
3

Quantum open systems

Before we develop the nonequilibrium aspects, we want to go over some
basics of ordinary quantum mechanics [Dir58, LanLif76, Bes04]. Our goal is
to review some formal manipulations which will be used later in the statistical
physics contexts, and along the way establish some common notations. We shall
develop the theory of quantum open systems from the point of view of the so-
called Feynman–Vernon influence functional [FeyVer63, FeyHib65, CalLeg83a,
GrScIn88, Kle90, HuPaZh92, HuPaZh93a, Wei93]. This approach and its closely
related Schwinger–Keldysh or closed time path method will underlie the anal-
ysis of nonequilibrium quantum fields in the rest of the book. We refer the
reader to the literature for alternative approaches to quantum open systems
[GarZol00b, Car93, Per98].

3.1 A quick review of quantum mechanics

Let us consider a quantum mechanical system described by a single degree of
freedom x. The states |α〉 of the system live in a Hilbert space H and observables
A are represented by Hermitian linear operators Â in this space. We have different
“pictures” of the dynamics, of which the most useful are the Schrödinger and
Heisenberg ones. In the former, observables are time-independent, while states
evolve in time according to the Schrödinger equation

i�
∂

∂t
|α〉 = Ĥ |α〉 (3.1)

where the Hamiltonian operator Ĥ is associated with the observable “energy.”
This equation may be integrated

|α (t)〉 = U (t, t0) |α (t0)〉 , (3.2)

with the evolution operator

U = T

[
exp
(
− i

�

∫ t

t0

dt′ Ĥ (t′)
)]

(3.3)

where T stands for temporal order. We are mostly interested in cases where the
Hamiltonian is time-independent, whereby U (t, t0) = exp

(
−iĤ (t− t0) /�

)
. In

the Heisenberg picture states do not evolve, but observables do, according to
the rule

Â (t) = U† (t) ÂU (t) (3.4)
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3.1 A quick review of quantum mechanics 61

The rationale for this rule is that we get consistent values for expecta-
tion values of observables in either picture:

〈
Â (t)

〉
=
〈
α (t)

∣∣∣Â (0)
∣∣∣α (t)

〉
Sch

=〈
α (0)

∣∣∣Â (t)
∣∣∣α (0)

〉
Hei

. The evolution of operators in the Heisenberg picture is
summarized by the Heisenberg equation

dÂ

dt
=

i

�

[
Ĥ, Â

]
(3.5)

As shown by Einstein, Podolsky and Rosen (EPR) [EiPoRo35], this quantum
mechanical description of physical reality cannot be considered complete, since
there are states of the system which are not described by kets in the Hilbert
space. They occur when we know that the state of the system belongs with
certainty to a given class of states |αi〉 , but our knowledge does not allow us to
go beyond assigning a probability of occurrence ρi to each member of this class.
These situations are depicted by density matrices ρ =

∑
i ρi |αi〉 〈αi|, where we

assume that the |αi〉 states are orthonormal. We always have Tr ρ = 1. Kets in
the Hilbert space are particular cases of density matrices with Tr ρ2 = 1, the
general case being Tr ρ2 ≤ 1. In the Schrödinger picture, ρ is time-dependent,
and obeys the Liouville–von Neumann equation

dρ

dt
= − i

�

[
Ĥ, ρ

]
(3.6)

Observe that this is not the Heisenberg equation for the ρ matrix.
Let us now assume that the variable X is continuous and unbounded, and

that the states |x〉 where this variable is well defined form a basis. We have the
translation operators Πa given by 〈x|Πa |α〉 = 〈x + a | α〉 , which are unitary,
and given the semigroup structure of these operators, we must have a Hermitian
generator P̂ such that Πa = exp

(
iaP̂ /�

)
. The action of the generator is

〈x| P̂ |α〉 = −i�
∂

∂x
〈x | α〉 (3.7)

P̂ has eigenstates |p〉 such that

〈x | p〉 =
eipx/�

√
2π�

(3.8)

The momentum observable P̂ and the position observable X̂ do not commute,
but rather

[
P̂ , X̂

]
= −i�1.

Consider a Hamiltonian of the form Ĥ = K(P̂ ) + V (X̂), K = P̂ 2/2M . Since
tK and tV do not commute, we cannot factor out the evolution operator as a
product of a function of P̂ times a function of X̂. But since the commutator is
of order t2, factorization becomes a good approximation when t is small enough.
This gives rise to the Trotter formula [Sch81]

e−itĤ/� =
[
e−iτK/�e−iτV/�

]N+1

, (N + 1) τ = t, N → ∞ (3.9)
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and thereby to the path integral representation of the evolution operator
[FeyHib65, Sch81], since

〈xN+1|U (t) |x0〉 = 〈xN+1|
[
e−iτK/�e−iτV/�

]N+1

|x0〉

=
∫ [ N∏

i=1

dxi

]⎧⎨
⎩

N∏
j=0

〈xj+1| e−iτK/� |xj〉 e−iτV (xj)/�

⎫⎬
⎭

=
∫ [ N∏

i=1

dxi

][
N+1∏
i=1

dpi
2π�

]

×

⎧⎨
⎩

N∏
j=0

eipj+1(xj+1−xj)/�e−iτp2
j+1/2M�e−iτV (xj)/�

⎫⎬
⎭

=
∫ [ N∏

i=1

√
−iM

2π�τ
dxi

]⎧⎨
⎩

N∏
j=0

eiM(xj+1−xj)
2/2τ�e−iτV (xj)/�

⎫⎬
⎭

(3.10)

which as N → ∞ yields

〈xt|U (t) |x0〉 =
∫
x(t)=xt,x(0)=x0

Dx eiS/� (3.11)

The converse is also true, namely, if we take equation (3.11) as the definition
of the evolution operator, we may derive the Schrödinger equation. We have

〈xt|U (t + τ) |x0〉 =
∫ √−iM

2π�τ
dx′ eiM(xt−x′)2

/2τ�e−iτV (x′)/� 〈x′|U (t) |x0〉

(3.12)

The Gaussian factor makes sure that only values y ≈ xt contribute, so we may
expand everything else in powers of (y − xt) and integrate term by term, whereby

〈xt|U (t + τ) |x0〉 =
[
1 − iτ

�
V (xt)

]
〈xt|U (t) |x0〉

+
i�τ

2M
∂2

∂x2
t

〈xt|U (t) |x0〉 + O
(
τ2
)

(3.13)

QED

3.1.1 Wigner functions

So far, we have described states of a quantum system in terms of kets |α〉 in
a Hilbert space. Considering the position and momentum states |x〉 and |p〉,
we may introduce the wavefunctions in position and momentum representations
ψ (x) = 〈x | α〉 and ψ (p) = 〈p | α〉 , which are related to each other through a
Fourier transform

ψ (p) =
∫

dx√
2π�

e−ipx/�ψ (x) (3.14)
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|ψ (x)|2 and |ψ (p)|2 represent the probability distribution functions for position
and momentum, respectively. The question arises on whether these distributions
may be obtained as marginal distributions from a joint probability for position
and momentum. The answer is of course not, at least in general, since the exis-
tence of such a joint probability density would be almost conjured as saying that
position and momentum may be simultaneously well defined. Nevertheless, in
1932 Wigner found an object which comes remarkably close [Wig32, HOSW84].
This object is the Wigner function

fW (x, p) =
∫

du

2π�
e−ipu/�ψ∗

(
x− u

2

)
ψ
(
x +

u

2

)
(3.15)

Indeed, if we integrate over p we get the probability distribution for x∫
dp fW (x, p) = |ψ (x)|2 (3.16)

while integrating over x and switching variables to x± u/2 we get∫
dx fW (x, p) = |ψ (p)|2 (3.17)

The reason why fW cannot be directly identified as a probability distribution
function is that fW , although real, is not necessarily nonnegative. We shall see
examples below.

The dynamics of the Wigner function is also quite remarkable. If the wave-
function obeys the Schrödinger equation (equation (3.1) in the coordinate rep-
resentation)

i�
∂ψ

∂t
= − �

2

2M
∂2ψ

∂x2
+ V (x)ψ (x) (3.18)

then

∂fW

∂t
=

1
i�

∫
du

2π�
e−ipu/�

×
{(

− �
2

2M

)[
ψ∗
(
x− u

2

) ∂2ψ

∂x2

(
x +

u

2

)
− ψ

(
x +

u

2

) ∂2ψ∗

∂x2

(
x− u

2

)]

+
[
V
(
x +

u

2

)
− V

(
x− u

2

)]
ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)}
(3.19)

In the first line, we observe that

ψ∗
(
x− u

2

) ∂2ψ

∂x2

(
x +

u

2

)
− ψ

(
x +

u

2

) ∂2ψ∗

∂x2

(
x− u

2

)
= 2

∂2

∂u∂x

[
ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)]
After integration by parts, this term contributes

1
i�

(
− �

2

2M

)(
2ip
�

)
∂fW

∂x
≡ −p

M

∂fW

∂x
(3.20)

https://doi.org/10.1017/9781009290036.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.005


64 Quantum open systems

The second term is much harder to handle. If the potential is smooth, one can
try a Kramers–Moyal expansion [Kra40, Moy49, Kam81]

V
(
x +

u

2

)
− V

(
x− u

2

)
= 2

∞∑
k=0

V (2k+1) (x)
(2k + 1)!

