

The Milnor-Stasheff Filtration on Spaces and Generalized Cyclic Maps

Norio Iwase, Mamoru Mimura, Nobuyuki Oda, and Yeon Soo Yoon

Abstract. The concept of C_k -spaces is introduced, situated at an intermediate stage between H-spaces and T-spaces. The C_k -space corresponds to the k-th Milnor–Stasheff filtration on spaces. It is proved that a space X is a C_k -space if and only if the Gottlieb set G(Z,X) = [Z,X] for any space Z with cat $Z \leq k$, which generalizes the fact that X is a X-space if and only if X-space for a map X-space if any space X-space are generalized to the X-space for a map X-spaces, and non-X-spaces.

1 Introduction

A 0-connected space X is called a T-space if the fibration $\Omega X \to X^{S^1} \to X$ is fiber homotopically trivial [1], and it is known that any 0-connected H-space is a T-space. To investigate intermediate stages between H-spaces and T-spaces, Aguadé [1] defined T_k -spaces for any integer $k \ge 1$ and $k = \infty$, making use of the Milnor–Stasheff filtration on spaces, so that the T_∞ -space is an H-space and the T_1 -space is a T-space. It seems that relations between T_k -spaces and the L-S category of spaces were not investigated clearly after his work. In this paper we define the concept of the C_k -space for $k \ge 1$ so that the C_1 -space is the same as the T-space and the C_∞ -space is an H-space. We also employ the Milnor–Stasheff filtration on spaces to define C_k -spaces. However, the definition of the C_k -space is directly connected with the L-S category; it enables us to prove, for example, that a space X is a C_k -space if and only if the Gottlieb set G(Z,X) = [Z,X] for any space Z with cat $Z \le k$ (Theorem 2.3), which is a generalization of the fact that X is a T-space if and only if the Gottlieb group $G(\Sigma B, X) = [\Sigma B, X]$ for any space B [26, Theorem 2.2].

For each k, let $j_k^X \colon \Sigma \Omega X = P^1(\Omega X) \to P^k(\Omega X)$ and $e_k^X \colon P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusions for the spaces $P^k(\Omega X)$ [16, 21] (see §2). Let $f \colon A \to X$ be any map. A 0-connected space X is called a C_k^f -space if $e_k^X \colon P^k(\Omega X) \to X$ is f-cyclic (Definition 3.1). A C_k^{1x} -space X is called a C_k -space (Definition 2.1).

We show that a space X is a C_k^f -space if and only if $G^f(Z,X) = [Z,X]$ for any space Z with cat $Z \le k$ (Theorem 3.2). Let $f: A \to X$ and $g: B \to Y$ be any maps. The product space $X \times Y$ is a $C_k^{f \times g}$ -space if and only if X is a C_k^f -space and Y is a C_k^g -space (Theorem 4.7). It follows that the product space $X \times Y$ is a C_k -space if and only if both X and Y are C_k -spaces (Theorem 4.8).

Received by the editors August 6, 2009.

Published electronically June 29, 2011.

The first and third authors were partly supported by JSPS Grant-in-Aid for Scientific Research (No. 19540106).

AMS subject classification: 55P45, 55P35.

Keywords: Gottlieb sets for maps, L-S category, T-spaces.

Let \widetilde{X} be a covering space of a space X with the covering map $p \colon \widetilde{X} \to X$ and $1 \le k \le \infty$. Let $f \colon A \to X$, $\widetilde{f} \colon B \to \widetilde{X}$, and $q \colon B \to A$ be maps such that the following diagram is homotopy commutative,

$$\begin{array}{ccc}
B & \stackrel{\widetilde{f}}{\longrightarrow} & \widetilde{X} \\
\downarrow q & & \downarrow p \\
A & \stackrel{f}{\longrightarrow} & X
\end{array}$$

In Theorem 4.9 we show that if X is a C_k^f -space, then the covering space \widetilde{X} is a $C_k^{\widetilde{f}}$ -space. A relation between two "multiplications" that are induced by a pairing and a copairing [18, Proposition 3.4] will be used to prove Theorem 4.9. A similar result holds for the T_k^f -space, which is a generalization of Aguadé's T_k -space (see Definition 3.3). If we put $f=1_X$, $\widetilde{f}=1_{\widetilde{X}}$, q=p, then we see that any covering space of a C_k -space (resp. Aguadé's T_k -space) is a C_k -space (resp. T_k -space) for any $1 \le k \le \infty$ (Theorem 4.10).

In the last section we study projective spaces, lens spaces and spaces with a few cells.

2 C_k -Spaces

We work in the category of topological spaces with base point. The symbol $f \sim g\colon X \to Y$ means the based homotopy relation and the symbol $X \simeq Y$ the based homotopy equivalence. The set of based homotopy classes of maps $[f]\colon X \to Y$ is denoted by [X,Y]. Let $f\colon A \to X$ be a map. A based map $g\colon B \to X$ is said to be f-cyclic [17] if there exists a map $\phi\colon B \times A \to X$ such that the diagram

$$\begin{array}{ccc}
A \times B & \xrightarrow{\phi} & X \\
\downarrow & & \uparrow & & \uparrow \\
A \vee B & \xrightarrow{f \vee g} & X \vee X
\end{array}$$

is homotopy commutative, where $j: A \vee B \to A \times B$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. We call such a map ϕ an associated map of an f-cyclic map g.

Clearly, g is f-cyclic if and only if f is g-cyclic. We write $f \perp g$ if g is f-cyclic. If $f \perp g$ for maps $f: A \to X$ and $g: B \to X$, then $(w \circ f \circ f') \perp (w \circ g \circ g')$ for any maps $w: X \to W$, $f': A' \to A$, and $g': B' \to B$ by [17, Theorems 1.4 and 1.5]. This formula is used repeatedly in the following arguments without further reference. A based map $g: B \to X$ is said to be *cyclic* [23] if $1_X \perp g$, that is, g is 1_X -cyclic. The *Gottlieb set* denoted by G(B, X) is the set of all homotopy classes of cyclic maps from B to X.

