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Abstract
This paper concentrates on the fundamental concepts of entropy, information and divergence to the case where the
distribution function and the respective survival function play the central role in their definition. The main aim
is to provide an overview of these three categories of measures of information and their cumulative and survival
counterparts. It also aims to introduce and discuss Csiszár’s type cumulative and survival divergences and the
analogous Fisher’s type information on the basis of cumulative and survival functions.

1. Introduction

Measures of entropy, information and divergence have a long history and they hold a prominent position
in the scientific life and literature. Some of them, like Shannon entropy, Shannon [81], Fisher information
measure, Fisher [35], and Kullback–Leibler divergence, Kullback and Leibler [49] and Kullback [48],
have played a prominent role in the development of many scientific fields. Since the early 1960s and in
light of the above-mentioned omnipresent and prominent universal quantities, there has been increased
interest in the definition, the study, the axiomatic characterization and the applications of measures which
formulate and express: (i) the amount of information or uncertainty about the outcome of a random
experiment, (ii) the amount of information about the unknown characteristics of a population or about
the unknown parameters of the respective distribution that drives the population or, (iii) the amount of
information for discrimination between two distributions or between the respective populations which
are driven by them. A classification of the measures of information into these three broad categories
and a tabulation and discussion of their main properties and applications is provided in the publications
by Ferentinos and Papaioannou [34], Papaioannou [62], Zografos et al. [99], Vajda [89], Soofi [83,84],
Papaioannou [63], Cover and Thomas [26], Pardo [65], among many other citations in the field. The
increasing interest of the scientific community in measures of information and the numerous applications
of these quantities in several disciplines and contexts, in almost all the fields of science and engineering
and first of all in probability and statistics, have contributed to the development of the field of statistical
information theory, a field and a terminology which was initiated, to the best of our knowledge, in the title
of the monograph by Kullback et al. [50]. The numerous applications of the measures of information in
the area of probability and statistics have led to an enormous number of papers, monographs and books,
like that by Csiszár and Körner [30], Kullback et al. [50], Liese and Vajda [51], Read and Cressie [74],
Vajda [89], Arndt [5], Pardo [65], Basu et al. [14], among others, which have been published after the
seminal monograph by Kullback [48]. A huge number of statistical techniques and methods have been
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introduced and developed on the basis of entropies and divergences. These techniques are presented in
the above monographs and the bibliography cited in them.

A resurgence of the interest in the definition and the development of new ideas and information
theoretic measures is signaled by the paper of Rao et al. [73] and a subsequent paper by Zografos and
Nadarajah [98] where entropy type measures are defined on the basis of the cumulative distribution
function or on the basis of the respective survival function. These papers were the basis for an increasing
interest for the definition of informational measures in the context of the paper by Rao et al. [73]. In
this direction, entropy and divergence type measures are introduced and studied, in the framework of
the cumulative distribution function or in terms of the respective survival function, in the papers by Rao
[72], Zografos and Nadarajah [98], Di Crescenzo and Longobardi [31], Baratpour and Rad [12], Park et
al. [66] and the subsequent papers by Di Crescenzo and Longobardi [32], Klein et al. [46], Asadi et al.
[6,7], Park et al. [67], Klein and Doll [45], among many others. In these and other treatments, entropy
type measures and Kullback-Leibler type divergences have been mainly received the attention of the
authors. Entropy and divergence type measures are also considered in the papers by Klein et al. [46],
Asadi et al. [6], Klein and Doll [45] by combining the cumulative distribution function and the survival
function. However, to the best of our knowledge, it seems that there has not yet appeared in the existing
literature a definition of the broad class of Csiszár’s type 𝜙-divergences or a definition of the density
power divergence in the framework which was initiated in the paper by Rao et al. [73]. In addition, to
the best of our knowledge, there is no an analogous formulation of Fisher’s measure of information, as
by product of this type of divergences. This paper aims to bridge this gap.

In the context described above, this paper is structured as follows. The next section provides a short
review of measures of entropy, divergence and Fisher’s type in the classic setup. A similar review is
provided in Section 3 for the concepts of cumulative and survival entropies and divergences and the
proposed in the existing literature respective measures. Section 4 is devoted to the definition of Csiszár’s
type 𝜙-divergences in terms of the cumulative and the survival function. The density power divergence
type is also defined in the same setup. Section 5 is concentrated to the definition of Fisher measure of
information in terms of the cumulative distribution function and the survival function. The content of
the paper is summarized in the last section where some conclusions and directions of a future work are
also presented.

2. A short review on entropies and divergences

To present some of the measures of entropy and divergence, which will be mentioned later, consider the
probability space (X,A, 𝑃), and let a 𝜎-finite measure 𝜇 on the same space with 𝑃 � 𝜇. Denote by 𝑓
the respective Radon–Nikodym derivative 𝑓 = 𝑑𝑃/𝑑𝜇. The Shannon entropy, Shannon [81], is defined
by

E𝑆ℎ ( 𝑓 ) = −

∫
X

𝑓 (𝑥) ln 𝑓 (𝑥)𝑑𝜇, (1)

and it is a well known and broadly applied quantity, as its range of applications is extending from
thermodynamics to algorithmic complexity, including a fundamental usage in probability and statistics
(cf. [26]). Two well-known extensions of Shannon entropy have been introduced by Rényi [75] and
Tsallis [88], as follows:

E𝑅,𝛼 ( 𝑓 ) =
1

1 − 𝛼
ln

∫
X

𝑓 𝛼 (𝑥)𝑑𝜇, 𝛼 > 0, 𝛼 ≠ 1, (2)

and

E𝑇 𝑠,𝛼 ( 𝑓 ) =
1

𝛼 − 1

(
1 −

∫
X

𝑓 𝛼 (𝑥)𝑑𝜇

)
, 𝛼 > 0, 𝛼 ≠ 1, (3)
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respectively. It is easily seen that lim𝛼→1 E𝑅,𝛼 ( 𝑓 ) = E𝑆ℎ ( 𝑓 ) and lim𝛼→1 E𝑇 𝑠,𝛼 ( 𝑓 ) = E𝑆ℎ ( 𝑓 ). All
the above presented measures have been initially defined in the discrete case. Although the concept
of entropy has been introduced by the second law of thermodynamics, Shannon has defined E𝑆ℎ, in
the discrete case, as a measure of the information transmitted in a communication channel. Shannon
entropy is analogous of the thermodynamic entropy and from a probabilistic or statistical point of
view it is a measure of uncertainty before the implementation of a random experiment regarding its
final result. This interpretation is based on the fact that Shannon entropy is maximized subject to
the most uncertain distribution, the univariate discrete uniform distribution. Hence, Shannon entropy
quantifies uncertainty relative to the uniform distribution and this is the fundamental characteristic of
all proper entropy measures. Rényi’s measure E𝑅,𝛼 extends Shannon’s entropy while Tsallis’ entropy
E𝑇 𝑠,𝛼 has motivated by problems in statistical mechanics and it is related to the 𝛼-order entropy of
Havrda and Charvát [41], cf. also Pardo [65] p. 20 Table 1.1. It should be emphasized, at this point,
that E𝑅,𝛼 and E𝑇 𝑠,𝛼 are functionally related, for 𝛼 = 2, with the extropy of a random variable 𝑋 which
receives a great attention the last decade (cf. [36,69,70]). The extropy of a random variable 𝑋 with an
absolutely continuous distribution function 𝐹 and respective probability density function 𝑓 is defined
by 𝐽 ( 𝑓 ) = − 1

2

∫
X
𝑓 2(𝑥)𝑑𝜇 and it has been introduced in the statistical literature as the complement of

Shannon entropy. This measure is directly connected with Onicescu [61] information energy defined by
𝐸 ( 𝑓 ) = −2𝐽 ( 𝑓 ). It is also noted that

∫
X
𝑓 𝛼 (𝑥)𝑑𝜇, in (2) and (3), defines the Golomb [37] information

function (cf. also [39]) which is still used nowadays (cf. [44]). Last, we have to mention that Rényi’s
measure E𝑅,𝛼 is the basis for the definition by Song [82] of a general measure of the shape of a
distribution. Song’s measure is defined by S( 𝑓 ) = −2(𝑑/𝑑𝛼)E𝑅,𝛼 ( 𝑓 ) |𝛼=1 = Var[ln 𝑓 (𝑋)] and it has
been applied and studied inside the family of elliptically contoured distributions in Zografos [97] and
Batsidis and Zografos [15]. The measure S( 𝑓 ) above is the varentropy used in Kontoyiannis and Verdú
[47] and Arikan [4], where the measure is defined in terms of conditional distributions.

Burbea and Rao [20] have extended (1) and (3) by introducing the 𝜙-entropy functional

E𝜙 ( 𝑓 ) = −

∫
X

𝜙( 𝑓 (𝑥))𝑑𝜇, (4)

where 𝜙 is a convex real function which satisfies suitable conditions. Shannon’s and Tsallis’ entropies
are obtained as particular cases of E𝜙 for specific choices of the convex function 𝜙 and more precisely
for 𝜙(𝑢) = 𝑢 ln 𝑢 and 𝜙(𝑢) = (𝛼− 1)−1(𝑢𝛼 − 𝑢), 𝛼 > 0, 𝛼 ≠ 1, 𝑢 > 0, respectively. Observe that Rényi’s
measure E𝑅 does not directly follow from 𝜙-entropy functional. This point led Salicru et al. [79] to
define the (ℎ, 𝜙)-entropy which unified all the existing, at that time, entropy measures. Based on Pardo
[65] p. 21, the (ℎ, 𝜙)-entropy is defined as follows:

Eℎ
𝜙 ( 𝑓 ) = ℎ

(∫
X

𝜙( 𝑓 (𝑥))𝑑𝜇

)
, (5)

where either 𝜙 : (0,∞) → R is concave and ℎ : R → R is differentiable and increasing, or
𝜙 : (0,∞) → R is convex and ℎ : R→ R is differentiable and decreasing. Table 1.1 in p. 20 of Pardo
[65] lists important entropy measures obtained from (5) for particular choices of the functions 𝜙 and ℎ.

Following the above short overview on the most historic measures of entropy, lets now proceed to a
short review on measures of divergence between probability distributions. Consider the measurable space
(X,A), and two probability measures 𝑃 and𝑄 on this space. Let a𝜎-finite measure 𝜇 on the same space
with 𝑃 � 𝜇 and𝑄 � 𝜇. Denote by 𝑓 and 𝑔 the respective Radon–Nikodym derivatives, 𝑓 = 𝑑𝑃/𝑑𝜇 and
𝑔 = 𝑑𝑄/𝑑𝜇. The most historic measure of divergence is the well-known Kullback–Leibler divergence
(cf. [48,49]) which is defined by

D0( 𝑓 : 𝑔) =
∫
X

𝑓 (𝑥) ln
(
𝑓 (𝑥)

𝑔(𝑥)

)
𝑑𝜇. (6)
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Intuitively speaking, D0 expresses the information, contained in the data, for discrimination between
the underlined models 𝑓 and 𝑔. Several interpretations of D0 are discussed in the seminal paper by Soofi
[83]. In this context, D0 quantifies the expected information, contained in the data, for discrimination
between the underlined models 𝑓 and 𝑔 in favor of 𝑓 . This interpretation is based on the Bayes Theorem
(cf. [48] pp. 4–5). Moreover, D0 measures loss or gain of information. It has been interpreted as a
measure of loss of information when one of the two probability density functions represents an ideal
distribution and D0 measures departure from the ideal; (e.g., 𝑓 is the unknown “true” data-generating
distribution and 𝑔 is a model utilized for the analysis). However, following [83] p. 1246, D0 in (6)
“is often used just as a measure of divergence between two probability distributions rather than as a
meaningful information quantity in the context of the problem being discussed.” The above defined
Kullback–Leibler divergence D0 satisfies the non-negativity property, that is, D0( 𝑓 : 𝑔) ≥ 0, with
equality if and only if the underlined densities are coincide, 𝑓 = 𝑔, a.e. (cf. [48] p. 14).

Rényi [75] has extended the above measure by introducing and studying the information of order 𝛼
by the formula:

D𝑅,𝛼 ( 𝑓 : 𝑔) = (1/(𝛼 − 1)) ln
∫
X

𝑓 𝛼 (𝑥)𝑔1−𝛼 (𝑥)𝑑𝜇, 𝛼 > 0, 𝛼 ≠ 1. (7)

This measure is related with Kullback–Leibler divergence by the limiting behavior, lim𝛼→1 D𝑅,𝛼 ( 𝑓 :
𝑔) = D0( 𝑓 : 𝑔). After Rényi’s divergence, the broad class of 𝜙-divergence between two densities 𝑓 and
𝑔 has been introduced by Csiszár [28,29] and independently by Ali and Silvey [1]. Some authors (see,
e.g., [40]) mention that 𝜙-divergence has been also independently introduced by Morimoto [58]. This
omnipresent measure is defined by

D𝜙 ( 𝑓 : 𝑔) =
∫
X

𝑔(𝑥)𝜙

(
𝑓 (𝑥)

𝑔(𝑥)

)
𝑑𝜇, (8)

for two Radon–Nikodym derivatives 𝑓 and 𝑔 on the measurable spaceX. 𝜙 : (0,∞) → R is a real-valued
convex function satisfying conditions which ensure the existence of the above integral. Based on Csiszár
[28,29] and Pardo [65] p. 5, it is assumed that the convex function 𝜙 belongs to the class of functions

Φ =

{
𝜙 : 𝜙 is strictly convex at 1, with 𝜙(1) = 0, 0𝜙

(
0
0

)
= 0, 0𝜙

(𝑢
0

)
= lim

𝑣→∞

𝜙(𝑣)

𝑣

}
. (9)

In order to be (8) useful in statistical applications, the class Φ is enriched with the additional
assumption 𝜙′(1) = 0 (cf. [65] p. 5). Csiszár’s 𝜙-divergence owes its wide range of applications to the
fact that it can be considered as a measure of quasi-distance or a measure of statistical distance between
two probability densities 𝑓 and 𝑔 since it obeys the non-negativity and identity of indiscernibles property,
a terminology which is conveyed by Weller-Fahy et al. [93] and it is formulated by