(u
2

)2k+1

(3.21)

Commuting the integral and the sum, we obtain the second term as

2
i�

∞∑
k=0

V (2k+1) (x)
(2k + 1)!

[
i�

2
∂

∂p

]2k+1

fW (3.22)

In terms of the classical Hamiltonian H = p2/2m + V , our result reads

∂fW

∂t
= −

{
H, fW

}
+ O

(
�

2
)

(3.23)

where the Poisson bracket
{
H, fW

}
was introduced in Chapter 2, equation

(2.48). In other words, the dynamics of the Wigner function follows remark-
ably closely the classical transport equation with external potential V (x). If
V is harmonic, there are no higher order terms, and the dynamics followed by
the Wigner function is exactly the classical dynamics of a distribution function
[Hab04, CDHR98]. However, as we have already remarked, that does not mean
that f is classical, as it may be negative in some regions of phase space.

It is clear that we may compute the Wigner function fW associated with any
wavefunction ψ, but the converse is not true: it is easy to imagine phase space
functions fW which cannot be obtained as Wigner functions from any ψ. Indeed,
it is enough to imagine a distribution function violating Heisenberg’s uncertainty
principle to exclude such an identification. To the best of our knowledge, there
is no simple sufficient condition to see whether a given fW is a Wigner function,
although there are many necessary conditions (such as positivity of the marginal
distributions).

To summarize, although fW itself cannot be understood as a probability den-
sity, conveniently smeared versions of fW are nonnegative and may be used
to assign probabilities to different events. This restricted interpretation of the
Wigner function will be enough for our requirements below.

Some examples

The simplest possible example of a Wigner function is a momentum state

ψ (x) =
eipx/�

√
2π�

(3.24)

Then

fW =
1

2π�
δ (p− p) (3.25)

Now consider a stationary wave

ψ (x) =
1√
π�

cos
(px

�

)
(3.26)
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3.1 A quick review of quantum mechanics 65

representing a coherent superposition of two states of opposite momentum. Then

fW (x, p) =
1

4π�
[δ (p− p) + δ (p + p)] + cos

(
2px
�

)
δ (p) (3.27)

We see that fW is not nonnegative. The oscillatory terms are related to the
interference between the two components of the wave packet [PaHaZu93].

As a second example, let us consider a Gaussian wave packet

ψ (x) =
e−x2/4σ2

(2πσ2)1/4
(3.28)

Then

fW (x, p) =
1
π�

e−x2/2σ2
e−2σ2(p/�)2 (3.29)

In this case fW is positive definite, and the dispersions in x and p are what may
be expected for a minimum uncertainty state.

In particular, suppose our state is the ground state for a harmonic oscillator.
Then σ2 = �/2MΩ, and

fW (x, p) =
1
π�

exp
{
−E

ε

}
; ε =

1
2

�Ω, E =
p2

2M
+

MΩ2x2

2
(3.30)

As a final example, let us consider a superposition of two Gaussian wave
packets

ψ (x) =
1

(2πσ2)1/4

{
Ae−(x−a)2/4σ2

+ Be−(x+a)2/4σ2
}

(3.31)

leading to

fW (x, p) =
e−2σ2(p/�)2

π�

{
|A|2 e−(x−a)2/2σ2

+ |B|2 e−(x+a)2/2σ2

+ e−x2/2σ2
[
AB∗e−2ipa/� + A∗Be2ipa/�

]}
(3.32)

Again, we see nonpositive terms arising from the interference between the dif-
ferent components. If A and B had random phases, fW would be nonnegative.

Wigner functions and probabilities

We know that if the system is in the state ψ (x), the probability of observing it
in the state φ (x) is

P =
∣∣∣∣
∫

dx φ∗ (x)ψ (x)
∣∣∣∣
2

(3.33)

If we call fW
ψ and fW

φ the corresponding Wigner functions, and call

Q = 2π�

∫
dxdp fW

ψ (x, p) fW
φ (x, p) (3.34)
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then P = Q. Indeed

Q =
∫

dxdp

∫
dudu′

2π�
e−ip(u+u′)/�ψ∗

(
x− u

2

)

×ψ
(
x +

u

2

)
φ∗
(
x− u′

2

)
φ

(
x +

u′

2

)

=
∫

dxdu ψ∗
(
x− u

2

)
ψ
(
x +

u

2

)
φ∗
(
x +

u

2

)
φ
(
x− u

2

)
= P (3.35)

This implies in particular that the inner product (3.34) of two Wigner func-
tions must be positive. Since Gaussian distributions consistent with Heisenberg’s
principle are allowed Wigner functions, this implies that Gaussian smearings of
a Wigner function are positive definite.

3.1.2 Closed time path (CTP) integrals

Recall that states evolve according to equation (3.2). Using the matrix elements
(3.11) for the evolution operator, we obtain

ψ (x, t) =
∫

dx (0) U (x, x (0) , t)ψ (x (0) , 0) =
∫
x(t)=x

Dx eiS/�ψ (x (0) , 0)

(3.36)

in the coordinate representation, where U (x, x (0) , t) = 〈x|U (t) |x (0)〉. By lin-
earity, we infer that the density matrix evolves according to

ρ (x, x′, t) = 〈x|U (t) ρU† (t) |x′〉

=
∫
x(t)=x,x′(t)=x′

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) (3.37)

The possibility of cyclic permutations under a trace shows that Tr ρ (t) =
Tr ρ (0) = 1, as it should.

We see that the path integral representation involves two histories, rather
than a single history of the system as in equation (3.11). This observation is
the departure point of the so-called closed time path formalism, which we shall
develop at length in this book, especially in Chapters 5 and 6; for source ref-
erences see [Sch60, Sch61, BakMah63, Kel64, ChoSuHa80, CSHY85, SCYC88,
DeW86, Jor86, CalHu87, CalHu88, CalHu89]. To investigate further the meaning
of these two-time-path integrals, let us consider the expression

G11 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) x (τ)x (τ ′)

(3.38)

The upper limit is free, provided it is the same for both histories. We may describe
this as an integral over single histories defined on a closed time path (CTP). This
time path has a first branch from 0 to t, where the history takes the values x (t),
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and a second branch from t back to 0, where the history takes the values x′ (t).
The CTP boundary condition x (t) = x′ (t) says that the history is continuous
as a function on the time path.

To understand why we are describing the second branch as going backwards in
time, let us translate G11 (τ, τ ′) to canonical language. To this end, let us assume
τ > τ ′, and make explicit the value of the histories at these two preferred times,
namely

G11 (τ, τ ′) =
∫

dx (0) dx′ (0) dx (τ ′) dx (τ) dx (t)

×
[∫

0≤t≤τ ′
Dx eiS[x]/�

]
x (τ ′)

[∫
τ ′≤t≤τ

Dx eiS[x]/�

]
x (τ)

×
[∫

τ≤t≤t

Dx eiS[x]/�

][∫
x′(t)=x(t)

Dx′ e−iS[x′]/�

]

× ρ (x (0) , x′ (0) , 0) (3.39)

Identifying each bracket as a matrix element for some evolution operator, we get

G11 (τ, τ ′) =
∫

dx (0) dx′ (0) dx (τ ′) dx (τ) dx (t)

×〈x (t)|U (t, τ) |x (τ)〉 x (τ) 〈x (τ)|U (τ, τ ′) |x (τ ′)〉 x (τ ′)

×〈x (τ ′)|U (τ ′, 0) |x (0)〉 〈x (0)| ρ |x′ (0)〉 〈x′ (0)|U (0, t) |x (t)〉
= Tr

{
U (t, τ) X̂ U (τ, τ ′) X̂ U (τ ′, 0) ρ (0) U (0, t)

}
(3.40)

in the Schrödinger representation, or equivalently

G11 (τ, τ ′) = Tr
{
X̂ (τ) X̂ (τ ′) ρ

}
≡
〈
X̂ (τ) X̂ (τ ′)

〉
(3.41)

in the Heisenberg representation. Observe that if we had not specified the
relationship between τ and τ ′, then the path integral would have automati-
cally set the largest time to the left. This expresses the “time ordering” of the
two Heisenberg operators, so that we may generalize the result to G11 (τ, τ ′) ≡〈
T
[
X̂ (τ) X̂ (τ ′)

]〉
, where T stands for temporal ordering.