The loop space ΩX of any space X has a homotopy type of an associative H-space. A 0-connected space X is filtered by the projective spaces of ΩX [16, 21]:

$$* = P^0(\Omega X) \hookrightarrow \Sigma \Omega X = P^1(\Omega X) \hookrightarrow \cdots \hookrightarrow P^k(\Omega X) \hookrightarrow \cdots \hookrightarrow P^{\infty}(\Omega X) \simeq X.$$

For each k, let $j_k^X \colon \Sigma \Omega X = P^1(\Omega X) \to P^k(\Omega X)$ and $e_k^X \colon P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusions. We write $e^X = e_1^X \colon \Sigma \Omega X = P^1(\Omega X) \to X$. We see that $j_\infty^X \sim e^X \colon \Sigma \Omega X \to X$ and $e_\infty^X \sim 1_X \colon X \to X$.

A 0-connected space X is called a T_k -space [1] if $1_X \perp \overline{e}_k$ for some extension $\overline{e}_k \colon P^k(\Omega X) \to X$ of $e^X \colon \Sigma \Omega X \to X$, that is, there exists a map $\phi_k \colon X \times P^k(\Omega X) \to X$ such that $\phi_k \circ j \circ (1_X \vee j_k^X) \sim \nabla \circ (1_X \vee e^X) \colon X \vee \Sigma \Omega X \to X$. Aguadé showed that X is a T-space if and only if X is a T-space [1, Proposition 4.1]. If X is a T_k -space, then it is a T_i -space for any $1 \le i \le k$. By [1, Proposition 4.1(i)(ii)], a 0-connected space is an H-space if and only if it is a T_∞ -space; we remark that $\overline{e}_\infty \sim 1_X$ when X is a 0-connected CW complex. The concepts of the T-space and the Gottlieb set are closely connected by the fact that X is a T-space if and only if $G(\Sigma B, X) = [\Sigma B, X]$ for any space B [26, Theorem 2.2].

Definition 2.1 Let $k \ge 1$ be an integer or $k = \infty$. A 0-connected space X is called a C_k -space if $1_X \perp e_k^X$, that is, the inclusion $e_k^X \colon P^k(\Omega X) \to X$ is cyclic. A 0-connected space X is called an NC-space if X is not a C_k -space for any $k \ge 1$.

Clearly any C_k -space is a T_k -space for any $k \ge 1$. We use the L-S category cat X for a 0-connected space X in the sense that cat X = n if n is the minimum number of categorical open coverings U_0, U_1, \ldots, U_n of X, so that cat X = 0 if and only if X is contractible and cat $X \le 1$ if X is a suspension. Throughout this paper, we follow Iwase for the notations for the L-S category; his list of references covers much of the widely-known literature [11].

We now recall Ganea's theorem [10, 11].

Theorem 2.2 (Ganea [3,10]) Let $k \ge 1$ be an integer or $k = \infty$ and assume that X is a 0-connected space. The category cat $X \le k$ if and only if $e_k^X : P^k(\Omega X) \to X$ has a right homotopy inverse.

In the rest of this section, we mention some results on the C_k -space that are obtained as special cases of the results on the C_k^f -spaces for a map $f: A \to X$ in the following sections, since the C_k -space is the C_k^f -space for the identity map $f = 1_X: X \to X$.

The property of the *T*-spaces in [26, Theorem 2.2] is extended to the C_k -spaces using the L-S category in the sense that the L-S category of any suspension space ΣB satisfies cat $\Sigma B \leq 1$.

Theorem 2.3 Let $k \ge 1$ be an integer. A space X is a C_k -space if and only if G(Z,X) = [Z,X] for any space Z with cat $Z \le k$.

Theorem 2.3 is a special case of Theorem 3.2 which is proved in the next section. The following proposition is a direct consequence of the definition.

Proposition 2.4 (i) A space X is a T-space if and only if X is a C_1 -space.

- (ii) Any C_m -space is a C_n -space for $\infty \ge m \ge n \ge 1$.
- (iii) A space X is an H-space if and only if X is a C_{∞} -space.

As a direct consequence of Proposition 3.4(ii),(v) and Theorem 4.3, the following theorem is obtained.

Theorem 2.5 Assume that $\operatorname{cat} X = k \ge 1$. Then X is an H-space if and only if X is a C_n -space for some $n \ge k$.

It is known [14] that cat $X \le \dim X$ for any finite CW complex X. Thus, we obtain the following corollary.

Corollary 2.6 If a T-space X is a 1-dimensional finite CW complex, then $X = S^1$.

Example 2.7 By [1, Proposition 4.2] Aguadé obtained a space X such that X is a T_{p-1} -space but not a T_p -space. This space X is not a C_p -space, but it is not known whether X is a C_{p-1} -space or not.

3 C_k^f -Spaces for a Map $f: A \to X$

We denote the set of all homotopy classes of f-cyclic maps from B to X by

$$G(B; A, f, X) = G^{f}(B, X) = f^{\perp}(B, X) \subset [B, X].$$

This is called the *Gottlieb set for a map* $f: A \to X$. If $f = 1_X: X \to X$, then we recover the set G(B, X) defined by Varadarajan [23]:

$$G(B,X) = G(B;X,1_X,X) = G^{1_X}(B,X) = (1_X)^{\perp}(B,X).$$

In general, $G(B,X) \subset G^f(B,X) \subset [B,X]$ for any spaces A,B,X and any map $f: A \to X$. An example is shown in [27] such that $G(B,X) \neq G(B;A,f,X) \neq [B,X]$:

$$G_5(S^5 \times S^5) \cong 2\mathbb{Z} \oplus 2\mathbb{Z} \neq G_5(S^5, i_1, S^5 \times S^5) \cong 2\mathbb{Z} \oplus \mathbb{Z} \neq \pi_5(S^5 \times S^5) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

Definition 3.1 Let $k \ge 1$ be an integer or $k = \infty$. Let $f: A \to X$ be any map. A 0-connected space X is called a C_k^f -space if $f \perp e_k^X$ (or $e_k^X: P^k(\Omega X) \to X$ is f-cyclic). A 0-connected space X is called an NC^f -space if X is not a C_k^f -space for any $k \ge 1$.

