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Abstract

Faltings ringed topos, the keystone of Faltings’ approach to p-adic Hodge theory for a smooth variety over a local
field, relies on the choice of an integral model, and its good properties depend on the (logarithmic) smoothness
of this model. Inspired by Deligne’s approach to classical Hodge theory for singular varieties, we establish a
cohomological descent result for the structural sheaf of Faltings topos, which makes it possible to extend Faltings’
approach to any integral model, that is, without any smoothness assumption. An essential ingredient of our proof
is a variation of Bhatt—Scholze’s arc-descent of perfectoid rings.
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1. Introduction

1.1. Faltings ringed topos, the keystone of Faltings’ approach to p-adic Hodge theory, was originally
introduced by Faltings in his proof of the Hodge—Tate decomposition [Fal88, Fal02] and since then
became a fundamental tool in p-adic Hodge theory, in particular for p-adic comparison theorems and
the p-adic Simpson correspondence (see [Fal05, AGT16]). Faltings topos builds on an integral model
of the p-adic variety, which has both benefits and limitations. On the one hand, Faltings’ approach
uses only standard techniques from scheme theory and seems appropriate for cohomology with integral
coefficients. But on the other hand, the (log-)smoothness of the integral model seems necessary for good
properties of Faltings topos.

1.2. The goal of this work is to get rid of the (log-)smoothness assumption on integral models for
Faltings’ approach to p-adic Hodge theory. For this, we establish a cohomological descent for Faltings
ringed topos along a proper hypercovering of integral models, which allows us to descend important
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results for Faltings topos associated to nice models to Faltings topos associated to general models
using alterations of de Jong et al. In order to avoid the complexity raised by proper hypercoverings,
we introduce a variant of Faltings site in v-topology (where both faithfully flat morphisms and proper
surjective morphisms are coverings), that we call the v-site of integrally closed schemes. We show that
both p-adic étale cohomology and the cohomology of Faltings ringed topos can be computed by this new
site (see 3.27, 8.12), which automatically implies the cohomological descent for Faltings ringed topos
along proper hypercoverings. For this purpose, we prove a variation of Bhatt—Scholze’s arc-descent of
perfectoid rings [BS22]. More precisely, we prove an almost arc-descent of almost perfectoid algebras
(see 5.35), which couldn’t be obtained directly from their results but by adjusting their proof.

1.3. Our cohomological descent result has interesting applications in p-adic Hodge theory. Firstly, I
extend in [He2 1] Faltings’ main p-adic comparison theorem, both in the absolute and the relative cases,
to general integral models without any smoothness condition. Notably, the relative comparison takes
place in our v-site of integrally closed schemes and remains valid for torsion abelian étale coefficients (not
necessarily finite locally constant). Secondly, I deduce in [He21] an explicit local version of the relative
Hodge-Tate filtration from the global version constructed by Abbes—Gros. Thirdly, Xu [Xu22] recently
deduced from our cohomological descent a descent result for the p-adic Simpson correspondence.
Finally, we would like to mention that our v-site of integrally closed schemes is a scheme theoretic
analogue of the v-site of an adic space introduced by Scholze and that our cohomological descent is
an analogue of the cohomological descent from the v-topos to the pro-étale topos of an adic space
established by Scholze [Sch17]. The advantage of our v-site is that it remains in the framework of
algebraic geometry and uses only scheme theoretic arguments. Moreover, it may lead to an explicit
comparison between Faltings and Scholze’s approaches to p-adic Hodge theory.

1.4. In order to state our cohomological descent result, we recall now the definition of the Faltings site
associated to a morphism of coherent schemes Y — X (see 7.7), where ‘coherent’ stands for ‘quasi-
compact and quasi-separated’. Let Ef |, be the category of morphisms of coherent schemes V — U
over Y — X, that is, commutative diagrams

U

X

such that U is étale over X and that V is finite étale over Y xx U. We endow Ef}_}x with the topology
generated by the following types of families of morphisms

—_—

(1.4.1)

~<—<

_—

W) {(Vsy > U) = (V> U)}mem, where M is a finite set and [[,,,cps Vin — V is surjective;
©) {(Vxy U, - U,) = (V- U)}pen, wWhere N is a finite set and [ [,,cy U, — U is surjective.

