
3
Radiative corrections

The previous chapter derived some simple consequences of heavy quark sym-
metry ignoring 1/m Q and radiative corrections. This chapter discusses how ra-
diative corrections can be systematically included in HQET computations. The
two main issues are the computation of radiative corrections in the matching
between QCD and HQET, and the renormalization of operators in the effective
theory. The renormalization of the effective theory is considered first, because
it is necessary to understand this before computing corrections to the matching
conditions. The 1/m Q corrections will be discussed in the next chapter.

3.1 Renormalization in HQET

The fields and the coupling in the HQET Lagrange density Eq. (2.49) are actually
bare quantities,

Leff = iQ̄(0)
v vμ

[
∂μ + ig(0) A(0)

μ

]
Q(0)

v , (3.1)

where the superscript (0) denotes bare quantities. It is convenient to define renor-
malized fields that have finite Green’s functions. The renormalized heavy quark
field is related to the bare one by wave-function renormalization,

Qv = 1√
Zh

Q(0)
v . (3.2)

The coupling constant g(0) and the gauge field A(0)
μ are also related to the renor-

malized coupling and gauge field by multiplicative renormalization. In the back-
ground field gauge, g Aμ is not renormalized, so g(0) A(0)

μ = gμε/2 Aμ, where
n = 4 − ε is the dimension of space–time.

In terms of renormalized quantities, the HQET Lagrangian becomes

Leff = iZh Q̄vv
μ
(
∂μ + igμε/2 Aμ

)
Qv

= iQ̄vv
μ
(
∂μ + igμε/2 Aμ

)
Qv + counterterms. (3.3)
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78 Radiative corrections

Fig. 3.1. Heavy quark loop graph, which vanishes in the effective theory. Heavy quark
propagators are denoted by a double line.

Equation (3.3) has been written in n = 4−ε dimensions, with μ the dimensionful
scale parameter of dimensional regularization.

Heavy quarks do not effect the renormalization constants for light quark fields
Zq , the gluon field Z A, and the strong coupling Zg, because heavy quark loops
vanish in the effective theory. That loops do not occur is evident from the propa-
gator in Eq. (2.41). In the rest frame v = vr the propagator i/(k · v + iε) has one
pole below the real axis at k0 = −iε. A closed heavy quark loop graph such as
in Fig. 3.1 involves an integration over the loop momentum k. The heavy quark
propagators in the loop both have poles below the real axis, so the k0 integral
can be closed in the upper half-plane, giving zero for the loop integral. The
HQET field Qv annihilates a heavy quark but does not create the corresponding
antiquark.

In the full theory of QCD, the light quark wave-function renormalization
Zq is independent of the quark mass in the MS scheme. A heavy quark with
mass m Q contributes to the QCD β function even for μ � m Q . At first glance,
this would imply that heavy particle effects do not decouple at low energies.
This nondecoupling is an artifact of the MS scheme. The finite parts of loop
graphs have a logarithmic dependence on the quark mass and become large as
μ � m Q . One can show that the logarithmic dependence of the finite parts exactly
cancels the logarithmic heavy quark contribution to the renormalization group
equation, so that the total heavy quark contribution vanishes as μ � m Q . This
cancellation can be made manifest in the zero heavy quark sector by constructing
an effective theory for μ < m Q in which the heavy quark has been integrated out.
Such effective theories were considered in Sec. 1.5 of Chapter 1. Similarly, in
HQET, one matches at μ = m Q to a new theory in which the Dirac propagator
for the heavy quark is replaced by the HQET propagator Eq. (2.41). This changes
the renormalization scheme for the heavy quarks, so that Zh for the heavy quark
differs from Zq for the light quarks.

Zh can be computed by studying the one-loop correction to the heavy quark
propagator in Fig. 3.2. In the Feynman gauge, the graph is∫

dnq

(2π )n

( − igT Aμε/2)vλ

i

(q + p) · v

( − igT Aμε/2)vλ (−i)

q2

= −
(

4

3

)
g2με

∫
dnq

(2π )n

1

q2 v · (q + p)
, (3.4)
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3.1 Renormalization in HQET 79

Fig. 3.2. Gluon interaction with a heavy quark.

where p is the external residual momentum, q is the loop momentum, and we
have used the identity T AT A = (4/3)11 for the 3 of SU(3). The one-loop wave-
function renormalization is given by the ultraviolet divergent part of Eq. (3.4).
If one expands in v · p, Eq. (3.4) is also infrared divergent, and it is convenient
to regulate the infrared divergence by giving the gluon a mass m that will be
set to zero at the end of the computation. This infrared regulator allows one to
isolate the ultraviolet divergence by computing the 1/ε term in the integral. The
regulated integral that has to be evaluated is

−
(

4

3

)
g2με

∫
dnq

(2π )n

1

(q2 − m2)[v · (q + p)]
, (3.5)

where m is the gluon mass. The integral Eq. (3.5) will be computed in detail,
since it provides an example of some standard tricks that are useful in computing
loop graphs in HQET. The denominators can be combined by using the identity

1

arbs = 2s �(r + s)

�(r )�(s)

∫ ∞

0
dλ

λs−1

(a + 2bλ)r + s
, (3.6)

so that Eq. (3.5) can be rewritten as

−
(

8

3

)
g2με

∫ ∞

0
dλ

∫
dnq

(2π )n

1

[q2 − m2 + 2λv · (q + p)]2
. (3.7)

Shifting the loop integration momentum by q → q − λv gives

−
(

8

3

)
g2με

∫ ∞

0
dλ

∫
dnq

(2π )n

1

(q2 − m2 − λ2 + 2λv · p)2
. (3.8)

Evaluating Eq. (3.8) using the standard dimensional regularization formula in
Eq. (1.44) gives

−
(

8

3

)
g2με

∫ ∞

0
dλ

i

(4π )2−ε/2
�(ε/2)[λ2 − 2λv · p + m2]−ε/2. (3.9)

The λ integral can be evaluated by using the recursion relation,

I (a, b, c) ≡
∫ ∞

0
dλ(λ2 + 2bλ + c)a

= 1

1 + 2a

[
(λ2 + 2bλ + c)a(λ + b)|∞0 + 2a(c − b2)I (a − 1, b, c)

]
,

(3.10)
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80 Radiative corrections

to convert it to one that is convergent when ε = 0,∫ ∞

0
dλ[λ2 − 2λv · p + m2]−ε/2

= 1

1 − ε

{
(λ2 − 2λv · p + m2)−ε/2(λ − v · p)

∣∣∞
0

− ε
[
m2 − (v · p)2] ∫ ∞

0
dλ(λ2 − 2λv · p + m2)−1−ε/2

}
. (3.11)