D𝜙 ( 𝑓 : 𝑔) ≥ 0 with equality if and only if 𝑓 (𝑥) = 𝑔(𝑥), a.e. (10)

Csiszár’s 𝜙-divergence is not symmetric for each convex function 𝜙 ∈ Φ but it can become symmetric
if we restrict to the convex functions 𝜙∗, defined by 𝜙∗ (𝑢) = 𝜙(𝑢) +𝑢𝜙(1/𝑢), for 𝜙 ∈ Φ (cf. [51,90] p. 14
p. 23 Theorem 4). This measure does not obey the triangular inequality, in general, while a discussion
about this property and its satisfaction by some measures of divergence is provided in Liese and Vajda
[52], Vajda [91]. Several well known in the literature divergences can be obtained from D𝜙 ( 𝑓 : 𝑔), given
in (8) above, for specific choices of the convex function 𝜙 ∈ Φ. We mention only the Kullback–Leibler
divergence (6), which is obtained from (8) for 𝜙(𝑢) = 𝑢 ln 𝑢 or 𝜙(𝑢) = 𝑢 ln 𝑢 + 𝑢 − 1, 𝑢 > 0 (see [49]
or [48]) and the Cressie and Read 𝜆-power divergence or the 𝐼𝛼-divergence of Liese and Vajda [51],
obtained from (8) for 𝜙(𝑢) = 𝜙𝜆(𝑢) = (𝑢𝜆+1 − 𝑢 − 𝜆(𝑢 − 1))/𝜆(𝜆 + 1), 𝜆 ≠ 0,−1, 𝑢 > 0 (see [27,51,74])
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and defined by

D𝜆( 𝑓 : 𝑔) =
1

𝜆(𝜆 + 1)

(∫
X

𝑔(𝑥)

(
𝑓 (𝑥)

𝑔(𝑥)

)𝜆+1

𝑑𝜇 − 1

)
, −∞ < 𝜆 < +∞, 𝜆 ≠ 0,−1. (11)

This measure is also related to D0 by means of the limiting behavior lim𝜆→0 D𝜆 ( 𝑓 : 𝑔) = D0( 𝑓 : 𝑔)
and lim𝜆→−1 D𝜆( 𝑓 : 𝑔) = D0(𝑔 : 𝑓 ). Cressie and Read 𝜆-power divergence D𝜆( 𝑓 : 𝑔) is closely related
to Rényi’s divergence D𝑅,𝛼 ( 𝑓 : 𝑔), in the sense

D𝑅,𝛼 ( 𝑓 : 𝑔) =
1

𝛼 − 1
ln [𝛼(𝛼 − 1)D𝛼−1 ( 𝑓 : 𝑔) + 1] ,

in view of (7) and (11). It is easy to see that Rényi’s divergence is not included in the family of 𝜙-
divergence. This point led Menéndez et al. [56] to define the (ℎ, 𝜙)-divergence which unified all the
existing divergence measures. Based on Pardo [65] p. 8, the (ℎ, 𝜙)-divergence is defined as follows:

Dℎ
𝜙 ( 𝑓 : 𝑔) = ℎ

(∫
X

𝑔(𝑥)𝜙

(
𝑓 (𝑥)

𝑔(𝑥)

)
𝑑𝜇

)
,

where ℎ is a differentiable increasing real function mapping from [0, 𝜙(0)+lim𝑡→∞(𝜙(0)/𝑡)] onto [0,∞).
Special choices of the functions ℎ and 𝜙 lead to particular divergences, like Rényi’s, Sharma-Mittal,
Bhattacharyya, and they are tabulated in p. 8 of Pardo [65].

We will close this short exposition on measures of divergence between probability distributions with a
presentation of the density power divergence introduced by Basu et al. [13], in order to develop and study
robust estimation procedures on the basis of this new family of divergences. For two Radon–Nikodym
derivatives 𝑓 and 𝑔, the density power divergence (DPD) between 𝑓 and 𝑔 was defined in Basu et al.
[13], cf. also Basu et al. [14], by

𝑑𝑎 ( 𝑓 : 𝑔) =
∫
X

{
𝑔(𝑥)1+𝑎 −

(
1 +

1
𝑎

)
𝑔(𝑥)𝑎 𝑓 (𝑥) +

1
𝑎
𝑓 (𝑥)1+𝑎

}
𝑑𝜇, (12)

for 𝑎 > 0, while for 𝑎 = 0, it is defined by

lim
𝑎→0

𝑑𝑎 ( 𝑓 : 𝑔) = D0( 𝑓 : 𝑔).

For 𝑎 = 1, (12) reduces to the 𝐿2 distance 𝐿2( 𝑓 , 𝑔) =
∫
X
( 𝑓 (𝑥) − 𝑔(𝑥))2𝑑𝜇. It is also interesting to

note that (12) is a special case of the so-called Bregman divergence∫
X

[𝑇 ( 𝑓 (𝑥)) − 𝑇 (𝑔(𝑥)) − { 𝑓 (𝑥) − 𝑔(𝑥)}𝑇 ′(𝑔(𝑥))] 𝑑𝜇.

If we consider 𝑇 (𝑙) = 𝑙1+𝑎, we get 𝑎 times 𝑑𝑎 ( 𝑓 : 𝑔). The density power divergence depends on
the tuning parameter 𝑎 which controls the trade off between robustness and asymptotic efficiency of
the parameter estimates which are the minimizers of this family of divergences (cf. [14] p. 297). Based
on Theorem 9.1 of this book, 𝑑𝑎 ( 𝑓 : 𝑔) represents a genuine statistical distance for all 𝑎 ≥ 0, that is,
𝑑𝑎 ( 𝑓 : 𝑔) ≥ 0 with equality, if and only if, 𝑓 (𝑥) = 𝑔(𝑥), a.e. 𝑥. The proof of this result is provided
in Basu et al. [14] p. 301 for the case 𝑎 > 0. The case 𝑎 = 0 follows from a similar property which is
proved and obeyed by D0( 𝑓 : 𝑔) =

∫
X
𝑓 (𝑥) ln( 𝑓 (𝑥)/𝑔(𝑥))𝑑𝜇 (cf. [48] Thm. 3.1 p. 14). For more details

about this family of divergence measures, we refer to Basu et al. [14].
Closing this review on divergences, interesting generalized and unified classes of divergences have

been recently proposed in the literature by Stummer and Vajda [86] and Broniatowski and Stummer
[19] while extensions in the case of discrete, non-probability vectors with applications in insurance can
be found in Sachlas and Papaioannou [76,77]. Csiszár’s 𝜙-divergence has been also recently extended
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to a local setup by Avlogiaris et al. [8] and the respective local divergences have been used to develop
statistical inference and model selection techniques in a local setting (cf. [9,10]).

The third category of measures of information is that of parametric or Fisher’s type measures of
information (cf. [34,62,63]). Fisher information measure is the main representative of this category of
measures and it is well known from the theory of estimation and the Cramér–Rao inequality. Fisher
information measure is defined by

I𝐹𝑖
𝑓 (𝜃) =

∫
X

𝑓 (𝑥; 𝜃)
(
𝑑

𝑑𝜃
ln 𝑓 (𝑥; 𝜃)

)2

𝑑𝜇, (13)

where 𝑓 (𝑥; 𝜃) is the Radon–Nikodym derivative of a parametric family of probability measures 𝑃𝜃 � 𝜇
on the measurable space (X,A), while the parameter 𝜃 ∈ Θ ⊆ R. The measure defined above is a
fundamental quantity in the theory of estimation, connected, in addition, with the asymptotic variance
of the maximum likelihood estimator, subject to a set of suitable regularity assumptions (cf. [23] p. 311
326). Subject to the said conditions, the following representation of I𝐹𝑖

𝑓 (𝜃),

I𝐹𝑖
𝑓 (𝜃) = −

∫
X

𝑓 (𝑥; 𝜃)
𝑑2

𝑑𝜃2 ln 𝑓 (𝑥; 𝜃)𝑑𝜇, (14)

has a prominent position in the literature as it provides an easy way to get the expression of Fisher
information measure, in some applications. From an information theoretic point of view, I𝐹𝑖

𝑓 formulates
and it expresses the amount of information contained in the data about the unknown parameter 𝜃. Several
extensions of (13) have been appeared in the bibliography of the subject while this measure obeys nice
information theoretic and statistical properties (cf. [62]).

Besides Fisher’s information measure (13), another quantity is widely used in different areas, such
as in statistics and in functional analysis (cf. [18,22,55] and references appeared therein). This measure
is defined by

J𝐹𝑖 ( 𝑓 ) =
∫
R

ℎ(𝑥)

(
𝑑

𝑑𝑥
ln ℎ(𝑥)

)2

𝑑𝑥, (15)

where, without any loss of generality, ℎ is a density with 𝑥 ∈ R (cf. [85] p. 102) and J𝐹𝑖 ( 𝑓 ) coincides
with (13) when 𝑓 (𝑥; 𝜃) = ℎ(𝑥 − 𝜃), that is, when the parameter 𝜃 is a location parameter, in the
considered model 𝑓 (𝑥; 𝜃), 𝑥 ∈ R, 𝜃 ∈ Θ ⊆ R. Papaioannou and Ferentinos [64] have studied the above
measure, calling it Fisher information number, and the authors provided with an alternative expression
of it, J𝐹𝑖

∗ ( 𝑓 ) = −
∫
R
ℎ(𝑥)(𝑑2/𝑑𝑥2) ln ℎ(𝑥)𝑑𝑥, as well. The above measure is not so well known in the

statistics literature, however it receives the attention of researchers and it is connected with several results
in statistics, in statistical physics, in signal processing (cf., e.g., [25,87,92], and references therein). The
multivariate version of (15) is analogous and it also received the attention of researches nowadays. We
refer to the recent work by Yao et al. [94] and references therein, while the multivariate version has been
exploited in Zografos [95,96] for the definition of measures of multivariate dependence.

Based on Soofi [83] p. 1246, Fisher’s measure of information within a second-order approximation
is the discrimination information between two distributions that belong to the same parametric family
and differ infinitesimally over a parameter space. More precisely, subject to the standard regularity
conditions of estimation theory (cf. [23] p. 311 326), stated also on pp. 26–27 of the monograph by
Kullback [48], Fisher information measure I𝐹𝑖

𝑓 is connected with Kullback–Leibler divergence D0,
defined in (6), by the next equality derived in the monograph of Kullback [48] p. 28,

lim
𝛿→0

1
𝛿2 D0( 𝑓 (𝑥; 𝜃) : 𝑓 (𝑥; 𝜃 + 𝛿)) = I𝐹𝑖

𝑓 (𝜃), 𝜃 ∈ Θ, (16)

while similar connections of Fisher information measure with other divergences, obtained from Csiszár’s
divergence in (8), have been derived in Ferentinos and Papaioannou [34]. The limiting relationship

https://doi.org/10.1017/S0269964822000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000031


300 K. Zografos

between Kullback–Leibler divergence and Fisher information, formulated in (16), can be easily extended
to the case of Csiszár’s 𝜙-divergence (8). In this context, it can be easily proved (cf. [78]) that

lim
𝛿→0

1
𝛿2 D𝜙 ( 𝑓 (𝑥; 𝜃 + 𝛿) : 𝑓 (𝑥; 𝜃)) =

𝜙′′(1)
2

I𝐹𝑖
𝑓 (𝜃), 𝜃 ∈ Θ. (17)

To summarize this section, it was presented above the most representative measures of statistical
information theory which play an important role, the last seven decades, not only to the fields of
probability and statistics but also to many other fields of science and engineering. Interesting analogs
of the above measures on the basis of the cumulative function or on the basis of the survival functions
occupies a significant part of the respective literature the last 17 years and this line of research work is
outlined in the next section.

3. A short review on cumulative entropies and cumulative Kullback–Leibler information

To present some of the measures of cumulative entropy and cumulative divergence, suppose in this
section that 𝑋 is a non-negative random variable with distribution function 𝐹 and respective survival
function 𝐹̄ (𝑥) = 1−𝐹 (𝑥). Among the huge amount of extensions or analogs of Shannon entropy, defined
in (1), the cumulative residual entropy is a notable and worthwhile recent analog. Rao et al. [73], in a
pioneer paper, introduced the cumulative residual entropy with a functional similarity with Shannon’s
[81] omnipresent entropy measure. Rao’s et al. [73] measure is defined by

CRE(𝐹) = −

∫ +∞

0
𝐹̄ (𝑥) ln 𝐹̄ (𝑥)𝑑𝑥, (18)

where 𝐹̄ (𝑥) = 1−𝐹 (𝑥) is the cumulative residual distribution or the survival function of a non-negative
random variable 𝑋 . A year later, Zografos and Nadarajah [98] provided a timely elaboration of Rao et
al. [73] measure and they have defined the survival exponential entropies by

𝑀𝛼 (𝐹) =

(∫ +∞

0
𝐹̄𝛼 (𝑥)𝑑𝑥

) 1
1−𝛼

, 𝛼 > 0, 𝛼 ≠ 1, (19)

where, again, 𝐹̄ (𝑥) = 1−𝐹 (𝑥) is the survival function of a non-negative random variable 𝑋 . The quantity
𝑀𝛼 (𝐹), defined by (19), asymptotically coincides with the exponential function of the cumulative
residual entropy CRE(𝐹), suitably scaled in the following sense

lim
𝛼→1

𝑀𝛼 (𝐹) = exp

{
−

CRE(𝐹)∫ +∞

0 𝐹̄ (𝑥)𝑑𝑥

}
.