Consider the presheaf %8 on E§} |, defined by

BV - U)=TUY,0yv), (1.4.2)

where UV is the integral closure of U in V. It is indeed a sheaf of rings, called the structural sheaf of
ES' . (see 7.6).

1.5. Recall that the cohomological descent of étale cohomology along proper hypercoverings can
be generalized as follows: For a coherent S-scheme, we endow the category of coherent S-schemes
Schjgh with h-topology which is generated by étale coverings and proper surjective morphisms of finite
presentation. Then, for any torsion abelian sheaf F on S¢;, denoting by a : (Schigh)h — S the natural
morphism of sites, the adjunction morphism F — Ra.a™! F is an isomorphism.

This result remains true for a finer topology, the v-fopology. A morphism of coherent schemes T — §
is called a v-covering if for any morphism Spec(A) — S with A a valuation ring, there exists an extension

https://doi.org/10.1017/fms.2024.26 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.26

Forum of Mathematics, Sigma 3

of valuation rings A — B and a lifting Spec(B) — T. In fact, a v-covering is a limit of h-coverings
(see 3.6). We will describe the cohomological descent for 98 using a new site built from the v-topology
defined as follows:

Definition 1.6 (see 3.23). Let S° — S be an open immersion of coherent schemes such that S is
integrally closed in S°. We define a site Is-_,5 as follows:

(1) The underlying category is formed by coherent S-schemes T which are integrally closed in $° X 7.
(2) The topology is generated by covering families {7; — T'};¢; in the v-topology.

We call Iso_,g the v-site of S°-integrally closed coherent S-schemes, and we call the sheaf O on Is-_,g
associated to the presheaf T +— T'(T, Or) the structural sheaf of Is-_,g.

1.7. Let p be a prime number, Z the integral closure of Z,, in an algebraic closure QTP of Q,. We take
S° = Spec(@) and S = Spec(Z). Consider a diagram of coherent schemes

Y XY X (1.7.1)

L

Spec((QTp) —_— Spec(Z) ,

where X7 is the integral closure of X in Y and the square is Cartesian (we don’t impose any condition
on the regularity or finiteness of ¥ or X). The functor &* : Ej_ , — Iy_,xv sending V — U to A4
defines a natural morphism of ringed sites

g: (Iy_yxv,0) — (ES_+, B). (1.7.2)
Our cohomological descent for Faltings ringed topos is stated as follows:
Theorem 1.8 (see 8.14). For any finite locally constant abelian sheaf L on Ef}_)x, the canonical
morphism
L ®; B — Re, ('L ®z 0) (1.8.1)

is an almost isomorphism, that is, the cohomology groups of its cone are killed by p” for any rational
number r > 0 (see 5.7).

Corollary 1.9 (see 8.18). For any proper hypercovering X — X, ifa : Eié}._)X. - Ef}_}x denotes the
augmentation of simplicial site where Yo =Y Xx X, then the canonical morphism

L ®; B — Ra,(a"'L ®z B.) (1.9.1)

is an almost isomorphism.

The key ingredient of our proof of 1.8 is the almost descent of almost perfectoid algebras in arc-
topology (a topology finer than the v-topology) (see 5.35). The analogue in characteristic p of 1.8 is
Gabber’s computation of the cohomology of the structural sheaf in h-topology (see Section 4). Theorem
1.8 allows us to descend important results for Faltings sites associated to nice models to Faltings sites
associated to general models. On the other hand, one important step of its proof, which has its own
interests, is a characterization of ‘acyclic objects’ for Faltings ringed site in terms of almost perfectoid
algebras. This result holds in the open case, that is, the complement of a normal crossings divisor in the
generic fibre, using Abhyankar’s lemma (see 8.24).