We see that a $C_k^{1_X}$ -space X is a C_k -space.

Theorem 3.2 Let $f: A \to X$ be any map. A space X is a C_k^f -space if and only if $G^f(Z,X) = [Z,X]$ for any space Z with cat $Z \le k$.

Proof Suppose that X is a C_k^f -space, namely, $f \perp e_k^X$. Let Z be a space with cat $Z \leq k$ and $g: Z \to X$ any map. Since cat $Z \leq k$, there exists a map $s_k^Z: Z \to P^k(\Omega Z)$ such

that $e_k^Z \circ s_k^Z \sim 1_Z$. We see that $e_k^X \circ P^k(\Omega g) \sim g \circ e_k^Z$ by the naturality of the construction of $P^k(\Omega Z)$, as is shown in the following homotopy commutative diagram:

$$P^{k}(\Omega Z) \xrightarrow{P^{k}(\Omega g)} P^{k}(\Omega X)$$

$$e_{k}^{Z} \downarrow \qquad \qquad \downarrow e_{k}^{X}$$

$$Z \xrightarrow{g} X$$

Hence the relation $f \perp e_k^X$ implies $f \perp (e_k^X \circ P^k(\Omega g) \circ s_k^Z)$ or $f \perp g$. It follows that $G^{f}(Z,X) = [Z,X].$

Conversely, assume that $G^f(Z,X) = [Z,X]$ for any space Z with cat $Z \leq k$. It is known that cat $C_{\theta} \le \text{cat } Y + 1$ for any map $\theta \colon X \to Y$ [24, (1.6) Theorem, p. 459], where C_{θ} is the mapping cone of θ . Thus $\operatorname{cat} P^{k}(\Omega X) = \operatorname{cat} C_{\theta} \leq \operatorname{cat} P^{k-1}(\Omega X) + 1$, where $\theta: (\Omega X) * \cdots * (\Omega X)(k\text{-times}) \to P^{k-1}(\Omega X)$ is the map in [21, Part I, Theorem 12]. By induction, we have cat $P^k(\Omega X) \leq k$. Thus we know that $e_k^X : P^k(\Omega X) \to \mathbb{R}$ *X* is *f*-cyclic by our assumption, and hence *X* is a C_k^f -space.

A space X is called an H^f -space for a map $f: A \to X$ if 1_X is f-cyclic (namely $f \perp 1_X$), and a T^f -space for a map $f: A \to X$ if $e^X: \Sigma \Omega X \to X$ is f-cyclic (namely $f \perp e^X$)[28, 29]. Any H-space X is an H^f -space and any H^f -space X is a T^f -space for any map $f: A \to X$. We remark that the 2-dimensional sphere S^2 is not an H-space nor a T-space, but it is an H^{η_2} -space and a T^{η_2} -space for the Hopf map $\eta_2 : S^3 \to S^2$ [29, Example 2.10], [26, Corollary 2.8].

Definition 3.3 Let $f: A \to X$ be any map. A space X is called a T_k^f -space if $f \perp \overline{e}_k$ for some extension $\overline{e}_k \colon P^k(\Omega X) \to X$ of $e^X \colon \Sigma \Omega X \to X$, that is, there exists a map $\phi_k \colon A \times P^k(\Omega X) \to X \text{ such that } \phi_k \circ j \circ (1_X \vee j_k^X) \sim \nabla \circ (f \vee e^X) \colon A \vee P^1(\Omega X) \to X.$

An H^{1_X} -space X is an H-space and a $T_k^{1_X}$ -space X is a T_k -space.

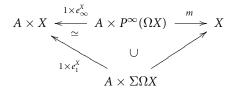
Proposition 3.4 Let $f: A \to X$ be any map.

- (i) X is a C_1^f -space $\Leftrightarrow X$ is a T_1^f -space $\Leftrightarrow X$ is a T^f -space.
- (ii) Any C_m^f -space is a C_n^f -space for $\infty \ge m \ge n \ge 1$.
- (iii) Any T_m^f -space is a T_n^f -space for $\infty \ge m \ge n \ge 1$.
- (iv) If X is a C_k^f -space, then X is a T_k^f -space for $\infty \ge k \ge 1$. (v) If X has the homotopy type of a CW complex, then the following equivalences hold:

$$X$$
 is an H^f -space $\Leftrightarrow X$ is a C^f_{∞} -space $\Leftrightarrow X$ is a T^f_{∞} -space.

Proof These results are direct consequences of the definitions except the following part of (v): "X is a T_{∞}^f -space \Rightarrow X is an H^f -space", which is proved by a method similar to the proof of [1, Proposition 4.1 (ii)] as follows.

Suppose that *X* is a T_{∞}^f -space. Then $f \perp \overline{e}$ for some extension $\overline{e}: P^{\infty}(\Omega X)(\simeq X) \to$ *X* of e_1^X : $\Sigma \Omega X \to X$, and there exists a map m: $A \times P^{\infty}(\Omega X) \to X$ with axes f and \bar{e} , making the following diagram commutative up to homotopy:



Let $g: X \to X$ be a map given by $g(x) = m \circ (1 \times e_{\infty}^X)^{-1}(*,x)$ for any $x \in X$. Then $g \sim \bar{e} \circ (e_{\infty}^X)^{-1}$ and we have $g \circ e_1^X \sim e_1^X$, and hence $\Omega g \sim 1_{\Omega X}$ by taking adjoints. Then it follows that $g: X \to X$ is a weak homotopy equivalence and hence is a homotopy equivalence if *X* has the homotopy type of a CW complex, by a theorem of J. H. C. Whitehead, and there exists a map $h: X \to X$ such that $g \circ h \sim 1_X$. Hence we have $f \perp g$, which implies that $f \perp (g \circ h)$ or $f \perp 1_X$ by the composition formula we discussed at the start of Section 2.

4 More about T_k^f -Spaces and C_k^f -Spaces

Proposition 4.1 Let $f: A \to X$ and $g: B \to A$ be any maps.