The � functions in a one-loop dimensionally regularized integral can have at
most a 1/ε singularity. Since the last term in Eq. (3.11) is multiplied by ε, one
can set ε = 0 in the integrand. The other terms can be evaluated by noting that
in dimensional regularization,

lim
λ→∞

λz = 0, (3.12)

as long as z depends on ε in a way that allows one to analytically continue z to
negative values. This gives for Eq. (3.9)

− i
g2

6π2
(4πμ2)ε/2�(ε/2)

1

1 − ε

{
(m2)−ε/2 (v · p)

− ε
[
m2 − (v · p)2] ∫ ∞

0
dλ(λ2 − 2λv · p + m2)−1

}

= −i
g2

3π2ε
v · p + finite. (3.13)

There is also a tree-level contribution from the counterterm:

iv · p(Zh − 1). (3.14)

The sum of Eqs. (3.14) and (3.13) must be finite as ε → 0, so in the MS scheme

Zh = 1 + g2

3π2ε
. (3.15)

Note that Zh is different from the wave-function renormalization of light quark
fields given in Eq. (1.86). The anomalous dimension of a heavy quark field is

γh = 1

2

μ

Zh

d Zh

dμ
= − g2

6π2
. (3.16)

Composite operators require additional subtractions beyond wave-function
renormalization. Consider the heavy-light bare operator

O (0)
� = q̄ (0)�Q(0)

v = √
Zq Zh q̄�Qv, (3.17)
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3.1 Renormalization in HQET 81

Fig. 3.3. One-loop renormalization of the heavy-light operator q̄�Qv . The heavy quark
is denoted by a double line, the light quark by a single line, and the operator insertion
by ⊗.

where � is any Dirac matrix. The renormalized operator is defined by

O� = 1

Z O
O (0)

� =
√

Zq Zh

Z O
q̄�Qv

= q̄�Qv + counterterms, (3.18)

where the additional operator renormalization Z O can be determined by com-
puting a Green’s function with an insertion of O�. For example, Z O can be de-
termined by considering the one-particle irreducible Green’s function of q, Q̄v,
and O�. The counterterm in Eq. (3.18) contributes(√

Zq Zh

Z O
− 1

)
� (3.19)

to this time-ordered product. The one-loop diagram in Fig. 3.3 also gives a
divergent contribution to the time-ordered product. Neglecting external momenta
(the operator O� contains no derivatives) and using the Feynman gauge, the
diagram gives∫

dnq

(2π )n

(−igμε/2T A)γ λ i/q

q2
�

i

v · q

(−igμε/2T A)vλ

(−i)

q2

= −i
4

3
g2με

∫
dnq

(2π )n

/v/q�

q4v · q
. (3.20)

Combining denominators using Eq. (3.6), introducing a gluon mass m to regulate
the infrared divergence, and making the change of variables q → q − λv gives

−i
16

3
g2με

∫
dλ

∫
dnq

(2π )n

/v(/q − λ/v)�

(q2 − λ2 − m2)3
. (3.21)

The term proportional to /q is odd in q, and it vanishes on integration. The identity
/v/v = 1 reduces the remaining integral to be the same as i/2 times the derivative
of Eq. (3.8) with respect to v · p at v · p = 0. Consequently, Fig. 3.3 yields

g2�

6π2ε
, (3.22)

up to terms that are not divergent as ε → 0. The sum of Eqs. (3.19) and (3.22)
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82 Radiative corrections

must be finite as ε → 0. Using the expressions for
√

Zh and
√

Zq in Eqs. (3.15)
and (1.86) gives

Z O = 1 + g2

4π2ε
, (3.23)

and the anomalous dimension is

γO = − g2

4π2
. (3.24)

Note that the renormalization of O� is independent of the gamma matrix � in the
operator. This is a consequence of heavy quark spin symmetry and light quark
chiral symmetry, and it is very different from what occurs in the full theory of
QCD. For example, in the full theory the operator q̄i q j requires renormalization
whereas the operator q̄iγμq j does not.

As a final example of operator renormalization, consider a composite operator
with two heavy quark fields with velocity v and v′,

T (0)
� = Q̄(0)

v′ �Q(0)
v = Zh Q̄v′�Qv. (3.25)

The renormalized operator is related to the bare one by means of

T� = 1

ZT
T (0)

�

= Zh

ZT
Q̄v′�Qv = Q̄v′�Qv + counterterms. (3.26)

One can always choose a frame where v = vr or where v′ = vr , but it is not
possible, in general, to go to a frame where both heavy quarks are at rest. Hence T�

depends on w = v ·v′ and we anticipate that its renormalization will also depend
on this variable. Heavy quark spin symmetry implies that the renormalization
of T� will be independent of �. The operator renormalization factor ZT can be
determined from the time-ordered product of Qv′, Q̄v and T�. The counterterm
gives the contribution (

Zh

ZT
− 1

)
�, (3.27)

and the one-loop Feynman diagram in Fig. 3.4 gives (neglecting external

Fig. 3.4. One-loop renormalization of the heavy-heavy operator Q̄v′�Qv . The heavy
quark is denoted by a double line and the operator insertion by ⊗.
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3.1 Renormalization in HQET 83

momenta) the contribution∫
dnq

(2π )n

(−igT Aμε/2)v′
λ

(−igT Aμε/2)vλ i

v′ · q
�

i

v · q

(−i)

q2

= −ig2με

(
4

3

)
w

∫
dnq

(2π )n

�

q2(q · v)(q · v′)
(3.28)

to this three-point function. Using the Feynman trick to first combine the q · v
and q · v′ terms, and then using Eq. (3.6), gives

−ig2
(

32

3

)
με�w

∫ ∞

0
dλ

∫ 1

0
dx

×
∫

dnq

(2π )n

λ

{q2 + 2λ[xv + (1 − x)v′] · q − m2}3
, (3.29)

where m has been introduced to regulate the infrared divergence. Performing
the q integration by completing the square in the denominator, shifting the q
integration and dropping finite terms gives

− g2

3π2
μεw�

∫ ∞

0
dλ

∫ 1

0
dx

λ

{λ2[1 + 2x(1 − x)(w − 1)] + m2}1 + ε/2
, (3.30)

where w = v · v′. The λ integral can be evaluated explicitly to give

−16

3

g2

16π2ε
w�(m2)−ε/2

∫ 1

0
dx

1

[1 + 2x (1 − x) (w − 1)]
. (3.31)

Performing the x integral yields for the part proportional to 1/ε,

−
(

16

3

)
g2

16π2ε
w r (w) �, (3.32)

where

r (w) = 1√
w2 − 1

ln
(
w +

√
w2 − 1

)
, (3.33)

Demanding that the sum of Eq. (3.27) and Eq. (3.32) be finite as ε → 0 de-
termines the operator renormalization factor ZT . Using Eq. (3.15) we find that

ZT = 1 − g2

3π2ε
[w r (w) − 1], (3.34)

and the operator anomalous dimension is

γT = g2

3π2
[w r (w) − 1]. (3.35)

Note that the renormalization of T� = Q̄v′�Qv depends on the dot product of
four velocities w = v ·v′. This is reasonable since Qv is a different field for each

https://doi.org/10.1017/9781009402125.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.004


84 Radiative corrections

value of the four-velocity. At the zero-recoil point w = 1 the operator Q̄vγμQv

is a conserved current associated with heavy quark flavor symmetry and hence is
not renormalized. The anomalous dimension γT near w = 1 has the expansion

γT = g2

π2

[
2

9
(w − 1) − 1

15
(w − 1)2 + · · ·

]
, (3.36)

and vanishes at w = 1.