1.10. The paper is structured as follows. In Section 3, we establish the foundation of the v-site Is-_,g
of integrally closed schemes, where Proposition 3.27 proves that the étale cohomology of S° can be
computed by this v-site. Sections 4 and 5 are devoted to a detailed proof of the almost arc-descent for
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almost perfectoid algebras. Since we use the language of schemes, the terminology ‘pre-perfectoid’ is
introduced for those algebras whose p-adic completions are perfectoid. In Sections 6 and 7, we include
some preliminaries about Faltings sites and we introduce a pro-version of Faltings site to evaluate
the structural sheaf on the spectrums of pre-perfectoid algebras. Finally, we prove our cohomological
descent results in Section 8.

2. Notation and conventions

2.1. We fix a prime number p throughout this paper. For any monoid M, we denote by Frob : M — M
the map sending an element x to x”, and we call it the Frobenius of M. For aring R, we denote by R* the
group of units of R. A ring R is called absolutely integrally closed if any monic polynomial f € R[T]
has a root in R ([Sta23, ODCK]). We remark that quotients, localizations and products of absolutely
integrally closed rings are still absolutely integrally closed.

Recall that a valuation ring is a domain V such that for any element x in its fraction field, if x ¢ V
then x~! € V. The family of ideals of V is totally ordered by the inclusion relation ([Bou06, VI.§1.2,
Thm.1]). In particular, a radical ideal of V is a prime ideal. Moreover, any quotient of V by a prime ideal
and any localization of V are still valuations rings ([Sta23, 088Y]). We remark that V is normal, and
that V is absolutely integrally closed if and only if its fraction field is algebraically closed. An extension
of valuation rings is an injective and local homomorphism of valuation rings.

2.2. Following [SGA 41, VI.1.22], a coherent scheme (resp. morphism of schemes) stands for a quasi-
compact and quasi-separated scheme (resp. morphism of schemes). For a coherent morphism ¥ — X
of schemes, we denote by X Y the integral closure of X in Y ([Sta23, 0BAK]). For an X-scheme Z, we
say that Z is Y-integrally closed if Z = ZY>*xZ

2.3. Throughout this paper, we fix two universes U and V such that the set of natural numbers N is an
element of U and that U is an element of V ([SGA 4, 1.0]). In most cases, we won’t emphasize this set
theoretical issue. Unless stated otherwise, we only consider U-small schemes and we denote by Sch the
category of U-small schemes, which is a V-small category.

24. Let C be a category. We denote by C the category of presheaves of V-small sets on C. If C is
a V-site ([SGA 41, I1.3.0.2]), we denote by C the topos of sheaves of V- small sets on C. We denote
by h€ : C — C, x — hC the Yoneda embedding ([SGA 4;, 1.1.3]) and by C — C, F > F* the
sheafification functor ([SGA 4, 11.3.4]).

2.5. Letu* : C — D be a functor of categories. We denote by uP : D — C the functor that associates
to a presheaf G of V-small sets on D the presheaf uPG = G o u*. If C is V-small and D is a V-category,
then uP admits a left adjoint up, [Sta23, 00VC] and a right adjoint pu [Sta23, 00XF] (cf. [SGA 4y, 1.5]).
So we have a sequence of adjoint functors

up, uP, pu. (2.5.1)

If moreover C and D are V-sites, then we denote by ug, u®, su the functors of the topoi C and D of
sheaves of V-small sets induced by composing the sheafification functor with the functors u,, u®, ,u,
respectively. If finite limits are representable in C and D and if u* is left exact and continuous, then u*
gives a morphism of sites u : D — C ([SGA 4, 1V.4.9.2]) and we also denote by

u=w'u):D—> Cc (2.5.2)
the associated morphism of topoi, where ™! = us and u, = u® = uP| ;- If moreover u is a morphism of
ringed sites u : (D, Op) — (C,O¢), then we denote by u* = Op ®,-10,. u~! the pullback functor of
modules. We remark that the notation here, adopted by [Sta23], is slightly different with that in [SGA 4]
(see [Sta23, 0CMZ)).
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3. The v-site of integrally closed schemes
Definition 3.1. Let X — Y be a quasi-compact morphism of schemes.

(1) We say that X — Y is a v-covering if for any valuation ring V and any morphism Spec(V) — Y,
there exists an extension of valuation rings V — W (2.1) and a commutative diagram (cf. [Sta23,
OETNY)

Spec(W) —— X 3.1.1)

|

Spec(V) ——Y.