- (i) If X is an H^f -space, then X is an $H^{f \circ g}$ -space.
- (ii) If X is a T_k^f -space, then X is a $T_k^{f \circ g}$ -space. (iii) If X is a C_k^f -space, then X is a $C_k^{f \circ g}$ -space.

Proof The relations (i) $f \perp 1_X$, (ii) $f \perp \overline{e}_k$, and (iii) $f \perp e_k^X$ imply (i) $(f \circ g) \perp 1_X$, (ii) $(f \circ g) \perp \overline{e}_k$, and (iii) $(f \circ g) \perp e_k^X$, respectively, and we have the results.

Proposition 4.2 Assume that $f: A \to X$ has a right inverse $s: X \to A$, i.e., $f \circ s \sim 1_X$. Then the following results hold.

- (i) An H^f -space X is an H-space.
- (ii) $A T_k^f$ -space X is a T_k -space. (iii) $A C_k^f$ -space X is a C_k -space.

Proof These are immediate by Proposition 4.1.

If *X* is an H^f -space, then *X* is a C_k^f -space for any $k \ge 1$ by Proposition 3.4 (ii), (v). The following theorem shows that the converse holds if $\operatorname{cat} X \leq k$.

Theorem 4.3 Let $f: A \rightarrow X$ be any map.

- (i) If X is a C_k^f -space and cat $X \le k$, then X is an H^f -space.
- (ii) If X is a C_k -space and cat $X \le k$, then X is an H-space.

Proof (i) Since cat $X \le k$, we see that $G^f(X,X) = [X,X]$ by Theorem 3.2. It follows that $f \perp 1_X$. (ii) is the case where $f = 1_X$, and hence $1_X \perp 1_X$.

Theorem 4.4 Assume that Y is a homotopy retract of X with the maps $r: X \to Y$ and $s: Y \to X$ such that $r \circ s \sim 1_Y$.

- (i) If X is a C_k^f -space, then Y is a $C_k^{r\circ f}$ -space for any map $f\colon A\to X$. (ii) If X is a C_k -space, then Y is a C_k -space.

Proof Let $\bar{r}_k = P^k(\Omega r) : P^k(\Omega X) \to P^k(\Omega Y)$ and $\bar{s}_k = P^k(\Omega s) : P^k(\Omega Y) \to P^k(\Omega X)$ be the maps induced by r and s, respectively. Then we see that

$$e_k^Y = r \circ s \circ e_k^Y = e_k^Y \circ \overline{r}_k \circ \overline{s}_k = r \circ e_k^X \circ \overline{s}_k \colon P^k(\Omega Y) \to Y.$$

Then (i) the relation $f \perp e_k^X$ implies $(r \circ f) \perp (r \circ e_k^X \circ \bar{s}_k)$, or $(r \circ f) \perp e_k^Y$ and (ii) the relation $1_X \perp e_k^X$ implies $(r \circ 1_X \circ s) \perp (r \circ e_k^X \circ \bar{s}_k)$, or $1_Y \perp e_k^Y$ [17, Theorems 1.4, 1.5].

The following result is a generalization of Woo and Kim [25, Theorem 3.6].

Proposition 4.5 Let $f: A \to X$ and $g: B \to Y$ be any maps. The relation

$$G^{f\times g}(Z,X\times Y)\cong G^f(Z,X)\times G^g(Z,Y)$$

holds for any space Z (under the identification $[Z, X \times Y] \cong [Z, X] \times [Z, Y]$).

Proof Let $\alpha: Z \to X$ and $\beta: Z \to Y$ be maps. We define a map $(\alpha, \beta): Z \to X \times Y$ by $(\alpha, \beta) = (\alpha \times \beta) \circ \Delta_Z$ for the diagonal map $\Delta_Z : Z \to Z \times Z$. Suppose that $(\alpha, \beta) \in G^f(Z, X) \times G^g(Z, Y)$, which is identified with a map $(\alpha, \beta) \colon Z \to X \times Y$. Since $f \perp \alpha$ and $g \perp \beta$, we have $(f \times g) \perp (\alpha \times \beta)$ [17, Proposition 1.7]). It follows that $(f \times g) \perp \{(\alpha \times \beta) \circ \Delta_Z\}$ or $(f \times g) \perp (\alpha, \beta)$, and hence $(\alpha, \beta) \in G^{f \times g}(Z, X \times Y)$.

Conversely, suppose that $(\alpha, \beta) \in G^{f \times g}(Z, X \times Y)$ or $(f \times g) \perp (\alpha, \beta)$. Let $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ be the projections and $i_1: X \to X \times Y$ and $i_2: Y \to X \times Y$ be the inclusions defined by $i_1(x) = (x, y_0)$ and $i_2(y) = (x_0, y)$ for any $x \in X$ and $y \in Y$, where $x_0 \in X$ and $y_0 \in Y$ are base points. It follows that

$$\{p_1 \circ (f \times g) \circ i_1\} \perp \{p_1 \circ (\alpha, \beta)\}$$
 and $\{p_2 \circ (f \times g) \circ i_2\} \perp \{p_2 \circ (\alpha, \beta)\}$

and we have $f \perp \alpha$ and $g \perp \beta$. It follows that $\alpha \in G^f(Z,X)$ and $\beta \in G^g(Z,Y)$.

Remark 4.6 The converse of Proposition 1.7 of [17] holds by an argument similar to the proof of Proposition 4.5. Let $f_1: X_1 \to Z_1$, $f_2: X_2 \to Z_2$, $g_1: Y_1 \to Z_1$, $g_2: Y_2 \to Z_2$ be any maps. Then the following statements are equivalent.

- (i) $f_1 \perp g_1$ and $f_2 \perp g_2$.
- (ii) $(f_1 \times f_2) \perp (g_1 \times g_2)$

Theorem 4.7 Let $f: A \to X$ and $g: B \to Y$ be any maps. The product space $X \times Y$ is a $C_k^{f \times g}$ -space if and only if X is a C_k^f -space and Y is a C_k^g -space.

