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Abstract. We investigate the mathematics of a model of the human mind which has been
proposed by the psychologist Jens Mammen. Mathematical realizations of this model consists
of what the first author (A.T.) has called Mammen spaces, where a Mammen space is a triple
(U,S, C), where U is a non-empty set (“the universe”), S is a perfect Hausdorff topology on U,
and C ⊆ P(U ) together with S satisfy certain axioms.

We refute a conjecture put forward by Hoffmann-Jørgensen, who conjectured that the
existence of a “complete” Mammen space implies the Axiom of Choice, by showing that in
the first Cohen model, in which ZF holds but AC fails, there is a complete Mammen space. We
obtain this by proving that in the first Cohen model, every perfect topology can be extended to
a maximal perfect topology.

On the other hand, we also show that if all sets are Lebesgue measurable, or all sets are Baire
measurable, then there are no complete Mammen spaces with a countable universe.

Further, we investigate two new cardinal invariants uM and uT associated with complete
Mammen spaces and maximal perfect topologies, and establish some basic inequalities that
are provable in ZFC. Then we show uM = uT = 2ℵ0 follows from Martin’s Axiom, and,
contrastingly, we show that ℵ1 = uM = uT < 2ℵ0 = ℵ2 in the Baumgartner–Laver model.

Finally, consequences for psychology are discussed.

§1. Introduction. In theoretical psychology, Jens Mammen has proposed a model
for what may be called the interface between the inner world of a human mind, and
the outer world that this human mind lives in, perceives, and interacts with. From the
outset, Mammen has formulated and presented his theory axiomatically, in the style
familiar to mathematicians. The purpose of this paper is to study the set-theoretic
aspects of Mammen’s theory.

Briefly, a Mammen space can be defined as follows:

Definition 1.1. A Mammen space is a triple (U,S, C), where U is a non-empty set, called
the universe of objects, and S, C ⊆ P(U ) such that

(1) S is a perfect Hausdorff topology on U; here perfect means that every non-empty
open set is infinite, and so in particular the set U is infinite.
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(2) C satisfies:
(a) There is a non-empty C ∈ C;
(b) C is closed under finite unions and intersections;
(c) Every non-empty C ∈ C contains a singleton which is in C.

(3) S and C together must satisfy:
(a) S ∩ C = {∅};
(b) If C ∈ C and S ∈ S then C ∩ S ∈ C.

The elements of S are called sense categories and the elements of C are called choice
categories. The reader should think of a Mammen space (U,S, C) as a model that a
person’s mind has (or has built) as a result of sensory input and experience: It has
formed broad categories of the objects in the universe U, and these are represented by
the subsets of U which are in S; and it has singled out categories of particular objects
or people, and these are represented by subsets of U which are in C. For instance, the
mind of a person overlooking a beach will have a sense category of all the stones on
the beach, but if that person singles out a special stone and picks it up, he is availing
himself of a choice category, which in the mathematical representation is the singleton
of that special stone. Restating this with the emphasis on the role of C instead, the
idea is that categories in C represent collections of objects, people, animals, etc., of
particular attachment for the person (e.g., the person’s father), in contrast to the broad
categories in S (e.g., the category of all people who are fathers).

Fuller details of the psychological background and motivation for the definition of
a Mammen space are given in Section 2 below.

The question which gives rise to much of the mathematics of this paper is the
question of completeness: Are the categories S and C sufficient to be able to account
for all possible categories of objects that can be formed in the universe? That is, can
every X ⊆ U be written as

X = S ∪ C where S ∈ S and C ∈ C ?

If this is the case, we will call the Mammen space (U,S, C) complete.
From the point of view of psychology, if we think of a Mammen space as a model

of someone’s mind, then completeness is important as it corresponds to that the mind
has formed, or can form, all possible categories of objects and describe them in terms
of just the two systems S and C (see Sections 2 and 9 for a longer discussion). From
the point of view of mathematics, the possibility of having a complete Mammen space
turns out to be non-trivial. It was answered in the positive by Hoffmann-Jørgensen in
[9], but the Axiom of Choice (below abbreviated AC, or Choice) was used to do so:

Theorem 1.2 (Hoffmann-Jørgensen. Uses AC). For any infinite set U, there is a
complete Mammen space with universe U.

Hoffmann-Jørgensen proved this by observing that if S is a maximal perfect topology
on U, and we take C to be the family of closed nowhere dense subsets of U, then
(U,S, C) is a complete Mammen space. (We will reprove this below; see Theorem 3.6
and Corollary 3.8.) The Axiom of Choice is used by Hoffmann-Jørgensen only to
ensure that maximal perfect topologies exist.

Do we really need the Axiom of Choice to prove Theorem 1.2? Given the
psychological origin and relevance of the notion of a complete Mammen space, it is
desirable to avoid using AC in its full strength, if possible, and at the same time highly
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interesting if AC can’t be avoided (see discussion in Section 9). Hoffmann-Jørgensen
was of the opinion that AC is unavoidable, and conjectured this:

Conjecture Ia (Hoffmann-Jèrgensen). If there is a complete Mammen space, then
the Axiom of Choice holds. In particular, if there is a maximal perfect Hausdorff topology,
then the Axiom of Choice holds.

The purpose of this paper is to refute this conjecture, and at the same time show
that Theorem 1.2 requires some non-constructive mathematical methods, at least if the
universe U is required to be countably infinite.1 Specifically, we will prove:

Theorem A. In the first Cohen model, that is, HODV [G ](A) where A is the countable
set of Cohen reals added by the generic G, there is a complete Mammen space, and
the underlying universe U of this space can even be chosen to be countable. Indeed, in
HODV [G ](A), it holds that every perfect topology can be extended to a maximal perfect
topology.

Since it is well-known that HODV [G ](A) is a model of Zermelo–Fraenkel (ZF)
set theory in which Choice fails, the previous theorem refutes Hoffmann-Jørgensen’s
conjecture.

As a counterpoint to Theorem A, we will show:

Theorem B. If all sets are Lebesgue measurable, or if all sets are Baire measurable, then
there are no complete Mammen spaces with a countable universe U. It follows that it is
not possible to prove in ZF alone that there is a complete Mammen space with a countable
universe.

It is open if ZF alone can prove the existence of a complete Mammen space with an
uncountable universe (see Question 5 in Section 8).

In the final parts of the paper, we will define2 two new cardinal invariants that
are naturally associated with the notions of maximal perfect topologies and complete
Mammen spaces:

uT = inf{card(B) : B is the basis of a maximal perfect Hausdorff topology on N},
and

uM = inf{card(B) : B is the basis of S of a complete Mammen space (N,S, C)}.
We will show the following:

Theorem C. Let add(BP) denote the additivity of the meagre ideal (see [10, p. 515]).
Then:

(1) add(BP) ≤ uM ≤ uT ≤ 2ℵ0 .
(2) In particular, uM and uT are always uncountable, and if Martin’s Axiom holds

then uM = uT = 2ℵ0 .
(3) In the Baumgartner–Laver model we have ℵ1 = uM = uT < 2ℵ0 = ℵ2.

1 When U is interpreted as physical objects distributed in a system of co-ordinates (as space
and time), countability of U is a reasonable assumption. The assumption that U is countable
is not needed for Theorem A, but it is needed for (the proof of) Theorem B.

2 In the first version of the paper, the definition of the cardinal invariants uT and uM was
incorrect, making them always equal to 2ℵ0 . See remark at the end of Section 6.
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Towards the end of the paper, we discuss several intriguing questions that remain
open.

§2. Psychological background. The present paper is basically about some math-
ematical problems. However, the motivation for posing the problems has its roots
in corresponding questions in psychological science. Therefore, there will be a short
introduction to these psychological questions, also to provide a possible interpretative
frame for the mathematics, or even a model outside mathematics. At the same time,
we attempt to briefly show the relevance to psychology of the kind of mathematical
model that is presented here, and give a few hints of even broader relevance.

This introduction is not in itself a psychological paper with the usual demands for
documentation and direct references, as this would consume too much space in the
present context. More details could be found in the works in the reference list. The
reader who primarily is interested in the axiom system for Mammen spaces can skip
ahead to Section 2.4.

2.1. Introducing psychology and psychophysics. Today, psychology is not a coherent
science with commonly accepted basic theoretical concepts. This means that it will be
impossible to give a short covering definition of the scientific field, and perhaps even
worse, also of the concrete domain of study, or in other words what it is about and
how it can be applied as a tool in this context.

There is, however, a not quite negligible minority claiming that human psychology
must in some way be about the “interface”3 between humans and the world we are
living in.

This does not mean that questions of what is going on inside the body, and especially
in the brain, be it subjective experiences and/or physiological processes, are of no
interest in psychology, on the contrary. But a prerequisite for this study is that the
tasks to be solved by the brain and the body meeting the world are rather well
understood. Walking is the key to understanding the legs, which again serve and
constrain walking.