3.2 Matching between QCD and HQET

The computation of physical quantities in QCD using HQET requires relating
QCD operators to HQET operators, which is referred to as “matching.” Consider
the QCD vector current operator,

Vν = q̄γν Q, (3.37)

involving a heavy quark field Q and a light quark field q . Matrix elements
of this operator are important for semileptonic decays such as B̄ → πeν̄e and
D → π ēνe. In QCD this operator is not renormalized, since it is conserved in
the limit that the (heavy and light) quark masses vanish. Quark mass terms are
dimension-three operators, and therefore do not affect anomalous dimensions.
Matrix elements of the full QCD vector current between physical states contain
large logarithms of the quark mass m Q divided by a typical hadronic momentum,
which is of the order of �QCD. These logarithms can be resummed using HQET.
In HQET, matrix elements of operators renormalized at μ can only contain
logarithms of �QCD/μ. There are no logarithms of m Q/μ, since HQET makes
no reference to the large-momentum scale m Q . The logarithms of m Q/μ are
obtained by scaling the HQET operators between m Q and μ, using the anomalous
dimensions computed in the previous section.

The first step in computing matrix elements of Vν is to relate the QCD operator
to HQET operators. One can do this by computing matrix elements of the QCD
operator between quarks at a scale μ, and comparing this with matrix elements
of HQET operators renormalized at the same scale. Both calculations are done in
perturbation theory, and are in general infrared divergent. However, the matching
conditions depend on the difference between the computations in QCD and
HQET. Since HQET is constructed to reproduce the low-momentum dynamics
of QCD, the infrared divergences cancel in the matching conditions. One can
therefore compute the matching conditions by using any convenient infrared
regulator. It is crucial that the matching conditions do not depend on infrared
effects; otherwise they would depend on the nonperturbative scale �QCD, and
they would not be computable by using perturbation theory. Two common ways
to regulate infrared divergences are to use a gluon mass and to use dimensional
regularization. In this chapter, we will use dimensional regularization. If the scale
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3.2 Matching between QCD and HQET 85

μ is chosen to be of the order of the heavy quark mass m Q , the computation of the
matching between the full and effective theories will be an expansion in αs(μ),
with no large logarithms. For the specific example of the heavy → light vector
current, this expansion takes the form

V λ = C (V )
1

[
m Q

μ
, αs(μ)

]
q̄γ λQv + C (V )

2

[
m Q

μ
, αs(μ)

]
q̄vλQv. (3.38)

The right-hand side of Eq. (3.38) includes all dimension-three operators with
the same quantum numbers as the vector current V λ. Higher dimension op-
erators are suppressed by powers of 1/m Q . They can also be computed in a
systematic expansion to determine the 1/m Q corrections, as will be discussed in
Chapter 4. Other dimension-three operators can be rewritten in terms of the two
operators given above. For example, q̄iσμνvν Qv = −(1/2)q̄(γ μ/v − /vγ μ)Qv =
−q̄γ μQv + vμq̄ Qv, and so is not a linearly independent operator.

The matching calculation between QCD and HQET at the scale m Q determines
C (V )

i [1, αs(m Q)]. At lowest order in αs (tree level), the matching condition is
trivial,

C (V )
1 [1, αs(m Q)] = 1 + O[αs(m Q)],

C (V )
2 [1, αs(m Q)] = O[αs(m Q)],

(3.39)

since at tree level, the field Q can be replaced by Qv up to corrections of the
order of 1/m Q . The one-loop corrections to C (V )

i will be computed in Sec. 3.3.
In the general case, one has a QCD operator OQCD renormalized at the scale

m Q , which can be expressed as a linear combination of HQET operators Oi

renormalized at the scale μ,

OQCD(m Q) =
∑

i

Ci

[
m Q

μ
, αs(μ)

]
Oi (μ), (3.40)

where the coefficients Ci [1, αs(μ)] are computed by doing a perturbative match-
ing condition calculation at the scale μ = m Q . One can then obtain the coeffi-
cients Ci [m Q/μ, αs(μ)] at some lower scale μ < m Q by renormalization group
scaling in the effective theory, using the same procedure as that used for the
weak Hamiltonian in Sec. 1.6. The operators Oi satisfy the renormalization
group equation in Eq. (1.129). Since the left-hand side of Eq. (3.40) is μ in-
dependent, this implies that the coefficients satisfy the renormalization group
equation shown in Eq. (1.133), with the solution given by Eq. (1.134).

The renormalization group equation solution in Eq. (1.134) can be written out
explicitly in the case in which a single operator is multiplicatively renormalized,
so that γ is a number rather than a matrix. The anomalous dimension, β function,
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86 Radiative corrections

and matching coefficient have the perturbative expansions

γ (g) = γ0
g2

4π
+ γ1

(
g2

4π

)2

+ · · ·

β(g) = −β0
g3

4π
− β1

g5

(4π )2
+ · · · ,

C[1, αs(m Q)] = C0 + C1αs(m Q) + · · · .

(3.41)

Integrating Eq. (1.134) gives

C

[
m Q

μ
, αs(m Q)

]
= [C0 + C1αs(m Q) + · · ·]

×
{

exp
∫ g(m Q )

g(μ)

dg

g

[
γ0

β0
+

(
γ1

β0
− γ0β1

β2
0

)
g2

4π
+ · · ·

]}

=
[

αs(μ)

αs(m Q)

]−(γ0/2β0)

×
{

C0 + C0

(
γ1

2β0
− γ0β1

2β2
0

)
[αs(m Q) − αs(μ)] + C1αs(m Q) + · · ·

}
.