Moreover, the logarithmic function of 𝑀𝛼 (𝐹) leads to an analogous quantity to that of Rényi entropy
(2) (cf. [98]). The analogous of CRE(𝐹) Tsallis’ [88] measure (3) has been recently considered in the
papers by Sati and Gupta [80], Calì et al. [21], Rajesh and Sunoj [71] and the references appeared
therein. It has a similar functional form as that of E𝑇 𝑠 ( 𝑓 ) in (3), given by

CRE𝑇 𝑠,𝛼 (𝐹) =
1

𝛼 − 1

(
1 −

∫ +∞

0
𝐹̄𝛼 (𝑥)𝑑𝑥

)
, 𝛼 > 0, 𝛼 ≠ 1,

while letting 𝛼 → 1, lim𝛼→1 CRE𝑇 𝑠,𝛼 (𝐹) = CRE(𝐹). Asadi et al. [6] and Rajesh and Sunoj [71]
introduced an alternative measure of CRE𝑇 𝑠,𝛼 (𝐹), as follows,

𝐶𝑅ℎ𝛼 (𝐹) =
1

𝛼 − 1

∫ +∞

0
(𝐹̄ (𝑥) − 𝐹̄𝛼 (𝑥))𝑑𝑥, 𝛼 > 0, 𝛼 ≠ 1, (20)
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and letting 𝛼 → 1, lim𝛼→1 𝐶𝑅ℎ𝛼 (𝐹) = CRE(𝐹), defined by (18). Moreover, it is easy to see that for
𝛼 = 2, the entropy type functional 𝐶𝑅ℎ2(𝐹) coincides with Gini’s index, multiplied by the expected
value of the random variable associated with 𝐹 (cf. [6] p. 1037). Shannon and other classic measures of
entropy quantify uncertainty relative to the uniform distribution, as it was mentioned previously. This is
not the case for cumulative residuals entropies, like that in (18). Following the exposition in Asadi et al.
[6] p. 1030, the so-called by them generalized entropy functional, (20), is a measure of concentration of
the distribution. That is, it is non-negative and equals zero if and only if the distribution is degenerate.
Moreover, strictly positive values of CRE(𝐹) in (18) does not indicate departure from the perfect
concentration toward the perfect uncertainty about prediction of random outcomes from the distribution.
Rao’s et al. [73] measure is an example for making distinction between a measure of concentration and
a measure of uncertainty (every measure of concentration is not necessarily a measure of uncertainty).

Some years later, Di Crescenzo and Longobardi [31] define the cumulative entropy, in analogy with
the cumulative residual entropy of Rao et al. [73]. The cumulative entropy is defined by

CE(𝐹) = −

∫ +∞

0
𝐹 (𝑥) ln 𝐹 (𝑥)𝑑𝑥, (21)

where 𝐹 is the distribution function, associated to a non-negative random variable 𝑋 . It is clear that
CRE(𝐹) ≥ 0 and CE(𝐹) ≥ 0.

Chen et al. [24] and some years later Klein et al. [46] and Klein and Doll [45], in their interesting
papers, have unified and extended the cumulative residual entropy (18) and the cumulative entropy (21).
Based on Klein and Doll [45] p. 8, the cumulative Φ∗ entropy is defined by,

CEΦ∗ (𝐹) =
∫ +∞

−∞

Φ∗(𝐹 (𝑥))𝑑𝑥, (22)

where Φ∗ is a general concave entropy generating function such that Φ∗ (𝑢) = 𝜑(1−𝑢) or Φ∗(𝑢) = 𝜑(𝑢)
leads, respectively, to the cumulative residual 𝜑 entropy and the cumulative 𝜑 entropy. The entropy
generating function 𝜑 is a non-negative and concave real function defined on [0, 1]. The above measure
is analogous with Burbea and Rao’s [20] 𝜙-entropy E𝜙 ( 𝑓 ), defined in (4). It is, moreover, clear
that CRE(𝐹), in (18), and CE(𝐹), in (21), are, respectively, special cases of CEΦ∗ (𝐹), in (22), for
Φ∗ (𝑢) = 𝜑(1 − 𝑢) or Φ∗(𝑢) = 𝜑(𝑢), with 𝜑(𝑥) = −𝑥 ln 𝑥, 𝑥 ∈ (0, 1]. The cumulative Φ∗ entropy
CEΦ∗ (𝐹), inspired by Klein and Doll [45], is a broad family of measures of cumulative residual entropy
and cumulative entropy and special choices of the concave function 𝜑 lead to interesting particular
entropies, like that appeared in Table 3 of p. 13, in Klein and Doll [45]. An interesting special case of
(22) is obtained for Φ∗ (𝑥) = 𝜑(𝑥) = (𝑥𝛼 − 𝑥)/(1 − 𝑎), 𝑥 ∈ (0, 1], 𝛼 > 0, 𝛼 ≠ 1, a concave function that
leads the cumulative Φ∗ entropy in (22) to coincide with the entropy type measure (20), above, of Asadi
et al. [6] and the measure of equation (6) in the paper by Rajesh and Sunoj [71].

In the way that classical Shannon entropy (1) has motivated the definition of the cumulative entropy
(21), in a completely similar manner, Kullback and Leibler [49] divergence (6) has motivated the
definition of the cumulative Kullback–Leibler information and the cumulative residual Kullback–Leibler
information, by the work of Rao [72], Baratpour and Rad [12], Park et al. [66] and the subsequent papers
by Di Crescenzo and Longobardi [32] and Park et al. [67], among others. In these and other treatments,
the cumulative Kullback–Leibler information and the cumulative residual Kullback–Leibler information
are defined, respectively, by

CKL(𝐹 : 𝐺) =
∫
R

𝐹 (𝑥) ln
(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 +

∫
R

[𝐺 (𝑥) − 𝐹 (𝑥)]𝑑𝑥, (23)

and

CRKL(𝐹 : 𝐺) =
∫
R

𝐹̄ (𝑥) ln
(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 +

∫
R

[𝐺̄ (𝑥) − 𝐹̄ (𝑥)]𝑑𝑥, (24)
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for two distribution functions 𝐹 and 𝐺 with respective survival functions 𝐹̄ and 𝐺̄. It is clear that
if the random quantities 𝑋 and 𝑌 , associated with 𝐹 and 𝐺, are non-negative, then

∫ +∞

0 𝐹̄ (𝑥)𝑑𝑥 and∫ +∞

0 𝐺̄ (𝑥)𝑑𝑥 are equal to 𝐸 (𝑋) and 𝐸 (𝑌 ), respectively. It should be mentioned at this point that Asadi
et al. [2] defined, in Subsection 3.2, a Kullback–Leibler type divergence function between two non-
negative functions 𝑃1 and 𝑃2 which provides a unified representation of the measures (6), (23) and
(24), with 𝑃𝑖 , 𝑖 = 1, 2, being probability density function, cumulative distribution function and survival
function, respectively. Based on Asadi et al. [7], for non-negative random variables 𝑋 and 𝑌 , associated
with 𝐹 and 𝐺, respectively,∫ +∞

0
[𝐺 (𝑥) − 𝐹 (𝑥)]𝑑𝑥 =

∫ +∞

0
[𝐺 (𝑥) − 1 + 1 − 𝐹 (𝑥)]𝑑𝑥 =

∫ +∞

0
[𝐹̄ (𝑥) − 𝐺̄ (𝑥)]𝑑𝑥 = 𝐸 (𝑋) − 𝐸 (𝑌 ),

and (23), (24) are simplified as follows,

CKL(𝐹 : 𝐺) =
∫ +∞

0
𝐹 (𝑥) ln

(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 + [𝐸 (𝑋) − 𝐸 (𝑌 )], (25)

and

CRKL(𝐹 : 𝐺) =
∫ +∞

0
𝐹̄ (𝑥) ln

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 + [𝐸 (𝑌 ) − 𝐸 (𝑋)] . (26)

Based on Baratpour and Rad [12] and Park et al. [66],

CKL(𝐹 : 𝐺) ≥ 0, CRKL(𝐹 : 𝐺) ≥ 0 with equality if and only if 𝐹 (𝑥) = 𝐺 (𝑥), a.e. 𝑥. (27)

This is an important property because (27) ensures that CKL(𝐹 : 𝐺) and CRKL(𝐹 : 𝐺) can be
used, in practice, as pseudo distances between the underling probability distributions. More generally,
non-negativity and identity of indiscernibles, formulated by (27), is a desirable property of each newly
defined measure of divergence because it expands its horizon in applications in formulating and solving
problems in statistics and probability theory, among many other potential areas. The counter-example,
that follows, illustrates the necessity of the last integrals of the right-hand side of (23) and (24), so as
(27) to be valid.

Example 1. The analogs of Kullback–Leibler divergence (6), in case of cumulative and survival func-
tions, would be

∫ +∞

−∞
𝐹 (𝑥) ln(𝐹 (𝑥)/𝐺 (𝑥))𝑑𝑥 or

∫ +∞

−∞
𝐹̄ (𝑥) ln(𝐹̄ (𝑥)/𝐺̄ (𝑥))𝑑𝑥, respectively. Consider two

exponential distributions with survival functions 𝐹̄ (𝑥) = 𝑒−𝜆𝑥 , 𝑥 > 0, 𝜆 > 0 and 𝐺̄ (𝑥) = 𝑒−𝜇𝑥 , 𝑥 > 0,
𝜇 > 0. Then, it is easy to see that, ∫ +∞

0
𝐹̄ (𝑥) ln

𝐹̄ (𝑥)

𝐺̄ (𝑥)
𝑑𝑥 =

𝜇 − 𝜆

𝜆2 .

It is clear that for 𝜇 < 𝜆, the second quantity, formulated in terms of the survival functions, does
not obey the non-negativity property (27). Moreover, for 𝜆 = 3 and 𝜇 = 2, numerical integration leads
to

∫ +∞

0 𝐹 (𝑥) ln(𝐹 (𝑥)/𝐺 (𝑥))𝑑𝑥 = 0.1807, while for 𝜆 = 1 and 𝜇 = 2, the same measure is negative,∫ +∞

0 𝐹 (𝑥) ln(𝐹 (𝑥)/𝐺 (𝑥))𝑑𝑥 = −0.4362. Therefore, the analogs of Kullback–Leibler divergence (6), in
case of cumulative and survival functions, do not always satisfy the non-negativity property which is
essential for applications of a measure of divergence, in practice.

Moreover, this counter-example underlines that the analog of (8), in case of cumulative and survival
functions, of the form ∫

𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 or

∫
𝐺̄ (𝑥)𝜙

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥, (28)
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obtained from (8) by replacing the densities by cumulative distributions and survival functions does
not always lead to non-negative measures, something which is a basic prerequisite for a measure of
divergence. Baratpour and Rad [12] and Park et al. [66] have defined Kullback–Leibler type cumulative
and survival divergences, by (23) and (24), as the analog of Kullback–Leibler classic divergence
(6), which should obey the non-negativity property. In this direction, they have exploited a well-
known property of the logarithmic function, namely 𝑥 ln(𝑥/𝑦) ≥ 𝑥 − 𝑦, for 𝑥, 𝑦 > 0, and they defined
Kullback–Leibler type divergences (23) and (24) by moving the right-hand side of the logarithmic
inequality to the left-hand side.

Continuing the critical review of the cumulative and survival divergences, the cumulative paired 𝜙-
divergence of Definition 4, p. 26 in the paper by Klein et al. [46], can be considered as an extension of
the above divergences CKL(𝐹 : 𝐺) and CRKL(𝐹 : 𝐺), defined by (23) and (24), in a completely similar
manner that the survival and cumulative entropies (18) and (21) have been unified and extended to the
cumulative Φ∗ entropy, given by (22). Working in this direction, Klein et al. [46] p. 26 of 45, in their
recent paper, have defined the cumulative paired 𝜙-divergence for two distributions, by generalizing the
cross entropy of Chen et al. [24] p. 56, as follows,

CPD𝜙 (𝐹 : 𝐺) =
∫ +∞

−∞

(
𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
+ 𝐺̄ (𝑥)𝜙

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

))
𝑑𝑥, (29)

where 𝐹 and𝐺 are distribution functions and 𝐹̄ = 1−𝐹, 𝐺̄ = 1−𝐺 are the respective survival functions.
𝜙 is again a real convex function defined on [0,∞] with 𝜙(0) = 𝜙(1) = 0 and satisfying additional
conditions, like that of the class Φ in (9) (cf. [46]). Klein et al. [46] have discussed several properties
of CPD𝜙 (𝐹 : 𝐺) and they have been presented particular measures, obtained from CPD𝜙 (𝐹 : 𝐺) for
special cases of the convex function 𝜙. A particular case is that obtained for 𝜙(𝑢) = 𝑢 ln 𝑢, 𝑢 > 0, and
the resulting cumulative paired Shannon divergence

CPD𝑆 (𝐹 : 𝐺) =
∫ +∞

−∞

(
𝐹 (𝑥) ln

(
𝐹 (𝑥)

𝐺 (𝑥)

)
+ 𝐹̄ (𝑥) ln

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

))
𝑑𝑥. (30)

This measure is the cross entropy, introduced and studied previously in the paper by Chen et al.
[24] and it is also considered in the paper by Park et al. [67] under the terminology general cumulative
Kullback–Leibler (GCKL) information. CPD𝑆 (𝐹 : 𝐺), defined by (30), obeys the non-negativity and
identity of indiscernibles property, similar to that of Eq. (27) (cf. [24]). However, there is not a rigorous
proof of non-negativity of CPD𝜙 (𝐹 : 𝐺), defined by (29), to the best of our knowledge. The non-
negativity property is quite necessary for a measure of divergence between probability distributions as
it supports and justifies the use of such a measure as a measure of quasi-distance between the respective
probability distributions, and hence, this property makes up the benchmark in developing information
theoretic methods in statistics. The cumulative divergences of (29) and (30) depend on both, the
cumulative function and the survival function. However, this dependence on both functions may cause
problems, in practice, in cases where one of the two functions is not so tractable. Exactly this notion, that
is a possible inability of the above divergences to work in practice in cases of complicated cumulative
or survival functions, was the motivation point in order to try to define Csiszár’s type cumulative and
survival 𝜙-divergence in a complete analogy to the classic divergence of Csiszár, defined by (8).