The mythical, philosophical, and scientific understanding of this “interface” has
a long history since antiquity which of course can’t be covered here. When focusing
on scientific psychology something dramatic happened, however, around 1850 when
psychology found a way to define itself as a natural science in the conceptual frame of
contemporary physics, chemistry, physiology and mathematics. Before that psychology
had rather been considered an auxiliary discipline to theology and philosophy.

It is thus common to define the birth of modern scientific psychology to the
introduction of so-called psychophysics, often referring to the theory of G. T. Fechner.
The idea was to consider the senses, e.g., vision, hearing, smelling, as “transmitters”
receiving objective physical-chemical “input,” and as “output” causing subjective
impressions with some, mostly hypothetical, physiological correlates or equivalents.
Further the idea was to apply measures not only to the objective input but also to

3 The term “interface” will be used for the “practical” or “active” relation between humans and
the world of objects. It is not just referring to a surface of contact but to a relational structure
expanding in space and time. Perhaps “interspace” would have been more precise, as proposed
by Engelsted [4]. Here we have, however, chosen to follow conventional terminology.
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the subjective output, so the two events or entities could be bridged by a quantitative
mathematical function.

This bridging, however, had a price. When our contact with the world before
psychophysics had been understood as meaningful it was now reduced to the raw
material of patterns of, in themselves meaningless, quantitative sense impressions.
How could meaning, or conceptual knowledge, be reestablished on this meager
ground? Psychology was “eaten” by the mechanistic understanding of the outer world.
Psychophysics not only appeared as a bridge but perhaps even more as a barrier
between man and world.

The problem is classic and reflected in European philosophy since the renaissance.
There are inductive or empiricist attempts appealing to high, complex or hierarchical
organizations of input-patterns (“sense data”) hoping that “consciousness” would pop
up with enough complexity, but in vain. And there are deductive or rationalist attempts
appealing to a priori conceptual frames inducing order and meaning in the patterns,
e.g., as when I. Kant rightly claims that time and space as frames for objects can’t be
inferred from sense impressions but have to be a priori, but just raising new problems.

Many other attempts have been promoted to overcome the reductions of
psychophysics. There has been appeal to language, hermeneutics, and semiotics
in what in newer philosophy and psychology has been called “the linguistic turn” (see
[19], ch. 2). There are even attempts to reintroduce Aristotelian teleology violating the
modern concept of proximal forward causality.

The result is that today we either have a reductionist mechanistic psychology or a
psychology with a schism between a pure naturalist approach and a pure humanistic
approach, sometimes expressed as “the two cultures” or Naturwissenschaft versus
Geisteswissenschaft with two incompatible frames of understanding, causing both
theoretical and practical problems.

Common to these attempts or approaches is that they don’t correct or change
psychophysics but either accept it as it is, or try to supplement it with principles “taken
from elsewhere” but in a conceptual frame being incompatible with psychophysics.
A third stance is just to turn your back to psychophysics and natural science and
promote a pure humanistic psychology.

2.2. Inspiration from modern natural science and mathematics. There is, however,
still another approach with inspiration from physics. When it was discovered that
electromagnetic propagation of waves and particles did not follow the same kinematic
laws as movements of solid bodies you did not choose a split in theory of movements
in space and time but rather, as Einstein did, searched a “conservative generalization”
of classical kinematics to include both corporeal movements and electromagnetic
movements in one common law.

Einstein analyzed in detail the classic “Galilei-transformation” for movements of
bodies in different systems of reference and searched what was the minimal change
which conserved the classical laws for slow movements and still included the new
knowledge of the speed of light. The apparent paradox is that this conservative
approach implied the most revolutionary result, the famous formula for equivalence
of mass and energy, as a simple deductive implication.

The principle of conservative generalization is also well known from mathematics:
Non-Euclidean geometries are still locally Euclidean, complex numbers include the real
numbers, etc. The principle has, however, not played an apparent role in psychology.
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Let us have a closer look at psychophysics to see if we can copy Einstein and
conserve its unquestionable virtues without falling back to its reductionism. First, we
must re-conceptualize psychophysics.

Early psychophysicists believed that they bridged objective stimulation and
subjective impressions when measuring both and connecting them in a quantitative
functional relationship.

That was, however, the result of a rather speculative interpretation of what was going
on in the experiments. What was demanded from the experimental subjects when they
were presented for physical stimulation was in fact only to make a yes/no-decision,
or with other words to react or not. The questions to answer were either if some
stimulation was at all being noticed (being greater than zero), or if a stimulation in
some well-defined respect (e.g., size, strength, and pitch) was greater than (or smaller
than) another stimulation, serving as a comparative standard.

The experiments can be considered a continuous mapping from the domain of
stimulation on the two-valued set (yes, no), and what was found in the experiments
was the inverse images in the domain of the response “yes” (for noticed difference).4

These kinds of inverse images were introduced in [18, 1983], and following the
terminology established there, they are called sense categories. They are sets organizing
the domain of stimulation in a structure similar to the way the real axis is organized
by open intervals defined by measurements based on the relations “greater than” and
“smaller than,” which is a perfect Hausdorff topology or just a perfect topology.5

It is postulated that also outside the experimental situation is this topology a struc-
tural description of the senses’ capacity, of course to be filled out with more quantitative
definitions. Still this may be an idealization, but perhaps the best one we have as a the-
oretical foundation for understanding our sensory interface with objects in our world.

This description of our “interface” with domains of stimulation from objects in our
environment can be generalized to the domain of the objects themselves. In psychology
this is conceptualized as the movement, or step, from sensation to perception.

Now, the sense categories can be seen as organizing the domain of objects in a
structure equivalent to a perfect topology.

Furthermore, this step from sensation to perception includes perception in a more
general approach in psychology which could be called the extensional approach, i.e.,
the attempt to understand the human subject by taking departure in which parts of
the, in principle infinite, world we are making objects for our relations and activities.
In this context “objects” should be understood as including places as well as other
subjects.

4 If the domain of stimulation is a continuum there will, however, necessarily be some
uncertainty in the responses, so a more realistic model of the situation will be to allocate
a probability for responding “yes” to each point in the stimulus domain. In this case, what
is found in the experiments is rather the inverse images in the domain of stimulation of the
mapping on open intervals in the set of probabilities as, e.g., “points in the stimulation set
with a probability greater than 0.5 for the yes-response.” This is a generalization [3] of the
non-probabilistic case described above, which accordingly can be seen as a limiting case with
probabilities 0 for the comparative standards themselves and 1 for all other points. As the
mathematical consequences in the present context are the same as for the non-probabilistic
case we shall not dwell more on this generalization, well-known to psychologists.

5 This not only holds true for “the naked senses,” as traditionally studied in psychophysics,
but also for the senses “expanded” with amplifying tools and measuring equipment.
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A little metaphorically expressed are our practical, cognitive and emotional relations
and activities considered as selections or “figure-ground” operations on the infinite
domain of objects, initiated by the subject. The originally Russian Activity Theory
[16] is a paradigmatic example of thinking about subjects in terms of such object
directed activities. The so-called ecological approach as represented by the American
psychologist J.J. Gibson [6] is another example.

2.3. A conservative generalization of psychophysics. In this perspective it becomes
evident what is the insufficiency of reducing humans’ “interface” with the world to a
structure of sense categories. Sense categories are general categories of measures or
“universals” and are only catching in principle infinite sets of objects defined by their
measurable properties. They are not able to “zoom in” on any particular object. The
perfect topology has no singletons.

But humans are not only living in a world of “superficial” universal properties, or
with an interface to the world of only sensory pattern recognition. We are first of all,
being particulars ourselves, relating to “particulars” or “individuals” with an individual
history, in many cases irreplaceable and linguistically denoted by proper names. That
is the case with our relatives, our possessions, and our belonging. It is these “deep”
relations of co-existence (kinship, love, grief, solidarity, moral obligations, veneration,
sentimental value, etc.) which give our life meaning, and it is fatal if psychology, of all
sciences, is ignoring them.

The historical “threads” of particular objects are also what define the meanings we
share and express in language and concepts as, e.g., a present or a gift. The difference
between a valid coin and a counterfeit is not their properties but their individual history
of origin.

But the ignorance is also fatal in a practical sense. As already Kant pointed out
is the condition for an empirical statement (not only in science but also in everyday
life) that the chosen particular object of predication is defined independently of the
universal predicates in the statement. If you already have used them for identification,
the statement is not empirical (synthetic) but analytic.

Our choice of objects, in space and time, for use or investigation, or predication,
is not dependent of an infinite process of “zooming in” on the set of universal sense
categories. Due to our existence as particulars ourselves and being in a particular place
at a particular time we can just take an object or point it out.

When walking on the beach I can just pick up an accidental stone without having
to define it in advance by discriminating it from all other stones. I can put it in my
pocket, and without having noticed its form and color I can be sure it is the same when
returning home.

In contrast to sense categories, particulars or collections of particulars are here called
choice categories (following the terminology established in [18, 1983]). They are not
necessarily finite, as they could also be defined by networks departing from particulars
as a, in principle infinite, genealogical tree.