(3.42)

The terms explicitly displayed in this equation sum all subleading logarithms
of the form αn+1

s lnn(m Q/μ). To evaluate the subleading logarithms requires
knowing the two-loop anomalous dimension and β function, and the one-loop
matching coefficient C1. The two-loop β function is scheme independent, but
C1 and γ1 are both scheme dependent in general. Retaining only the one-loop
anomalous dimension γ0 and the one-loop β function β0 sums all the leading
logarithms αn

s lnn(m Q/μ).
The leading logarithms can be summed in the case of operator mixing by

diagonalizing the anomalous dimension matrix γ0, and then using Eq. (3.42).
The two-loop equations with operator mixing cannot be simplified in the same
way, because in general, γ0 and γ1 cannot be simultaneously diagonalized, and
the equation has to be integrated numerically.

It should now be clear how to interpret the predictions for heavy meson de-
cay constants and form factors obtained in Secs. 2.8–2.11. For the decay con-
stants, the coefficient a is subtraction-point dependent, and Eq. (2.62) holds up
to perturbative matching corrections when a is evaluated at μ = m Q . The μ

dependence of a is determined by the anomalous dimension in Eq. (3.24). The
situation is similar for the Isgur-Wise functions that occur in B̄ → D(∗)eν̄e and
�b → �ceν̄e decays. The Isgur-Wise functions are matrix elements of HQET
operators and also depend on the subtraction point μ due to the anomalous
dimension in Eq. (3.35). The expression for the form factors in terms of the
Isgur-Wise functions are valid up to perturbative matching corrections provided
the Isgur-Wise functions are evaluated at a subtraction point around mc,b, e.g.,

https://doi.org/10.1017/9781009402125.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.004


3.3 Heavy-light currents 87

μ = √
mcmb. Note, however, that the anomalous dimension γT vanishes at w = 1,

and therefore the normalization conditions ξ (1) = 1 and ζ (1) = 1 in Eqs. (2.93)
and (2.109) are μ independent.

3.3 Heavy-light currents

The tree-level matching conditions for heavy → light currents are given in
Eq. (3.39). The one-loop corrections to this result can be determined by com-
puting at order αs a matrix element of the left-hand side of Eq. (3.38) in the full
theory of QCD and equating it with the corresponding matrix element of the
right-hand side of Eq. (3.38) calculated in HQET. A convenient matrix element
is that between an on-shell heavy quark with four-momentum p = m Qv as the
initial state and an on-shell massless quark state with four-momentum zero as
the final state. These are not physical states since the strong interactions confine.
However, Eq. (3.38) holds at the operator level and so these unphysical states
can be used to determine the matching coefficients, C (V )

1 and C (V )
2 .

The order αs matrix element in QCD contains the one-loop vertex correction,
as well as the one-loop correction to the propagator for the heavy and light
quark fields. The quark propagators have the form [analytic + iR(Q)/(/p − m Q)]
and [analytic + iR(q)//p] near the poles p2 = m2

Q and p2 = 0, respectively. The
residues R(Q) and R(q) have perturbative expansions

R(Q) = 1 + R(Q)
1 αs(μ) + · · · (3.43)

and

R(q) = 1 + R(q)
1 αs(μ) + · · · . (3.44)

The desired matrix element in full QCD is obtained from the LSZ reduction
formula,

〈q(0, s ′)|V λ|Q(p, s)〉 = [
R(Q) R(q)]1/2

ū(0, s ′)
[
γ λ + V λ

1 αs(μ)
]
u(p, s), (3.45)

where γ λ is the tree-level vertex, and αs V λ
1 is the one-loop correction to the

vertex from Fig. 1.4. The one-loop correction to the vertex has the expansion
(p = m Qv)

V λ
1 = V (1)

1 γ λ + V (2)
1 vλ, (3.46)

as will be shown in Eq. (3.65).
The expression for the analogous matrix element in HQET is

〈q(0, s ′)|q̄�Qv|Q(v, s)〉 = [
R(h) R(q)]1/2

ū(0, s ′)
[
1 + V eff

1 αs(μ)
]
�u(0, s),

(3.47)
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where R(h) is the the residue of the heavy quark propagator near its pole, iR(h)/

p · v + analytic, and αs V eff
1 � is the one-loop vertex correction in Fig. 3.3, which

is independent of the � matrix structure of the operator q̄�Qv.
Comparing Eqs. (3.45)–(3.47) and (3.38) gives

C (V )
1

[
m Q

μ
, αs(μ)

]
= 1 +

{
1

2

[
R(Q)

1 − R(h)
1

] + V (1)
1 − V eff

1

}
αs(μ) + · · · ,

(3.48)
C (V )

2

[
m Q

μ
, αs(μ)

]
= V (2)

1 αs(μ) + · · · ,

where the ellipses denote terms higher order in αs (μ). R(q)
1 does not occur in

Eqs. (3.48) because it is common to both the HQET and full QCD calculations
of the matrix element. The quantities R1 and V1 are ultraviolet finite as ε → 0
but they have infrared divergences, which must be regulated before computing
these quantities. The coefficients C (V )

1 and C (V )
2 are not infrared divergent, so the

infrared divergence cancels in the matching condition, which involves differences
R(Q)

1 − R(h)
1 and V (1)

1 − V eff
1 in the full and effective theories. It is important

to use the same infrared regulator in both theories when computing matching
conditions.

In this section, dimensional regularization will be used to regulate both the
infrared and ultraviolet divergences. All graphs are computed in 4 − ε dimen-
sions, and the limit ε → 0 is taken at the end of the computation. Graphs will
have 1/ε poles, which arise from ultraviolet and infrared divergences. Only the
1/ε ultraviolet divergences are canceled by counterterms. As a simple example,
consider the integral ∫

dnq

(2π )n

1

q4
= 0. (3.49)

The integral is ultraviolet and infrared divergent, but it is zero when evaluated
in dimensional regularization. The infrared divergence can be regulated by in-
troducing a mass to give∫

dnq

(2π )n

1

(q2 − m2)2
= i

8π2ε
+ finite. (3.50)

Thus the original integral can be written as∫
dnq

(2π )n

1

q4
= i

8π2ε
− i

8π2ε
, (3.51)

where the first term is the ultraviolet divergence, and the second term is the
infrared divergence. The counterterm contribution to the integral is −i/8π2ε,
which cancels the ultraviolet divergence and leaves∫

dnq

(2π )n

1

q4
+ counterterm = − i

8π2ε
, (3.52)

where the right-hand side now only has an infrared divergence.
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3.3.1 The QCD computation

The two-point function of renormalized heavy quark fields in the full QCD
theory gets two contributions at order αs . One is the one-loop diagram in Fig. 1.2
denoted by the subscript fd, and the other is the tree-level matrix element of the
counterterm that cancels the 1/ε ultraviolet divergence, denoted by the subscript
ct. In the Feynman gauge, the one-loop contribution in Fig. 1.2 gives the quark
self-energy �fd,