Now consider instead

G12 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) x (τ)x′ (τ ′)

(3.42)
The corresponding Schrödinger picture canonical expression is

G12 (τ, τ ′) = Tr
{
U (0, τ ′) X̂ U (τ ′, t) U (t, τ) X̂ U (τ, 0) ρ (0)

}
(3.43)

or, in Heisenberg’s representation, G12 (τ, τ ′) ≡
〈
X̂ (τ ′) X̂ (τ)

〉
. In this case, the

primed Heisenberg operator comes out to the left, whichever time is greatest.
We may think of this as a path, rather than a time, ordering. Finally, with the
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same argument we see that

G22 (τ, τ ′) =
∫
x(t)=x′(t)

DxDx′ ei(S[x]−S[x′])/�ρ (x (0) , x′ (0) , 0) {x′ (τ)x′ (τ ′)}

≡
〈
T̃
[
X̂ (τ) X̂ (τ ′)

]〉
(3.44)

where T̃ stands for anti-time ordering (that is, the latest time to the right).
This anti-time ordering property justifies regarding the second branch as going
backwards with respect to the first branch.

If necessary, more involved time paths may be considered. For example, it
may be that the initial density matrix corresponds to a thermal state ρ (0) =
e−βH/Z, which can be regarded as an evolution operator in Euclidean time
τβ = −i�β. Then its matrix elements admit a path integral representation on a
time branch going from 0 to τβ , which appears as a third branch in the path
integral representation for average values [Mil69, McL72a, McL72b]. We will have
a lot more to say on thermal states in Chapter 10.

3.2 Influence functional

We wish to use the above to study the dynamics of a quantum open system.
The set-up is the usual one: a system S described by a variable x interacts
with an environment E described by variable(s) q = {qn}. The classical action
takes the form S [x, q] = SS [x] + SE [q] + Sint [x, q] . The Hamiltonian Ĥ = ĤS +
ĤE + Ĥint, where

Ĥs =
1
2
p2 + V (x) ; Ĥint = Vint (x, q) (3.45)

The quantum state of the total system is described by the density matrix
ρ (xq, x′q′, t) depending on both system and environment variables. It evolves
unitarily under Ĥ from an initial density matrix ρ(0) at t = 0 to ρ (t) =
e−itĤ/�ρ (0) eitĤ/� at finite time t. Explicitly, using completeness conditions in
a path integral representation:

ρ(x q, x′ q, t) = 〈x q, t|ρ|x′ q, t〉

=
∫
dxi dqi

∫
dx′

i dq
′
i 〈x q, t|xi qi, 0〉〈xi qi, 0|ρ|x′

i q
′
i,0〉〈x′

i q
′
i, 0|x′ q,t〉

=
∫

dxi dqi

∫
dx′

i dq
′
i

∫ x

xi

Dx

∫ q

qi

Dq eiS[x,q]/�ρ(xi qi, x
′
i q

′
i, 0)

×
∫ x′

x′
i

Dx′
∫ q

q′i

Dq′ e−iS[x′,q′]/�

≡
∫

dxi dqi

∫
dx′

i dq
′
i J (x q, x′ q, t|xi qi, x

′
i q

′
i, 0) ρ(xi qi, x

′
i q

′
i, 0)

(3.46)

where J is seen to be an evolution operator for the system plus environment.
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Since we care more about the system’s behavior than the environment, we need
not keep track of the details of the environment in the specifics of its Hamilto-
nian. In particular, we are mostly interested in computing the expectation values
of system observables. Considered as operators on the whole Hilbert space for
the system, these take the form Â⊗ 1, where Â is an operator in the system
Hilbert space, and 1 is the unit operator on the environment Hilbert space. The
expectation value of such observables may be computed with the reduced density
matrix ρr. This is obtained from the total density matrix as a partial (Landau’s)
trace over the environment variables, namely ρr = Trq ρ. Explicitly,

ρr(xx′, t) =
∫ ∞

−∞
dq ρ(x q, x′ q, t) (3.47)

Let us further assume that at t = 0 the system and environment (variables
with subscript i) are uncorrelated,

ρ(xi qi, x
′
i q

′
i, 0) = ρS(xi x

′
i, 0) ρE(qi q′i, 0) (3.48)

(Thus we are bringing the system and its environment together with all due
care to avoid the complications associated with the sudden switching on and off
of interactions. For the general case, see [HakAmb85, MorCal87, DavPaz97].)
As such, we are able to rearrange the order of integration to write the reduced
density matrix in the following way:

ρr(xx′, t) =
∫

dxi dx
′
i Jr(xx′, t|xi x

′
i, 0) ρS(xi x

′
i, 0) (3.49)

where the evolution operator for the reduced density matrix is defined by

Jr(xx′, t|xi x
′
i, 0) ≡

∫ x

xi

Dx

∫ x′

x′
i

Dx′ ei�
−1(S[x]−S[x′]) F [x, x′] (3.50)

F [x, x′] is the so-called Feynman–Vernon influence functional [FeyVer63,
FeyHib65, Wei93]:

F [x, x′] ≡ eiSIF[x,x′,t]/�

=
∫

dq dqi dq
′
i ρE(qi q′i 0)

∫ q

qi

Dq ei�
−1(SE [q]+Sint [x,q])

×
∫ q

q′i

Dq′ e−i�−1(SE [q′]+Sint [x
′,q′]) (3.51)

Here, SIF is called the influence action. Equation (3.49) looks like the evolution
of a density matrix for a closed system, but it contains a nonlocal term SIF,
which induces an explicit interaction between the two histories in the CTP. All
the influence of the environment on the system is encoded into the influence
action SIF.

We can also write the influence functional in a basis-independent form
as follows. In terms of the propagators U(t), U ′(t) for SE [q] + Sint[x, q] and
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SE [q] + Sint[x′, q], respectively, the path integrals can be expressed as

F [x, x′] =
∫

dq dqi dq
′
i ρE(qi q′i, 0) 〈q|U(t)|qi〉 〈q′i|U ′†(t)|q〉 (3.52)

Then upon integrating over q, qi and writing the remaining integral as a trace,
we obtain:

F [x, x′] = TrU(t) ρE(0)U ′†(t) (3.53)

3.2.1 Some properties of the influence action

Let us explore the main properties of the influence action. From equation (3.53)

eiSIF[x,x′,t]/� = Tr {Ux′ (0, t)Ux (t, 0) ρE (0)} (3.54)

The U ’s represent evolution operators with respect to a dynamics where the
system variable x plays the role of an external, time-dependent parameter. For
two different histories x (t) and x′ (t) the U ’s do not cancel each other. But when
x = x′, they do, and we get SIF [x, x, t] ≡ 0. Even in the presence of an explicit
time dependence, the evolution operator Ux is unitary, whereby SIF [x′, x, t] ≡
−SIF [x, x′, t]∗ . This means that, in a functional Taylor expansion in terms of the
difference variable u = x− x′ and the “center of mass” variable X = (x + x′) /2,

SIF [X,u, t] =
∑
k=1

1
k!

∫
dt1 . . . dtk S(k) [X (τ) , t1, . . . tk, t]u (t1) . . . u (tk) (3.55)

all the odd terms are real, and all the even terms are imaginary. Taking a varia-
tion along the diagonal we get the additional property SIF,x|x=x′ = − SIF,x′ |x=x′ .

At this point, it is convenient to introduce a notation that will stay with
us for the rest of the book. Let us call x (t) = x1 (t), x′ (t) = x2 (t). We shall
think of xa, a = 1, 2, as a single field doublet defined on a conventional (single
branch) time path. Moreover, as in a σ model, we define a metric tensor cab =
diag(1,−1) in target space. The metric tensor, together with its contravariant
(cab = (c−1)ab = diag (1,−1)) and mixed (cab = cadcdb = δab ) forms may be used
to raise and/or lower indices, as in x1 = c1ax

a = x1 = x, x2 = c2ax
a = −x2 =

−x′. From now on, the Einstein convention of summation over repeated indices
will be assumed; for example, the kinetic terms in the system action will be
written as

1
2

∫
dt cabẋ

aẋb =
1
2

∫
dt ẋaẋ

a =
1
2

∫
dt
[
ẋ2 − ẋ′2] (3.56)

and we shall refer to the CTP action S [xa] ≡ S [x] − S [x′] without discriminat-
ing the contributions from either branch.
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3.2 Influence functional 71

3.2.2 The linear bath model

As an example, let us assume that the environment action is quadratic in
the (many) q variable(s), the initial environment density matrix is Gaussian,
and the interaction term is bilinear Sint =