(2) Let 7 be an element of I'(Y, Oy). We say that X — Y is an arc-covering (resp. n-complete arc-
covering) if for any valuation ring (resp. m-adically complete valuation ring) V of height < 1 and
any morphism Spec(V) — Y, there exists an extension of valuation rings (resp. 7r-adically complete
valuation rings) V. — W of height < 1 and a commutative diagram (3.1.1) (cf. [BM21, 1.2], [CS19,
2.2.1]).

(3) Wesay that X — Y is an h-covering if it is a v-covering and locally of finite presentation (cf. [Sta23,
OETS]).

We note that an arc-covering is simply a O-complete arc-covering.

Lemma 3.2. Let Z —» Y L X be quasi-compact morphisms of schemes, n € I'(X,Ox), v € {h, v,
nm-complete arc}.

(1) Iffis a t-covering, then any base change of f is also a T-covering.
(2) Iffand g are T-coverings, then f o g is also a T-covering.
) If fogisart-covering (and if fis locally of finite presentation when T = h), then fis also a T-covering.

Proof. 1t follows directly from the definitions. O

3.3. Let Sch®® be the category of coherent U-small schemes, 7 € {h, v, arc}. We endow Sch®! with
the 7-topology generated by the pretopology formed by families of morphisms {X; — X};¢; with 1
finite such that [ [;; X; — X is a T-covering, and we denote the corresponding site by Sch‘;"h. Itis clear
that a morphism ¥ — X (which is locally of finite presentation if 7 = h) is a 7-covering if and only if
(Y — X} is a covering family in Sch®" by 3.2 and [SGA 4;, IL.1.4].

For any coherent U-small scheme X, we endow the category Sch%’(h of objects of Sch®" over X with

the topology induced by the 7-topology of Sch®, that is, the topology generated by the pretopology
formed by families of X-morphisms {Y; — Y};¢; with [ finite such that [[;c; ¥; — Y is a 7-covering
([SGA 41, I11.5.2]). For any sheaf F of V-small abelian groups on the site (Sch%’(h)T, we denote its g-th

cohomology by HZ(X, F).
Lemma 3.4. Let f : X — Y be a quasi-compact morphism of schemes, m € T'(Y, Oy).

(1) Iffis proper surjective or faithfully flat, then fis a v-covering.

(2) Iffis an h-covering and Y is affine, then there exists a proper surjective morphismY’ — Y of finite
presentation and a finite affine open covering Y' = \J;_, Y/ such that Y| — Y factors through f for
each r.

(3) If f is an h-covering and if there exists a directed inverse system (fa : X3 — Ya)aea of finitely
presented morphisms of coherent schemes with affine transition morphisms ¥y : Xy — X and
dva: Yy — Yysuchthat X =1lim Xy, Y = limY, and that f) is the base change of fa, by ¢ aa, for
some index Ag € A and any A > Ay, then there exists an index A1 > Ag such that f, is an h-covering
forany A > A;.

(4) Iffis a v-covering, then it is a m-complete arc-covering and is particularly an arc-covering.
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(5) Let nt” be another element of I'(Y, Oy) which divides n. If f is a m-complete arc-covering, then it is
a ’-complete arc-covering. _

(6) If Spec(B) — Spec(A) is a m-complete arc-covering, then the morphism Spec(ﬁ) — Spec(A)
between the spectrums of their n-adic completions is also a n-complete arc-covering.

Proof. (1), (2) are proved in [Sta23, OETK, OETU], respectively.

(3) To show that one can take A1 > A such that f;, is an h-covering, we may assume that Y, is affine
by replacing it by a finite affine open covering by 3.2 and (1). Thus, applying (2) to the h-covering f and
using [EGA 1V3, 8.8.2, 8.10.5], there exists an index 1; > Ay, a proper surjective morphism Y’ — Yy,
and a finite affine open covering Y /{1 =Ur, Y 72, such that the morphisms Y - Y — Y are the base
changes of the morphisms Y 1, Y /{1 - Y 2, by the transition morphismY — Y, , and that Y, — Y,
factors through X, . This shows that f;, is an h-covering by 3.2 and (1).