These two structures are disjoint in the sense that no non-empty choice category can
be a sense category, although they of course may share objects. But at the same time
the two structures are framing each other. When picking up a stone I am not searching
a piece of driftwood. And when coming home with a finite collection of chosen stones
I will be able to not only distinguish them mutually but also to identify each—within
this collection—with a finite sensory description.
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In fact, this capacity to have simultaneous dual relations to objects in the world, as
members of sense categories and of choice categories, may have some antecedents in
animals, but seems, in its full realization, to be a human privilege. In philosophical
terms it is the capacity to operate jointly with objects’ qualitative as well as numerical
identity. Besides being basis for establishing a genuine referential language, it makes
the distinction meaningful between, e.g., seeing a new object, and seeing a well-known
object with changed position or properties, which is vital for our cognitive, practical
and emotional life.

This capacity is developed during our first year of life, before our appropriation of
language, and remains a logical basis also in adult life. A renowned experimental study
in this context is [30]. For an overview of some later research see [14].

The concept of choice categories, or equivalent concepts in other frames of
terminology, is, however, nearly non-existing in theoretical psychology, with exception
of the above-mentioned niche of infant research where Krøjgaard (e.g., in [13])
explicitly refers to sense and choice categories. The concept has, however, practical
equivalents in applied psychology, e.g., clinical psychology, and has also been used more
explicitly in clinical psychology. An early example is [23] in an analysis of schizophrenia
as an impairment of choice categories. A more recent example is Neumann [24] working
with Danish soldiers’ affective relations on the battlefield on foreign missions.

Almost all theoretical psychology is still split in two (or even more) fragments,
as described in Section 2, with no consistent conceptual frame to unite the field,
with severe consequences for academic studies and teaching, applied psychology, and
interdisciplinary collaboration [21]. Here, the missing concept of choice categories
plays a decisive role.

This means that it isn’t easy to support our mathematical and logical points with, and
interpret them in terms of, present-day-psychology only, but rather in relation to our
tacit everyday logic (see also [20]) and to examples from philosophy,6 as we tried above.

This also means that the potential field of interpretation may be very broad,7 but
also that the present attempt to introduce the duality of sense and choice categories in
psychology and to formalize the duality axiomatically is “new territory”[17–20, 22],
only partially explored.

Also, many of the mathematical and logical details in the following exposition have
no immediate psychological interpretation. Some of them may have it, however, when
some of the open questions listed later hopefully are being answered. As part of
mathematical logic Mammen Spaces are also new territory.

Summing up and concluding, we should remember that psychology is an empirical
and applied scientific discipline with a much fragmented and underdeveloped
theoretical structure, e.g., compared with physics. But although physics has a solid
theoretical core matching empirical data and with applied success, it also has a fringe
of theoretical predictions not yet verified and empirical data not yet fitting the theory,
and also a fringe of competing theoretical expansions.

6 This could include, e.g., Strawson [28] and existentialist philosophers as S. Kierkegaard and
M. Merleau-Ponty. The issue is, however, too broad to be treated here.

7 Also including more ontological distinctions as, e.g., the classical substance/matter vs. form,
or co-existence and history vs. interaction and function [17, 22]. This breath of interpretation
further suggests that the axiomatic system to be presented below also may be a general
analytic tool.
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Compared with this, psychology is, however, still extremely underdeveloped and
with no effective theoretical core.

In the paper we attempt to construct a limited, but solid basis for such a theoretical
core. We have to stress, that this core is new and “in the making,” and also that the
logical bridge from psychology to the extensional approach of mathematical logic, to
the best of our knowledge, has not been constructed before. The paper is generally
more explorative than conclusive.

This means that there are few already established explicit examples from scientific
psychology to be integrated with the more mathematical development of the core,
beyond the ones already mentioned.

A little more elegant and integrated presentation would, however, be possible when
some of the open questions to the mathematical development in Section 8 have been
answered, e.g., Question 3, which directly calls for a psychological interpretation.

2.4. Axiomatics for sense and choice categories. It should now be time for
presenting an axiomatic system describing the joint structure of sense and choice
categories. Here U denotes the world of objects.

Ax. 1: There is more than one object in U.
Ax. 2: The intersection of two sense categories is a sense category.
Ax. 3: The union of any set of sense categories is a sense category.
Ax. 4 (Hausdorff): For any two objects in U there are two disjoint sense categories

so that one object is in the one and the other object in the other one.
Ax. 5 (perfectness): No sense category contains just one object.
Ax. 6: No non-empty choice category is a sense category.
Ax. 7: There exists a non-empty choice category.
Ax. 8: Any non-empty choice category contains a choice category containing only

one object.
Ax. 9: The intersection of two choice categories is a choice category.
Ax. 10: The union of two choice categories is a choice category.
Ax. 11: The intersection of a choice category and a sense category is a choice

category.
A lengthy discussion of the motivation and intuition behind each axiom can be found

in Chapter 7 of [19]. It has been proven that the axioms are consistent and independent
[18, 19].

Axioms Ax. 1–5 state that sense categories are the open sets in a perfect topology
on the underlying set of objects U, and so correspond to (1) of Definition 1.1 in the
introduction.

Axiom Ax. 5 claims that there are no singletons or that no single object is “decidable”
in the topology of sense categories.

If U had been finite would axiom Ax. 4 imply that all single objects themselves were
sense categories, or singletons, in the topology. This is however negated by Ax. 5, which
proves, that U must be infinite.

It is Ax. 5 which “opens for” or “makes room for” the existence of non-empty
choice categories as stated in Ax. 7 and thus invites the conservative generalization of
the topology of sense categories to a structure also including choice categories.8

8 This generalization also means that sense categories are only bound by the axioms and
no longer by some order rooted in the “greater than” or “smaller than” relations in the

https://doi.org/10.1017/S1755020322000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000107
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Axiom Ax. 6 states the mutual exclusion of the two kinds of categories, and
corresponds to (3.a) of Definition 1.1 in the introduction.

Axioms Ax. 7–10 describe the structure of choice categories, and correspond to part
(2) of Definition 1.1.

Axiom Ax. 8 secures the existence of finite non-empty choice categories. Further it
states, in interpretative terms, that every non-empty choice category contains an “acces-
sible,” “reachable” or “decidable” member, or in other words, that every non-empty
choice category must contain at least one identified specimen or instance. It further
follows from the axioms that after picking out a member of a choice category, what is
left is still a choice category. But also that it does not follow that the choice category
necessarily could be “emptied” or “exhausted” by repeating this operation. It does also
not follow that every member of a choice category is a choice category. That would be
too radical generalizations, although the axioms don’t exclude these possibilities.

Finally, axiom Ax. 11 expresses the interaction, or mutual framing, of the two kinds
of categories. This corresponds to (3.b) of Definition 1.1.

Of course, we can also combine the categories and define a joint concept of decidable
category:

Definition 2.1. A decidable category is a union of a sense category and a choice category.
As it can be proven from the axioms that the empty set ∅ is both a sense category and

a choice category, it follows that sense and choice categories themselves are decidable
categories.

There are many implications of the axiomatic system.9 Here we shall just
refer to two consequences in the form of derived theorems, Theorems 9 and

special case of psychophysics, chosen here as a historical point of departure, but also to
connect with a well-known field of psychology already formalized mathematically. In [19]
the same axioms are introduced more directly and logically from a concept of decidability
and independent of psychophysics. Finally, in the 1983 version of [18], the 11 axioms are
introduced as generalizations of the case with a finite U, corresponding to the typical case
in experimental cognitive psychology. It may be a point of its own that the same axiomatic
structure can be reached in at least three different ways.

9 Still, the interpretation presented until now is, in relation to psychology, an idealization.
Instead of considering the domain of stimulations as static “properties” being “measured” by
comparison with objective or subjective “standards,” it is rather variables being continuous
functions of time and/or of explorative actions. An explorative action could, e.g., be a
pressure applied on some object which together with the resulting deformation as a function
of the variable pressure would provide sensory information about the object’s elasticity. Or
it could be the way we often actively “rock” an object in our hand to provide not only
sensory information of its mass as gravitational weight but also as inertial resistance to
variable acceleration. The sense categories now become inverse images of responses in this
generalized domain of functions.

Correspondingly, the objects in U themselves, as also being defined by their individual
history, could rather be interpreted as continuous “threads” in space and time.

These expansions are parallel to the generalization of a point-topology to a topology
of continuous functions as in the compact-open topology for function spaces [5],
[19, pp. 83–84]. The explorative actions could further be expanded with explorations
mediated by tools as microscopes and even chemical analyses. The structure of sense and
choice categories described in the 11 axioms in fact seems to be invariant to all these
expansions [19, pp. 83–84]. In other words, it is hypothesized that the dual structure of
sense and choice categories is pervasive in a broad field of interpretative expansions, or
applications, which were omitted in the introduction for simplicity reasons, and also to be
closer to the historical development of modern psychology from psychophysics.
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10, from the set of axioms. The numbering refers to the one used in [19,
pp. 80–82].