∫
dt xa (t)Qa [q (t)] (in CTP nota-

tion!), where the Q’s are linear combinations of the q’s [CalLeg83a, CalLeg83b,
GrScIn88]. Under all these assumptions, the influence action must also be
quadratic in x and x′ (equation (3.51) is a functional Fourier transform of
an elaborate Gaussian functional of histories Q (t) and Q′ (t) , and the Fourier
transform of a Gaussian is another Gaussian). Therefore we write SIF =
(1/2)

∫
dtdt′ xa (t)Mab (t, t′)xb (t′) , where

Mab (t, t′) = −i�
δ2

δxa (t) δxb (t′)
eiSIF[xa,T ]/�

∣∣∣∣
xa=0

(3.57)

A direct variation from equation (3.51) yields

δ2eiSIF[xa,T ]/�

δxa (t) δxb (t′)

∣∣∣∣
xa=0

=
−1
�2

∫
q1(T )=q2(T )

Dqa eiSE [qa]/�Qa (t)

×Qb (t′) ρe
(
q1 (0) , q2 (0) , 0

)
(3.58)

As per the earlier discussion, we obtain

Mab (t, t′) =
i

�

(
〈T [Q (t)Q (t′)]〉 − 〈Q (t′)Q (t)〉
− 〈Q (t)Q (t′)〉

〈
T̃ [Q (t)Q (t′)]

〉) (3.59)

(where the expectation values are computed disregarding the interaction with
the system), or, in terms of the original variables

SIF =
i

2�

∫
dtdt′

{
〈T [Q (t)Q (t′)]〉x (t)x (t′) − 〈Q (t′)Q (t)〉x (t)x′ (t′)

−〈Q (t)Q (t′)〉x′ (t)x (t′) +
〈
T̃ [Q (t)Q (t′)]

〉
x′ (t)x′ (t′)

}
(3.60)

If we now write x = X + u/2, x′ = X − u/2, we get the equivalent expression

SIF =
∫

dtdt′
{
u (t)D (t, t′)X (t′) +

i

2
u (t)N (t, t′)u (t′)

}
(3.61)

where we encounter for the first time the dissipation D and noise N kernels

D (t, t′) =
i

�
〈[Q (t) , Q (t′)]〉 θ (t− t′) ; N (t, t′) =

1
2�

〈{Q (t) , Q (t′)}〉
(3.62)

Square and curly brackets stand for commutator and anticommutator, respec-
tively. They are both real, as expected, and D is also causal.

Unraveling the physical meaning of these kernels and applying them to differ-
ent situations will be a major theme for the rest of the book.
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3.3 The master equation

When the influence functional is quadratic, and hence may be written as in
equation (3.61), it is possible to derive a dynamical equation for the evolution of
the reduced density matrix [Zha90, HuPaZh92, HuPaZh93a, PaHaZu93, Paz94,
HalYu96].

First use equation (3.61), plus the observation that D is causal and vanishes
on the diagonal (cf. equation (3.62)), to obtain an explicit representation for
SIF [t + dt]

SIF [xa, t + dt] = SIF [xa, t] + dt u (t)
∫ t

0

dt′ {D (t, t′)X (t′) + iN (t, t′)u (t′)}
(3.63)

Now use this in equation (3.49) to obtain

∂

∂t
ρr (x, x′, t) = − i

�

[
Ĥs, ρr (t)

]
x,x′

−1
�

(x− x′)
∫ t

0

dt′
{
N (t, t′) [X − X′] (x, x′, t′)

− i

2
D (t, t′) [X + X′] (x, x′, t′)

}
(3.64)

The first term is just the Liouville–von Neuman equation (3.6) for the closed
system. In the second term

X (x, x′, t′) =
∫
x(t)=x,x′(t)=x′

DxDx′ ei(SS [x]−SS [x′]+SIF[x,x′,t])/�

×ρs (x (0) , x′ (0) , 0) x (t′) (3.65)

with a similar expression for X′ (x, x′, t′) , replacing the last factor x (t′) by x′ (t′) .
In general, X (x, x′, t′) and X′ (x, x′, t′) are complicated functions of x, x′ and t.

However, since in general N and D are of second order in the system–bath inter-
action (cf. equation (3.62)), SIF may be neglected within the integral in equation
(3.65) to third order in this interaction, and X (x, x′, t′) and X′ (x, x′, t′) may
be expressed in terms of quantities belonging to the system alone. Concretely,
X (x, x′, t′) is the (x, x′) matrix element of the operator

X (t′) = e−iĤs(t−t′)/�X̂e−iĤst
′/�ρs (0) eiĤst/� (3.66)

where X̂ is the position operator in the Schrödinger representation. Introducing
the Heisenberg operator X̂(t) = eiĤst/�X̂e−iĤst/� and writing t′ = t− τ , we get,
to second order in the system–bath coupling

X (t′) = X̂ (−τ) ρr (t) (3.67)

Similarly, X′ (x, x′, t′) is the (x, x′) matrix element of the operator

X′ (t′) = ρr (t) X̂ (−τ) (3.68)
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whereby we get the so-called master equation

�
∂

∂t
ρr (t) = −i [Hs, ρr (t)]

−
∫ t

0

dτ

{
N (t, t− τ)

[
X̂,
[
X̂ (−τ) , ρr (t)

]]

− i

2
D (t, t− τ)

[
X̂,
{
X̂ (−τ) , ρr (t)

}]}
(3.69)

3.3.1 The linear system model

When the system is also linear we can give an explicit formula for the Heisenberg
operators

X̂ (−τ) = cos [Ωτ ] X̂ − sin [Ωτ ]
MΩ

P̂ (3.70)

and we can write the master equation in a way which is explicitly local in time

�
∂

∂t
ρr (x, x′, t) =

{
i�2

2M

[
∂2

∂x2
− ∂2

∂x′2

]
− iM

[
Ω2 + δΩ2 (t)

]
2

(
x2 − x′2)

− σ2 (t)
2�

(x− x′)2 − iΔad (t) (x− x′)
[
∂

∂x
+

∂

∂x′

]

− �Γ (t) (x− x′)
[
∂

∂x
− ∂

∂x′

]}
ρr (x, x′, t) (3.71)

where

σ2 (t)
2

=
∫ t

0

dτ �N (t, t− τ) cos [Ωτ ] (3.72)

Δad (t) =
1

MΩ

∫ t

0

dτ �N (t, t− τ) sin [Ωτ ] (3.73)

Γ (t) =
1
2

∫ t

0

dτ γ (τ) cos [Ωτ ] (3.74)

δΩ2 (t) = Ω
∫ t

0

dτ γ (τ) sin [Ωτ ] − γ (0) (3.75)

and we have written D (t, t− τ) = −M (dγ (τ) /dτ), with the convention that
γ (t) = 0. Observe that besides the effects of noise and dissipation, the σ2 term
clearly acts to suppress the off-diagonal elements of the density matrix. Therefore
we must add decoherence to the list of effects of the environment on the system,
together with dissipation, diffusion and renormalization.

3.4 The Langevin equation

We now present two ways to derive the Langevin equation: first, formally from
the influence action using the Feynman–Vernon identity [FeyVer63, FeyHib65]
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to reduce the part containing the noise kernel to an integral over a new classical
stochastic forcing term, and second, through the time evolution of the reduced
Wigner function. When the influence functional has the form (3.61), either rig-
orously or as a result of approximations, it is possible to read the Langevin equa-
tion directly off the path integral representation for the reduced density matrix,
without explicit reference to the Wigner function. The idea is to substitute the
Gaussian identity (3.76) into the path integral representation (3.51). We then
commute the integrals, and perform the x and x′ integrations by the method of
stationary phase. The coupled equations for the stationary paths admit solutions
where x = x′, and the Langevin equation (3.93) is just the stationarity condi-
tion for these solutions. The final integration over ξ is, of course, necessary to
compute physical observables.

Later, in Chapter 5, when we treat open systems of quantum fields, we shall
use this method as an efficient way to derive the functional Langevin equation.
In Chapter 9 we will discuss in greater detail a class of problems where the
fluctuations predicted by this Langevin equation have a direct physical meaning.

From the influence action via a noise average

For linear coupling to a linear bath, the influence functional has the form (3.61).
In this case Feynman and Vernon showed that the noise kernel part of the influ-
ence functional can be written as a classical stochastic force ξ acting on the
system. The following is an identity of the Gaussian functional integral:

exp
{−1

2�

∫
dtdt′ u (t)N (t, t′)u (t′)

}
=
∫

Dξ P [ξ] exp
[
i

�

∫ ∞

0

dt ξu

]
(3.76)

where P [ξ] is a Gaussian measure such that

〈ξ〉 = 0, 〈ξ (t) ξ (t′)〉 = �N (t, t′) (3.77)

The stochastic force ξ has zero mean and correlation function given by N(t, t′)
the noise kernel, thus its name. We observe that P [ξ] does not depend on t.
The probability density functional is a functional of X(s) if we allow the statis-
tical properties of ξ to depend on the system history. This functional defines a
stochastic average 〈 〉ξ as a functional integral over ξ(s) multiplied by a normal-
ized Gaussian probability density functional P[ξ(s);X(s)].