−i�fd =
∫

dnq

(2π )n

(−igT Aμε/2)γ α i(/p + /q + m Q)[
(p + q)2 − m2

Q

](−igT Aμε/2)γα

(−i)

q2

= −g2
(

4

3

)
με

∫
dnq

(2π )n

γ α(/q + /p)γα + nm Q

q2
[
(q + p)2 − m2

Q

] . (3.53)

Using the identity γ αγμγα = 2γμ −γ αγαγμ = (2−n)γμ and combining denom-
inators gives

−i�fd = −g2
(

4

3

)
με

∫ 1

0
dx

∫
dnq

(2π )n

(2 − n)(/q + /p) + nm Q[
q2 + 2q · px − m2

Q x + p2x
]2

= −g2
(

4

3

)
με

∫ 1

0
dx

∫
dnq

(2π )n

(2 − n)(1 − x)/p + nm Q[
q2 + p2x(1 − x) − m2

Q x
]2 . (3.54)

The self-energy has the form

�(p) = A(p2)m Q + B(p2)/p. (3.55)

Since the full propagator is i/[/p − m Q − �(p)], it is straightforward to see that
the residue at the pole is

R(Q)
1 αs(μ) = B

(
m2

Q

) + 2m2
Q

d(A + B)

dp2

∣∣∣∣
p2 = m2

Q

. (3.56)

Performing the dnq integration in Eq. (3.54) yields the following expressions
for A and B:

Afd(p2) = g2

12π2
(4πμ2)ε/2�(ε/2)(4 − ε)

∫ 1

0
dx

[
m2

Q x − p2x(1 − x)
]−ε/2

,

Bfd(p2) = − g2

12π2
(4πμ2)ε/2�(ε/2)(2 − ε) (3.57)

×
∫ 1

0
dx(1 − x)

[
m2

Q x − p2x(1 − x)
]−ε/2

.

The on-shell renormalization factor R1 of Eq. (3.56) can be obtained by
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substituting for A and B and integrating over x , using the identity∫ 1

0
xa(1 − x)b = �(1 + a)�(1 + b)

�(2 + a + b)
. (3.58)

Expanding around ε = 0 gives

R1,fdαs = − g2

12π2

(
6

ε
+ 4 − 3γ + 3 ln

4πμ2

m2
Q

)
. (3.59)

The 1/ε terms include both the infrared and ultraviolet divergences. The coun-
terterm contribution is −i�ct = i(Zq − 1)/p − i(Zm − 1)m, i.e., Act = (Zm − 1)
and Bct = −(Zq − 1), which gives the counterterm contribution to R1,ctαs of
−(Zq −1). Adding this [from Eq. (1.86)] to R1,fdαs and rescaling 4πμ2 → μ2eγ

to convert to the MS scheme gives the final result,

R(Q)
1 αs = − g2

12π2

(
4

ε
+ 4 + 3 ln

μ2

m2
Q

)
, (3.60)

where the 1/ε divergence in Eq. (3.60) is only an infrared divergence.
Next, consider the order αs contribution to the one-particle irreducible vertex

in full QCD shown in Fig. 1.4. In the Feynman gauge the graph gives∫
dnq

(2π )n

(−igμε/2T A)γα

i/q

q2
γ λi

(/p + /q + m Q)[
(p + q)2 − m2

Q

](−igμε/2T A)γ α (−i)

q2
.

(3.61)

Combining denominators, shifting the integration variable q → q − px , and
using p2 = m2

Q gives

−ig2με

(
8

3

)∫ 1

0
dx(1 − x)

∫
dnq

(2π )n

1(
q2 − m2

Q x2
)3

×{γα(/q − /px)γ λ[/q + /p(1 − x)]γ α + m Qγα(/q − /px)γ λγ α}. (3.62)

The numerator can be simplified using the relations γαa/b/c/γ α = − 2c/b/a/ − (n −
4)a/b/c/, and γαa/b/γ α = 4a · b + (n − 4)a/b/. Terms odd in q vanish on integration.
Terms involving /p can be simplified by anticommuting /p through any γ matrices
until it is at the right, where it can be eliminated using /p = m Q when acting on
the heavy quark spinor. The final expression is

−ig2με

(
8

3

)∫ 1

0
dx(1 − x)

∫
dnq

(2π )n

1(
q2 − m2

Q x2
)3

×
{

q2

n
(2 − n)2γ λ − 2m Q pλ (n − 2) x2 + m2

Qγ λx[x (n − 2) − 2]

}
. (3.63)
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Evaluating the q integrals and using p = m Qv gives

g2

12π2
(4πμ2)ε/2

∫ 1

0
dx(1 − x)

(
m2

Q x2)−ε/2
{

1

2
�(ε/2)(2 − ε)2γ λ

+ 2�(1 + ε/2)vλ (2 − ε) − �(1 + ε/2)γ λ 1

x
[x (2 − ε) − 2]

}
. (3.64)

Evaluating the x integral and expanding in ε gives

g2

12π2
{−2γ λ + 2vλ}. (3.65)

The counterterm contribution is determined by the renormalization of the current
q̄γ λQ in QCD. Since this is a partially conserved current (i.e., is conserved in
the limit that the masses vanish), it is not renormalized. The only remaining
counterterm contribution is the QCD wave-function renormalization Zq − 1 =
−2αs/3πε to V (1)

1 αs , from Eq. (1.86). Adding this to Eq. (3.65) gives

V (1)
1 αs = −2αs

3π

(
1

ε
+ 1

)
,

V (2)
1 αs = 2αs

3π
.

(3.66)

3.3.2 The HQET computation

We have now calculated all the quantities in full QCD that occur in Eq. (3.48)
for C (V )

1 and C (V )
2 . It remains to calculate the HQET quantities. In the Feynman

gauge the HQET heavy quark self-energy obtained from the Feynman diagram
in Fig. 3.2 is

−i�fd(p) = −
(

4

3

)
g2με

∫
dnq

(2π )n

1

q2 v · (p + q)
, (3.67)

The residue at the pole is

R(h)
1 αs = vα ∂�

∂pα

∣∣∣∣
p · v = 0

. (3.68)

Evaluating Eq. (3.67) by combining denominators, the q integral gives

−i�fd = −i
g2

6π2
(4πμ2)ε/2�(ε/2)

∫ ∞

0
dλ(λ2 − 2λp · v)−ε/2

= −i
g2

6π2
(4πμ2)ε/2(−p · v)1−ε �(ε/2)�(1 − ε/2)�(−1/2 + ε/2)

2
√

π
.