4. Csiszár’s 𝝓-divergence type cumulative and survival measures

The main aim of the section is to introduce Csiszár’s type 𝜙-divergence where the cumulative distribution
function and the survival function will be used in place of probability density functions in (8). To proceed
in this direction, a first thought is to define a Csiszár’s type 𝜙-divergence that resembles (8), by replacing
the densities 𝑓 and 𝑔 by the respective distributions 𝐹 and 𝐺 or the respective survival functions 𝐹̄ and
𝐺̄. However, such a clear reasoning does not always lead to divergences which obey, in all the cases,
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the non-negativity property, as it was shown in the previous motivating counter-example. To overcome
this problem, motivated by the above described procedure of Baratpour and Rad [12] and Park et al.
[66] and the use by them of a classic logarithmic inequality, we will proceed to a definition of Csiszár’s
type cumulative and survival 𝜙-divergence, as a non-negative analog of the classic one defined by (8),
by suitably applying the well-known Jensen inequality (cf., e.g., [60]). This is the theme on the next
proposition.

To formulate Jensen’s type inequality in the framework of cumulative and survival functions, follow-
ing standard arguments (cf. [16]), consider the 𝑑-dimensional Euclidean space R𝑑 and denote by B𝑑

the 𝜎-algebra of Borel subsets of R𝑑 . For two probability measures 𝑃𝑋 and 𝑃𝑌 on (R𝑑 ,B𝑑) and two 𝑑-
dimensional random vectors 𝑋 = (𝑋1, . . . , 𝑋𝑑) and 𝑌 = (𝑌1, . . . , 𝑌𝑑), let 𝐹 and 𝐺 denote, respectively,
the joint distribution functions of 𝑋 and 𝑌 , defined by, 𝐹 (𝑥1, . . . , 𝑥𝑑) = 𝑃𝑋 (𝑋1 ≤ 𝑥1, . . . , 𝑋𝑑 ≤ 𝑥𝑑)
and 𝐺 (𝑦1, . . . , 𝑦𝑑) = 𝑃𝑌 (𝑌1 ≤ 𝑦1, . . . , 𝑌𝑑 ≤ 𝑦𝑑), for (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and (𝑦1, . . . , 𝑦𝑑) ∈ R𝑑 . In a
similar manner, the respective multivariate survival functions are defined by 𝐹̄ (𝑥1, . . . , 𝑥𝑑) = 𝑃𝑋 (𝑋1 >
𝑥1, . . . , 𝑋𝑑 > 𝑥𝑑) and 𝐺̄ (𝑦1, . . . , 𝑦𝑑) = 𝑃𝑌 (𝑌1 > 𝑦1, . . . , 𝑌𝑑 > 𝑦𝑑). Let also a convex function 𝜙 defined
in the interval (0, +∞) and satisfying the assumptions of p. 299 of Csiszár [29] (cf. also the class Φ,
defined by (9)). The next proposition formulates, in a sense, Lemma 1.1 on p. 299 of Csiszár [29] in
terms of cumulative and survival functions.

Proposition 1.

(a) Let 𝐹 and 𝐺 are two cumulative distribution functions. Then, for 𝛼 =
∫
R𝑑
𝐹 (𝑥)𝑑𝑥 /

∫
R𝑑
𝐺 (𝑥)𝑑𝑥,

∫
R𝑑

𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 ≥ 𝜙(𝛼)

∫
R𝑑

𝐺 (𝑥)𝑑𝑥,

and the sign of equality holds if 𝐹 (𝑥) = 𝐺 (𝑥), on R𝑑 . Moreover, if 𝜙 is strictly convex at
𝛼 =

∫
R𝑑
𝐹 (𝑥)𝑑𝑥 /

∫
R𝑑
𝐺 (𝑥)𝑑𝑥 and equality holds in the above inequality, then 𝐹 (𝑥) = 𝛼𝐺 (𝑥), on R𝑑 .

(b) Let 𝐹̄ and 𝐺̄ denote two survival functions. Then, for 𝛼̄ =
∫
R𝑑
𝐹̄ (𝑥)𝑑𝑥/

∫
R𝑑
𝐺̄ (𝑥)𝑑𝑥,

∫
R𝑑

𝐺̄ (𝑥)𝜙

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 ≥ 𝜙 (𝛼̄)

∫
R𝑑

𝐺̄ (𝑥)𝑑𝑥,

and the sign of equality holds if 𝐹̄ (𝑥) = 𝐺̄ (𝑥), on R𝑑 . Moreover, if 𝜙 is strictly convex at
𝛼̄ =

∫
R𝑑
𝐹̄ (𝑥)𝑑𝑥/

∫
R𝑑
𝐺̄ (𝑥)𝑑𝑥 and equality holds in the above inequality, then 𝐹̄ (𝑥) = 𝛼̄𝐺̄ (𝑥), on R𝑑 .

Proof. The proof is based on the proof of the classic Jensen’s inequality and it closely follows the proof
of Lemma 1.1 of Csiszár [29] p. 300. It is presented here in the context of distribution and survival
functions for the sake of completeness. We will present the proof of part (a) because the proof of
part (b) is quite similar and it is omitted. Following Csiszár [29] p. 300, first, one may assume that∫
R𝑑
𝐹 (𝑥)𝑑𝑥 > 0 and

∫
R𝑑
𝐺 (𝑥)𝑑𝑥 > 0. Otherwise, the statement is true because of the conventions which

define the class Φ of the convex functions 𝜙, in (9). By the convexity of 𝜙, it is valid

𝜙(𝑢) ≥ 𝜙(𝛼) + 𝑏(𝑢 − 𝛼), 0 < 𝑢 < +∞,

with 𝑏, 𝑏 < +∞, equals, for example, to the arithmetic mean of the right and left derivatives of 𝜙(𝑢) at
the point 𝛼 =

∫
R𝑑
𝐹 (𝑥)𝑑𝑥/

∫
R𝑑
𝐺 (𝑥)𝑑𝑥. Replacing 𝑢 = 𝐹 (𝑥)/𝐺 (𝑥), we obtain for 𝐺 (𝑥) > 0,

𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
≥ 𝐺 (𝑥)𝜙(𝛼) + 𝑏(𝐹 (𝑥) − 𝛼𝐺 (𝑥)). (31)

According to the conventions that define the class Φ, the above inequality holds even for 𝐺 (𝑥) = 0,
because the convexity of 𝜙 leads to 𝑏 ≤ lim𝑢→∞ 𝜙(𝑢)/𝑢. Integrating both sides of (31) over R𝑑 , it is
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obtained ∫
R𝑑

𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 ≥ 𝜙 (𝛼)

∫
R𝑑

𝐺 (𝑥)𝑑𝑥,

and the first part of the assertion in (a) has been proved because of
∫
R𝑑
(𝐹 (𝑥) − 𝛼𝐺 (𝑥))𝑑𝑥 = 0 by the

definition of 𝛼.
Suppose now that 𝜙 is strictly convex at 𝛼 =

∫
R𝑑
𝐹 (𝑥)𝑑𝑥/

∫
R𝑑
𝐺 (𝑥)𝑑𝑥 and that∫

R𝑑
𝐺 (𝑥)𝜙(𝐹 (𝑥)/𝐺 (𝑥))𝑑𝑥 ≥ (

∫
R𝑑
𝐺 (𝑥)𝑑𝑥)𝜙(

∫
R𝑑
𝐹 (𝑥)𝑑𝑥/

∫
R𝑑
𝐺 (𝑥)𝑑𝑥). Taking into account that 𝜙 is

strictly convex at 𝑢 = 𝛼, the inequality in (31) is strict, except for 𝐹 (𝑥) = 𝛼𝐺 (𝑥). �

The above result provides with lower bounds for the integrals (28), which constitute straightforward
analogs of Csiszár’s 𝜙-divergence, defined by (8). The said lower bounds, if they will be moved on the
left-hand side of the inequalities of the previous proposition, can be exploited in order to define, in the
sequel, non-negative Csiszár’s type 𝜙-divergences by means of cumulative distribution functions and
survival functions.

Definition 1. Let the cumulative distribution functions 𝐹 and 𝐺. The cumulative Csiszár’s type 𝜙-
divergence between 𝐹 and 𝐺 is defined by

CD𝜙 (𝐹 : 𝐺) =
∫
R𝑑

𝐺 (𝑥)𝜙

(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐺 (𝑥)𝑑𝑥

)
𝜙

( ∫
R𝑑
𝐹 (𝑥)𝑑𝑥∫

R𝑑
𝐺 (𝑥)𝑑𝑥

)
, (32)

where 𝜙 : (0,∞) → R is a real-valued convex function and 𝜙 ∈ Φ, defined by (9).

Definition 2. Let the survival functions 𝐹̄ and 𝐺̄. The survival Csiszár’s type 𝜙-divergence between 𝐹̄
and 𝐺̄ is defined by

SD𝜙 (𝐹̄ : 𝐺̄) =
∫
R𝑑

𝐺̄ (𝑥)𝜙

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐺̄ (𝑥)𝑑𝑥

)
𝜙

( ∫
R𝑑
𝐹̄ (𝑥)𝑑𝑥∫

R𝑑
𝐺̄ (𝑥)𝑑𝑥

)
, (33)

where 𝜙 : (0,∞) → R is a real-valued convex function and 𝜙 ∈ Φ, defined by (9).

However, the main aim is the definition of Csiszár’s type 𝜙-divergences on the basis of distribution
and survival functions, which will obey the non-negativity and the identity of indiscernibles property,
a property which will support applications of the proposed measures as quasi-distances between distri-
butions. The quantities CD𝜙 (𝐹, 𝐺) and SD𝜙 (𝐹̄, 𝐺̄), defined above, are non-negative in view of the
previous proposition. It remains to prove the identity of indiscernibles property which is the theme of
the next proposition.

Proposition 2. The measures CD𝜙 (𝐹, 𝐺) and SD𝜙 (𝐹̄, 𝐺̄), defined by (32) and (33), obey the non-
negativity and the identity of indiscernibles property, that is,

CD𝜙 (𝐹 : 𝐺) ≥ 0 with equality if and only if 𝐹 (𝑥) = 𝐺 (𝑥), on R𝑑 ,
SD𝜙 (𝐹̄ : 𝐺̄) ≥ 0 with equality if and only if 𝐹̄ (𝑥) = 𝐺̄ (𝑥), on R𝑑 ,

for the convex function 𝜙 being strictly convex at the points 𝛼 and 𝛼̄ of the previous proposition.

Proof. If 𝐹 (𝑥) = 𝐺 (𝑥), on R𝑑 , then the assertion follows from the fact that the convex function 𝜙
belongs to the class Φ and therefore 𝜙(1) = 0. For functions 𝜙 which are strictly convex at 𝛼 and 𝛼̄,
if the sign of equality holds in the inequalities of parts (a) and (b) of the previous proposition, then
𝐹 (𝑥) = 𝛼𝐺 (𝑥), on R𝑑 and 𝐹̄ (𝑥) = 𝛼̄𝐺̄ (𝑥), on R𝑑 . Given that 𝐹 and 𝐺 are cumulative distribution
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functions and based on Billingsley [16] p. 260, 𝐹 (𝑥) → 1 and 𝐺 (𝑥) → 1, if 𝑥𝑖 → +∞ for each 𝑖 and
𝐹 (𝑥) → 0, 𝐺 (𝑥) → 0, if 𝑥𝑖 → −∞ for some 𝑖 (the other coordinates held fixed). Moreover, taking into
account that the multivariate survival functions 𝐹̄ and 𝐺̄ are functionally related with the corresponding
cumulative functions 𝐹 and 𝐺 (cf. [42] p. 27), we conclude that 𝐹̄ (𝑥) → 1, 𝐺̄ (𝑥) → 1, if 𝑥𝑖 → −∞

for each 𝑖. All these relationships between cumulative and survival functions lead to the conclusion
that 𝛼 = 𝛼̄ = 1 and then they are coincide, that is, 𝐹 (𝑥) = 𝐺 (𝑥) and 𝐹̄ (𝑥) = 𝐺̄ (𝑥), on R𝑑 . Therefore,
the lower bounds, derived in the proposition, are attained if and only if the underlined cumulative and
survival functions coincide for the convex function 𝜙 being strictly convex at the points 𝛼 and 𝛼̄. This
completes the proof of the proposition. �

In the sequel, the interest is focused in product measures, obtained from (32) and (33) for particular
choices of the convex function 𝜙.

4.1. Kullback–Leibler type cumulative and survival divergences and mutual information

At a first glance, if Csiszar’s type cumulative and survival divergences, defined by (32) and (33) above,
will be applied for the convex function 𝜙(𝑢) = 𝑢 log 𝑢, 𝑢 > 0, or 𝜙(𝑢) = 𝑢 log 𝑢 + 𝑢 − 1, 𝑢 > 0, then they
do not lead to the respective Kullback–Leibler divergences, defined by (23) and (24). An application of
(32) and (33) for 𝜙(𝑢) = 𝑢 ln 𝑢, 𝑢 > 0, leads to the measures

CDKL (𝐹 : 𝐺) =
∫
R𝑑

𝐹 (𝑥) ln
(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐹 (𝑥)𝑑𝑥

)
ln

(∫
R𝑑

𝐹 (𝑥)𝑑𝑥/

∫
R𝑑

𝐺 (𝑥)𝑑𝑥

)
,

SDKL(𝐹̄ : 𝐺̄) =
∫
R𝑑

𝐹̄ (𝑥) ln
(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐹̄ (𝑥)𝑑𝑥

)
ln

(∫
R𝑑

𝐹̄ (𝑥)𝑑𝑥/

∫
R𝑑

𝐺̄ (𝑥)𝑑𝑥

)
,

(34)

respectively. Based on the elementary logarithmic inequality, 𝑥 ln(𝑥/𝑦) ≥ 𝑥 − 𝑦, for 𝑥, 𝑦 > 0, and on
Eqs. (23) and (24) it is immediate to see that

CDKL(𝐹 : 𝐺) ≤
∫
R𝑑

𝐹 (𝑥) ln
(
𝐹 (𝑥)

𝐺 (𝑥)

)
𝑑𝑥 +

∫
R𝑑

[𝐺 (𝑥) − 𝐹 (𝑥)]𝑑𝑥 = CKL(𝐹 : 𝐺),

SDKL(𝐹̄ : 𝐺̄) ≤
∫
R𝑑

𝐹̄ (𝑥) ln
(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 +

∫
R𝑑

[𝐺̄ (𝑥) − 𝐹̄ (𝑥)]𝑑𝑥 = CRKL(𝐹 : 𝐺),
(35)

where CKL(𝐹 : 𝐺) and CRKL(𝐹 : 𝐺) are the measures (23) and (24) defined by Rao [72], Baratpour
and Rad [12], Park et al. [66], among others. It is clear, in view of (35), that the measures CKL(𝐹 : 𝐺)
and CRKL(𝐹 : 𝐺) over evaluate the divergence or the quasi-distance between the distribution of two
random variables, as it is formulated and expressed by the respective Kullback–Leibler type cumulative
distribution functions or the survival functions, defined by (34).