One can then write the total influence functional (3.51) as

F [X,u] =
〈

exp
[
i

�

∫ tf

ti

ξfull(s)u(s)ds
]〉

(3.78)

ξfull(s) =
∫ s

ti

ds′D(s, s′)X(s′) + ξ(s) (3.79)

The equation of motion generated by the influence action is

∂L

∂x
− d

dt

∂L

∂ẋ
+
∫ s

ti

ds′ D(s, s′)X(s′) = −ξ(t) (3.80)
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whereby we obtain the Langevin equation. In general D generates nonlocal dis-
sipation while ξ represents a colored noise source.

The reduced Wigner function

We have seen that any wavefunction is associated with a function in phase
space, the so-called Wigner function (cf. equation (3.15)). Suppose the system is
described by a density matrix rather than a single wavefunction. Decomposing
the density matrix in terms of its own eigenfunctions

ρ (x, x′, t) =
∑
α

ρα (t)ψα (x, t)ψ∗
α (x′, t) (3.81)

∫
dx ψ∗

α (x, t)ψβ (x, t) = δαβ (3.82)

we see that ρα(t) is the probability of finding the system in one of the ψα states.
Let us associate each ψα state with its corresponding Wigner function fW

α , and
compute the expectation value

fW (x, p, t) =
∑
α

ρα (t) fW
α (x, p, t)

=
∫

du

2π�
e−ipu/�

∑
α

ρα (t) ψ∗
α

(
x− u

2
, t
)
ψα

(
x +

u

2
, t
)

=
∫

du

2π�
e−ipu/� ρ

(
x +

u

2
, x− u

2
, t
)

(3.83)

The Wigner function is directly given as the partial Fourier transform of the
density matrix, without any explicit reference to the latter eigenstates.

For a quantum open system, we define the reduced Wigner function as the
partial Fourier transform of the reduced density matrix

fW
r (X,P, t) =

∫
du

2π�
e−iPu/� ρr

(
X +

u

2
, X − u

2
, t
)

(3.84)

From the path integral representation of the reduced density matrix containing
its dynamics one can derive how the reduced Wigner function evolves in time
[CaRoVe01, Rou02, CaRoVe03].

Let us replace ρr in equation (3.84) by its path integral representation, with
the initial reduced density matrix given in terms of the initial reduced Wigner
function

fW
r (Xf , Pf , t) =

∫
duf

2π�
e−iPfuf/�

∫
x(t)=Xf+uf/2,x′(t)=Xf−uf/2

DxDx′

× exp
{
i

�
[SS [x] − SS [x′] + SIF [x, x′, t]]

}

×
∫

dPi exp
[
i

�
Pi (x (0) − x′ (0))

]
fW
r

(
x (0) + x′ (0)

2
, Pi, 0

)
(3.85)
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Insert the momentum variables by means of the identity

eiSS [x]/� = exp
[
− i

�

∫ t

0

dt V [x (t)]
] ∫

Dp exp
{
i

�

∫ t

0

dt

[
pẋ− p2

2M

]}
(3.86)

and introduce new variables

x, x′ = X ± u

2
(3.87)

p, p′ = P ± π

2
(3.88)

We assume a linear bath so the influence functional has the form (3.61). We
then use the Gaussian identity (3.76) to introduce the stochastic variable ξ and
write

V (x) − V (x′) = uV ′ (X) + V (X,u) , V ∼ O
(
u3
)

(3.89)

We may now formally integrate over the u and π variables, to get

fW
r (Xf , Pf , t) =

∫
X(t)=Xf ,P (t)=Pf

DXDP fW
r (X (0) , P (0) , 0)

×
∫

Dξ PQ [ξ, t] δ
[
Ṗ + V ′ (X) + D (t) − ξ

]
δ

[
Ẋ − P

M

]
(3.90)

where

D (t) = −
∫ t

0

dt′ D (t, t′)X (t′) (3.91)

PQ [ξ, t] = exp
[−i

�

∫ t

0

dt V
(
X, i�

δ

δξ (t)

)]
P [ξ] (3.92)

In other words, the Wigner function evolves as if it described an ensemble of
particles following trajectories which obey the equations

Ẋ (t) =
P (t)
M

, Ṗ (t) = −V ′ (X (t)) −D (t) + ξ (t) (3.93)

with random initial conditions weighted by the initial Wigner function and noise
autocorrelation given by equation (3.77). These are the Hamilton equations of
the system but now acquiring two extra terms, D and ξ, describing the influence
of the environment. D is a deterministic, memory-dependent term, while ξ plays
the role of “noise” with a “probability” distribution PQ. Observe that this is
an exact relation; in particular, the system retains fully its quantum coherence,
which is encoded in PQ. This means that we can use averages over the “noise”
and initial conditions to compute exact quantum expectation values of system
variables. In this sense, the Langevin equation gives the most detailed description
of the quantum open system we shall see in this chapter.
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Incidentally, observe that since V involves cubic derivatives or higher, the noise
autocorrelation is given by equation (3.77), independent of the self-interaction
potential V .

The path integral representation (3.90) may be simplified greatly if the X

dependence of V can be ignored (as it happens when the potential is cubic), or
at least X may be replaced by the solution X̄ [X (0) , P (0) , 0; t) to the classical
equations of motion with Cauchy data (X (0) , P (0)) at time 0. In this case the
path integral over X and P may be performed, and we get

fW
r (Xf , Pf , t) = 〈δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.94)

where X(t) and P (t) are the solutions of the Langevin equation (3.93) and the
average is over the initial conditions and noise realizations. This average is more
involved than the one we considered in Chapter 2, because of the more complex
noise distribution function.

3.4.1 The linear bath model

It is interesting to compare equations (3.93) to the simple linear bath model
we discussed in Chapter 2. To this end, we shall use expressions (3.62) for the
dissipation and noise kernels. Let us write q = {qα}, Q =

∑
cαqα. Recall that

the expectation values in equation (3.62) are computed at X = 0, and that for a
linear system the commutator of two field operators, being a c-number, is state
independent. Thus, we may write

[Q (t) , Q (t′)] =
∑

c2α [qα (t) , qα (t′)] (3.95)

For a linear system we may solve Heisenberg’s equations

qα (t) = qα (0) cosωαt + pα (0)
sinωαt

mαωα
(3.96)

[qα (t) , qα (t′)] =
�

i

sinωα (t− t′)
mαωα

(3.97)

To compare with the Brownian motion model, we write

D
(
t, t

′
)

= −M
∂

∂t
γ (t− t′) (3.98)

After an integration by parts, and discarding the term from the lower limit
because we assume the interaction is switched on smoothly, we get

D (t) = MδΩ2
0X (t) +

∫ t

0

dt′ γ (t− t′)P (t′) (3.99)

γ (t− t′) =
1
M

∑
α

c2α
mαω2

α

cosωα (t− t′)

δΩ2
0 = −γ (0)
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as in Chapter 2, equation (2.12). We now see the origin of the name dissipation
kernel for D (t, t′).

In reference to the noise, we observe first of all that
1
2
〈{Q (t) , Q (t′)}〉 = 〈Q (t)〉 〈Q (t′)〉 +

1
2
〈{Q (t) − 〈Q (t)〉 , Q (t′) − 〈Q (t′)〉}〉

(3.100)

If, for example, the initial state for the environment is thermal, then 〈Q (t)〉 = 0,
and we recover the result from Chapter 2, equation (2.16)

〈ξ (t) ξ (t′)〉 = �N (t, t′) =
∑
α

c2α
mαω2

α

〈εα〉 cosωα (t− t′) (3.101)

only now we must use the quantum energy expectation value

〈εα〉 = �ωα

[
1
2

+
1

e�ωα/kBT − 1

]
(3.102)

whereby we recover the quantum form of the fluctuation–dissipation theorem.
Of course, the noise is truly Gaussian only if V is zero, which means the system
itself is linear.

If the bath frequencies span a continuum, we should replace∑
α

→
∫ ∞

0

dω ρ (ω) (3.103)

where ρ (ω) dω is the number of oscillators with frequencies between ω and ω +
dω. We say the bath is ohmic if

ρ (ω) =
4γM
π

mωω
2

c (ω)2
(3.104)

for some constant γ. Observe that for an ohmic bath γ (t− t′) = 4γδ (t− t′) and
D (t) = 2γP (t) , so the Langevin equation is local in time. No physical bath
can be exactly ohmic, because it would require either an infinite number of
oscillators or else arbitrarily strong coupling to the bath, but many physical
systems exhibit ohmic dissipation (for example, a biased Josephson junction)
and may be modeled as if they were in contact with an ohmic bath.