Theorem 2.2 (Theorem 9, Correspondence). Any finite choice category defines a
subspace in U where all subsets are both choice categories and “local” sense categories.

In other words is the induced or relative topology on the subspace discrete both
with respect to sense categories and choice categories. The proof is trivial.10 The term
“correspondence” refers to the fact that within any finite choice category the logical
structure is reduced to the well-known classical “Aristotelian” logic in the same way as,
e.g., relativistic or quantum mechanical theories under limiting conditions are reduced
to classical physics, which is Niels Bohr’s famous correspondence principle, reciprocal
to the abovementioned principle of conservative generalization.

Theorem 2.3 (Theorem 10, Globality). Any sense category in U containing a non-empty
choice category defines a subspace where all axioms Ax. 1–11 are satisfied.

The proof of this theorem is also trivial.11

The theorem tells that the structure defined by the 11 axioms is global or pervasive
in U and that it repeats itself in any detail as a fractal structure, or in mathematical
terms that it is hereditary. It also says that the axiomatic system is rather “immune” to
changes in definitions and interpretations of U and its “range.”

2.5. The possible completeness of the axiomatic system. The aim of the analysis
until now has been to establish an understanding of the interface between man and
the world of objects. This is of course not exhausting psychology in any way but just
defining a foundation or basis on which to build an understanding of development of
our cognition, actions, feelings, language, and much more.

In the present context we shall, however, dwell a little more on this basis itself, or
in other words humans’ immediate interface with the world of objects. One urgent
problem is here if this basis, as defined by the 11 axioms, can be considered complete in
the sense that there is not some third kind of category determining the structure of the
interface. Could you from the 11 axioms deduce that such a third kind of category must
necessarily exist? Or, alternatively, that sense and choice categories are sufficient for
describing any category of objects (i.e., subset of) U? The significance of completeness
will be discussed more in depth in our final Section 9 (“Returning to psychology”) in
a context of other important hypothetical properties of the model.

Having Def. 2.1 in mind this question can be expressed in these two conjectures:

Conjecture II (Claim of Completeness, CC). There exists a space where any subset
is a decidable category.

or its negation:

Conjecture III. There always exists a subset of U which is not decidable.

As the focus in the present paper is on this basic structure in itself, and not primarily
on the interpretative fields, we have no intentions to cover those, except with a few chosen
examples.

10 A Danish version of the proof can be found in [18, 1983, p. 372].
11 A Danish version of the proof can be found in [18, 1983, p. 371].
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These opposing conjectures were put forward in [18, 1983, pp. 406–407]. In [18,
1989, pp. xvi–xvii] it was then proven that Conjecture III was true if the set of sense
categories had a countable basis, but no more general proofs were established.

However, in 1994 Hoffmann-Jørgensen in [9] proved that if the sense categories had
a basis with higher cardinality than U, then Conjecture II (CC) was true if Zorn’s
Lemma was true, Zorn’s Lemma being equivalent with the Axiom of Choice (AC).

Hoffmann- Jørgensen referred to the fact that Zorn’s Lemma implied the existence
of maximal perfect topologies [8, 29] and proved that this existence further implied the
Claim of Completeness (CC).

Hoffmann-Jørgensen then, as stated in the introduction, put forward the opposite
implication as a conjecture:

Conjecture Ib (Hoffmann-Jørgensen [19, p. 86]). CC implies AC.

It was rather surprising, that the set of 11 axioms combined with the claim of
completeness seemed to imply an exotic structure as maximal perfect topologies, higher
cardinalities, and perhaps also the axiom of choice. After all, taken separately the
axioms were extremely simple as they were directly translatable into first-order-logic,
and not more complicated than they could be explained on elementary school level.

However, Hoffmann-Jørgensen, and in fact some colleagues in Moscow, were not
able to prove the above conjecture.

§3. Mathematical background. This section sets the general stage for the math-
ematical results of the paper, and collects various observations and lemmas about
Mammen spaces (defined in the introduction), and the connection between Mammen
spaces and maximal perfect Hausdorff topological spaces.

3.1. General observations. Let U be a non-empty set, let (U,S, C) be a Mammen
space with universe U, and let T be a perfect Hausdorff topology on U.

(1) If I (C) is the ideal generated by C, then it is easy to verify that (U,S, I (C)) is also
a Mammen space.

(2) If I 	= {∅} is an ideal on U such that I ∩ T = {∅}, then (U, T , I ) is easily seen
to be a Mammen space.

(3) Since T is a perfect topology, (2) gives that (U, T ,FIN(U )) is a Mammen space,
where FIN(U ) denotes the ideal of finite subsets of U.

(4) Let NDe(T ) denote the ideal of nowhere dense sets in the topology T . Then
(U, T ,NDe(T )) is a Mammen space. Note that NDe(T ) ⊇ FIN, so this gives us an
example with a potentially richer family of choice categories.

Recall from the introduction that a Mammen space (U,S, C) is complete if every
X ⊆ U can be written as X = S ∪ C , where S ∈ S and C ∈ C. Building on (4) above,
the next proposition tells us that in complete Mammen spaces, the sets NDe(T ) are
necessarily choice categories:

Proposition 3.1. Suppose (U,S, C) is a complete Mammen space. Then

(a) X ⊆ U contains no non-empty open set in S iff X ∈ C.
(b) C is an ideal, consisting precisely of the sets with empty interior.
(c) NDe(S) ⊆ C.

Proof. (a) “=⇒”: By completeness, X = S ∪ C for some S ∈ S and C ∈ C. So if X
contains no non-empty set from S, then X = C follows.
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“⇐=”: IfX ∈ C andS ⊆ X whereS ∈ S, thenX ∩ S = S ∈ C by (3.b) of Definition
1.1/Ax. 11, and S = ∅ follows by (3.a) of Definition 1.1/Ax. 6.

(b) C is closed under finite unions by (2.b)/Ax. 10. That C is closed under subsets is
clear by (a), and (a) also gives that it consists precisely of the sets with empty interior.

(c) Clear by (b).

The following simple combinatorial lemma will be used several times in the sequel; it
was already observed by Jens Mammen in his early investigations of his axiom system
(see, e.g., [18, 1989, pp. xvi–xxi]).

Lemma 3.2 (Mammen). Let (U,S, C) be a Mammen space. Suppose there is X ⊆ U
such that the following property holds:

(∗) For any S ∈ S \ {∅} the sets S ∩ X and S \ X are infinite.

Then (U,S, C) is not complete.

Proof. Suppose, seeking a contradiction, that (U,S, C) were complete. Then

X = S ∪ C
for some S ∈ S and C ∈ C. By (∗), we can’t have that S 	= ∅, so we must have X = C ,
so X ∈ C. By the same reasoning, we must also have U \ X ∈ C. But then U = X ∪
(U \ X ) ∈ C by (2.a) of Definition 1.1/Ax. 10; but this contradicts (3.a)/Ax. 6.

From the previous lemma, it is easy to derive the following:

Theorem 3.3 (Mammen). If (U,S, C) is a complete Mammen space then S is not second
countable.

Proof. If (Un)n∈N enumerates a countable basis for S, then it is easy to construct
from (Un)n∈N a set X ⊆ U satisfying the property (∗).

Remark 3.4. The reasoning of the previous proof can be adapted to prove a stronger
result under the assumption of Martin’s Axiom: AssumingMA(κ), the basis of an S in a
complete Mammen space must have cardinality > κ. See also the discussion of cardinal
invariants and Theorem 6.1 below.

3.2. Maximal perfect topologies and complete Mammen spaces. We now describe
a method, due to Hoffmann-Jørgensen, for obtaining complete Mammen spaces by
considering maximal perfect topologies.

Definition 3.5. Let U be an infinite set. A perfect topology T on U is said to be a
maximal perfect topology if no topology finer than T is perfect.

The next theorem is due to Hoffmann-Jørgensen [9]. It provides the central
connection between complete Mammen spaces and maximal perfect topologies. We
note that the proof of this theorem (and the lemma following it) does not use the
Axiom of Choice.

Theorem 3.6 (Hoffmann-Jørgensen). Let T be a perfect Hausdorff topology on an
infinite set U. Then T is maximal if and only if every set X ⊆ U can be written as
X = S ∪ C where S ∈ T and C is closed and discrete (and therefore is closed nowhere
dense).

The following easy lemma will be used in the proof of Theorem 3.6, and in many
other places later.
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Lemma 3.7. Let T be a perfect topology on a setU 	= ∅. Suppose X ⊆ U is such that

(∀V ∈ T ) |X ∩ V | ∈ {0,∞}, (3.1)

that is, X ∩ V is always either empty or infinite for every V ∈ T . Then T ∪ {V ∩ X :
V ∈ T } is a basis of a perfect topology T ′ ⊇ T with X ∈ T ′.

It follows that T is maximal if and only if every X ⊆ U which satisfies Eq. (3.1) must
be open.

Moreover, if T is maximal, perfect and Hausdorff, then every discrete set is closed.

Proof of Lemma 3.7. It is clear that T ∪ {V ∩ X : V ∈ T } is closed under finite
intersections, and so forms a basis for a topology T ′ refining T . That T ′ is perfect
follows easily from Eq. (3.1).