Csiszár’s type and Kullback–Leibler’s type survival divergences can be expressed in terms of expected
values if we restrict ourselves to the univariate case, 𝑑 = 1. Indeed, if we focus again on non-negative
random variables 𝑋 and 𝑌 with respective survival functions 𝐹̄ and 𝐺̄, then SD𝜙 (𝐹̄, 𝐺̄) of (33) is
formulated as follows:

SD𝜙 (𝐹̄ : 𝐺̄) =
∫ +∞

0
𝐺̄ (𝑥)𝜙

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 − (𝐸𝑌 ) 𝜙

(
𝐸𝑋

𝐸𝑌

)
, (36)

and for the special choice 𝜙(𝑢) = 𝑢 log 𝑢, 𝑢 > 0, (34) leads to

SDKL(𝐹̄ : 𝐺̄) =
∫ +∞

0
𝐹̄ (𝑥) ln

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)
𝑑𝑥 − (𝐸𝑋) ln

(
𝐸𝑋

𝐸𝑌

)
. (37)
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It should be noted at this point that Asadi et al. [6], in their Lemma 2.1, formulated a general
divergence measure by moving the right-hand side of their inequality to the left-hand side. The defined
by Asadi et al. [6] measure includes the divergence in (37) as a limiting case.

The survival analogs of Csiszár’s and Kullback–Leibler’s divergences can be expressed in terms of
expected values, in view of (36) or (37). The implication of this point is shown in the next example.

Example 2. Park et al. [66] considered the standard exponential distribution 𝐹̄ (𝑥) = 𝑒−𝑥 , 𝑥 > 0 and
the Weibull distribution 𝐺̄ (𝑥) = 𝑒−𝑥

𝑘 , 𝑥 > 0, 𝑘 > 0, with scale parameter 1 and shape parameter
𝑘 . It is well known that the mean of these distributions exist and they are equal to 𝐸 (𝑋) = 1 and
𝐸 (𝑌 ) = Γ(1+1/𝑘), where Γ denotes the complete gamma function. In this context, based on (25), Park’s
et al. [66] cumulative Kullback–Leibler information (CKL) between 𝐹 and 𝐺 can be easily obtained
because 𝐸 (𝑋) − 𝐸 (𝑌 ) = 1 − Γ(1 + 1/𝑘), while the integral

∫ +∞

0 𝐹 ln(𝐹/𝐺)𝑑𝑥 can be numerically
evaluated for specific values of the shape parameter 𝑘 > 0. On the other hand, elementary algebraic
manipulations lead that∫ +∞

0
𝐹̄ (𝑥) ln

𝐹̄ (𝑥)

𝐺̄ (𝑥)
𝑑𝑥 = −𝐸 (𝑋) + 𝐸 (𝑋 𝑘 ) = −1 + 𝑘! = −1 + Γ(𝑘 + 1),

by taking into account that the simple moment of order 𝑘 of the standard exponential distribution is
𝐸 (𝑋 𝑘 ) = 𝑘! = Γ(𝑘 +1). Therefore, based on (26), Park’s et al. [66] cumulative residual KL information
(CRKL) between 𝐹̄ and 𝐺̄ is given by

CRKL(𝐹 : 𝐺) = −1 + 𝑘! + Γ

(
1 +

1
𝑘

)
− 1 = Γ(𝑘 + 1) + Γ

(
1 +

1
𝑘

)
− 2.

Let’s now derive the measures CDKL(𝐹 : 𝐺) and SDKL (𝐹̄ : 𝐺̄), formulated by (34) or (37) for
non-negative random variables, as is the case of the random variables 𝑋 and 𝑌 , above. It is easy to see
that the integrals

∫ +∞

0 𝐹 (𝑥)𝑑𝑥 and
∫ +∞

0 𝐺 (𝑥)𝑑𝑥 do not convergence, and therefore, CDKL(𝐹 : 𝐺) in
(34) is not defined for this specific choice of 𝐹 and 𝐺. On the other hand, SDKL(𝐹̄ : 𝐺̄) is derived in a
explicit form by using (37) and it is given by

SDKL(𝐹̄ : 𝐺̄) =
∫ +∞

0
𝐹̄ (𝑥) ln

𝐹̄ (𝑥)

𝐺̄ (𝑥)
𝑑𝑥 − (𝐸𝑋) ln

𝐸𝑋

𝐸𝑌
=

∫ +∞

0
𝐹̄ (𝑥) ln

𝐹̄ (𝑥)

𝐺̄ (𝑥)
𝑑𝑥 + ln(𝐸𝑌 ),

or

SDKL(𝐹̄, 𝐺̄) = −1 + Γ(𝑘 + 1) + lnΓ
(
1 +

1
𝑘

)
.

The classic Kullback–Leibler divergence between the standard exponential distribution with density
function 𝑓 (𝑥) = 𝑒−𝑥 , 𝑥 > 0 and the Weibull distribution with scale parameter equal to 1 and density
function 𝑔(𝑥) = 𝑘𝑥𝑘−1𝑒−𝑥

𝑘
, 𝑥 > 0, 𝑘 > 0, is defined by

D0( 𝑓 : 𝑔) =
∫ +∞

0
𝑓 (𝑥) ln

𝑓 (𝑥)

𝑔(𝑥)
𝑑𝑥.

Simple algebraic manipulations lead to∫ +∞

0
𝑓 (𝑥) ln 𝑓 (𝑥)𝑑𝑥 = −

∫ +∞

0
𝑥 𝑓 (𝑥)𝑑𝑥 = −𝐸 (𝑋) = −1,∫ +∞

0
𝑓 (𝑥) ln 𝑔(𝑥)𝑑𝑥 =

∫ +∞

0
𝑒−𝑥 (ln 𝑘 + (𝑘 − 1) ln 𝑥 − 𝑥𝑘 )𝑑𝑥

= ln 𝑘 + (𝑘 − 1)𝐸 𝑓 (ln 𝑋) − 𝐸 𝑓 (𝑋
𝑘 ).
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Figure 1. Plot of divergences D0 (red-solid), CRKL (brown-dots) and SDKL (blue-dash).

Taking into account that 𝐸 𝑓 (𝑋
𝑘 ) = 𝑘! = Γ(𝑘 + 1) and

∫ +∞

0 𝑒−𝑥 (ln 𝑥)𝑑𝑥 = −0.57722,

∫ +∞

0
𝑓 (𝑥) ln 𝑔(𝑥)𝑑𝑥 = ln 𝑘 − 0.577 22(𝑘 − 1) − Γ(𝑘 + 1),

and hence

D0( 𝑓 , 𝑔) = −1 − ln 𝑘 + 0.577 22(𝑘 − 1) + Γ(𝑘 + 1).

Figure 1 shows the plot of D0( 𝑓 : 𝑔) (red-solid), CRKL(𝐹 : 𝐺) (brown-dots) and SDKL(𝐹̄ : 𝐺̄)
(blue-dash).

We observe from this figure that all the considered divergences attain their minimum value 0 at
𝑘 = 1 because in this case the standard exponential model coincides with the Weibull model with scale
parameter and shape parameter equal to one. For values of 𝑘 greater than 1, all the measures almost
coincide. The plots are also in harmony with inequality (35).

Mutual information is closely related and it is obtained from Kullback–Leibler divergence, defined
by (6). It has its origins, to the best of our knowledge, in a paper by Linfoot [54] and it has received
a great attention in the literature as it has been connected with a huge literature on topics of statistical
dependence. It has been used for the definition of measures of dependence, which have been broadly
applied to develop tests of independence (cf., [17,26,33,38,57], among many others). Mutual information
is, in essence, the Kullback–Leibler divergence D0, in (6), between the joint distribution of 𝑑 random
variables and the distribution of these random variables subject to the assumption of their independence.

In this context, consider the 𝑑-dimensional Euclidean space R𝑑 and denote by B𝑑 the 𝜎-algebra of
Borel subsets of R𝑑 . For a probability measure 𝑃𝑋 on (R𝑑 ,B𝑑) and a 𝑑-dimensional random vector
𝑋 = (𝑋1, . . . , 𝑋𝑑), let 𝐹𝑋 be the joint distribution function of 𝑋 , defined by, 𝐹𝑋 (𝑥1, . . . , 𝑥𝑑) = 𝑃𝑋 (𝑋1 ≤

𝑥1, . . . , 𝑋𝑑 ≤ 𝑥𝑑). Let now denote by 𝑃0
𝑋 the probability measure on (R𝑑 ,B𝑑) under the assumption

of independence of the components 𝑋𝑖 of the random vector 𝑋 = (𝑋1, . . . , 𝑋𝑑), that is 𝑃0
𝑋 is product

measure 𝑃0
𝑋 = 𝑃𝑋1×...×𝑃𝑋𝑑

, where 𝑃𝑋𝑖
are probability measures on (R,B) and 𝐹𝑋𝑖

(𝑥𝑖) = 𝑃𝑋𝑖
(𝑋𝑖 ≤ 𝑥𝑖),

𝑥𝑖 ∈ R, is the marginal distribution function of 𝑋𝑖 , 𝑖 = 1, . . . , 𝑑. In this setting, the joint distribution of
𝑋 = (𝑋1, . . . , 𝑋𝑑), under the assumption of independence, is defined by 𝐹0

𝑋 (𝑥1, . . . , 𝑥𝑑) =
∏𝑑

𝑖=1 𝐹𝑋𝑖
(𝑥𝑖),

for (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 . If 𝑓𝑋 and 𝑓 0
𝑋 are the respective joint densities of 𝑋 = (𝑋1, . . . , 𝑋𝑑), then the
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classic mutual information is defined by

MI(𝑋) = D0( 𝑓𝑋 : 𝑓 0
𝑋 ) =

∫
R𝑑

𝑓𝑋 (𝑥) ln
𝑓𝑋 (𝑥)

𝑓 0
𝑋 (𝑥)

𝑑𝑥 =
∫
R𝑑

𝑓𝑋 (𝑥) ln
𝑓𝑋 (𝑥)

𝑓𝑋1 (𝑥1) . . . 𝑓𝑋𝑑
(𝑥𝑑)

𝑑𝑥. (38)

The measure (38) satisfies the non-negativity and identity of indiscernibles property, MI(𝑋) ≥ 0,
with equality if and only if 𝑓𝑋 (𝑥) =

∏𝑑
𝑖=1 𝑓𝑋𝑖

(𝑥𝑖), that is, if and only if 𝑋1, . . . , 𝑋𝑑 are independent.
Hence, the above measure is ideal to formulate the degree of stochastic dependence between the
components of 𝑋 = (𝑋1, . . . , 𝑋𝑑) and to serve, therefore, as a measure of stochastic dependence. An
empirical version of (38) can be also used as a test statistic in testing independence of the components
of 𝑋 = (𝑋1, . . . , 𝑋𝑑).

Mutual information can be defined in terms of cumulative and survival functions by using CDKL
and SDKL of (34). Then, the cumulative mutual information and the survival mutual information are
defined by,

CMI(𝑋) =
∫
R𝑑

𝐹𝑋 (𝑥) ln

(
𝐹𝑋 (𝑥)

𝐹0
𝑋 (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐹𝑋 (𝑥)𝑑𝑥

)
ln

(∫
R𝑑

𝐹𝑋 (𝑥)𝑑𝑥

/∫
R𝑑

𝐹0
𝑋 (𝑥)𝑑𝑥

)
,

SMI(𝑋) =
∫
R𝑑

𝐹̄𝑋 (𝑥) ln

(
𝐹̄𝑋 (𝑥)

𝐹̄0
𝑋 (𝑥)

)
𝑑𝑥 −

(∫
R𝑑

𝐹̄ (𝑥)𝑑𝑥

)
ln

(∫
R𝑑

𝐹̄ (𝑥)𝑑𝑥

/∫
R𝑑

𝐹̄0
𝑋 (𝑥)𝑑𝑥

)
,

(39)

where 𝐹𝑋𝑖
is the marginal distribution function of 𝑋𝑖 , 𝑖 = 1, . . . , 𝑑, while 𝐹0

𝑋 (𝑥) =
∏𝑑

𝑖=1 𝐹𝑋𝑖
(𝑥𝑖),

𝐹̄0
𝑋 (𝑥) =

∏𝑑
𝑖=1 [1 − 𝐹𝑋𝑖

(𝑥𝑖)], are used to denote the cumulative and the respective survival function
under the assumption of independence of the components of 𝑋 = (𝑋1, . . . , 𝑋𝑑). It is immediate to
see that the cumulative and survival mutual information CMI(𝑋) and SMI(𝑋), of (39), are non-
negative and they attain their minimum value 0 if and only if 𝐹𝑋 (𝑥) = 𝐹0

𝑋 (𝑥) =
∏𝑑

𝑖=1 𝐹𝑋𝑖
(𝑥𝑖) and

𝐹̄𝑋 (𝑥) = 𝐹̄0
𝑋 (𝑥) =

∏𝑑
𝑖=1 [1 − 𝐹𝑋𝑖

(𝑥𝑖)]. Hence, CMI(𝑋) and SMI(𝑋) express on how close is 𝐹𝑋 (𝑥)
with

∏𝑑
𝑖=1 𝐹𝑋𝑖

(𝑥𝑖) and 𝐹̄𝑋 (𝑥) with
∏𝑑

𝑖=1 [1−𝐹𝑋𝑖
(𝑥𝑖)] =

∏𝑑
𝑖=1 𝐹̄𝑋𝑖

(𝑥𝑖), respectively. Based, moreover, on
the fact that equality 𝐹𝑋 (𝑥) = 𝐹0

𝑋 (𝑥) =
∏𝑑

𝑖=1 𝐹𝑋𝑖
(𝑥𝑖) is equivalent to independence of 𝑋1, . . . , 𝑋𝑑 , the

cumulative mutual information CMI(𝑋) can be also used as a measure of dependence and its empirical
version can be also serve as an index to develop tests of independence. The same is true for the measure
SMI(𝑋) in the bivariate, 𝑑 = 2, case. Cumulative and survival mutual information CMI(𝑋) and
SMI(𝑋) can be generalized, by using (32) and (33), to produce Csiszár’s type cumulative and survival
mutual 𝜙-divergences in a way, similar to that of Micheas and Zografos [11] who have extended the
classic mutual information (38) to the classic Csiszár’s 𝜙-divergence between the joint distribution and
the similar one under the assumption of independence.