(4) With the notation in Equation (3.1.1) if V is a m-adically complete valuation ring of height < 1
with maximal ideal m, then since the family of prime ideals of W is totally ordered by the inclusion
relation (2.1), we take the maximal prime ideal p € W over 0 C V and the minimal prime ideal ¢ € W
over m C V. Then, p € q and W' = (W/p), over V is an extension of valuation rings of height < 1.
Since 7 € m and W’ is of height < 1, the 7-adic completion W is still a valuation ring extension of
V of height < 1 (see [Bou06, VI.§5.3, Prop.5]), which proves (4) (as arc-coverings are just O-complete
arc-coverings).

(5) Since a n’-adically complete valuation ring V is also w-adically complete ([Sta23, 090T]), there
exists a lifting Spec(W) — X for any morphism Spec(V) — Y. After replacing W by its n’-adic
completion, the conclusion follows. R

(6) Let V be a m-adically complete valuation ring of height < 1. Given a morphism A — V, there
exists a lifting B — W where V. — W is an extension of w-adically complete valuation rings of height
< 1. Itis clear that B — W factors through E, which proves (6). m]

3.5. Let X be a coherent scheme, Sch?;( the full subcategory of Sch%’(h formed by finitely presented X-
schemes. We endow it with the topology generated by the pretopology formed by families of morphisms
{Yi »Y }151 with 7 finite such that [];c; ¥; — Y is an h-covering, and we denote the corresponding

site by (Sch It is clear that this topology coincides with the topologles induced from (Schc"h)V

/X)h

and from (Schc"h)l1 The inclusion functors (Sch "Wh LR (Sch“’h)h - (Schc"h)V define morphisms
of sites (2.5)

(Secht3), — (Seht3y — (Sehl ). (3.5.1)

Lemma 3.6. Let X be a coherent scheme. Then, for any covering family W = {Y; — Y};¢y in (SchCOh)V
with 1 finite,

(i) there exists a directed inverse system (Y) e of finitely presented X-schemes with affine transition
morphisms such that Y = limY,, and

(ii) for eachi € I, there exists a directed inverse system (Yi)aen of finitely presented X-schemes with
affine transition morphisms over the inverse system (Y ) e such that Y; =1limY;, and

(iii) for each A € A, the family Wy = {Y;y — Y }ieq is a covering in (Sch/X)h

Proof. We take a directed set A such that for each i € I, we can write Y; as a cofiltered limit of finitely
presented Y-schemes Y; = limgeq Yo with affine transition morphisms ([Sta23, 09MV]). We see that
;cr Yia — Y is an h-covering for each @ € A by 3.2.

We write Y as a cofiltered limit of finitely presented X-schemes Y = limgep Y with affine transition
morphisms ([Sta23, 09MV]). By [EGA 1V3, 8.8.2, 8.10.5] and 3.4.(3), for each a € A, there exists an
index B, € B such that the morphism Y;, — Y is the base change of a finitely presented morphism
Yiap, — Yp, by the transition morphism Y — Y, for each i € I and that [];c; Yiap, — Yp, is an
h-covering. For each B > ,, let Y; o be the base change of Y;,g, by Yg — Y3, .
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We define a category A°P, whose set of objects is { (@, 8) € AX B | 8 = Bq}, and for any two objects
A= (a’,B), A= (a,p), the set Hompor (1, 2) is

(i) the subset of [];c; Homy,, (Yiop, Yiap) formed by elements f = (f;);es such that for each i € I,
fi + Yiap — Yiap is affine and the base change of f; by ¥ — Y is the transition morphism
Yiw = Yiqifa@’ > @ and B’ > B;

(ii) empty, if else.

The composition of morphisms (g; : Yiergr — Yiwgr)ier With (fi © Yiwp — Yiep)ier in AP is

(gi o f : Yianp» — Yiapr), where f/ is the base change of f; by the transition morphism Yg» — Yg'.