For the “moreover,” let C ⊆ U be discrete; we will use the first part of the lemma to
show thatU \ C is open. For this, suppose, seeking a contradiction, thatW ∩ (U \ C )
is finite and non-empty for some W ∈ T . Since T is a perfect topology, every non-
empty open set is infinite, and soW ∩ C must be infinite sinceW ∩ (U \ C ) is finite. In
particular,W ∩ C 	= ∅; letx ∈W ∩ C . Since C is discrete, we can findV ∈ T such that
V ∩ C = {x}. Now a contradiction with perfectness of T ensues, sinceW ∩ V = {x}
is a finite non-empty open set.

Proof of Theorem 3.6. “⇐=”: Suppose X satisfies Eq. (3.1). By Lemma 3.7, we
just need to prove that X ∈ T . For this, write X = S ∪ C with S ∈ S and C closed
discrete. We may assume that S ∩ C = ∅, since we can otherwise replace S by the open
set S ∩ (U \ C ). We claim that C = ∅, and therefore X = S ∈ T . Indeed, if C 	= ∅
were the case, let x ∈ C . Then, since C is discrete, there would be V ∈ T such that
V ∩ C = {x}. Then, since S ∩ C = ∅, we have V ∩ X = V ∩ (S ∪ C ) = {x}, which
contradicts that X satisfies Eq. (3.1).

“=⇒”: Let X ⊆ U , and let

C = {x ∈ X : (∃V ∈ T ) V ∩ X = {x}}.
Clearly C is discrete, and therefore closed by Lemma 3.7. To see that X \ C ∈ T ,
use Lemma 3.7: If (X \ C ) ∩ V was finite and non-empty for some V ∈ T , then the
Hausdorff property would give that (X \ C ) ∩ V ⊆ C .

Corollary 3.8 (Hoffmann-Jørgensen [9]). Let T be a maximal perfect topology on
U, and let CDi(T ) denote the family of closed discrete subsets of U. Then

(a) (U, T ,CDi(T )) is a complete Mammen space;
(b) NDe(T ) = CDi(T ) = {X ⊆ U : Int(X ) = ∅}.

Proof. (a) is clear by Theorem 3.6. (b) follows from Theorem 3.6 and Proposition
3.1(b).

3.3. Existence of maximal perfect topologies and complete Mammen spaces. A
routine application of Zorn’s lemma (and therefore AC) provides the following:

Theorem 3.9 (Hewitt [8]; uses Choice). If T is a perfect topology on a set U, then there
is a maximal perfect topology T ′ on U such that T ⊆ T ′.

Using this theorem and Corollary 3.8, we get:

Corollary 3.10 (Hoffmann-Jørgensen). The Axiom of Choice implies that there
are complete Mammen spaces. We can even obtain a complete Mammen space with a
countable universe.
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Proof. The first statement is clear by Theorem 3.9 and Corollary 3.8. For the second
part, take U = Q (the rationals), and extend the topology induced by open rational
intervals to a maximal perfect topology.

Remark 3.11. We are grateful for the following example and remark by one of the
referees: It is natural to ask if the topology S of a complete Mammen space is always
a maximal perfect topology. This is not the case as the following example, given by the
referee, shows:

Take (Q,S, C) to be the complete Mammen space obtained in the proof of the previous
corollary. Let Q∗ = Q ∪ {x∗}, where x∗ is an element not in Q. Let S∗ be the topology
generated by

S ∪ {(q,∞) ∪ {x∗} : q ∈ Q},

where (q,∞) = {p ∈ Q : p > q}. Let

C∗ = C ∪ {C ∪ {x∗} : C ∈ C}.

Then (Q∗,S∗, C∗) is easily seen to be a complete Mammen space, but N ⊆ Q is discrete
and not closed in the topology S∗, so S∗ is not a maximal perfect topology by the
“moreover” part of Lemma 3.7.

Despite this example, the question if the existence of a complete Mammen space implies
the existence of a maximal perfect topology (in ZF with only weak choice principles)
remains open. See Question 1 in Section 8.

§4. Theorem B: Measurability and complete Mammen spaces. In this section we
will prove:

Theorem 4.1. (a) If all sets are Lebesgue measurable then there is no complete
Mammen space with universe N.

(b) If all sets are Baire measurable then there is no complete Mammen space with
universe N.

Of course, Solovay [27] famously showed that if ZF is consistent then so is ZF+“all
sets are Lebesgue and Baire measurable.” (In the Lebesgue case we need an inaccessible
cardinal to obtain this, but in the Baire case, Shelah [26] famously showed we don’t).
So the previous theorem tells us that at least some amount of Choice is needed to
obtain a complete Mammen space with a countably infinite universe. It is unclear
if Lebesgue and Baire measurability has any influence on the existence of complete
Mammen spaces with universes of higher cardinality than ℵ0; see Question 5 later.

Proof. The proofs of (a) and (b) are virtually identical. We give the details for (a).
Identify P(N) with 2N = {0, 1}N in the natural way, and equip 2N, and therefore

P(N), with the “coin-flipping measure” �, that is, the product measure on {0, 1}N
where equal weight 1/2 is given to 0 and 1. Then the function � : P(N) → P(N)
defined by �(A) = N \ A is measure-preserving.

Let (N,S, C) be a Mammen space with universe N, and assuming all subsets of P(N)
are �-measurable. We will show that (N,S, C) is not complete.

To see this, define for each n ∈ N the set

An = {A ⊆ N : (∀V ∈ S) n ∈ V =⇒ |V ∩ A| = ∞}.

https://doi.org/10.1017/S1755020322000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000107
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Note that An is “E0-invariant,” i.e., is invariant under finite changes: If A ∈ An and
B ⊆ N is such that A�B is finite, then B ∈ An. Since we’re assuming that all sets are
Lebesgue measurable, the E0-invariance of An implies that �(An) = 1 or �(An) = 0.

Claim. P(N) = An ∪ �(An).

Proof of Claim. Suppose not, and letA ⊆ N be such thatA /∈ An ∪ �(An). Then by
definition of An there must be V,V ′ ∈ S such that n ∈ V and n ∈ V ′ and A ∩ V and
Ac ∩ V ′ are finite. It follows that V ∩ V ′ ∩ A and V ∩ V ′ ∩ Ac are finite sets, and so
V ∩ V ′ is finite. But since n ∈ V ∩ V ′, we have V ∩ V ′ 	= ∅, contradicting that S is a
perfect topology.

The previous claim gives that �(An) > 0 or �(�(An)) > 0, but since �(�(An)) =
�(An), it then follows �(An) > 0; and the E0-invariance of An then gives us that
1 = �(An) = �(�(An)). It follows that

�

( ⋂
n∈N

An ∩
⋂
n∈N

�(An)
)

= 1,

and so there is X ∈
⋂
n∈N

An ∩
⋂
n∈N
�(An). Then X must be infinite, and X /∈ S.

Let V ∈ S \ {∅}, and let n ∈ V . Since X ∈ An ∩ �(An) we have |V ∩ X | = |V ∩
Xc | = ∞. So by Lemma 3.2 (N,S, C) is not a complete Mammen space.

The previous proof can easily be localized to pointclasses in Polish spaces (in the
usual sense of descriptive set theory, see [12]). In particular we have:

Corollary 4.2. There are no complete Mammen spaces (U,S, C) where S is analytic
as a subset of P(N).

Proof. We just need to observe that if S is analytic, then An is co-analytic,
and therefore Lebesgue measurable, and then the rest of the proof goes through
unchanged.

Corollary 4.3. If all sets are Lebesgue measurable (or all sets are Baire measurable)
then there are no maximal perfect topologies on N (or any other countably infinite set).

§5. Theorem A: Maximal perfect topologies in HODV [G](A). In this section, we
will prove Theorem A. Specifically we will prove:

Theorem 5.1. In the first Cohen model, every perfect topology can be extended to a
maximal perfect topology.

Theorem A then follows by combining Theorem 5.1 and Theorem 3.6.
Our proof follows Repický’s [25] presentation of Halpern and Lévy’s theorem [7]

that the Boolean prime ideal theorem and the ultrafilter lemma (i.e., “every ideal in a
Boolean algebra can be extended to a prime ideal” and “every filter can be extended
to an ultrafilter,” respectively) holds in the first Cohen model. In keeping with [10, 25],
we will use � for the set of non-negative integers.

5.1. Notation and the first Cohen model. Our ground model will be called V. Let
P ∈ V be the poset of all finite functions p ⊆ (� × �) × {0, 1}. If G ⊆ P is a filter
generic over V, then let a : � × � → {0, 1} be a =

⋃
G , and let ai(n) = a(i, n). Let

A = {ai : i ∈ �}. The “first Cohen model” is then HODV [G ](A). It is well-known that

https://doi.org/10.1017/S1755020322000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000107


SET THEORY AND A MODEL OF THE MIND IN PSYCHOLOGY 1249

HODV [G ](A) is a model of ZF, but that the Axiom of Choice is false in HODV [G ](A),
since the set A is infinite, yet HODV [G ](A) believes that A has no countable subsets.
(An excellent, and brief, account of all the notions referred to in this paragraph can be
found in [10, Chapters 13 and 14]; a much fuller account of the first Cohen model can
be found in [11].)