Proof If $X \times Y$ is a $C_k^{f \times g}$ -space, then for any space Z with cat $Z \leq k$ we see

$$G^f(Z,X) \times G^g(Z,Y) \cong G^{f \times g}(Z,X \times Y) = [Z,X \times Y] = [Z,X] \times [Z,Y]$$

by Theorem 3.2 and Proposition 4.5, and hence $G^f(Z,X) = [Z,X]$ and $G^g(Z,Y) =$

Conversely, suppose that X is a C_k^f -space and Y is a C_k^g -space. Then $G^f(Z,X) =$ [Z,X] and $G^g(Z,Y)=[Z,Y]$ for any space Z with cat $Z\leq k$ by Theorem 3.2. It follows that $G^{f \times g}(Z, X \times Y) \cong G^{f}(Z, X) \times G^{g}(Z, Y) = [Z, X] \times [Z, Y] = [Z, X \times Y]$ for any space *Z* with cat $Z \leq k$.

Theorem 4.8 The product space $X \times Y$ is a C_k -space if and only if both X and Y are C_k -spaces.

Proof Set $f = 1_X$ and $g = 1_Y$ in Theorem 4.7. Then we have the result.

We now consider covering spaces of C_k^f -spaces and T_k^f -spaces.

Theorem 4.9 Let \widetilde{X} be a covering space of a space X with the covering map $p: \widetilde{X} \to X$ and $1 \le k \le \infty$. Let $f: A \to X$, $\widetilde{f}: B \to \widetilde{X}$, and $q: B \to A$ be maps such that the following diagram is homotopy commutative:

$$\begin{array}{ccc}
B & \xrightarrow{\widetilde{f}} & \widetilde{X} \\
\downarrow q & & \downarrow p \\
A & \xrightarrow{f} & X
\end{array}$$

- (i) If X is a C_k^f -space, then the covering space \widetilde{X} is a $C_k^{\widetilde{f}}$ -space.
- (ii) If X is a T_k^f -space, then the covering space \widetilde{X} is a $T_k^{\widetilde{f}}$ -space.

Proof (i) Since X is a C_k^f -space, there exists a map m_k for $f \perp e_k^X$. Consider the following diagram.

$$B \times P^{k}(\Omega \widetilde{X}) \xrightarrow{\widetilde{m}_{k}} \widetilde{X}$$

$$q \times P^{k}(\Omega p) \downarrow \qquad \qquad \downarrow p$$

$$A \times P^{k}(\Omega X) \xrightarrow{m_{k}} X$$

We must show that

$$(m_k \circ (q \times P^k(\Omega p))_*(\pi_1(B \times P^k(\Omega \widetilde{X})) \subset p_*\pi_1(\widetilde{X}))$$

to obtain a map \widetilde{m}_k : $B \times P^k(\Omega \widetilde{X}) \to \widetilde{X}$ for $\widetilde{f} \perp e_k^{\widetilde{X}}$. Let $(\alpha, \beta) \in \pi_1(B \times P^k(\Omega \widetilde{X}))$ be any element. We see that

$$(m_k \circ (q \times P^k(\Omega p))_*((\alpha, \beta)) = (f \circ q)_*(\alpha) + (e_k^X \circ P^k(\Omega p))_*(\beta)$$
$$= (p \circ \widetilde{f})_*(\alpha) + (p \circ e_k^{\widetilde{X}})_*(\beta)$$
$$= p_*(\widetilde{f}_*(\alpha) + (e_k^{\widetilde{X}})_*(\beta)) \in p_*\pi_1(\widetilde{X}),$$

by [18, Proposition 3.4 (1)], since $f\circ q\sim p\circ\widetilde{f}$ by assumption and the following

diagram is homotopy commutative:

$$P^{k}(\Omega \widetilde{X}) \xrightarrow{e_{\widetilde{k}}^{\widetilde{X}}} \widetilde{X}$$

$$P^{k}(\Omega p) \downarrow \qquad \qquad \downarrow p$$

$$P^{k}(\Omega X) \xrightarrow{e_{\widetilde{k}}^{X}} X$$

(ii) is proved by an argument similar to (i); the proof is omitted.

The following theorem is obtained by setting A=X, $B=\widetilde{X}$, $q=p\colon \widetilde{X}\to X$, $f=1_X$, and $\widetilde{f}=1_{\widetilde{X}}$ in Theorem 4.9.

Theorem 4.10 Any covering space of a C_k -space (resp. T_k -space) is a C_k -space (resp. T_k -space) for any $1 \le k \le \infty$.

5 Applications and Examples

We have the following result by Theorem 2.5.

Proposition 5.1 If X is a C_m -space with cat $X \leq m$ for some $m \geq 1$, then X is an H-space.

Proposition 5.2 (i) If cat X = 1 (for example, $X = \Sigma A$, or a general co-H-space) and X is not an H-space, then X is an NC-space.

(ii) If ΣX is a C_1 -space, then $\Sigma X = S^1$, S^3 , or S^7 .

Proof (i) and (ii) are obtained by Proposition 5.1.

Let X be a 0-connected space. A space X is called a *Gottlieb space* or a G-space if the Gottlieb group $G_m(X) = \pi_m(X)$ for any $m \ge 1$ [4,5]. A space X is called a *Whitehead space* or a W-space if every Whitehead product $[\alpha, \beta] = 0$ in $[S^{m+n+1}, X]$ for any $\alpha \in [S^{n+1}, X]$, $\beta \in [S^{m+1}, X]$, and any $n, m \ge 0$. A space X is called a *generalized Whitehead space* or a GW-space if every generalized Whitehead product on X is trivial, that is, $[\alpha, \beta] = 0$ in $[\Sigma(A \land B), X]$ for any $\alpha \in [\Sigma A, X]$, $\beta \in [\Sigma B, X]$, and any spaces A, B.

Remark 5.3 The following implications hold:

- (i) X is a C_1 -space $\Rightarrow X$ is a G-space $\Rightarrow X$ is a W-space.
- (ii) X is a C_1 -space $\Rightarrow X$ is a GW-space $\Rightarrow X$ is a W-space.

(See [26, Theorem 2.2] and [20, Theorem 1.9] for (i); [12, Remark (4), p. 616] for (ii).)

The complex projective space CP^3 is a GW-space [12, Theorem 1] such that $cat(CP^3) = 3$, but it is not a C_k -space for any k (Example 5.7). We note that CP^3 is not a G-space [20, Remark 3.4].