We see that AP is cofiltered by [EGA V3, 8.8.2]. Let A be the opposite category of A°P. For eachi € 1
and A = (a,f) € A, we set Yy = Yg and Y;y = Y;4p. It is clear that the natural functors A — A and
A — B are cofinal ([SGA 4, 1.8.1.3]). After replacing A by a directed set ([Sta23, 0032]), the families
U, = {Yiq — Ya}ieq satisfy the required conditions. m]

Lemma 3.7. With the notation in 3.5, let F be a presheaf on (Schig()h, (Y)) a directed inverse system

of finitely presented X-schemes with affine transition morphisms, Y = imY,. Then, we have vy F (Y) =
colim F(Y,), where vt = £* (resp. vt =+ o 7).

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4;, 1.3.4]

F = colim hy. 3.7.1)
Y'e(Sehil )

Thus, we may assume that F is representable by a finitely presented X-scheme Y’ since the section
functor I'(Y, —) commutes with colimits of presheaves ([Sta23, 00VB]). Then, we have

vphy (Y) = hy+(y(Y) = Homx (Y,Y’) = colimHomy (Y3,Y") = colim Ay (Y,), (3.7.2)

where the first equality follows from [Sta23, 04D2], and the third equality follows from [EGA V3,
8.14.2]. O

Proposition 3.8. With the notation in 3.5, let F be an abelian sheaf on (Sch%()h, (Yy) a directed
inverse system of finitely presented X-schemes with affine transition morphisms, Y = limY,. Let T = h
and vt = £ (resp. T = vand vt = {* o &). Then, for any integer q, we have

HY(Y, v F) = colim H((Sch'}, )y, F). (3.8.1)

In particular, the canonical morphism F —s Rv,v™'F is an isomorphism.

Proof. For the second assertion, the sheaf R7y,v~1F is the sheaf associated to the presheaf ¥ +—
HI(Y,v'F) = Hq((Sch?; )n, F) by the first assertion, which is F if ¢ = 0 and vanishes otherwise.

We claim that it suffices to show that Equation (3.8.1) holds for any injective abelian sheaf 7 = 7
on (Scht/l;( )h- Indeed, if so, then we prove by induction on ¢ that Equation (3.8.1) holds in general. The
case where ¢ < —1 is trivial. We set HY (F) = H1(Y,v"'F) and H] (F) = colimH‘I((Sch?;A)h,}").
We embed an abelian sheaf F to an injective abelian sheaf Z. Consider the exact sequence 0 — F —
Z — G — 0 and the morphism of long exact sequences

H{™(T) —— H]™(G) — H{(F) H{(T) H(9) (3.8.2)
HY ™ (Z) — H]™'(G) — HJ(F) — H3 (D) — H}(G).
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If Equation (3.8.1) holds for any abelian sheaf F for degree g — 1, then 1, 2, y4 are isomorphisms and
thus y3 is injective by the 5-lemma ([Sta23, 05QA]). Thus, s is also injective since JF is an arbitrary
abelian sheaf. Then, we see that y3 is an isomorphism, which completes the induction procedure.

For an injective abelian sheaf Z on (Sch%( )h» we claim that for any covering family W = {(Y; = Y) };¢s

in (Sch%’?), with [ finite, the augmented Cech complex associated to the presheaf vl
wI(¥) = [ [nZ0) = [ nIixyy) - - (3.8.3)
iel i,jel

is exact. Admitting this claim, we see that v, 7 is indeed a sheaf, that is, yIT = vpZ, and the vanishing
of higher Cech cohomologies implies that HZ(Y,v~'Z) = 0 for g > 0 by 3.6 ([Sta23, 03F9]), which
complet_es the proof together with 3.7. For the claim, we take the covering families W, = {Y;4 — Ya}ier
in (Scht&)k1 constructed by 3.6. By 3.7, the sequence (3.8.3) is the filtered colimit of the augmented

Cech complexes

(Y — I—[I(YM) - 1_[ IYiaxy, Yja) — -+, (3.8.4)
i€l i,jel
which are exact since 7 is an injective abelian sheaf on (Sch?;( h- O

Corollary 3.9. Let X be a coherent scheme, F a torsion abelian sheaf on the site Xs formed by coherent
coh

étale X-schemes endowed with the étale topology, a : (Sch /X )y — X the morphism of sites defined by

the inclusion functor. Then, the canonical morphism F — Ra.a™' F is an isomorphism.