Let us investigate the noise autocorrelation for an ohmic bath in equilibrium.
We have

〈ξ (t) ξ (t′)〉 = �N (t, t′) =
4�Mγ

π

∫ ∞

0

dω ω

[
1
2

+
1

e�ω/kBT − 1

]
cosω (t− t′)

(3.105)

For high temperature and t− t′ � �/kBT, we may argue that the integral is
dominated by low frequencies, whereby the noise is white and we recover the
classical fluctuation–dissipation theorem

�N (t, t′)|T→∞ = 4MγkBTδ (t− t′) (3.106)
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As T → 0, however, the integral becomes singular. Let us define

Pf
[

1
t2

]
= −

∫ ∞

0

dω ω cosωt, (3.107)

where Pf stands for the Hadamard finite part prescription. For example, if we
regularize the integral by including a convergence factor e−ω/Λ, then

Pf
[

1
t2

]
= limΛ→∞

t2 − Λ−2

(t2 + Λ−2)2
(3.108)

With this definition, the noise correlation at T = 0 becomes

�N (t, t′)|T=0 = −2�Mγ

π
Pf

[
1

(t− t′)2

]
(3.109)

Observe that the decay of the noise correlation obeys a power law, which implies
a very strongly colored noise.

3.5 The Kramers–Moyal equation

As in Chapter 2, the Langevin equation for the “trajectories” of the quantum
open system may be turned into a Kramers–Moyal equation for the reduced
Wigner function. To obtain this equation, we simply take the time derivative of
the path integral representation (3.90). Observe that we get a new term coming
from the explicit time dependence of PQ. Indeed, write

PQ [ξ, t] = PQ [ξ, t∗] − i

�
(t− t∗) V

(
Xf , i�

δ

δξ (t∗)

)
PQ [ξ, t∗] (3.110)

where the reference time t∗ < t is taken to t after computing the derivatives.
Then the noise averages may be split in two, and

∂

∂t
fW
r (Xf , Pf , t) = −

{
H, fW

r

}
+ MδΩ2

0Xf
∂fW

r

∂Pf
+

∂

∂Pf
[A + B] + C (3.111)

where the first term contains the Poisson brackets. The new terms are

A =
∫ t

0

dt′ γ (t− t′) 〈P (t′) δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.112)

B = −〈ξ (t) δ (X (t) −Xf ) δ (P (t) − Pf )〉 (3.113)

C =
(−i

�

)〈
V
(
Xf ,−i�

δ

δξ (t∗)

)
δ (X (t) −Xf ) δ (P (t) − Pf )

〉
(3.114)

We may use certain approximations to extract the leading behavior of these
expressions. To simplify the A term, for example, we replace P (t′) by the
solution P̄ [Xf , Pf , t; t′) to the classical equations of motion with Cauchy data
[Xf , Pf ] at time t. Observe that even for a strong system–bath interaction this
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approximation is justified if the kernel γ decays fast enough; it is exact for an
ohmic bath. So we approximate

A ∼ Γ (Xf , Pf , t) fW
r (Xf , Pf , t) (3.115)

Γ (Xf , Pf , t) =
∫ t

0

dt′ γ (t− t′) P̄ [Xf , Pf , t; t′) (3.116)

To simplify the B term, let us first neglect the X dependence in V. This
approximation is actually exact for a cubic potential. Also recall that since the t

dependence of V is explicitly considered through the C term, the time-integral
in PQ in the B term is truncated at t−. Then we have

−ξ (t)PQ [ξ, t] = − exp

[
−i

�

∫ t−

0

dt′ V
(
X, i�

δ

δξ (t)

)]
ξ (t)P [ξ]

=
∫ t

0

dt′ �N (t− t′)
δ

δξ (t′)
PQ [ξ, t] (3.117)

and after a further integration by parts

B =
∫ t

0

dt′ �N (t− t′)
{〈

δX (t)
δξ (t′)

∂

∂Xf
δ (X (t) −Xf ) δ (P (t) − Pf )

〉

+
〈
δP (t)
δξ (t′)

δ (X (t) −Xf )
∂

∂Pf
δ (P (t) − Pf )

〉}
(3.118)

To compute the variations with respect to the noise, recall the identities

δX (t′)
δξ (t′)

= 0;
δP (t′+)
δξ (t′)

= 1 (3.119)

and use the chain rule

0 =
δX (t′)
δX (t)

δX (t)
δξ (t′)

+
δX (t′)
δP (t)

δP (t)
δξ (t′)

(3.120)

1 =
δP (t′)
δX (t)

δX (t)
δξ (t′)

+
δP (t′)
δP (t)

δP (t)
δξ (t′)

(3.121)

Now assume that (X,P ) (t) and (X,P ) (t′) are linked through the classical equa-
tions of motion. The determinant of the system is 1 from Liouville’s theorem,
and so

δX (t)
δξ (t′)

= −δX̄ [Xf , Pf , t; t′)
δPf

;
δP (t)
δξ (t′)

=
δX̄ [Xf , Pf , t; t′)

δXf
(3.122)

The final result is

B= −
{
Φ, fW

r

}
, (3.123)

Φ =
∫ t

0

dt′ �N (t− t′) X̄ [Xf , Pf , t; t′) (3.124)
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Finally, to compute C we use the identities (3.119) at time t to get

C =
(−i

�

)
V
(
Xf , i�

δ

δPf

)
fW
r (Xf , Pf , t) (3.125)

To summarize, the quantum Kramers–Moyal equation reads

∂

∂t
fW
r (Xf , Pf , t)

= −
{
H, fW

r

}
−
(
i

�

)
V
(
Xf , i�

δ

δPf

)
fW
r (Xf , Pf , t)

+MδΩ2
0Xf

∂fW
r

∂Pf

+
∂

∂Pf

[
Γ (Xf , Pf , t) fW

r (Xf , Pf , t)−
{
Φ, fW

r

}]
(3.126)

The first line gives the evolution of the Wigner function without interaction with
the environment, while the second and third lines describe the renormalization,
dissipation, diffusion and decoherence effects.

3.5.1 The linear system model

If the system itself is linear, we can obtain simple analytic expressions for
X̄ [Xf , Pf , t; t′) and P̄ [Xf , Pf , t; t′) and thus derive an explicit result. We have
(cf. equation (3.70))

X̄ [Xf , Pf , t; t′) = Xf cos Ω (t− t′) − Pf

MΩ
sin Ω (t− t′) (3.127)

P̄ [Xf , Pf , t; t′) = Pf cos Ω (t− t′) + MΩXf sin Ω (t− t′) (3.128)

The Kramers–Moyal equation now reads (for a linear system, V =0)

∂

∂t
fW
r (Xf , Pf , t) = −

{
H, fW

r

}
+ MδΩ2 (t)Xf

∂fW
r

∂Pf

+
∂

∂Pf

[
2Γ (t)Pf+

σ2 (t)
2

∂

∂Pf
+ Δad (t)

∂

∂Xf

]
fW
r

(3.129)

where the coefficients σ2 (t), Δ (t), Γ (t) and δΩ2 (t) were defined above, from
equations (3.72)–(3.75). The identity of the coefficients to those in the master
equation (3.71) is not surprising, since for linear systems the Kramers–Moyal
equation (3.129) and the master equation (3.71) are equivalent. For nonlinear
systems, they are still closely related, but the approximations which go into one
or the other are not exactly the same.

The form (3.129) of the Kramers–Moyal equation makes it clear that the coef-
ficient γ (t) is associated with dissipation and σ2 (t) with “normal” diffusion. We
call Δad (t) the “anomalous” diffusion constant.
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σ2 (t) also pertains to decoherence. To see this, consider the pseudo-entropy

S̃ = 1 − tr ρ2
r

= 1 − (2π�)
∫

dXdP (fW
r )2 (X,P ) (3.130)

Then

dS̃

dt
= 2Γ(1 − S̃) + (4π�)

∫
dXdP

{
σ2 (t)

2

(
∂fW

r

∂Pf

)2

+ Δad (t)
∂fW

r

∂Xf

∂fW
r

∂Pf

}

(3.131)

The first term represents heat loss to the environment and the second induces
decoherence. The third does not have a definite sign.

To conclude, let us evaluate these coefficients for an ohmic bath. At high tem-
perature, we get the expected relations Γ (t) = γ, σ2 (t) = 4γMkBT , Δad (t) =
δΩ2 (t) = 0. At T = 0, though, the naive expressions diverge. Suppose we use
an exponential cut-off to regularize them, as in (3.108). Then as the cut-off is
removed, we get Γ (t) = γ and δΩ2 (t) = 0. For the expressions involving the noise
kernel (3.109), we get that Δad diverges logarithmically, while σ2 diverges lin-
early in the cut-off Λ. This result suggests that at late times the system perceives
the environment as a heat bath at a temperature kBTeff ≈ �Λ [ALMV06].