If p > 2, then $L^3(p)$ is a G-space, but it is not a C_k -space for any $k \ge 2$ (see Example 5.10 and Theorem 5.13).

Proposition 5.4 Assume that X is a 1-connected space.

- (i) X is a G-space $\Longrightarrow X$ is a rational H-space.
- (ii) If $k \ge 1$, then the rationalization of any T_k -space (and hence any C_k -space) is an H-space.

Proof (i) is obtained by Haslam [7] (see also [13, Theorem 3.4]). (ii) is a direct consequence of (i).

Example 5.5 It is known that H-spaces, T-spaces, and GW-spaces are equivalent in the class of spaces of L-S category ≤ 1 (see Propositions 2.4 , 5.1 and the definition of the GW-space). Then the following results hold by Proposition 3.4(v) and Theorem 4.3(ii).

- (i) S^1 , S^3 and S^7 are H-spaces and hence C_k -spaces for any $k \ge 1$.
- (ii) If $1 \le n < \infty$ and $n \ne 1, 3, 7$, then S^n is not an H-space and hence an NC-space, since cat $S^n = 1$.

In the following argument we consider projective spaces RP^n , CP^n , and lens spaces $L^n(p)$ ($p \ge 2$); however, the cases RP^{∞} , CP^{∞} , and $L^{\infty}(p)$ are not referred to, since they are H-spaces and hence C_k -spaces for any $1 \le k \le \infty$.

Example 5.6 If $1 \le n < \infty$ and $n \ne 1, 3, 7$, then the real projective space RP^n is an NC-space by Example 5.5(ii) and Theorem 4.10. However, RP^1 , RP^3 , and RP^7 are H-spaces and hence C_k -spaces for any $1 \le k \le \infty$.

Example 5.7 If a 1-connected space X is not a rational H-space, then X is an NC-space by Proposition 5.4. For $1 \le n < \infty$, the complex projective space CP^n is not a rational H-space, and hence it is an NC-space.

Let S^{2n+1} be the unit sphere in the (n+1)-dimensional complex vector space \mathbb{C}^{n+1} $(n \geq 1)$. Let ω be the p-th root of unity $(p \geq 2)$. Then the group Γ generated by ω acts on S^{2n+1} by $\omega \cdot (z_0, z_1, \ldots, z_n) = (\omega z_0, \omega z_1, \ldots, \omega z_n)$. Let the lens space be $L^{2n+1}(p) = S^{2n+1}/\Gamma$, the quotient space of S^{2n+1} by Γ . See [24, Example 3, p. 91].

Proposition 5.8 ([24, Theorem (7.9), Chapter II]) Let p be an odd prime.

$$H^*(L^{2n+1}(p); \mathbb{Z}/p) = \bigwedge_{\mathbb{Z}/p} (x_1) \otimes \{\mathbb{Z}/p \ [x_2]/(x_2^{n+1})\},$$

where $x_1 \in H^1(L^{2n+1}(p); \mathbb{Z}/p)$ and $x_2 = \beta_p^* x_1 \in H^2(L^{2n+1}(p); \mathbb{Z}/p)$.

Proposition 5.9 Let p be a prime.

- (i) If $2n + 1 \neq 3$, 7, then $L^{2n+1}(p)$ is not a G-space.
- (ii) If $2n + 1 \neq 3, 7$, then $L^{2n+1}(p)$ is a NC-space.

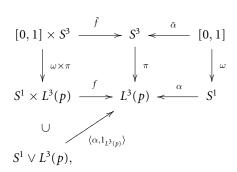
Proof (i) If $L^{2n+1}(p)$ is a *G*-space, then S^{2n+1} is a *G*-space [6, Theorem 2.2].

(ii) If $L^{2n+1}(p)$ is a C_k -space, then S^{2n+1} is a C_k -space by Theorem 4.10.

Let us recall that $L^3(p)$ is a G-space by [15, Corollary II.10], since $S^3 = \operatorname{Sp}(1)$ is a Lie group. For general $L^{2n+1}(p)$, we only know that $\pi_1(L^{2n+1}(p)) = G_1(L^{2n+1}(p))$ by [2, Theorem] or [19, Theorem A]. See also [4, Theorems II.4, II.5] and [5, Theorem 6.2]. However, for $L^3(p)$, we obtain the result using an argument similar to [15], including a proof for the fundamental group that is simpler than [2, 19] in this particular case.

Example 5.10 $L^3(p)$ is a G-space for any $p \ge 2$.

Actually, we can show the result in this way. Assume that $\pi_1(L^3(p)) = \mathbb{Z}/p$ is generated by the inclusion map $\alpha \colon S^1 \hookrightarrow L^3(p)$, which has a lift $\tilde{\alpha} \colon [0,1] \to S^3$ such that $\tilde{\alpha}(0) = 1$, $\tilde{\alpha}(1) = \xi$ and $\pi \circ \tilde{\alpha} = \alpha \circ \omega$, where $\pi \colon S^3 \to L^3(p)$ is the canonical projection taking the orbit space by the action of $\langle \xi \mid \xi^p \rangle \cong \mathbb{Z}/p$ a subgroup of a Lie group S^3 , and where $\omega \colon [0,1] \to S^1$ is the standard identification map. Since S^3 is a Lie group, there is an associative unital multiplication $\mu \colon S^3 \times S^3 \to S^3$ that defines a map $\tilde{f} \colon [0,1] \times S^3 \to S^3$ by $\tilde{f} = \mu \circ (\tilde{\alpha} \times 1)$. Then \tilde{f} induces a map f of orbit spaces by the action of \mathbb{Z}/p , since $\tilde{f}(1,\xi^i \cdot x) = \tilde{\alpha}(1) \cdot \xi^i \cdot x = \xi \cdot \xi^i \cdot x = \xi^{i+1} \cdot x = \xi^{i+1} \cdot \tilde{f}(0,x)$:



Thus $\alpha \in G_1(L^3(p))$ and hence $G_1(L^3(p)) = \pi_1(L^3(p))$. Since the universal cover of $L^3(p)$ is S^3 , which is a Lie group, we see that the projection $\pi \colon S^3 \to L^3(p)$ is a cyclic map, and hence $G_n(L^3(p)) = \pi_n(L^3(p))$ for $n \ge 2$. It follows that $L^3(p)$ is a G-space.