(3.69)
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This yields R(h)
1,fd = 0, since limp → 0(−p · v)−ε = 0. The only contribution to

R(h)
1 is −(Zh − 1) from the counterterm, Eq. (3.14),

R(h)
1 αs = R(h)

1,ctαs = − 4αs

3πε
. (3.70)

The vertex calculation is also much simpler in HQET than in full QCD. The
Feynman diagram in Fig. 3.3 gives

−ig2με

(
4

3

)∫
dnq

(2π )n

/v/q�

(q2)2v · q
. (3.71)

Combining denominators and evaluating the q integral gives

g2

6π2
�(4πμ2)ε/2�(1 + ε/2)

∫ ∞

0
dλ λ−1−ε, (3.72)

which is zero in dimensional regularization. The only contribution is from the
counterterm, the negative of Eq. (3.22), which implies that

V eff
1 αs = − 2αs

3πε
. (3.73)

Putting the pieces Eqs. (3.48), (3.60), (3.66), (3.70), and (3.73) of the matching
calculation together yields

C (V )
1

[
m Q

μ
, αs(μ)

]
= 1 + αs(μ)

π

[
ln(m Q/μ) − 4

3

]
,

C (V )
2

[
m Q

μ
, αs(μ)

]
= 2

3

αs(μ)

π
.

(3.74)

All the 1/ε infrared divergences have canceled in the matching conditions. Note
that in C (V )

1 there is a logarithm of (m Q/μ). That is why in our initial condition
for the C (V )’s we took μ = m Q . If μ was chosen very different from m Q , large
logarithms would prevent a perturbative evaluation of the initial values for the
C (V )’s. Of course, we do not have to pick μ = m Q precisely. One may just as
well use μ = m Q/2 or μ = 2m Q , for example. The μ dependence of the coeffi-
cients C (V )

i is connected with the anomalous dimension of the HQET operator
q̄γ λQv. Here μ[dC (V )

1 /dμ] is the anomalous dimension γO given in Eq. (3.24).
The absence of a logarithm in C (V )

2 shows explicitly that q̄γ λQv does not mix
with q̄vλQv, which is consistent with our expectations based on spin and chiral
symmetries.
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A similar matching condition holds for the axial current, Aμ = q̄γ μγ5 Q.

Aμ = C (A)
1

[
m Q

μ
, αs(μ)

]
q̄γ μγ5 Qv + C (A)

2

[
m Q

μ
, αs(μ)

]
q̄vμγ5 Qv. (3.75)

It is simple to deduce the C (A)
j , given our calculation of the C (V )

j ’s. Rewrite
the axial current as Aμ = −q̄γ5γ

μQ. γ5 acting on the massless quark q gives
± depending on the chirality of the quark. Chirality is conserved by the gluon
vertices, so the calculation of matching conditions proceeds just as in the vector
current case, except that q̄ should be replaced everywhere by q̄γ5. At the end
of the calculation, the γ5 is moved back next to Qv, producing a compensating
minus sign for γ μγ5, but not for vμγ5. Thus

C (A)
1

[
m Q

μ
, αs(μ)

]
= C (V )

1

[
m Q

μ
, αs(μ)

]
, (3.76)

C (A)
2

[
m Q

μ
, αs(μ)

]
= −C (V )

2

[
m Q

μ
, αs(μ)

]
. (3.77)

The results of this section can be used to compute the αs corrections to the
pseudoscalar and vector meson decay constant relations given in Sec. 2.8. The
QCD vector and axial current operators match the linear combination of HQET
operators given in Eqs. (3.38) and (3.75). Computing the matrix elements of the
HQET operators q̄�μQv (renormalized at μ) as in Eq. (2.63) gives

a (μ) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ivμP (Q)
v if �μ = γ μγ5,

ivμP (Q)
v if �μ = vμγ5,

P∗(Q)
v

μ if �μ = γ μ,

0 if �μ = vμ.

(3.78)

Combining this with the matching conditions gives

fP∗ = √
m P∗ a(μ)C (V )

1 (μ),

fP = 1√
m P

a(μ)
[
C (A)

1 (μ) − C (A)
2 (μ)

]
.

(3.79)

The μ dependence of the matrix element a (μ) is given by the anomalous di-
mension of the heavy-light operators, Eq. (3.24),

μ
da

dμ
= −γOa = αs

π
a. (3.80)

This μ dependence is canceled by the μ dependence in the coefficients C (V,A)
i ,

so that the complete answer for the measurable quantity fP,P∗ is μ independent.
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For example,

√
m P μ

d fP

dμ
= μ

da

dμ

[
C (A)

1 − C (A)
2

] + a μ
d

dμ

[
C (A)

1 − C (A)
2

]
= αs

π
a
[
C (A)

1 − C (A)
2

] + a
(
−αs

π
+ 0

)
= 0 + O(

α2
s

)
. (3.81)

Equation (3.79) gives the αs correction to the ratio of the pseudoscalar and vector
meson decay constants,

fP∗

fP
= √

m P∗m P

[
C (V )

1

C (A)
1 − C (A)

2

]
= √

m P∗m P

[
1 − 2

3

αs(m Q)

π

]
. (3.82)

The αs correction to the ratio of pseudoscalar meson decay constants for the D
and B mesons can also be determined. Heavy quark flavor symmetry implies that
a (μ), the matrix element in the effective theory, is independent of the quark mass.
The matching from QCD to the effective theory is done at the scale m Q = mb for
the B̄ meson system, and m Q = mc for the D meson system. This determines

fB
√

m B

fD
√

m D
=

[
a (mb)

a(mc)

]
C (A)

1 [1, αs(mb)] − C (A)
2 [1, αs(mb)]

C (A)
1 [1, αs(mc)] − C (A)

2 [1, αs(mc)]

=
[
αs(mb)

αs(mc)

]−6/25

×
{

1 + [αs(mb) − αs(mc)]

[
− 2

3π
+

(
γ1O

2β0
− γ0Oβ1

2β2
0

)]}
. (3.83)

To complete the prediction for the ratio of B and D meson decay constants,
the two-loop correction to the anomalous dimension of O�, γ1O , and the two-
loop contribution to the β function, β1, are needed. These can be found in the
literature. The leading logarithmic prediction for the ratio of B and D meson
decay constants is

fB
√

m B

fD
√

m D
=

[
αs(mb)

αs(mc)

]−6/25

. (3.84)

The matching conditions in this section have been computed keeping the 1/ε

infrared divergent quantities, to show explicitly that the divergences cancel in the
matching coefficients. This cancellation provides a useful check on the calcula-
tion. The matching conditions can be computed more simply if one is willing to
forego this check. One can simply compute only the finite parts of the dimen-
sionally regulated graphs in the full and effective theory to compute the matching
conditions. The 1/ε ultraviolet divergences are canceled by counterterms, and
the 1/ε infrared divergences will cancel in the matching conditions, and so need
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not be retained. One also need not compute any diagrams in the effective theory,
since all on-shell graphs in the effective theory vanish on dimensional regular-
ization. We saw this explicitly in Eqs. (3.69) and (3.72). The reason is that graphs
that contain no dimensionful parameter vanish in dimensional regularization.