3.6 Derivation of the propagator and the master equation

For the influence functional path integral treatment of quantum Brownian
motion (QBM) the formal expression of the evolutionary operator for the reduced
density matrix was derived by Grabert, Schramm and Ingold [GrScIn88] and an
exact master equation for QBM in a general (non-ohmic) environment at an arbi-
trary temperature was derived by Hu, Paz and Zhang [HuPaZh92, HuPaZh93a].
In this section we give a discussion of this problem based on their work. This is
useful not only as a model example of this important method, but also because
in some problems such as the calculation of entropy generation (to be discussed
in Chapter 9) in quantum open systems we need some of these details.

Let us consider the general case of a quantum harmonic oscillator with time-
dependent mass, cross-term and natural frequency undergoing Brownian motion
through its interaction with an environment made up of n harmonic oscillators
with the same time-dependent parameters. The total Lagrangian of the system
is given by

S[x,q] = S[x] + SE [q] + Sint[x,q]

=
∫ t

ti

ds

{
1
2
M(s)

[
ẋ2 + 2E(s)xẋ− Ω2(s)x2

]

+
∑
n

[
1
2
mn(s)

[
q̇2
n + 2εn(s)qnq̇n − ω2

n(s)q2
n

]]
+
∑
n

[−c(s)xqn]

}

(3.133)
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where the particle and the bath oscillators have coordinates x and qn, respec-
tively; we may also let the system variable interact with the environment variable
through a more general f(x) functional form. This Hamiltonian is considered in
detail by Hu and Matacz [HuMat94] as an example of a squeezed quantum open
system. We will discuss this in the last section of Chapter 4.

3.6.1 Evolution of the reduced density matrix

Given some initial system density matrix ρS(xi x
′
i 0) we want to evolve it in

time using (3.49). The formal expression for Jr was derived by Grabert et al.
[GrScIn88] using path integral methods, and calculated explicitly in [HuPaZh92,
HuPaZh93a, HuMat94] for a general (non-ohmic) environment.

In terms of the sum and difference variables the classical paths followed by the
system, Xcl, ucl, can be written in terms of more elementary functions u, v:

Xcl(s) = Xcl(ti)u1(s) + Xcl(t)u2(s)

ucl(s) = ucl(ti)v1(s) + ucl(t)v2(s) (3.134)

Then it can be shown [HuMat94] that the evolutionary operator Jr is equal to

Jr(x, x′, t|xi, x
′
i, ti) =

|b2|
2π�

exp
[
i

�
(b1Xu− b2Xui + b3Xiu− b4Xiui)

− 1
�

(
a11u

2
i + a12uiu + a22u

2
)]

(3.135)

The functions b1 → b4 can be expressed as

b1(t, ti) = M(t)u̇2(t) + M(t)E(t)

b2(t, ti) = M(ti)u̇2(ti)

b3(t, ti) = M(t)u̇1(t)

b4(t, ti) = M(ti)u̇1(ti) + M(ti)E(ti) (3.136)

while the functions aij are defined by

aij(t, ti) =
1

1 + δij

∫ t

ti

ds

∫ t

ti

ds′ vi(s) N(s, s′) vj(s′) (3.137)

The functions u1 → v2 are solutions to the following equations (dropping sub-
scripts on u, v):1

ü(s) +
Ṁ

M
u̇ +

(
Ω2 + Ė +

Ṁ

M
E
)
u− 1

M(s)

∫ s

ti

ds′ D(s, s′) u(s′) = 0 (3.138)

v̈(s) +
Ṁ

M
v̇ +

(
Ω2 + Ė +

Ṁ

M
E
)
v − 1

M(s)

∫ t

s

ds′ v(s′)D(s′, s) = 0 (3.139)

1 Do not confuse u here with u ≡ x1 − x2 in Chapter 2 or u ≡ x− x′ in Chapter 3.
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subject to the boundary conditions

u1(ti) = v1(ti) = 1, u1(t) = v1(t) = 0 (3.140)

u2(ti) = v2(ti) = 0, u2(t) = v2(t) = 1 (3.141)

To proceed further we need explicit expressions for a11 → b4. These are
expressed in terms of u1 → v2, which in turn come from solving equations (3.138)
and (3.139). To solve these equations we need to know the dissipation D ker-
nel of the environment, which is determined by the coupling and the spectral
density function of the environment. We consider an ohmic bath and assume
an unsqueezed (coherent) thermal bath made up of unit mass static (time-
independent frequency) oscillators so the dissipation and noise kernels simplify
to the form

D(s, s′) = −4γ0 c(s)c(s′) δ′(s− s′)

N(s, s′) =
2γ0

π
c(s)c(s′)

∫ ∞

0

ω coth
�ω

2kBT
cosω(s− s′) dω (3.142)

If c(s) = c = constant, we may identify γ0c
2 = Mγ. In this case, in the high-

temperature limit the noise becomes white, that is, N tends toward a delta
function.

3.6.2 Master equation

We now proceed with the derivation of the master equation from the evolution
operator using the simplified method of Paz [Paz94]. We first take the time
derivative of both sides of equation (3.135), multiply both sides by ρr(Xi, ui, ti)
and integrate over Xi, ui to obtain

ρ̇r(Xf , uf , t) =

[
ḃ2
b2

+
i

�
ḃ1Xfuf − ȧ22

u2
f

�

]
ρr(Xf , uf , t)

+
i

�
uf ḃ3

∫
duidXi XiJrρr(Xi, ui, ti)

− 1
�
(iḃ2Xf + ȧ12uf )

∫
duidXi uiJrρr(Xi, ui, ti)

− i

�
ḃ4

∫
duidXi XiuiJrρr(Xi, ui, ti)

− ȧ11

�

∫
duidXi u

2
iJrρr(Xi, ui, ti)

(3.143)

Here the dot denotes the derivative with respect to t. We can perform the
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integrals in (3.143) by using

uiJr =
i�

b2

∂Jr

∂Xf
+

b1uf

b2
Jr (3.144)

XiJr = − i

b3

[
�
∂Jr

∂uf
+ (uia12 + 2ufa22)Jr)

]
− b1

b3
XfJr (3.145)

XiuiJr = −
(
i�

b2

∂

∂Xf
+

b1uf

b2

)

×
(
i�

b3

∂

∂uf
+

i

b3
[uia12 + 2ufa22] +

b1
b3
Xf

)
Jr (3.146)

The ui functions obey mixed boundary conditions. It is convenient to express
them in terms of functions wi obeying initial conditions only. We write

u1(s) = w1(s) − w2(s)
w1(t)
w2(t)

, u2(s) =
w2(s)
w2(t)

(3.147)

In order to satisfy the boundary conditions (3.140) we require

w1(ti) = ẇ2(ti) = 1, w2(ti) = ẇ1(ti) = 0 (3.148)

In this representation we can show that

ḃ4
b2b3

= − 1
M(t)

, b1 = −M(t)
ḃ2
b2

+ M(t)E , ȧ11 = −v̇1(t)a12 (3.149)

With these relations the master equation is the same as equation (3.71) with two
additional terms

i�
∂

∂t
ρr(x, x′, t) =

{
− �

2

2M(t)

( ∂2

∂x2
− ∂2

∂x′2

)
+ i�E

(
x
∂

∂x
+ x′ ∂

∂x′

)

+
M(t)

2
[
Ω2 + δΩ2 (t)

] (
x2 − x′2)+ i�E

}
ρr(x, x′, t)

− i�Γ(t, ti)(x− x′)
( ∂

∂x
− ∂

∂x′

)
ρr(x, x′, t)

− i
σ2 (t)
2�

(x− x′)2 ρr(x, x′, t)

+ Δad (t) (x− x′)
( ∂

∂x
+

∂

∂x′

)
ρr(x, x′, t)

− i�2Dxx(t, ti)
( ∂

∂x
+

∂

∂x′

)2

ρr(x, x′, t) (3.150)
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where we identify

[
Ω2 + δΩ2 (t)

]
=

b1ḃ3
M(t)b3

− ḃ1
M(t)

+ E2 − ḃ2
b2
E (3.151)

Γ(t, ti) = −1
2

(
ḃ3
b3

− ḃ2
b2

)
(3.152)

−σ2 (t)
2�

=
b21
b2

(
a12

M(t)
− ȧ11

b2

)
+

2b1
M(t)

a22 − ȧ22 + 2
ḃ3
b3
a22 + a12

b1ḃ3
b2b3

− ȧ12
b1
b2

(3.153)

Δad (t) = �

[
ȧ12

b2
− 2

a22

M(t)
− ḃ3a12

b3b2
− 2b1

b2

(
a12

M(t)
− ȧ11

b2

)]
(3.154)

Dxx(t, ti) =
1
b2

(
a12

M(t)
− ȧ11

b2

)
(3.155)

The dot in these equations denotes taking the derivative with respect to t.
The factor a12/M(t) − ȧ11/b2 vanishes only when the dissipation kernel is sta-

tionary (i.e. a function of s− s′) and the system is a time-independent harmonic
oscillator. When this happens v1(s) = u2(t− s) and we have v̇1(t) = −b2/M(t).
We see from equation (3.149) that the factor a12/M(t) − ȧ11/b2 is zero in this
case. All the diffusion coefficients contain this factor and Dxx depends solely
on it.