To examine the existence of a C_k -structure on $L^3(p)$, we need the following lemma for a space X using observations on $\Sigma \Omega X$.

Lemma 5.11 Let X be a 0-connected CW-complex whose universal cover \tilde{X} satisfies that $\Sigma\Omega\tilde{X}$ has the homotopy type of a wedge sum of spheres. Then X is a C_1 -space if and only if X is a G-space.

Proof Since $\Omega X \simeq \pi_1(X) \times \Omega \tilde{X}$, we have

$$\Sigma\Omega X \simeq (\bigvee_{0 \neq \lambda \in \pi_1(X)} S^1_{\lambda}) \vee \Sigma\Omega \tilde{X} \vee (\bigvee_{0 \neq \lambda \in \pi_1(X)} S^1_{\lambda} \wedge \Omega \tilde{X}),$$

which has the homotopy type of a wedge of spheres. Thus we have the lemma.

Proposition 5.12 $L^3(p)$ is a C_1 -space for any $p \ge 2$.

Proof By Example 5.10 and Lemma 5.11, we have the result.

Theorem 5.13 $L^3(p)$ is a C_2 -space if and only if p=2.

Remark When p = 2, the lens space $L^3(2)$ (= $RP^3 \cong SO(3)$) is actually an H-space (see [12, Remark (1), p. 616]), and hence a C_k -space for any k.

Proof of Theorem 5.13 By Proposition 5.12, we know that $L^3(p)$ is a C_1 -space. We also know that $L^3(2) = RP^3 = SO(3)$ is a Lie group. So we are left to show that $L^3(p)$ is not a C_2 -space when $p \neq 2$. If $L^3(p)$ is a C_2 -space, then there is a map

$$m: P^2(\Omega L^3(p)) \times L^3(p) \to L^3(p)$$

whose axes are $e_2^{L^3(p)}$: $P^2(\Omega L^3(p)) \to L^3(p)$ and the identity of $L^3(p)$. Let $L^3(p)^{(2)} = S^1 \cup e_2$ be the 2-skeleton of $L^3(p) = S^1 \cup e_2 \cup e_3$. Then there is a map $s_2: L^3(p)^{(2)} \to P^2(\Omega L^3(p)^{(2)}) \subset P^2(\Omega L^3(p))$ such that $e_2^{L^3(p)} \circ s_2 \sim i_2: L^3(p)^{(2)} \hookrightarrow$ $L^{3}(p)$ is the canonical inclusion. On the other hand, we have

$$H^*(L^3(p); \mathbb{Z}/p) \cong \bigwedge_{\mathbb{Z}/p} (x_1) \otimes \{ \mathbb{Z}/p[x_2]/(x_2^2) \}$$

$$\cong H^*(L^3(p)^{(2)}; \mathbb{Z}/p) \oplus \mathbb{Z}/p\{x_1x_2\}, \quad \ker i_2^* = \mathbb{Z}/p\{x_1x_2\},$$

where x_i is in $H^i(L^3(p)^{(2)}; \mathbb{Z}/p) \subset H^i(L^3(p); \mathbb{Z}/p)$ with a Bockstein relation $\beta_p x_1 =$ x_2 . Thus $(e_2^{L^3(p)})^*x_i \neq 0$ for i=1,2, since $e_2^{L^3(p)} \circ s_2 \sim i_2$. Now let $h \colon \Sigma P^2(\Omega L^3(p)) \wedge L^3(p) \to \Sigma L^3(p)$ be the Hopf construction of the map

 $m: P^2(\Omega L^3(p)) \times L^3(p) \to L^3(p)$, and let C_h be the mapping cone of h. Then the connecting homomorphism

$$\delta \colon H^5(\Sigma P^2(\Omega L^3(p)) \wedge L^3(p); \mathbb{Z}/p) \to H^6(C_h; \mathbb{Z}/p)$$

is an isomorphism, since $H^q(\Sigma L^3(p); \mathbb{Z}/p) = 0$ for $q \geq 5$. Thus we have

$$H^{6}(C_{h}; \mathbb{Z}/p) \cong H^{4}(P^{2}(\Omega L^{3}(p)) \wedge L^{3}(p); \mathbb{Z}/p) \supset H^{2}(L^{3}(p)^{(2)}; \mathbb{Z}/p) \otimes H^{2}(L^{3}(p); \mathbb{Z}/p).$$

Let $s^*: H^n(\Sigma X) \to H^{n-1}(X)$ be the suspension homomorphism (n > 1). For dimensional reasons, we know that x_1 and x_2 are primitive with respect to m, and hence $s^{*-1}x_i$ lies in the image of the restriction $H^{i+1}(C_h; \mathbb{Z}/p) \to H^{i+1}(\Sigma L^3(p); \mathbb{Z}/p)$, say $y_{i+1}|_{\Sigma L^3(p)} = s^{*-1}x_i$ for i = 1, 2. Then by [22, Corollary 1.4(a)], we know

$$y_3^2 = \pm \delta(s^{*-1}(x_2 \otimes x_2)) \neq 0,$$

while we know that $y_3^2 = -y_3^2$ and hence $2y_3^2 = 0$. Thus we have p = 2.

Making use of the classification of GW-spaces of type (q, n, m) in [12, Theorem 1], the following result is proved.

Theorem 5.14 Let X be a C_k -space for some $k \ge 1$ with at most three cells (other than the base point 0-cell). Then X has the homotopy type of one of the spaces in the following list.

- (i) $X = S^1, S^3, S^7$ or their products; otherwise;
- (ii) If $\pi_1(X)$ is a non-zero finite group, then $X = L^3(p, \ell)$ for an integer $p \ge 2$, where ℓ is a unit of the quotient ring $\mathbb{Z}\pi/(1 + \tau + \cdots + \tau^{p-1})$ of the group ring $\mathbb{Z}\pi$ for the group $\pi = \langle \tau \mid \tau^p = 1 \rangle \cong \mathbb{Z}/p$;
- (iii) If $\pi_1(X) = 0$, then X = SU(3) or $E_{k\omega}$ $(k \not\equiv 2 \mod 4)$; in the latter case $E_{k\omega}$ is an H-space.