Since mb/mc is not very large, there is no reason to sum the leading logarithms
of mb/mc. If one matches onto HQET simultaneously for the b and c quarks at
a scale μ, then Eqs. (3.74), (3.76), and (3.77) imply that

fB
√

m B

fD
√

m D
= 1 + αs(μ)

π
ln

(
mb

mc

)
. (3.85)

Eq. (3.85) can also be derived by expanding Eq. (3.84) to order αs .

3.4 Heavy-heavy currents

B̄ → D(∗)eν̄e and �b → �ceν̄e decay rates are determined by matrix elements
of the vector current, c̄γμb, and the axial vector current c̄γμγ5b. The matching
of these currents in full QCD onto operators in HQET has the form

c̄γμb = C (V )
1

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′γμbv

+ C (V )
2

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′vμbv

+ C (V )
3

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′v′

μbv (3.86)

and

c̄γμγ5b = C (A)
1

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′γμγ5bv

+ C (A)
2

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′vμγ5bv

+ C (A)
3

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′v′

μγ5bv. (3.87)

The right-hand side contains all dimension three operators with the same quan-
tum numbers as the left-hand side. Higher dimension operators give effects sup-
pressed by powers of (�QCD/mc,b) and will be considered in the next chapter.
In the matching condition of Eqs. (3.86) and (3.87) the transition to HQET is
made simultaneously for both quarks. Usually one chooses a subtraction point,
μ = m̄ = √

mbmc, which is between the bottom and charm quark masses for the
initial value for the C j ’s and then runs down to a lower value of μ by using
the HQET renormalization group equation. At order αs , the matching condition

https://doi.org/10.1017/9781009402125.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.004


96 Radiative corrections

contains terms of the order of αs(m̄) ln(mb/mc), but since this logarithm is not
very large there is no need to sum all terms of the order of αs(m̄)n lnn(mc/mb).
Tree-level matching at m̄ gives

C (V,A)
1

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 1 + O [αs(m̄)] ,

C (V,A)
2

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 0 + O [αs(m̄)] , (3.88)

C (V,A)
3

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 0 + O [αs(m̄)] .

The additional operators c̄v′vμbv and c̄v′v′μbv induced at one loop do not cause
a loss of predictive power in computing decay rates. In HQET the B̄ → D(∗)

matrix elements of any operator of the form c̄v′�bv (where � is a 4 × 4 matrix in
spinor space) can be expressed in terms of the Isgur-Wise function, so the matrix
elements of the new operators are related to the matrix elements of the old
operators. This was also the case for heavy-light matrix elements in Eq. (3.78).

The calculation of the C (V,A)
j at order αs is straightforward but somewhat

tedious, since these coefficients depend not only on the bottom and charm quark
masses but also on the dot product of four velocities w = v · v′. In this chapter
we shall explicitly calculate the matching condition at the zero-recoil kinematic
point, w = 1. Here the matching condition simplifies because c̄vγ5bv = 0 and
c̄vγμbv = c̄vvμbv. Consequently we can write the matching relation as

c̄γμb = ηV c̄vγμbv,

c̄γμγ5b = ηA c̄vγμγ5bv.
(3.89)

As in the case of heavy-light currents, the coefficients ηV and ηA are determined
by equating a full QCD matrix element of these currents with the corresponding
one in HQET. The matrix element we choose is between an on-shell b-quark
state with four-momentum pb = mbv and an on-shell c-quark state with four-
momentum pc = mcv. Since c̄vγμbv is the conserved current associated with
heavy quark flavor symmetry, and c̄vγμγ5bv is related to it by heavy quark spin
symmetry, we know the matrix elements of these currents. To all orders in the
strong coupling, 〈

c(v, s ′)
∣∣ c̄v�bv

∣∣b(v, s)
〉 = ū(v, s′) � u(v, s), (3.90)

where � is any matrix in spinor space (including γμ or γμγ5), and the right-
hand side is absolutely normalized by heavy quark symmetry. This relation is
subtraction-point independent and so η(V,A) must be μ independent:

μ
d

dμ
η(V,A) = 0. (3.91)
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The matching condition will be computed by using the procedure outlined at
the end of the previous section, so only the finite parts of dimensionally regulated
graphs will be computed. The vector current matrix element in QCD is

〈c(pc, s ′)|c̄γ λb|b(pb, s)〉
= ū(pc, s ′)

{
1 + 1

2

[
R(c)

1 + R(b)
1

]
αs(μ) + V1αs(μ)

}
γ λu(pb, s) + · · · ,

(3.92)

where pc = mcv, pb = mbv, and the ellipsis denotes terms higher order in αs .
Here R(Q)

1 has already been computed, so it only remains to compute the one-
particle irreducible vertex at the order of αs . It is given by the Feynman diagram
in Fig. (1.4). In the Feynman gauge Fig. 1.4 yields

−ig2με

(
4

3

)∫
dnq

(2π )n

γα(/q + /pc + mc)γ λ(/q + /pb + mb)γ α

(q2 + 2pc · q)(q2 + 2pb · q)q2
. (3.93)

The charm and bottom quarks have the same four velocity and so a factor of /pc,b

on the far left or right can be replaced by mc,b. Hence Eq. (3.93) can be written as

−ig2με

(
4

3

)∫
dnq

(2π )n

(2mcvα + γα/q)γ λ(2mbv
α + /qγ α)

(q2 + 2q · pc)(q2 + 2q · pb)q2

= −ig2με

(
4

3

)∫
dnq

(2π )n

×
[

4mcmbγ
λ + 2mcγ

λ/q + 2mb/qγ λ + (2 − n)/qγ λ/q

(q2 + 2q · pc)(q2 + 2q · pb)q2

]
. (3.94)

It is convenient to first combine the two quark propagator denominators using
the Feynman parameter x , and then combine the result with the gluon propagator
using y. Shifting the q integration variable, q → q − y[mcx + mb(1 − x)]v and
performing the dnq integration gives

g2

12π2
γ λ(4πμ2)ε/2

∫ 1

0
dx

∫ 1

0
y dy

(
m2

x y2)−ε/2
{

1

2
(2 − ε)2 � (ε/2)

− � (1 + ε/2)

[
4mcmb

m2
x y2

− 2
mc + mb

mx y
− (2 − ε)

]}
(3.95)

where

mx = mcx + mb(1 − x).