3.7 Consistent histories and decoherence functional

The question which remains unanswered is whether individual solutions of the
Langevin equation are actually observable. This question contains two aspects,
namely, (a) whether the evolution of the quantum open system may be analyzed
in terms of trajectories, and (b) whether these trajectories describe any recog-
nizable dynamics. As we shall see, the answer is not straightforward, because
it involves a new component, namely, the accuracy of our observations. Out of
quantum common sense, we expect that if we follow the trajectories too closely,
we would be feeding noise into the system (Heisenberg’s principle), eventually
masking the system–environment interaction. Still the question remains whether
there is any range where the Langevin equation is a satisfactory description of
the observed evolution of the system.

To analyze this question we shall adopt the consistent histories approach to
quantum mechanics, in the version advanced by Gell-Mann and Hartle (see
[Gri84, Gri93, Omn88, Omn90, Omn92, KoEzMuNo90, Har92, Har93, GelHar90,
HarGel93, Bru93, GelHar06]). The idea is to define a history by a set of projec-
tors Pα acting at times ti. In canonical terms, a history is given by an evolution
of the state vector such that at every time ti, it belongs to the proper space of
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Pα (ti). In path integral terms, the projectors are represented by window func-
tions wα [x (ti)], which take on unit value if the instantaneous configuration x

satisfies the requirements of the history α, and vanish otherwise. The limiting
case of a fine-grained history, namely, when x (t) is specified for all times, is
assigned an amplitude exp iS/�, as usual in the Feynman path integral formu-
lation. The amplitude for a coarse-grained history defined by window functions
wα [x (ti)] is defined by the superposition

A [α] =
∫

Dx eiS/�ψ [x (0)]

{∏
i

wα [x (ti)]

}
(3.156)

The probability is naturally expressed in terms of a closed time path integral

P [α] = |A [α]|2 =
∫

DxDx′ ei[S−S′]/�ρ [x (0) , x′ (0)]

×
{∏

i

wα [x (ti)]

}{∏
i

wα [x′ (ti)]

}
(3.157)

In this way we may assign a probability to any coarse-grained history, but these
probability assignments are not generally consistent, namely, the probabilities
of two mutually exclusive histories do not generally add up. Indeed, let us define
the decoherence functional of two histories α and β

D [α, β] =
∫

DxDx′ ei[S−S′]/�ρ [x (0) , x′ (0)]

{∏
i

wα [x (ti)]

}⎧⎨
⎩
∏
j

wβ [x′ (tj)]

⎫⎬
⎭

(3.158)

P[α] = D[α, α] but P[α ∨ β] = D[α, α] + D[β, β] + 2ReD[α, β] �= P[α] + P[β].
The probability sum rule P [α ∨ β] = P [α] + P [β] only applies when the third
term vanishes, and in particular when there is strong decoherence, D [α, β] = 0
for α �= β. As physicists, who deal with reality, we shall be satisfied that a set
of mutually exclusive histories is consistent when |D [α, β]| � D [α, α] ,D [β, β]
whenever α �= β.

A simple set of consistent histories refers to the values of conserved quantities
[HaLaMa95]. First observe that the path integral expression (3.158) translates
into the canonical expression

D [α, β] = Tr

⎧⎨
⎩T̃

⎡
⎣∏

j

Pβ (tj)

⎤
⎦T
[∏

i

Pα (ti)

]
ρ (0)

⎫⎬
⎭ (3.159)

The projectors at different times are related in the usual way Pα (t) =
U (t)Pα (0)U† (t) . If a projector commutes with the Hamiltonian, then it is time-
independent, and expression (3.159) collapses unless all projectors are indeed
identical. The only histories with nonzero probabilities are those defined by
ranges of conserved quantities in the initial state, and they are automatically
consistent if these ranges do not overlap.
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88 Quantum open systems

For open quantum systems we are interested in histories where the system vari-
able X is specified to follow a trajectory χ (t) with a given accuracy σ (t), while
the environment variable q is left unspecified. For technical reasons, it is con-
venient to use Gaussian, rather than sharp, windows. We also make a Gaussian
ansatz for the initial state, which we assume to be pure. Therefore, we replace

ρ [x (0) , x′ (0)]

{∏
i

wα [x (ti)]

}⎧⎨
⎩
∏
j

wβ [x′ (tj)]

⎫⎬
⎭ (3.160)

by

exp
[
−
∫

dt

2σ2 (t)

{
(x− χ)2 + (x′ − χ′)2

}]
(3.161)

The unconstrained integration over environment variables yields the action func-
tional, which has the structure we already know. Adopting a shorthand notation

D [χ, χ′] =
∫

DxDx′ exp
(−1

2

)

×
{
−2iuLX + Nu2 +

1
σ2

[
(x− χ)2 + (x′ − χ′)2

]}
(3.162)

where X = x + x′/2, u = x− x′, the symbols L, N and 1/σ2 denote operators
(which we shall handle as if they were c-numbers) and we have applied Einstein’s
convention to time integrals. Write χ, χ′ = Υ ± y/2 and develop the last term to
get

D [χ, χ′] = exp
( −1

2σ2

)[
2Υ2 +

y2

2

]

×
∫

DXDu exp
(−1

2

){
−2iuLX +

[
N +

1
2σ2

]
u2 +

2
σ2

X2

}

× exp
1

2σ2
[uy + 4XΥ] (3.163)

Now consider the matrix

M =

(
2σ−2 (−i)L
(−i)L N +

(
2σ2
)−1

)
(3.164)

Already from the fact that the noise kernel appears in the combination N +(
2σ2
)−1 we see that there must be a limit where the “Langevin noise” is

drowned in the “Heisenberg noise.” The determinant of this matrix is Det (M) =(
N +

(
2σ2
)−1
)

2σ−2 + L2, and the inverse is (we assume all operators commute)

M−1 = [Det (M)]−1

(
N +

(
2σ2
)−1

iL

iL 2σ−2

)
(3.165)
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Therefore

|D [χ, χ′]| ∼ exp

{
−
[
1 − 2 [Det (M)]−1

σ2

(
N +

(
2σ2
)−1
)] Υ2

σ2

−
[
1 − [Det (M)]−1

σ4

]
y2

4σ2

}
(3.166)

We see that the dynamics and the decoherence aspects are clearly separated. To
obtain a simpler expression, we shall assume that the L operator is “small,” so
we can expand in powers of L. Keeping only the first nonzero contributions, we
get

|D [χ, χ′]| ∼ exp
(−1

2

){(
N +

(
2σ2
)−1
)−1

(LΥ)2 + N
(
2σ2N + 1

)−1
y2

}
(3.167)

To find the probability of a given history, we must set y = 0. We see that the
most likely histories are those which satisfy the “classical” equations of motion
Lχ = 0; these are the equations of motion for the expectation value of the system
variable, and include the dissipative terms, but not the noise. The magnitude of
the expected deviations from the deterministic behavior is given by N +

(
2σ2
)−1.

The noise kernel provides a lower bound for the “noisiness” of the dynamics, but
we can say that the deviations from the classical motion are well described by
the Langevin equation only in the limit of “fuzzy” observations,

(
2σ2
)−1 � N.

In the opposite limit, the dominant effect is the Heisenberg noise.
To study consistency, we must follow the decoherence functional as y increases.

We see that our histories tend to decohere, and they become approximately con-
sistent whenever y2 ≥

(
2σ2 + N−1

)
. The relevant question is whether any two

histories which may be resolved by our apparatus are automatically consistent.
The limit of resolution is y2 ∼ σ2; therefore, consistency is obtained only asymp-
totically for strong noise σ2N � 1.

In conclusion, a picture of the system evolution based on actual nearly clas-
sical trajectories may only result from a compromise whereby the accuracy of
observations is adjusted to the noise level, σ2 ∼ N−1. Larger noise for a given σ

means more decoherence but less predictability; for a weaker noise, predictabil-
ity is only limited by the Heisenberg bounds, but individual trajectories will not
decohere. If we are satisfied with predictability within the limits imposed by the
Langevin equation, then in the strong noise limit we may consider individual
trajectories as actually depicting physical reality.

For a critique of the consistent history approach to quantum mechanics, see
[DowKen96, BasGhi99].
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