Next example presents the measures CMI(𝑋) and SMI(𝑋) on the basis of a well-known bivariate
distribution, the Farlie-Gumbel-Morgenstern (FGM) bivariate distribution (cf. [11], and references
therein).

Example 3. Let the FGM bivariate distribution of a random vector (𝑋1, 𝑋2), with the joint cumulative
distribution function,

𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 𝑥1𝑥2 [1 + 𝜃 (1 − 𝑥1)(1 − 𝑥2)], 0 < 𝑥1, 𝑥2 < 1, −1 ≤ 𝜃 ≤ 1,

and the joint probability density function,

𝑓𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 1 + 𝜃 (1 − 2𝑥1)(1 − 2𝑥2), 0 < 𝑥1, 𝑥2 < 1, −1 ≤ 𝜃 ≤ 1.

The marginal distributions are uniform 𝑋1 ∼ 𝑈 (0, 1) and 𝑋2 ∼ 𝑈 (0, 1) and the correlation coefficient
is 𝜌 = 𝜌(𝑋1, 𝑋2) = 𝜃/3, which clearly ranges from − 1

3 to 1
3 . For FGM family of bivariate distributions,
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it can be easily seen that the last term of the right-hand side of (39) is obtained in an analytic form and
it is given by,

(∫ 1

0

∫ 1

0
𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2

)
ln

∫ 1
0

∫ 1
0 𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2∫ 1

0

∫ 1
0 𝐹𝑋1 (𝑥1)𝐹𝑋2 (𝑥2)𝑑𝑥1𝑑𝑥2

=

(
1
4
+
𝜃

36

)
ln

(
1 +

𝜃

9

)
.

The first term of the right-hand side of (39),
∫ 1

0

∫ 1
0 𝐹𝑋1 ,𝑋2 ln(𝐹𝑋1 ,𝑋2/𝐹𝑋1𝐹𝑋2)𝑑𝑥1𝑑𝑥2, and the classic

mutual information (38) can be numerically evaluated for several values of the dependence parameter
𝜃, −1 ≤ 𝜃 ≤ 1. Moreover, based on Nelsen [59] p. 32 or Joe [42] pp. 27–28,

𝐹̄𝑋1 ,𝑋2 (𝑥1, 𝑥2) = 1 − 𝐹𝑋1 (𝑥1) − 𝐹𝑋2 (𝑥2) + 𝐹𝑋1 ,𝑋2 (𝑥1, 𝑥2),

and therefore, the survival function of the FGM family of bivariate distributions is given by,

𝐹̄𝑋1 ,𝑋2 (𝑥1, 𝑥2) = (1 − 𝑥1 − 𝑥2 + 𝑥1𝑥2)(1 + 𝜃𝑥1𝑥2), 0 < 𝑥1, 𝑥2 < 1 and − 1 ≤ 𝜃 ≤ 1,

while the survival function 𝐹̄0
𝑋1 ,𝑋2

(𝑥1, 𝑥2), under the assumption of independence of 𝑋1, 𝑋2 is
𝐹̄0
𝑋1 ,𝑋2

(𝑥1, 𝑥2) = (1 − 𝑥1)(1 − 𝑥2). The table presents the values of the correlation coefficient 𝜌(𝑋1, 𝑋2),
the mutual informationMI(𝑋1, 𝑋2), the cumulative and the survival mutual information CMI(𝑋1, 𝑋2)

and SMI(𝑋1, 𝑋2), for several values of the dependence parameter 𝜃.

𝜌,MI, CMI and SMI for values of the dependence parameter 𝜃
𝜃 −1 −0.75 −0.5 −0.25 0.25 0.5 0.75 1
𝜌 −0.33333 −0.25 −0.16667 −0.083333 −0.083333 0.16667 0.25 0.33333

MI 0.06 0.032455 0.014109 0.0034855 0.0034855 0.014109 0.032455 0.06
CMI 0.002426 0.001274 0.000534 0.00012663 0.0001153 0.000442 0.000957 0.001638
SMI 0.002426 0.001277 0.000537 0.0001228 0.0001143 0.000441 0.000955 0.001641

Observe that all the measures decrease and they approach their minimum value as the value of
the dependence parameter 𝜃 approaches independence (𝜃 = 0). The correlation coefficient 𝜌 and the
mutual information MI are symmetric, something which is not obeyed by the cumulative mutual infor-
mation CMI and the survival mutual information SMI. The correlation coefficient captures negative
dependence but the other informational measures do not discriminate between positive and negative
dependence. Last, it is interesting to note that the quantity

∫ 1
0

∫ 1
0 𝐹𝑋1 ,𝑋2 ln(𝐹𝑋1 ,𝑋2/𝐹𝑋1𝐹𝑋2 )𝑑𝑥1𝑑𝑥2 can

take positive or negative values, for instance, it is equal to −0.00672 for 𝜃 = −0.25, or it is equal to
0.01471 for 𝜃 = 0.5. The same is also true for the quantity

∫ 1
0

∫ 1
0 𝐹̄𝑋1 ,𝑋2 ln(𝐹̄𝑋1 ,𝑋2/𝐹̄𝑋1 𝐹̄𝑋2)𝑑𝑥1𝑑𝑥2 which

is equal to −0.01866 for 𝜃 = −0.75 and equal to 0.01471 for 𝜃 = 0.5. This point justifies the definition
of the cumulative and survival mutual information by (39) which ensure non-negativity of the measures.

4.2. Cressie and Read type cumulative and survival divergences

Let now consider the convex function 𝜙(𝑢) = 𝜙𝜆(𝑢) = (𝑢𝜆+1 − 𝑢 − 𝜆(𝑢 − 1))/𝜆(𝜆 + 1), 𝜆 ≠ 0,−1,
𝑢 > 0, which leads Csiszár’s 𝜙-divergence, defined by (8), to Cressie and Read [27] and Read and
Cressie [74] power divergence. A straight application of (32) and (33) for this specific choice of the
convex function 𝜙 leads to the Cressie and Read type cumulative and survival divergences, which are
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defined as follows:

CD𝜆(𝐹 : 𝐺) =
1

𝜆(𝜆 + 1)

(∫
R𝑑

𝐺 (𝑥)

(
𝐹 (𝑥)

𝐺 (𝑥)

)𝜆+1

𝑑𝑥 −

(∫
R𝑑

𝐺 (𝑥)𝑑𝑥

)

×

(∫
R𝑑

𝐹 (𝑥)𝑑𝑥

/∫
R𝑑

𝐺 (𝑥)𝑑𝑥

)𝜆+1
)
, (40)

and

SD𝜆(𝐹̄ : 𝐺̄) =
1

𝜆(𝜆 + 1)

(∫
R𝑑

𝐺̄ (𝑥)

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)𝜆+1

𝑑𝑥 −

(∫
R𝑑

𝐺̄ (𝑥)𝑑𝑥

)

×

(∫
R𝑑

𝐹̄ (𝑥)𝑑𝑥

/∫
R𝑑

𝐺̄ (𝑥)𝑑𝑥

)𝜆+1
)
,

for 𝜆 ∈ R, 𝜆 ≠ 0,−1. The last measures can be formulated in terms of expected values if we concentrate
on non-negative random variables 𝑋 and 𝑌 with respective survival functions 𝐹̄ and 𝐺̄. In this frame,
SD𝜆 (𝐹̄, 𝐺̄) is simplified as follows,

SD𝜆(𝐹̄ : 𝐺̄) =
1

𝜆(𝜆 + 1)

(∫ +∞

0
𝐺̄ (𝑥)

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)𝜆+1

𝑑𝑥 − 𝐸 (𝑌 )

(
𝐸 (𝑋)

𝐸 (𝑌 )

)𝜆+1
)
, 𝜆 ∈ R, 𝜆 ≠ 0,−1.

The previous propositions supply CD𝜆(𝐹, 𝐺) and SD𝜆(𝐹̄, 𝐺̄) with non-negativity and the identity
of indiscernibles property. Cressie and Read’s [27] type cumulative and survival divergences (40) are
not defined for 𝜆 = −1 and 𝜆 = 0. When the power 𝜆 approaches these values, then CD𝜆(𝐹, 𝐺)
and SD𝜆(𝐹̄, 𝐺̄) are reduced to the respective Kullback–Leibler divergences, in the limiting sense that
follows and can be easily proved,

lim
𝜆→0

CD𝜆 (𝐹 : 𝐺) = CDKL(𝐹 : 𝐺) and lim
𝜆→0

SD𝜆(𝐹̄ : 𝐺̄) = SDKL(𝐹̄ : 𝐺̄),

lim
𝜆→−1

CD𝜆(𝐹 : 𝐺) = CDKL (𝐺 : 𝐹) and lim
𝜆→−1

SD𝜆(𝐹̄ : 𝐺̄) = SDKL(𝐺̄ : 𝐹̄).

Example 4. Let consider again the random variables 𝑋 and𝑌 of the previous example with distribution
functions and survival functions 𝐹 (𝑥) = 1 − 𝑒−𝑥 , 𝐹̄ (𝑥) = 𝑒−𝑥 and 𝐺 (𝑥) = 1 − 𝑒−𝑥

𝑘 , 𝐺̄ (𝑥) = 𝑒−𝑥
𝑘
,

𝑥 > 0, 𝑘 > 0. It is easy to see that CD𝜆(𝐹 : 𝐺) is not obtained in an explicit form for this specific
choice of 𝐹 and 𝐺. In respect to SD𝜆(𝐹̄ : 𝐺̄), elementary algebraic manipulations entail that

∫ +∞

0
𝐺̄ (𝑥)

(
𝐹̄ (𝑥)

𝐺̄ (𝑥)

)𝜆+1

𝑑𝑥 =
∫ +∞

0
𝑒−𝑥

𝑘

(
𝑒−𝑥

𝑒−𝑥𝑘

)𝜆+1

𝑑𝑥 =
∫ +∞

0
𝑒−(𝜆+1)𝑥+𝜆𝑥𝑘

𝑑𝑥,

and the last integral can be numerically evaluated for specific values of the power 𝜆 and the shape
parameter 𝑘 . Taking into account that 𝐸 (𝑋) = 1 and 𝐸 (𝑌 ) = Γ(1 + (1/𝑘)), the Cressie and Read type
survival divergence is given by,

SD𝜆(𝐹̄ : 𝐺̄) =
1

𝜆(𝜆 + 1)

(∫ +∞

0
𝑒−(𝜆+1)𝑥+𝜆𝑥𝑘

𝑑𝑥 − Γ−𝜆

(
1 +

1
𝑘

))
, 𝜆 ∈ R, 𝜆 ≠ 0,−1, 𝑘 > 0.

4.3. Density power divergence type cumulative and survival divergences

A straightforward application of 𝑑𝑎, given by (12), leads to the cumulative and survival counterparts of
𝑑𝑎, which are defined in the sequel. Let 𝐹 and 𝐺 denote the cumulative distribution functions of the

https://doi.org/10.1017/S0269964822000031 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000031


312 K. Zografos

random vectors 𝑋 and 𝑌 and 𝐹̄ and 𝐺̄ denote the respective survival functions. Then, the cumulative
and survival density power type divergences, are defined by,

C𝑑𝑎 (𝐹 : 𝐺) =
∫
R𝑑

{
𝐺 (𝑥)1+𝑎 −

(
1 +

1
𝑎

)
𝐺 (𝑥)𝑎𝐹 (𝑥) +

1
𝑎
𝐹 (𝑥)1+𝑎

}
𝑑𝑥, 𝑎 > 0, (41)

and

S𝑑𝑎 (𝐹̄ : 𝐺̄) =
∫
R𝑑

{
𝐺̄ (𝑥)1+𝑎 −

(
1 +

1
𝑎

)
𝐺̄ (𝑥)𝑎 𝐹̄ (𝑥) +

1
𝑎
𝐹̄ (𝑥)1+𝑎

}
𝑑𝑥, 𝑎 > 0.

The above divergences, C𝑑𝑎 (𝐹 : 𝐺) and S𝑑𝑎 (𝐹̄ : 𝐺̄), are non-negative, for all 𝑎 > 0. They are
equal to 0 if and only if the underline cumulative distributions 𝐹 and 𝐺, or the respective survival
functions 𝐹̄ and 𝐺̄ are coincide. The proof of this assertion is immediately obtained by following the
proof of Theorem 9.1 of Basu et al. [14]. It is seen that the case 𝑎 = 0 is excluded from the definition of
C𝑑𝑎 (𝐹 : 𝐺) and S𝑑𝑎 (𝐹̄ : 𝐺̄) in (41). It can be easily shown that lim𝑎→0 C𝑑𝑎 (𝐹 : 𝐺) = CKL(𝐹 : 𝐺)
and lim𝑎→0 S𝑑𝑎 (𝐹̄ : 𝐺̄) = CRKL(𝐹 : 𝐺), where the limiting measures CKL(𝐹 : 𝐺) and CRKL(𝐹 : 𝐺)
have been defined by (23) and (24), respectively.