Proof Since a C_k -space for some $k \ge 1$ is a T-space and hence a GW-space, we can examine the GW-spaces with up to 3 cells listed in Theorem 1 of [12]. However, CP^3 in the theorem is an NC-space by Example 5.7, and hence the result follows.

Remark 5.15 In view of Theorem 5.14 we see that any real, complex or quaternionic Stiefel manifold of 2-frames is an NC-space unless it is an H-space. We note that a Stiefel manifold is an H-space if and only if it is a Lie group or S^7 , by [8, Theorems 1.1, 1.2] and [9, Corollary 0.6].

References

- J. Aguadé, Decomposable free loop spaces. Canad. J. Math. 39(1987), no. 4, 938–955. http://dx.doi.org/10.4153/CJM-1987-047-9
- [2] S. A. Broughton, *The Gottlieb group of finite linear quotients of odd-dimensional spheres.* Proc. Amer. Math. Soc. 111(1991), no. 4, 1195–1197.
- [3] T. Ganea, Lusternik-Schnirelmann category and strong category. Illionis J. Math. 11(1967), 417–427.
- [4] D. H. Gottlieb, A certain subgroup of the fundamental group. Amer. J. Math. 87(1965), 840–856. http://dx.doi.org/10.2307/2373248
- [5] _____, Evaluation subgroups of homotopy groups. Amer. J. Math. 91(1969), 729–756. http://dx.doi.org/10.2307/2373349
- [6] _____, On the construction of G-spaces and applications to homogeneous spaces. Proc. Cambridge Philos. Soc. 68(1970), 321–327. http://dx.doi.org/10.1017/S0305004100046120
- H. B. Haslam, G-spaces mod F and H-spaces mod F. Duke Math. J. 38(1971), 671–679.
 http://dx.doi.org/10.1215/S0012-7094-71-03882-8
- [8] J. R. Hubbuck, Hopf structures on Stiefel manifolds. Math. Ann. 262(1983), no. 4, 529–547. http://dx.doi.org/10.1007/BF01456067
- [9] N. Iwase, H-spaces with generating subspaces. Proc. Roy. Soc. Edinburgh Sect. A 111(1989), no. 3-4, 199–211.
- [10] _____, Ganea's conjecture on Lusternik-Schnirelmann category. Bull. London Math. Soc. **30**(1998), no. 6, 623–634. http://dx.doi.org/10.1112/S0024609398004548
- [11] ______, The Ganea conjecture and recent developments on Lusternik-Schnirelmann category. Sugaku Expositions 20(2007), no. 1, 43–63.
- [12] N. Iwase, A. Kono and M. Mimura, Generalized Whitehead spaces with few cells. Publ. Res. Inst. Math. Sci. 28(1992), no. 4, 615–652. http://dx.doi.org/10.2977/prims/1195168211
- [13] N. Iwase and N. Oda, Splitting off rational parts in homotopy types. Topology Appl. 153(2005), no. 1, 133–140. http://dx.doi.org/10.1016/j.topol.2005.01.027
- [14] I. M. James, On category in the sense of Lusternik-Schnirelmann. Topology 17(1978), no. 4, 331–348. http://dx.doi.org/10.1016/0040-9383(78)90002-2
- [15] G. E. Lang, Jr, Evaluation subgroups of factor spaces. Pacific J. Math. 42(1972), 701–709.
- [16] J. Milnor, Construction of universal bundles. I, II. Ann. Math. 63(1956), 272–284, 430–436. http://dx.doi.org/10.2307/1969609
- [17] N. Oda, The homotopy set of the axes of pairings. Canad. J. Math. 17(1990), no. 5, 856–868. http://dx.doi.org/10.4153/CJM-1990-044-3

- [18] _____, Pairings and copairings in the category of topological spaces. Publ. Res. Inst. Math. Sci. 28(1992), no. 1, 83–97. http://dx.doi.org/10.2977/prims/1195168857
- [19] J. Oprea, Finite group actions on spheres and the Gottlieb group. J. Korean Math. Soc. 28(1991), no. 1, 65–78.
- [20] J. Siegel, G-spaces, H-spaces and W-spaces. Pacific J. Math. 31(1969), 209-214.
- [21] J. D. Stasheff, Homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108(1963), 275–292, 293–312.
- [22] E. Thomas, On functional cup-products and the transgression operator. Arch. Math. (Basel) 12(1961), 435–444.
- [23] K. Varadarajan, Generalized Gottlieb groups. J. Indian Math. Soc. 33(1969), 141–164.
- [24] G. W. Whitehead, *Elements of Homotopy Theory*. Graduate Texts in Mathematics 61. Springer-Verlag, New York, 1978.
- [25] M. H. Woo and J.-R. Kim, Certain subgroups of homotopy groups. J. Korean Math. Soc. 21(1984), no. 2, 109 – 120.
- [26] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality. J. Austral. Math. Soc. Ser. A 59(1995), no. 2, 193–203. http://dx.doi.org/10.1017/S1446788700038593
- [27] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms. Sci. Math. Jpn. 55(2002), no. 1, 139–148.
- [28] $_{---}$, H^f -spaces for maps and their duals. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. $_{--}$ 14(2007), no. 4, 289–306.
- [29] , Lifting T-structures and their duals. J. Chungcheong Math. Soc. 20(2007), 245–259.

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan e-mail: iwase@math.kyushu-u.ac.jp

Department of Mathematics, Okayama University, Okayama 700-8530, Japan e-mail: mimura@math.okayama-u.ac.jp

Department of Applied Mathematics, Fukuoka University, Fukuoka 814-0180, Japan e-mail: odanobu@cis.fukuoka-u.ac.jp

Department of Mathematics Education, Hannam University, Daejeon 306-791, Korea e-mail: yoon@hannam.ac.kr