Following Kechris [12, Theorem 19.1], we will denote by (C )m the set of injective
sequences in the set C of length m. As always, [C ]m denotes the set of all m-element
subsets of C. We will use Cm and C<� for the set of m-element sequences from C and
the set of all finite sequences (indexed from 0), respectively. (Repický uses mC and
<�C instead.)

Next, we recall the two key lemmas from Repický’s paper:

Lemma 5.2 (“Schema of continuity,” Lemma 2 in [25]). Let ϕ(w1, ... , wn, u, v) be
a formula in the language of (ZF ) set theory with free variables shown, and let A be
as in Section 5.1. Suppose that for some x1, ... , xn ∈ V , m ∈ � and s ∈ (A)m we have
V [G ] |= ϕ(x1, ... , xn, s, A). Then there is k such that for any �t ∈ Am with �ti ⊇ si �k for
all i < m we have

V [G ] |= ϕ(x1, ... , xn, �t, A).

Moreover, k may be chosen such that the finite sequences s0 �k, ... , sm–1 �k are pairwise
incompatible.

Tracking Repický’s [25] again, we make the following definition:

Definition 5.3. Let F ∈ [A]m, and let u1, ... , um ∈ 2<� be pairwise incompatible. We
will say that u1, ... , um distinguish F if F ∩Nui is a singleton for all i ≤ m, where Nui is
the basic open neighbourhood in 2� determined by ui .

Lemma 5.4 (Corollary 3 in [25]). Let ϕ(w1, ... , wn, v) be a formula in the language
of set theory with free variables shown. Let s ∈ A<� , x1, ... , xn ∈ ODV [G ][A, s], and let
F ′ ⊆ A \ ran(s) be a finite set, and let m = |F ′|.

Suppose ϕ(x1, ... , xn, F
′) holds in V [G ]. Then there are u1, ... , um ∈ 2<� which

distinguish the elements of F ′, and ϕ(x1, ... , xn, F ) holds in V [G ] for any F ∈ [A]m

such that F is distinguished by u1, ... , um.

Proof of Theorem 5.1. We will work in V [G ], so that OD refers to ODV [G ] and
HOD refers to HODV [G ], etc. Let (X, T ) ∈ HOD(A) and suppose

HOD(A) |= “T is a perfect topology on X .”

Then for some finite sequence f ∈ A<� we have X, T ∈ OD[A,f]. For notational
simplicity, we assume that f = ∅, that is, X, T ∈ OD[A], as the presence of the f
makes no difference for our argument.

There is a well-ordering of OD[A] which itself is ordinal definable from A (see [10,
Lemma 13.25]). Using this well-ordering, we can define a perfect topology T ′ ∈ OD[A]
on X with T ′ ⊇ T which is maximal among perfect topologies ordinal definable from
A. We claim that

HOD(A) |= “T ′ is a maximal perfect topology.”

To see this, we will prove the following:

Claim. If T ′ is maximal among perfect topologies on X in OD[A, s] for some s ∈
A<� , then it is maximal among perfect topologies on X in OD[A, s�a] for any a ∈ A.
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If we can prove this claim, then an easy induction on lh(s) shows that T ′ is maximal
among perfect topologies in OD[A, s] for any s ∈ A<� , and so T ′ is maximal in
HOD(A) (see, e.g., [10, pp. 186–188] for the general background on OD and HOD).

We now turn to the proof of the claim. As s will play no role in our argument, we
suppress it (that is, we give the argument for s = ∅, which is virtually identical to the
argument for s 	= ∅).

To prove the claim, we will use Lemma 3.7. Suppose a′ ∈ A and w ∈ OD[A, a′] ∩
P(X ), and for all v ∈ T ′ either w ∩ v = ∅ or w ∩ v is infinite (in V [G ]). By Lemma
3.7, we need to show that w ∈ T ′. Assume for a contradiction that w /∈ T ′. Let ϕ be a
formula such that

w = {x ∈ V [G ] : V [G ] |= ϕ(x, α1, ... , αn, a
′, A)},

where α1, ... , αn are ordinals. Then by Lemma 5.4, there is u ∈ 2<� such that for all
a ∈ A ∩Nu and all v ∈ T ′ we have either w(a) ∩ v = ∅ or w(a) ∩ v is infinite, and
w(a) /∈ T ′, where

w(a) = {x ∈ V [G ] : V [G ] |= ϕ(x, α1, ... , αn, a, A)}.

The set

S = T ′ ∪ {v ∩
⋂
a∈F
w(a) : v ∈ T ′ ∧ F ⊆ A finite ∧ (∀a ∈ F ) u ⊂ a}

is definable from α1, ... , αn and A, so is in OD[A], and moreover it is the basis of a
topology which is strictly finer than T ′. Since T ′ is maximal among perfect topologies
in OD[A], there must be some finite F ′ ⊆ A and v ∈ T ′ such that z(F ′) is finite, where
in general we let

z(F ) = v ∩
⋂
a∈F
w(a).

Note that by the assumptions on u, we must have |F ′| > 1. Let m = |F ′|. We may
assume that m is minimal, that is, for no E ⊆ A ∩Nu with |E| < m do we have z(E)
finite.)

Since z(F ′) is a finite subset of X ∈ HOD(A) we can find s ∈ A<� and x1, ... , xn ∈
OD[A, s] and V [G ] |= z(F ′) = {x1, ... , xn}. By Lemma 5.4 we can find u1, ... , um
∈ 2<� pairwise incompatible and extending u which distinguish F ′. Then for any
F ∈ [A]m distinguished by u1, ... , um we have

z(F ) = {x1, ... , xn},

which shows that z(F ′) ∈ OD[A].
Now, for each 1 ≤ i ≤ m, let

yi =
⋃

a∈A∩Nui

w(a).

Then yi ∈ OD[A], and v ∩ y1 ∩ ··· ∩ ym = {x1, ... , xn}. We must have that the sets
v′ ∩ yi are infinite or empty for any v′ ∈ T ′ since this already holds for any w(a) with
a ∈ A ∩Nu . So yi ∈ T ′ for all i ≤ m by the maximality of T ′ among perfect topologies
in OD[A]. But now v ∩ y1 ∩ ··· ∩ ym is finite and in T ′, which is impossible since T ′ is
a perfect topology.
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§6. Some cardinal invariants. In this section and the next, we will study the cardinal
invariants

uT = inf{card(B) :B is the basis for a maximal perfect Hausdorff topology on N},
uM = inf{card(B) :B is the basis for some S of a complete Mammen space (N,S, C)},

and we will prove items (1) and (2) of Theorem C.
Since every maximal perfect topology gives rise to a Mammen space in a canonical

way, we must have uM ≤ uT . Of course, we must also have uM, uT ≤ 2ℵ0 since any T
and S above are subsets of P(N). We do not know if uM < uT is consistent with ZFC,
see the question section at the end.

Recall from [10, p. 515] that add(BP) denotes the additivity of the ideal of meagre
sets in Cantor space 2N (equivalently, in any Polish space), that is, add(BP) is the least
cardinal κ such that the union of some family of κ meagre sets is non-meagre.

Theorem 6.1. Let (N,S, C) be a complete Mammen space with universe N, and suppose
B is a basis for S. Then |B| ≥ add(BP).

Proof. Assume, aiming for a contradiction, that |B| < add(BP). Let

B′ = {V ∈ B : |V | = |N \ V | = ℵ0}.

This set is non-empty since S is a perfect Hausdorff topology. By assumption, B′ has
cardinality less than add(BP). For each V ∈ B′, let

MV = {x ⊆ N : |x ∩ V | = |V \ x| = ℵ0}.

Then MV is comeagre in P(N) (which we identify with 2N as we did in Section 4),
and since |B′| < add(BP), the set

⋂
V∈B′MV is comeagre, and so non-empty. Let

x ∈
⋂
V∈S′MV . Then no sense category is a subset of x, and so since (N,S, C) is

a complete Mammen space, we must have x ∈ C. Similarly, no sense category is a
subset of N \ x, so N \ x ∈ C. It follows that N = x ∪ (N \ x) ∈ C, contradicting that
S ∩ C = {∅}.

Corollary 6.2 (Theorem C part (1)). add(BP) ≤ uM ≤ uT .

Corollary 6.3 (Theorem C part (2)). Martin’s Axiom (MA) implies that uM =
uT = 2ℵ0 . So under MA, the family of sense categories in a complete Mammen space
always has cardinality 2ℵ0 .

Proof. It is well-known (see [15, Theorem 2.22]) that MA implies that add(BP) =
2ℵ0 . So by the previous corollary, MA implies that 2ℵ0 ≤ uM ≤ uT , and as noted above,
uM ≤ uT ≤ 2ℵ0 .