5. Fisher’s type cumulative and survival information

Fisher’s information measure, defined by (13), is a key expression which is connected with important
results in mathematical statistics. It is related to the Kullback–Leibler divergence, in a parametric
framework, and this relation is formulated in (16). A natural question is raised at this point: How
would be defined Fisher’s type measure in terms of a distribution function or in terms of a survival
function? We will try to give an answer to this question motivated by the limiting connection of
classic Csiszár’s 𝜙-divergence and Fisher’s information, formulated by (16) and (17). This is also
based on similar derivations in Section 3 of Park et al. [66] and the recent work by Kharazmi and
Balakrishnan [43]. To formulate the definition, consider the 𝑑-dimensional Euclidean space R𝑑 and
denote by B𝑑 the 𝜎-algebra of Borel subsets of R𝑑 . Let a parametric family of probability measures
𝑃𝜃 on (R𝑑 ,B𝑑), depending on an unknown parameter 𝜃, belonging to the parameter space Θ ∈ R. For
a 𝑑-dimensional random vector 𝑋 = (𝑋1, . . . , 𝑋𝑑), let 𝐹𝜃 denotes the joint distribution function of 𝑋 ,
with 𝐹𝜃 (𝑥1, . . . , 𝑥𝑑) = 𝑃𝜃 (𝑋1 ≤ 𝑥1, . . . , 𝑋𝑑 ≤ 𝑥𝑑) and let 𝐹̄𝜃 denotes the joint survival function of 𝑋 ,
with 𝐹̄𝜃 (𝑥1, . . . , 𝑥𝑑) = 𝑃𝜃 (𝑋1 > 𝑥1, . . . , 𝑋𝑑 > 𝑥𝑑), for (𝑥1, . . . , 𝑥𝑑) ∈ R

𝑑 , 𝜃 ∈ Θ ∈ R.
Motivated by the limiting behavior, cf. (17), between the classic Fisher information and Csiszár’s

𝜙-divergence, it is investigated, in the next proposition, an analogous behavior of the cumulative and
survival Csiszár’s type 𝜙-divergences, defined by (32) and (33).

Proposition 3. Let a parametric family of joint distribution functions 𝐹𝜃 (𝑥), 𝑥 ∈ R𝑑 and 𝜃 ∈ Θ ⊆ R.
Let also 𝐹̄𝜃 (𝑥) be the corresponding survival function. Then, the cumulative and survival Csiszár’s type
𝜙-divergences, defined by (32) and (33), are characterized by the following limiting behavior,

lim
𝛿→0

1
𝛿2 CD𝜙 (𝐹𝜃+𝛿 , 𝐹𝜃 ) =

𝜙′′(1)
2

{∫
R𝑑

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥

−

(∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

)2
}
,

lim
𝛿→0

1
𝛿2SD𝜙 (𝐹̄𝜃+𝛿 , 𝐹̄𝜃 ) =

𝜙′′(1)
2

{∫
R𝑑

𝐹̄𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹̄𝜃 (𝑥)

)2

𝑑𝑥

−

(∫
R𝑑

𝐹̄𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R𝑑

𝐹̄𝜃 (𝑥)𝑑𝑥

)2
}
,
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for 𝜃 ∈ Θ ⊆ R and subject to the additional assumptions 𝜙′(1) = 0, for 𝜙 ∈ Φ, defined by (9).

Proof. We will only sketch the proof for CD𝜙 because the other one follows in a completely similar
manner. Following Pardo [65] p. 411, for 𝑤(𝜃 + 𝛿, 𝜃) =

∫
𝐹𝜃𝜙(𝐹𝜃+𝛿/𝐹𝜃 )𝑑𝑥, a second-order Taylor

expansion of 𝑤(𝜃∗, 𝜃) around 𝜃∗ = 𝜃 at 𝜃∗ = 𝜃 + 𝛿 gives

𝑤(𝜃 + 𝛿, 𝜃) = 𝑤(𝜃, 𝜃) + (𝜃 + 𝛿 − 𝜃)
𝑑

𝑑𝜃∗
𝑤(𝜃∗, 𝜃) | 𝜃∗=𝜃

+
1
2
(𝜃 + 𝛿 − 𝜃)2 𝑑2

𝑑 (𝜃∗)2𝑤(𝜃
∗, 𝜃) | 𝜃∗=𝜃 +𝑂 (𝛿3), (42)

where 𝑤(𝜃, 𝜃) = 0 in view of 𝜙(1) = 0 and

𝑑

𝑑𝜃∗
𝑤(𝜃∗, 𝜃) | 𝜃∗=𝜃 =

∫
𝜙′

(
𝐹𝜃∗ (𝑥)

𝐹𝜃 (𝑥)

)
𝑑

𝑑𝜃∗
𝐹𝜃∗ (𝑥)𝑑𝑥

����
𝜃∗=𝜃

= 𝜙′(1)
∫

𝑑

𝑑𝜃
𝐹𝜃 (𝑥)𝑑𝑥 = 0, (43)

taking into account that 𝜙′(1) = 0. On the other hand,

𝑑2

𝑑 (𝜃∗)2𝑤(𝜃
∗, 𝜃) | 𝜃∗=𝜃 =

∫
𝜙′′

(
𝐹𝜃∗ (𝑥)

𝐹𝜃 (𝑥)

)
1

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃∗
𝐹𝜃∗ (𝑥)

)2

𝑑𝑥

�����
𝜃∗=𝜃

+

∫
𝜙′

(
𝐹𝜃∗ (𝑥)

𝐹𝜃 (𝑥)

)
𝑑2

𝑑 (𝜃∗)2 𝐹𝜃∗ (𝑥)𝑑𝑥

����
𝜃∗=𝜃

,

and taking into account that 𝜙′(1) = 0,

𝑑2

𝑑 (𝜃∗)2𝑤(𝜃
∗, 𝜃) | 𝜃∗=𝜃 =

∫
𝜙′′ (1)

1
𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
𝐹𝜃 (𝑥)

)2

𝑑𝑥 = 𝜙′′ (1)
∫
𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥. (44)

Based on (42), (43) and (44),

𝑤(𝜃 + 𝛿, 𝜃) =
∫
R𝑑

𝐹𝜃 (𝑥)𝜙

(
𝐹𝜃+𝛿 (𝑥)

𝐹𝜃 (𝑥)

)
𝑑𝑥 =

1
2
𝛿2𝜙′′ (1)

∫
R𝑑

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥 +𝑂 (𝛿3). (45)

Following exactly the same argument for the function 𝑤∗ (𝜃 + 𝛿, 𝜃) = 𝜙
(∫
𝐹𝜃+𝛿𝑑𝑥 /

∫
𝐹𝜃𝑑𝑥

)
, we

obtain

𝑤∗ (𝜃 + 𝛿, 𝜃) = 𝜙

( ∫
𝐹𝜃+𝛿 (𝑥)𝑑𝑥∫
𝐹𝜃 (𝑥)𝑑𝑥

)
=

1
2
𝛿2𝜙′′(1)

(
𝑑

𝑑𝜃
ln

∫
𝐹𝜃 (𝑥)𝑑𝑥

)2

+𝑂 (𝛿3)

and then(∫
𝐹𝜃 (𝑥)𝑑𝑥

)
𝜙

( ∫
𝐹𝜃+𝛿 (𝑥)𝑑𝑥∫
𝐹𝜃 (𝑥)𝑑𝑥

)
=

1
2
𝛿2𝜙′′(1)

(∫
𝐹𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
𝐹𝜃 (𝑥)𝑑𝑥

)2

+𝑂 (𝛿3). (46)

Based on (32), (45) and (46),

CD𝜙 (𝐹𝜃+𝛿 , 𝐹𝜃 ) =
𝜙′′(1)

2
𝛿2

{∫
R𝑑

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥 −

(∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

)2
}

+𝑂 (𝛿3),

which leads to the desired result. �
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Based on the previous Proposition and in complete analogy with (17), which connects the classic
Fisher information with Csiszár’s 𝜙-divergence, we state the definition of the Fisher’s type cumulative
and survival information.

Definition 3. For a parametric family of joint distribution functions 𝐹𝜃 (𝑥) with corresponding survival
function 𝐹̄𝜃 (𝑥), 𝑥 ∈ R𝑑 and 𝜃 ∈ Θ ⊆ R, the Fisher’s type cumulative and survival measures of
information are defined by

CI𝐹𝑖
𝐹 (𝜃) =

∫
R𝑑

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥 −

(∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R𝑑

𝐹𝜃 (𝑥)𝑑𝑥

)2

, (47)

SI𝐹𝑖
𝐹 (𝜃) =

∫
R𝑑

𝐹̄𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹̄𝜃 (𝑥)

)2

𝑑𝑥 −

(∫
R𝑑

𝐹̄𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R𝑑

𝐹̄𝜃 (𝑥)𝑑𝑥

)2

, (48)

for 𝜃 ∈ Θ ⊆ R.

Remark 1.

(a) Observe that the above defined Fisher’s type cumulative and survival measures are not analogous
of the classic one defined by means of probability density functions, such as the measure I𝐹𝑖

𝑓 (𝜃),
defined by (13). It was expected because the cumulative and survival 𝜙-divergences, (32) and (33),
which are used to define the Fisher’s type measures of the above definition, are not analogous of the
classic Csiszár’s 𝜙-divergence (8) for the reasons provided in the previous subsections. More
precisely, because the analogous expressions of classic divergences, which are obtained by
replacing densities with cumulative and survival functions may lead to negative quantities,
something which was shown in the counter example, of Section 3.

(b) Fisher’s type survival measure SI𝐹𝑖
𝐹 (𝜃) has an alternative expression, in terms of expected values,

if we restrict ourselves to the univariate case 𝑑 = 1. Indeed, if we focus again on a non-negative
random variable 𝑋 with survival function 𝐹̄𝜃 , then SI𝐹𝑖

𝐹 (𝜃) of (48) is formulated as follows:

SI𝐹𝑖
𝐹 (𝜃) =

∫ ∞

0
𝐹̄𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹̄𝜃 (𝑥)

)2

𝑑𝑥 − (𝐸𝜃 (𝑋))

(
𝑑

𝑑𝜃
ln 𝐸𝜃 (𝑋)

)2

, 𝜃 ∈ Θ ⊆ R. (49)

(c) Fisher’s type cumulative and survival measures of (47) and (48) can be extended to the
multiparameter case 𝜃 ∈ Θ ⊆ R𝑚. In this case, the extensions of CI𝐹𝑖

𝐹 (𝜃) and SI𝐹𝑖
𝐹 (𝜃) will be

𝑚 × 𝑚 symmetric matrices, but their exposition is outside the scopes of this paper.
(d) The above defined Fisher’s type measures should be non-negative. It is true. The proof of

non-negativity of CI𝐹𝑖
𝐹 and SI𝐹𝑖

𝐹 , in (47) and (48), is immediately obtained in view of the last
proposition. Indeed, CD𝜙 (𝐹𝜃+𝛿 , 𝐹𝜃 ) and SD𝜙 (𝐹̄𝜃+𝛿 , 𝐹̄𝜃 ) are non-negative, while 𝜙′′(1) ≥ 0
because 𝜙 is a convex function. Therefore, CI𝐹𝑖

𝐹 and SI𝐹𝑖
𝐹 are non-negative as the limits of

non-negative functions.

The Fisher’s type cumulative and survival measures of the previous definition have an alternative
representation which is formulated in the next proposition. The representation of the proposition is the
analogous of the representation (14) of the classic Fisher information measure.

Proposition 4. For a parametric family of joint distribution functions 𝐹𝜃 (𝑥) and survival functions
𝐹̄𝜃 (𝑥), 𝑥 ∈ R𝑑 , 𝜃 ∈ Θ ⊆ R, and under the assumption of interchanging the integral and the derivative
sign

CI𝐹𝑖
𝐹 (𝜃) = −

∫
R𝑑

𝐹𝜃 (𝑥)

(
𝑑2

𝑑𝜃2 ln 𝐹𝜃 (𝑥)

)
𝑑𝑥 +

𝑑2

𝑑𝜃2 𝑖(𝜃) − 𝑖(𝜃)

(
𝑑

𝑑𝜃
ln 𝑖(𝜃)

)2

, (50)
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SI𝐹𝑖
𝐹 (𝜃) = −

∫
R𝑑

𝐹̄𝜃 (𝑥)

(
𝑑2

𝑑𝜃2 ln 𝐹̄𝜃 (𝑥)

)
𝑑𝑥 +

𝑑2

𝑑𝜃2 𝑖(𝜃) − 𝑖(𝜃)

(
𝑑

𝑑𝜃
ln 𝑖(𝜃)

)2

, (51)

with 𝑖(𝜃) =
∫
R𝑑
𝐹𝜃 (𝑥)𝑑𝑥 and 𝑖(𝜃) =

∫
R𝑑
𝐹̄𝜃 (𝑥)𝑑𝑥, for 𝜃 ∈ Θ ⊆ R. Moreover, for a non-negative random

variable 𝑋 with survival function 𝐹̄𝜃 , 𝑖(𝜃) = 𝐸𝜃 (𝑋) and

SI𝐹𝑖
𝐹 (𝜃) = −

∫ ∞

0
𝐹̄𝜃 (𝑥)

(
𝑑2

𝑑𝜃2 ln 𝐹̄𝜃 (𝑥)

)
𝑑𝑥 +

𝑑2

𝑑𝜃2 𝐸𝜃 (𝑋) − 𝐸𝜃 (𝑋)

(
𝑑

𝑑𝜃
ln 𝐸𝜃 (𝑋)

)2

. (52)

Proof. The proof is obtained by standard algebraic manipulations, similar to that in Kharazmi and
Balakrishnan [43] p. 6307. �

An analogous to (15) respesentation of Fisher’s type cumulative and survival measures in the case
of a location parameter 𝜃 is formulated in the next proposition.