Evaluating the y integral, expanding in ε, and rescaling μ to the MS scheme
yields

g2

6π2
γ λ

∫ 1

0
dx

[(
1 + 2mbmc

m2
x

)
1

ε
+ mb + mc

mx
−

(
1 + 2mbmc

m2
x

)
ln

(
mx

μ

)]
.

(3.96)
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Integrating with respect to x and keeping the finite part gives

V1αs = − g2

6π2

[
1 + 3

mb ln(mc/μ) − mc ln(mb/μ)

mb − mc

]
. (3.97)

Equations (3.90) and (3.92) imply that the matching coefficient is

ηV = 1 + αs(μ)

[
R(b)

1

2
+ R(c)

1

2
+ V1

]
+ · · · , (3.98)

where the ellipsis denotes terms of the order of α2
s and higher. Using Eq. (3.97)

and the finite part of Eq. (3.60), we find that at order αs ,

ηV = 1 + αs(μ)

π

[
−2 +

(
mb + mc

mb − mc

)
ln

(
mb

mc

)]
. (3.99)

Note that the coefficient of αs(μ) is independent of μ. This is a consequence of
Eq. (3.91), which states that ηV is independent of the subtraction point μ. Terms
higher order in αs compensate for the dependence of αs on μ in Eq. (3.99).
Usually for numerical evaluation of η(V,A) one uses μ = √

mbmc = m̄.
In the case mb = mc, the vector current c̄γ λb is a conserved current in QCD and

its on-shell matrix element is 〈c(pc, s ′)|c̄γ λb|b(pb, s)〉 = ū(pc, s ′)γ λ u(pb, s ′),
to all orders in αs . Consequently the coefficient of αs in Eq. (3.99) vanishes in
the limit mb = mc.

The axial current matching condition is almost the same as in the vector case.
In the calculation of the one-particle irreducible vertex, Eq. (3.94) is replaced by

−ig2με

(
4

3

)∫
dnq

(2π )n

1

(q2 + 2q · pc)(q2 + 2q · pb)q2

× [
4mcmbγ

λγ5 + 2mcγ
λγ5/q + 2mb/qγ λγ5 + (2 − n)/qγ λ

/qγ5
]
. (3.100)

One can then combine denominators and change the integration variable as
for the computation of ηV . The only difference between ηV and ηA is that for
ηV , (2 − n)/qγ λ/q generates the term (2 − n)m2

x y2γ λ on shifting the integration
variable, whereas for ηA, (2 − n)/qγ λ/qγ5 generates −(2 − n)m2

x y2γ λγ5. Thus

ηA = ηV + ig2
(

4

3

)
2(2 − n)

∫ 1

0
dx

∫ 1

0
2y dy

∫
dnq

(2π )n

m2
x y2(

q2 − m2
x y2

)3

= ηV − 2

3π
αs(μ)

= 1 + αs(μ)

π

[
−8

3
+ (mb + mc)

(mb − mc)
ln

(
mb

mc

)]
. (3.101)

Here η(V,A) are important for the B → D(∗)eν̄e differential decay rates near
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w = v ·v′ = 1, i.e., FD∗ (1) = ηA and FD (1) = ηV up to corrections suppressed
by powers of m Q .

3.5 Problems

1. The effective Hamiltonian for B0 − B̄0 mixing is proportional to the operator

(d̄γμPL b)(d̄γ μPL b).

After the transition to HQET, it becomes

O�S = 2 = (d̄γμPL bv)(d̄γ μPL bv).

Calculate the anomalous dimension of O�S = 2 at one loop.

2. Analytic expressions for the matching coefficients C (V )
j and C (A)

j can be found in an expansion
about w = 1.

(a) Show that if the c and b quarks are matched onto the HQET fields cv′ and bv at the
common scale μ = m̄ = √

mcmb, then C V,A
j (w) = 1 + (αs(m̄)/π )δC V,A

j (w), where

δC (V )
1 (1) = −4

3
− 1 + z

1 − z
,

δC (V )
2 (1) = −2(1 − z + z ln z)

3(1 − z)2
,

δC (V )
3 (1) = 2z(1 − z + ln z)

3(1 − z)2
,

δC (A)
1 (1) = −8

3
− 1 + z

1 − z
ln z,

δC (A)
2 (1) = −2[3 − 2z − z2 + (5 − z)z ln z]

3(1 − z)3
,

δC (A)
3 (1) = 2z[1 + 2z − 3z2 + (5z − 1) ln z]

3(1 − z)3
,

where z = mc/mb.
(b) Show that

δC ′(V )
1 (1) = −2[13 − 9z + 9z2 − 13z3 + 3(2 + 3z + 3z2 + 2z3) ln z]

27(1 − z)3
,

δC ′(V )
2 (1) = 2(2 + 3z − 6z2 + z3 + 6z ln z)

9(1 − z)4
,

δC ′(V )
3 (1) = 2z(1 − 6z + 3z2 + 2z3 − 6z2 ln z)

9(1 − z)4
,

δC ′(A)
1 (1) = −2[7 + 9z − 9z2 − 7z3 + 3(2 + 3z + 3z2 + 2z3) ln z]

27(1 − z)3
,

δC ′(A)
2 (1) = 2[2 − 33z + 9z2 + 25z3 − 3z4 − 6z(1 + 7z) ln z]

9(1 − z)5
,

δC ′(A)
3 (1) = −2z[3 − 25z − 9z2 + 33z3 − 2z4 − 6z2(7 + z) ln z]

9(1 − z)5
,

where ′ denotes differentiation with respect to w.
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(c) Using mc = 1.4 GeV and mb = 4.8 GeV, calculate the perturbative QCD corrections to
the ratios of form factors R1(1) and R2(1) defined in Chapter 2.

3. Prove the identity in Eq. (3.6).

4. Calculate the renormalization of the operators

O1 = c̄v′ �i Dμ bv

O2 = c̄v′ �i
←−
D μ bv

O3 = c̄v′ �i(v′ · D) bv vμ

O4 = c̄v′ �i(v′ · D) bv v′
μ

O5 = c̄v′ �i(v · ←−
D ) bv vμ

O6 = c̄v′ �i(v · ←−
D ) bv v′

μ

and use it to compute the anomalous dimension matrix for O1 − O6.

5. Consider the ratio r f (w) = f2(w)/ f1(w) of the form factors for �b → �ceν̄e decay. Show that
in the mb → ∞ limit, the perturbative αs correction gives

r f (w) = −2αs(mc)

3π
r (w),

where r (w) is defined in Eq. (3.33).
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