Remark 6.4. Since MA+2ℵ0 > ℵ1 is consistent (with ZFC, provided ZFC itself is
consistent; see [15, Theorem 6.3]) the previous corollary shows that it is consistent to
have 2ℵ0 > ℵ1 and no complete Mammen spaces on N has a basis for the sense categories
of cardinality ℵ1. In the next section, we show that it is also consistent to have 2ℵ0 > ℵ1

while at the same time there is a complete Mammen space with a basis for the sense
categories having cardinality ℵ1.
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Remark 6.5. In the first version of the paper,12 the cardinal invariants uM and uT were
mistakenly defined to be

u∗T = inf{card(T ) : T is a maximal perfect topology on N},
u∗M = inf{card(S) : S is the topology of sense categories

of a complete Mammen space (N,S, C)}.

Clearly, uM ≤ u∗M ≤ u∗T and uT ≤ u∗T , but actually we will always have u∗M = u∗T = 2ℵ0 .
To see this, note first that whenever T is a (not necessarily maximal ) perfect Hausdorff
topology on N (or any other infinite set), then there is a sequence (Ui)i∈N of non-
empty open pairwise disjoint sets. Indeed, take x0, x1 ∈ N with x0 	= x1. Since T is
Hausdorff, there are disjoint open sets U0, U

′
0 with x0 ∈ U0 and x1 ∈ U ′

0. Since T is
a perfect topology and U ′

0 is non-empty, it is infinite, so choose x2 ∈ U ′
0 \ {x1}. Then

use the Hausdorffness of T to find disjoint open sets U1, U
′
1 ⊆ U ′

0 such that x1 ∈ U1 and
x2 ∈ U ′

1. Pick x3 ∈ U ′
1 \ {x2}, find disjoint openU2, U

′
2 ⊆ U ′

1 with x2 ∈ U2 and x3 ∈ U ′
2.

Et cetera. This produces the desired sequence of pairwise disjoint open sets (Ui)i∈N. It is
now clear that P(N) → T : x �→

⋃
i∈x Ui is an injection, so |T | = 2ℵ0 .

§7. uT and uM in the Baumgartner–Laver model. By the Baumgartner–Laver model
V [G ] we mean the model of ZFC obtained by iteratively adding ℵ2 Sacks reals to a
model V, where V satisfies the Continuum Hypothesis, CH. The purpose of this section
is to provide a counterpoint Theorem C part (2) (Corollary 6.3 in the previous section)
by proving:

Theorem 7.1 (Theorem C part (3)). In the Baumgartner–Laver model V [G ], there is a
maximal perfect topology onNwhich has a basis of cardinalityℵ1. So in the Baumgartner–
Laver model we have

ℵ1 = uT = uM < 2ℵ0 = ℵ2.

7.1. Background: The Baumgartner–Laver model. We very briefly recall the most
important facts about the Baumgartner–Laver model that we will need to the proof of
Theorem 7.1. First recall the notion of a selective or Ramsey ultrafilter (on N):

Definition 7.2. A non-principal ultrafilter U on N is called a selective ultrafilter (also
called a Ramsey ultrafilter) if for every partition {An : n ∈ N} of N into ℵ0 pieces with
each An /∈ U , there is X ∈ U such that |An ∩ X | ≤ 1 for all n ∈ N.

It is well-known, and quite easy, to show that if the Continuum Hypothesis (CH)
holds, then there is a selective ultrafilter (which, since CH holds, must be of cardiality
ℵ1). Baumgartner and Laver, in their classic paper [1], showed the following:

Theorem 7.3 (Baumgartner–Laver, 1979). In the Baumgartner–Laver model, it holds
that 2ℵ0 = ℵ2, and every selective ultrafilter in the ground model V generates a selective
ultrafilter in V [G ].

An important consequence of the previous theorem is: In V [G ], the so-called
ultrafilter numberu satisfies u = ℵ1 < 2ℵ0 = ℵ2. Here, u is the smallest cardinality that
a basis for an ultrafilter on N can have.

12 We thank the referee who pointed this mistake out to us, and especially the problems it
caused in relation to Theorem 7.1 in the next section.
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7.2. An ultrafilter condition for topologies. Before embarking on the proof of
Theorem 7.1, we prove in this section a lemma (7.4) which provides a link (in one
direction) between ultrafilters and maximal perfect topologies. The lemma seems
interesting in its own right.

Notation: For a topology T on N and n ∈ N, define

T ∗(n) = {W \ {n} :W ∈ T ∧ n ∈W }. (7.1)

It is easy to see that when T is a perfect topology, T ∗(n) is a basis for a non-principal
filter on N \ {n}.

Lemma 7.4. Let T be a perfect topology on N such that for every n ∈ �, the set T ∗(n)
is the basis for an ultrafilter on N \ {n}. Then T is a maximal perfect topology.

Proof of Lemma 7.4. Let X ⊆ N and assume that

(∀W ∈ T ) |X ∩W | ∈ {0,∞}.
By Lemma 3.7 it is enough to show that X ∈ T . For this, it is enough to show that for
any n ∈ X there isW ∈ T such that n ∈W ⊆ X , since then

X =
⋃

{W ∈ T :W ⊆ X},

which shows that X ∈ T .
So let n ∈ X . By the assumption on T ∗(n), there is W ∈ T with n ∈W such

that eitherW \ {n} ⊆ X \ {n} or (W \ {n}) ∩ (X \ {n}) = ∅. The latter can’t be the
case, since thenW ∩ X = {n}, which violates the assumption on X. So we must have
W \ {n} ⊆ X \ {n}, from which it follows thatW ⊆ X .

7.3. Towards the proof of Theorem 7.1. We now start working towards proving
Theorem 7.1. Our strategy is to combine Lemma 7.4 and Theorem 7.3, and the next
theorem provides a step in that direction.

Theorem 7.5. Assume CH holds. Then there is a maximal perfect Hausdorff topology
T on N such that for all n ∈ �, the family T ∗(n) (defined in (7.1) above) generates a
selective ultrafilter on N \ {n}.

For the proof of Theorem 7.5, we need:

Lemma 7.6. Let T be a countable perfect Hausdorff topology on N and let n ∈ N. Let
A be a partition of N \ {n} into finitely or countably many pieces. Then there is an infinite
set B ⊆ N \ {n} such that the following hold:

(1) Either B ⊆ A for some A ∈ A, or |B ∩ A| ≤ 1 for all A ∈ A.
(2) |B ∩W | ∈ {0,∞} for allW ∈ T .

Proof of Lemma 7.6. The proof is divided into two cases.

Case 1: There is ∅ 	=W ∈ T such thatW ∩ A 	= ∅ for only finitely many A ∈ A.
In this case there must be A1, ... , Ak ∈ A such that

W \ {n} ⊆ A1 ∪ ··· ∪ Ak. (7.2)

Since there are only finitely manyA1, ... , Ak , it follows that there must be a non-empty
W̃ ∈ T with W̃ ⊆W such that for any non-emptyW ∈ T withW ⊆ W̃ , we have

{i ∈ {1, ... , k} : |Ai ∩W | = ℵ0} = {i ∈ {1, ... , k} : |Ai ∩ W̃ | = ℵ0}. (7.3)

https://doi.org/10.1017/S1755020322000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020322000107
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Since W̃ is non-empty and T is a perfect topology, W̃ must be infinite, and since
W̃ ⊆W , it follows from (7.2) that there is i0 ≤ k such that |Ai0 ∩ W̃ | = ℵ0. Let
B = (Ai0 ∩ W̃ ) \ {n}. Then (1) in the lemma is clearly satisfied, and (2) is satisfied
since for anyW ∈ T withW ∩ W̃ 	= ∅ we will have

|W ∩ B | = |W ∩ (Ai0 ∩ W̃ ) \ {n}| = ℵ0,

since the choice of i0 and the fact that ∅ 	=W ∩ W̃ ∈ T and W ∩ W̃ ⊆ W̃ ensures
thatW ∩W ∩ Ai0 is infinite.

Case 2: For everyW ∈ T \ {∅} there are infinitely manyA ∈ A such thatA ∩W 	= ∅.
LetEA denote the equivalence relation on N \ {n} corresponding to the partition A,

and let [x]EA denote the equivalence class of x. In the current case, eachW ∈ T \ {∅}
meets infinitely manyEA-classes. Since there are only countably manyW ∈ T , an easy
enumeration argument produces a family of sequences (xWi )i∈N,W∈T \{∅} such that

(1) xWi ∈W \ {n} for all i ∈ N;
(2) The function (i,W ) �→ [xWi ]EA is injective from N× (T \ {∅}) into (N ∪

{n})/EA.

Now let B = {xWi : (i,W ) ∈ N× (T \ {∅})}. Then |B ∩W | = ℵ0 for all W ∈ T \
{∅}, and |B ∩ A| ≤ 1 for all A ∈ A by the injectivity of (i,W ) �→ [xWi ]EA .