Proof. Consider the morphisms of sites defined by inclusion functors
coh ¢ coh ¢ fp H
(Sch/x )y — (Sch/X h — (Sch/X)l1 — Xg. 3.9.1H)

Notice that the morphism F — R(u o &),(u o &)~'F is an isomorphism by [Sta23, 0EWG]. Hence,
F — Ru,pu~' F is an isomorphism by 3.8 and thus so is F — Ra.a”! F by 3.8. O

Corollary 3.10. Let f : X — Y be a proper morphism of coherent schemes, F a torsion abelian sheaf
on Xg. Consider the commutative diagram

(Schéy)y — > X (3.10.1)

(SCh%’/h)v R

where f, and fs are defined by the base change by f. Then, the canonical morphism
ay'Rfen F — Rfyeay! F (3.10.2)
is an isomorphism.
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Proof. Consider the commutative diagram

(Sehh), — 2> (Schty —> X (3.10.3)

T

(Sehh), — > (Seh")y —> e

The canonical morphism b;lR JfernF — Rfha b;}' is an isomorphism by [Sta23, 0EWF]. It remains to
show that the canonical morphism £}, IR fie b;(l F —R fv*a;}' is an isomorphism. Let Y’ be a coherent
Y-scheme,and wesetg : X' =Y’ Xy X — X For each integer 9, ¢y R4 fh*b;}' is the sheaf associated
to the presheaf Y’ — H/ (X', by, F) = (X’ o F) by [Sta23, OEWH], and RY fy,ay! F is the
sheaf associated to the presheaf Y’ — HI(X’, aX, o ]—') HI(X’, g F) by 3.9. ]

Lemma 3.11. Let A be a product of (resp. absolutely integrally closed) valuation rings (2.1).

(1) Any finitely generated ideal of A is principal.
(2) Any connected component of Spec(A) with the reduced closed subscheme structure is isomorphic
to the spectrum of a (resp. absolutely integrally closed) valuation ring.

Proof. (1) is proved in [Sta23, 092T], and (2) follows from the proof of [BS17, 6.2]. O

Lemma 3.12. Let X be a U-small scheme, y ~» x a specialization of points of X. Then, there exists a
U-small family { fa : Spec(Va) — X}aea,.., of morphisms of schemes such that

Y x

(i) the ring Vy is a U-small (resp. absolutely integrally closed) valuation ring and that
(ii) the morphism fy maps the generic point and closed point of Spec(V)) to y and x respectively and
that
(iii) for any morphism of schemes f : Spec(V) — X, where V is a (resp. absolutely integrally closed)
valuation ring such that f maps the generic point and closed point of V to y and x, respectively,
there exists an element A € Ay..,x such that f factors through fy and that Vy — V is an extension
of valuation rings.

Proof. Let K, be the residue field «(y) of y (resp. an algebraic closure of k(y)). Let p, be the prime ideal
of the local ring Ox x corresponding to the point y, and let {Va}iea,.., be the set of all valuation rings
with fraction field K, which contain Ox . /p, such that the injective homomorphism Ox . /p, — Vi
is local. The smallness of A, .., and V), is clear, and the inclusion Ox ,/p, — V, induces a morphism
fa : Spec(V,) — X satisfying (ii). It remains to check (iii). The morphism f induces an injective and
local homomorphism Ox ./py, — V. Notice that Ox ,/p, — Frac(V) factors through K, and that
Ky, NV is a valuation ring with fraction field K. It is clear that K, NV — V is local and injective,
which shows that Ky, NV belongs to the set {V,}1ea,..,, constructed before. ]

Lemma 3.13. Ler f : Spec(V) — X be a morphism of schemes where V is a valuation ring. We denote
by a and b the closed point and generic point of Spec(V), respectively. If ¢ € X is a generalization of
f(b), then there exists an absolutely integrally closed valuation ring W, a prime ideal p of W and a
morphism g : Spec(W) — X satisfying the following conditions:

(1) If z, y, x denote, respectively, the generic point, the point p and the closed point of Spec(W), then
8(2) = ¢, g(y) = f(b) and g(x) = f(a).

