at P) we have f*(S*) = (f*(9))*,
where the last dual is taken with respect to Hom(, Ox ). Composing the map «
with this isomorphism we obtain (if £ is avector bundle spanned by V' at P) the
comparison map f*P¢(Sy) — Py (f*(Sy)) we were looking for.

EXAMPLE4.3. If P € f(Y) and f is etale at every point of f~1(P), then the
comparison map is an isomorphism at every point of f~1(P).

EXAMPLE 4.4. Let f be the normalization map and X be smooth at P. Here any
single explicit example may be analyzed using Taylor expansions.

EXAMPLE 4.5. Assumedim(X) = 2, X smooth at P and f the blowing up of X
at P. We leave the details to the interested reader with the following hints. Note
that 7Y isthe elementary transformation of f*(7"X') along the exceptional divisor
D with respect to Op. Henceif g isafunction on’ Y coming from afunction on X,
then we have the vanishing of al the derivatives of ¢ with respect to the variablein
the direction of f~1(P).

Now wewill show the existencein another situation of the comparison map for
thefirst step.

Remark 4.6. Assumeeither X smoothat P or S locally freeat P. Then we have

an isomorphism between f*(T'X ® S3,) and f*(T'X) ® f*(S};). Composing this
isomorphismwith themap 'Y — f*(7T'X') we obtain a comparison map.
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