Proof of Theorem 7.5. Use CH to enumerate, for each n ∈ N, all partitions (finite
or infinite) of N \ {n} as (An,α)α<�1 . Let T0 be a countable perfect Hausdorff topology
on N. For n ∈ N and α < �1, let

Λn,α = {(i, 	) ∈ N× �1 : (	 = α ∧ i < n) ∨ (	 < α ∧ i ∈ N)}.
By recursion on α < �1, we will define for each n ∈ N infinite sets Bn,α ⊆ N \ {n} and
perfect Hausdorff topologies Tn,α ⊇ T0 with the following properties:

(1) Tn,α is the topology generated by

{Bn,α ∪ {n}} ∪ T0 ∪
⋃

(i,	)∈Λn,α

Ti,	 ,

(2) Either Bn,α ⊆ A for some A ∈ An,α , or |Bn,α ∩ A| ≤ 1 for all A ∈ An,α .

It is virtually clear by Lemma 7.6 that a recursion on α < �1 can be done: Having
defined Ti,	 for all (i, 	) ∈ Λn,α , Lemma 7.6 can be applied with T =

⋃
(i,	)∈Λn,α Ti,	 to

obtain Bn,α as desired, with (1) of Lemma 7.6 ensuring that Tn,α is a perfect topology,
which is Hausdorff since T0 ⊆ Tn,α .

Let T =
⋃
{Tn,α : n ∈ N ∧ α < �1}. Then T is a perfect Hausdorff topology in N.

To see that T ∗(n) generates a ultrafilter, let A ⊂ N \ {n}, and let α be such that
An,α = {A,Ac}. Then (2) guarantees that we must either have Bn,α ⊆ A or Bn,α ⊆ Ac ,
while clearly Bn,α ∈ T ∗(n) by (1). The selectivity property is also clear by (2). Finally,
maximality of T follows from Lemma 7.4.

Finally, we will combine Theorem 7.5 with Theorem 7.3 and Lemma 7.4 to prove
Theorem 7.1:

Proof of Theorem 7.1. Assume CH holds in V, and let V [G ] be the corresponding
Baumgartner-Laver model. By Theorem 7.5, in V there is a perfect topology T on
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N such that T ∗(n) generates (in V) a selective ultrafilter on N \ {n} for every n ∈ N.
Observe that by Baumgartner and Laver’s theorem (Theorem 7.3), T ∗(n) still generates
a selective ultrafilter on N \ {n} in V [G ].

InV [G ], the set T is closed under finite intersections (since this is true in of T in V),
whence T is a basis in V [G ] for a topology T̃ ; and T̃ is a perfect topology, since every
non-empty open set of T̃ contains a non-empty open set in T , which must be infinite
because T is a perfect topology in V.

Still working in V [G ], note that for any n ∈ N, the filter on N \ {n} generated by
T̃ ∗(n) contains the filter generated by T ∗(n), which, as observed above, is an ultrafilter.
Thus, in V [G ], the filter generated by T̃ ∗(n) must be an ultrafilter, identical to the one
generated by T ∗(n). Applying Lemma 7.4, we see that T̃ is a maximal perfect topology;
and T̃ has a basis of size ℵ1, namely T .

§8. Open questions. The following questions of a mathematical nature remain
unsolved:

8.1. Complete Mammen spaces and maximal perfect topologies. Inspired by
Hoffmann-Jørgensen, we have used maximal perfect topologies as a device to obtain
complete Mammen spaces. It is natural to wonder how closely connected these two
concepts are, specifically, we ask:

Question 1. Working in ZF and applying only weak consequences of the Axiom of
Choice (e.g., Dependent Choice, Countable Choice, or the Ultrafilter Lemma), can the
following implication be proven: “There exists a complete Mammen space implies there
exists a maximal perfect topology?”

8.2. First order compactness and Mammen spaces. One can quite easily make a first
order formulation of Mammen’s axiom system. The concept of completeness, though,
is not so easily captured in such a first order axiomatization, since completeness of a
space is a statement about all subsets of the universe. Thus the following questions are
natural:

Question 2. Does the first order compactness theorem imply that there is a complete
Mammen space?13 Does it imply there is a maximal perfect topology?

One may more generally ask:

Question 3. How weak a Choice principle is enough to ensure that a complete
Mammen space exists?

Question 2 can be thought of as a specific test case for the previous question.

8.3. Regularity properties and the existence of complete Mammen spaces. The next
question takes aim at Question 3 from a different angle:

Question 4. Which regularity properties imply that there are no complete Mammen
spaces with countable universe? For example, if all sets are completely Ramsey, are there
no complete Mammen spaces? What about Sacks, Miller, or Laver measurability, or
other measurability notions that arise from arboreal forcing notions? (See, e.g., [2].)

13 The first author of this paper at some point thought he had answered this question in the
affirmative, and the second author announced this in reference [20]. The first author dutifully
retracts the claim of a solution, and the question remains wide open.
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Of course, one may wonder if regularity properties have any influence on the existence
of complete Mammen spaces with uncountable universes; or if the existence of a
complete Mammen space with uncountable universe can be achieved without appealing
to Choice at all:

Question 5. Is it possible to prove in ZF without Choice (or with only weak Choice
principles, such as countable choice or dependent choice) that there is a complete Mammen
space with an uncountable universe?

8.4. The cardinal invariants uM and uT . We have seen in Sections 6 and 7 the general
inequalities

ℵ1 ≤ add(BP) ≤ uM ≤ uT ≤ 2ℵ0 ,

and that (1) in models of Martin’s Axiom, the last three ≤ are actually =, but (2) in
the Baumgartner–Laver model, the first ≤ is actually =, and the last ≤ is actually <.

The most important unsolved question in this direction seems to be to separate uM

and uT :

Question 6. Is it consistent with ZFC to have uM < uT ?

One may of course also wonder about the relation between uT and uM and the
many other well-known cardinal invariants that have been extensively studied. Most
obviously, one may wonder what the connection between add(LM), the additivity of
the Lebesgue null ideal, and uM and uT is:

Question 7. Can add(LM) ≤ uM be proven in ZFC?

Let us highlight one more question of this nature: Recall that u denotes the smallest
cardinality of a basis for a non-principal ultrafilter on N. We ask:

Question 8. What is the relationship between u and uM and uT ?

§9. Returning to psychology. The question of completeness of the basic interface,
as described in the Axioms 1–11, between human subjects and the world of objects is
about the ultimate or ideal capacity of the interface. No human subject will be able
to “fill it out” with categories realizing the complete case, and different people may
differ in their “repertoire” of categories, and differ through their lives. The issue of
completeness is therefore rather a question of whether sense and choice categories,
or in short decidable categories, provide a sufficient conceptual frame, or system of
reference, for describing people’s factual system of categories and their development,
e.g., in childhood, or if some third “transcendental” category should be needed by
conceptual necessity, whether it is “filled out” or not.

The claim of completeness is therefore an expression of negation of a priori
limitations or restrictions on our access to subsets in the world of objects via decidable
categories as defined by the axioms. But of course, there are also some factual
limitations and restrictions of varying degree, which can be studied empirically within
the complete frame. As human beings we are not reaching very far out in space and
time, and there are many other practical restrictions on our activities. However, there
might still, hypothetically, be some further restrictions by principle on our factual
“repertoire” of sense and choice categories.
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1. The completeness is dependent on some Choice principle weaker than the Axiom
of Choice, but not yet made explicit (cf. Question 3).

It is therefore also an open question if this choice principle can be given an
interpretation with some “realism,” and accordingly some independent “authority,”
beyond the “ad hoc” securing of completeness, or if it is too “wild” and should be
replaced by a more “modest” choice principle, not securing completeness.

On the other hand, if completeness of the space is considered a sound and important
principle in itself, we might have a criterion for deciding the corresponding choice
principle to be fundamental, especially if it has further useful implications.

2. Many psychological models of human perception and cognition, e.g., building
on computer analogies and artificial intelligence, presuppose some degree of metric
or regularity as basis for digital approximations or convergence towards our analogue
reality. If such models are taken as premises it seems evident that completeness is
excluded a priori (cf. Question 4).

The same is the case if these models presuppose countable bases for their sense
categories, which also excludes completeness (cf. Theorem 3.3).

The last point raises the question of what is excluded a priori working with
computable or algorithmic models. It also raises the question of what the reason
is for using algorithmic models of human activity at all. There is, e.g., nothing in the
function of the brain which points in that direction, despite popular ideas. It is true
that some nerve impulses are of a binary on/off character, but they are occurring in
continuous and not discrete time, and therefore not digital, but analogue, as the brain
and body throughout.

However, already the fact that artificial intelligence models using pattern recognition
are working exclusively on sense categories, although often within a user-defined finite
frame of names referring to choice categories (e.g., persons or places), means that they
a priori are non-complete. Further, like a book, the AI models don’t know the referents
of the names. That is the user’s human privilege.

This does not mean that algorithmic models can’t be used as tools modeling domains
with some regularity properties and being digitalized by intelligent humans. But they
can’t model humans themselves and their relations to the world, not even approximately
(see [7], ch. 8).
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