Proposition 5. Let a random variable 𝑋 with distribution function 𝐹𝜃 (𝑥) and survival function 𝐹̄𝜃 (𝑥) =
1 − 𝐹𝜃 (𝑥), 𝑥 ∈ R, 𝜃 ∈ Θ ⊆ R. Suppose, moreover, that the parameter 𝜃 in the considered models is a
location parameter. Then, under the assumption of interchanging the integral and the derivative sign

CI𝐹𝑖
𝐹 (𝑋) = CI𝐹𝑖

𝐹 (𝐹) =
∫
R

𝐹 (𝑥)

(
𝑑

𝑑𝑥
ln 𝐹 (𝑥)

)2

𝑑𝑥 − 𝑖−1(𝐹), (53)

SI𝐹𝑖
𝐹 (𝑋) = SI𝐹𝑖

𝐹 (𝐹̄) =
∫
R

𝐹̄ (𝑥)

(
𝑑

𝑑𝑥
ln 𝐹̄ (𝑥)

)2

𝑑𝑥 − 𝑖−1(𝐹̄), (54)

where 𝐹 is a distribution function such that 𝐹𝜃 (𝑥) = 𝐹 (𝑥 − 𝜃) and 𝐹̄𝜃 (𝑥) = 𝐹̄ (𝑥 − 𝜃) = 1 − 𝐹 (𝑥 − 𝜃),
𝑥 ∈ R, 𝜃 ∈ Θ ⊆ R, with 𝑖(𝐹) =

∫
R
𝐹 (𝑥)𝑑𝑥 and 𝑖(𝐹̄) =

∫
R
𝐹̄ (𝑥)𝑑𝑥.

Proof. Taking into account that 𝜃 is a location parameter, the c.d.f. 𝐹𝜃 (𝑥) depends only on 𝑥 − 𝜃, that
is, 𝐹𝜃 (𝑥) = 𝐹 (𝑥 − 𝜃), 𝑥 ∈ R, 𝜃 ∈ Θ ⊆ R. Then,

𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥) =

𝑑

𝑑𝜃
ln 𝐹 (𝑥 − 𝜃) = −

(𝑑/𝑑𝜃)𝐹 (𝑥 − 𝜃)

𝐹 (𝑥 − 𝜃)
= −

𝐹 ′(𝑥 − 𝜃)

𝐹 (𝑥 − 𝜃)
.

Therefore,∫
R

𝐹𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹𝜃 (𝑥)

)2

𝑑𝑥 =
∫
R

𝐹 (𝑥 − 𝜃)

(
𝐹 ′(𝑥 − 𝜃)

𝐹 (𝑥 − 𝜃)

)2

𝑑𝑥 =
∫
R

𝐹 (𝑥)

(
𝐹 ′(𝑥)

𝐹 (𝑥)

)2

𝑑𝑥

=
∫
R

𝐹 (𝑥)

(
𝑑

𝑑𝑥
ln 𝐹 (𝑥)

)2

𝑑𝑥.

In a similar manner,

𝑑

𝑑𝜃
ln

∫
R

𝐹𝜃 (𝑥)𝑑𝑥 =

∫
R
(𝑑/𝑑𝜃)𝐹 (𝑥 − 𝜃)𝑑𝑥∫
R
𝐹 (𝑥 − 𝜃)𝑑𝑥

= −

∫
R
𝐹 ′(𝑥)𝑑𝑥∫
R
𝐹 (𝑥)𝑑𝑥

= −

∫
R
(𝑑/𝑑𝑥)𝐹 (𝑥)𝑑𝑥∫
R
𝐹 (𝑥)𝑑𝑥

= −
1
𝑖(𝐹)

= −𝑖−1(𝐹),

and ∫
R

𝐹𝜃 (𝑥)𝑑𝑥 =
∫
R

𝐹 (𝑥 − 𝜃)𝑑𝑥 =
∫
R

𝐹 (𝑥)𝑑𝑥 = 𝑖(𝐹).
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The proof of (53) follows by compining all the above intermediate results and similar is the proof of
(54). �

The example that follows clarifies the measures defined above in a specific distribution.

Example 5. Consider a random variable 𝑋 with exponential distribution with mean 𝐸 (𝑋) = 𝜃, 𝜃 > 0,
and 𝐹𝜃 (𝑥) = 1 − 𝑒−𝑥/𝜃 , 𝑥 > 0. Then, based on Example 3.1 of Park et al. [43],

−

∫ ∞

0
𝐹𝜃 (𝑥)

(
𝑑2

𝑑𝜃2 ln 𝐹𝜃 (𝑥)

)
𝑑𝑥 =

2(𝜁 (3) − 1)
𝜃

�
0.4041
𝜃

,

−

∫ ∞

0
𝐹̄𝜃 (𝑥)

(
𝑑2

𝑑𝜃2 ln 𝐹̄𝜃 (𝑥)

)
𝑑𝑥 =

2
𝜃
,

where 𝜁 (3) is the Riemann zeta function of order three. Moreover, (𝑑/𝑑𝜃)𝑖(𝜃) =
∫ ∞

0 (𝑑/𝑑𝜃)(1 −

𝑒−𝑥/𝜃 )𝑑𝑥 = −1. Then, a straightforward application of (50) and (52) entails that,

CI𝐹𝑖
𝐹 (𝜃) =

2(𝜁 (3) − 1)
𝜃

�
0.4041
𝜃

and SI𝐹𝑖
𝐹 (𝜃) =

1
𝜃
.

It is immediate to see that

CI𝐹𝑖
𝐹 (𝜃) < SI𝐹𝑖

𝐹 (𝜃).

Taking into account that CD𝜙 (𝐹𝜃+𝛿 , 𝐹𝜃 ) and SD𝜙 (𝐹̄𝜃+𝛿 , 𝐹̄𝜃 ) are related with CI𝐹𝑖
𝐹 (𝜃) and

SI𝐹𝑖
𝐹 (𝜃), respectively, then, in light of the previous Proposition 3, it is clear that for small values

of 𝛿, 𝛿 > 0, CD𝜙 (𝐹𝜃+𝛿 , 𝐹𝜃 ) appears to be smaller than SD𝜙 (𝐹̄𝜃+𝛿 , 𝐹̄𝜃 ). Then, based on Park et al.
[66], Example 3.1, we can say that the survival divergence SD𝜙 is most sensitive to some departures
from exponentiality in comparison with the cumulative divergence CD𝜙 and this conclusion has its
origins on the comparison of the respective cumulative and survival Fisher’s type information.

Park et al. [66] and Kharazmi and Balakrishnan [43], concentrated in the univariate case, introduced
the cumulative residual Fisher information, that is Fisher’s type measure which is defined by

CI(𝜃) =
∫
R

𝐹̄𝜃 (𝑥)

(
𝑑

𝑑𝜃
ln 𝐹̄𝜃 (𝑥)

)2

𝑑𝑥, 𝜃 ∈ Θ ⊆ R.

A special case of CI(𝜃), when the parameter 𝜃 in the considered model is a location parameter, is
presented in Kharazmi and Balakrishnan [43] and it is defined by

CI(𝑋) = CI(𝐹̄) =
∫
R

𝐹̄ (𝑥)

(
𝑑

𝑑𝑥
ln 𝐹̄ (𝑥)

)2

𝑑𝑥.

This measure is called the cumulative residual Fisher information measure of 𝐹̄ for the parameter 𝜃
and it is quite analogous with the alternative form of classic Fisher’s measure, given in (15). Kharazmi
and Balakrishnan [43] proceed further to the study of properties of these measures.

Based on (48) and focus in the univariate case, 𝑑 = 1, there is a strong relationship between Kharazmi
and Balakrishnan’s [43] measure CI(𝜃) with the measure SI𝐹𝑖

𝐹 (𝜃), namely,

SI𝐹𝑖
𝐹 (𝜃) = CI(𝜃) −

(∫
R

𝐹̄𝜃 (𝑥)𝑑𝑥

) (
𝑑

𝑑𝜃
ln

∫
R

𝐹̄𝜃 (𝑥)𝑑𝑥

)2

. (55)
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Moreover, there is a strong relation between Kharazmi and Balakrishnan [43] cumulative residual
Fisher information measure CI(𝐹̄) with the measure SI𝐹𝑖

𝐹 (𝐹̄), defined by (54), namely,

SI𝐹𝑖
𝐹 (𝐹̄) = CI(𝐹̄) − 𝑖−1(𝐹̄), (56)

with 𝑖(𝐹̄) =
∫
R
𝐹̄ (𝑥)𝑑𝑥. In case of a non-negative random variable 𝑋 , (55) and (56) are simplified as

follows,

SI𝐹𝑖
𝐹 (𝜃) = CI(𝜃) − 𝐸 (𝑋)

(
𝑑

𝑑𝜃
ln 𝐸 (𝑋)

)2

, (57)

and
SI𝐹𝑖

𝐹 (𝐹̄) = CI(𝐹̄) − [𝐸 (𝑋)]−1. (58)

Based on (57) and (58), it is, therefore, expected that the survival Fisher’s type information SI𝐹𝑖
𝐹 (𝜃)

and SI𝐹𝑖
𝐹 (𝐹̄), defined here, obeys similar properties as those in Kharazmi and Balakrishnan [43]. Two

of the said properties are formulated in the next proposition.

Proposition 6.

(a) Let 𝑋 be a continuous non-negative variable with absolutely continuous survival function 𝐹̄ and
hazard function 𝑟𝐹 (𝑥) = 𝑓 (𝑥)/𝐹̄ (𝑥), 𝑥 > 0. Then,

SI𝐹𝑖
𝐹 (𝐹̄) = 𝐸 [𝑟𝐹 (𝑋)] − [𝐸 (𝑋)]−1.

(b) Let 𝑋𝑎 be a variable with proportional hazard model corresponding to baseline non-negative
variable 𝑋 with survival function 𝐹̄. Then, the survival function of 𝑋𝑎 is given by 𝐹̄𝑎, it depends on
the proportionality parameter 𝑎 and the survival Fisher’s type information is given by,

SI𝐹𝑖
𝐹 (𝑎) =

2
𝑎2 𝜉2(𝑋𝑎) − (𝐸 (𝑋𝑎))

(
𝑑

𝑑𝑎
ln 𝐸 (𝑋𝑎)

)2

,

with 𝜉𝑛 (𝑋) =
∫ +∞

0 𝐹̄ (𝑥)([− ln 𝐹̄ (𝑥)]𝑛/𝑛!)𝑑𝑥.

This proposition is strongly related with Theorems 1 and 2 of Kharazmi and Balakrishnan [43] and
its proof is a straightforward application of (57) and (58) and the respective proofs of this cited paper.
𝜉𝑛 (𝑋) is the generalized cumulative residual entropy, defined in Psarrakos and Navarro [68].

The paper by Kharazmi and Balakrishnan [43] discusses also connections between the cumulative
residual entropy (18) and the cumulative residual Fisher information measure CI(𝐹̄), presented above.
This connection is achieved by a De Bruĳn’s type identity which is formulated by means of the above-
mentioned measures which are defined on the basis of survival functions, insted of densities, which is the
frame of the classic De Bruĳn identity, first studied in information theory by Stam [85]. Based on (56)
and the similarity between Kharazmi and Balakrishnan [43] measure CI(𝐹̄) and the introduced here
measure SI𝐹𝑖

𝐹 (𝐹̄), it can been formulated a De Bruĳn’s type identity by means of SI𝐹𝑖
𝐹 (𝐹̄), something

which can be obtained in view of Theorem 5 in Kharazmi and Balakrishnan [43] and (56), above. De
Bruĳn identity, which concentrates and it is applied to a Gaussian noise channel, is a classic result that
receives the attention nowadays. Generalizations of this identity are provided in several frames and for
various generalizations of the noise channel (cf., [25,87], and references therein).

Concluding this section, it is devoted to the definition of Fisher’s type measures which are defined as
limiting cases of divergences, which are based on the cumulative distribution and the respective survival
function. Fisher’s initial measure of information (13) is a universal quantity and it is meaningful in
terms of the bound it provides for the variance of an unbiased estimator and for chaotic systems, among
other applications. So, establishing limiting relationship between the Fisher information and divergence
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provides insights about these measures in various application problems; examples include Kullback’s
[48] interpretation of information divergence in terms of the widely used Fisher information in statistics,
Lindley’s [53] interpretation of the mutual information in terms of the Fisher information for evaluation
of experiments, and Soofi’s [83] interpretation of the Fisher information in terms of divergence in the
chaotic systems with noise due to the difference between two initial values. Based on this discussion, it
is clear that Fisher’s measure and the measures of information, in general, are meaningful and they are
successfully used, in practice, in various applications, in almost all fields of science and engineering.
It is, therefore, expected the same to be valid for the newly defined measures in terms of cumulative
and survival functions, initiated by the work of Rao et al. [73]. Although they have a short presence in
the respective literature, they have received considerable attention by the research community and they
have already been used to various application problems (cf., e.g., the recent papers by [2,3]).

6. Conclusion

This paper aimed to summarize parts of the enormous existing literature and to provide a short review
on the most known entropies and divergences and their cumulative and survival counterparts. Searching
the literature, it seemed that there is not yet appeared a definition of the broad class of Csiszár’s type 𝜙-
divergences or a definition of the density power divergence of Basu et al. [13] on the basis of cumulative
and survival functions, a framework which was initiated in the paper by Rao et al. [73]. There is no,
in addition, an analogous formulation of Fisher’s measure of information, on the basis of cumulative
and survival functions, as limiting case of similar Csiszár’s type 𝜙-divergence. This gap aims to bridge
the present paper. Therefore, the main aim of this work is to fill the gap and to introduce Csiszár’s
type 𝜙-divergences, density power type divergence and Fisher’s type information measure by means of
cumulative distribution functions and survival functions. The measures introduced here are based on
distribution functions which always exist, while their classic counterparts are defined on the basis of
probability density functions, which do not always exist or they are complicated in some disciplines and
contexts.

Classic measures of divergence have been broadly used to present and to develop statistical inference
by exploiting the non-negativity and identity of indiscernibles property (10) which permits their use
as pseudo distances between probability distribution. At least two monographs, to the best of our
knowledge, are devoted to this line of research (cf. [14,65]) providing robust statistical procedures. The
introduced here measures obey a similar property and they can be also used as pseudo distances between
distributions, especially in cases where the underlined densities are not so tractable while the respective
distribution or survival functions can be managed, easily. Moreover, they depend on the distribution
and the survival functions, and hence, there is more flexibility in defining their empirical counterparts
so as to be used as a type of loss function to formulate and develop estimation or as test statistics in
testing statistical hypotheses, in several disciplines and contexts. The usefulness of the introduced here
measures for the development of information theoretic statistical inference is hoped to be the subject of
future work.
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