(ii) The induced morphism Spec(W /p) — X factors through f and the induced morphismV.— W [p is
an extension of valuation rings.

Proof. According to [EGA 11, 7.1.4], there exists an absolutely integrally closed valuation ring U and
a morphism Spec(U) — X which maps the generic point z and the closed point y of Spec(U) to ¢ and
f(b), respectively. After extending U, we may assume that the morphism y — f(b) factors through b
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([EGA 11, 7.1.2]). We denote by x(y) the residue field of the point y. Let V’ be a valuation ring extension
of V with fraction field «(y), and let W be the preimage of V’ by the surjection U — «(y). Then, the
maximal ideal p = Ker(U — «(y)) of U is a prime ideal of W, and W/p = V’. We claim that W is an
absolutely integrally closed valuation ring such that W, = U. Indeed, firstly note that the fraction fields
of U and W are equal as p C W. Let y be an element of Frac(W) \ W.If y € U, then y~' € W \ p by
definition since y~! € U \ p and V is a valuation ring, and then y € Wy. If y ¢ U, then y~! € psince U
is a valuation ring, and then y ¢ W,. Thus, we have proved the claim, which shows that W satisfies the
required conditions. O

Proposition 3.14. Let X be a coherent U-small scheme, X° a quasi-compact dense open subset of X.
Then, there exists a U-small product A of absolutely integrally closed U-small valuation rings and a
v-covering Spec(A) — X such that Spec(A) is X°-integrally closed (2.2).

Proof. After replacing X by a finite affine open covering, we may assume that X = Spec(R). For a
specialization y ~» x of points of X, let {R — V,l},leAyw be the U-small set constructed in 3.12.
Let A = [Iyexe Ay-wx, Where y v x runs through all specializations in X such that y € X°. We take
A =[] 4ea Vaand R — A the natural homomorphism. As a quasi-compact open subscheme of Spec(A),
X° Xx Spec(A) is the spectrum of A[1/x] for an element 7 = (73)1ea € A by 3.11.(1) ([Sta23, 01PH]).
Notice that 74 # 0 for any 1 € A. We see that A is integrally closed in A[1/x]. It remains to check that
Spec(A) — X is a v-covering. For any morphism f : Spec(V) — X, where V is a valuation ring, by
3.13, there exists an absolutely integrally closed valuation ring W, a prime ideal p of W and a morphism
g : Spec(W) — X such that g maps the generic point of W into X° and that W /p is a valuation ring
extension of V. By construction, there exists A € A such that g factors through Spec(V,;) — X. We see
that f lifts to the composition of Spec(W/p) — Spec(V,) — Spec(A). O

Proposition 3.15. Consider a commutative diagram of schemes

Y — =27 — > X (3.15.1)

]

—_— 7 ——X.

Assume the following conditions hold:

(1) Y — Z is dominant and Y’ — Y Xx X' is surjective.

(2) Z — X is separated, Z' — Z is quasi-compact and Z' — X' is integral.

(3) For any valuation ring W and any morphism Spec(W) — X such that the generic point of Spec(W)
lies over Y, there exists an extension of valuation rings W — W’ and a commutative diagram

Spec(W') —— X’ (3.15.2)

|

Spec(W) —— X.

Then, Z' — Z is a v-covering.

Proof. Notice that Z' — Z xx X'’ is still integral as Z — X is separated. After replacing X’ — X by
Z xXx X’ — Z, we may assume that Z = X. Let Spec(V) — Z be a morphism of schemes where V is
a valuation ring. Since Y — Z is dominant, by 3.13, there exists a morphism Spec(W) — Z, where W
is an absolutely integrally closed valuation ring, a prime ideal p of W such that W/p is a valuation ring
extension of V and that the generic point & of Spec(W) is over the image of Y — Z. After extending W
([Sta23, 00IA]), we may assume that there exists a lifting & — Y of &€ — Z. Thus, by assumption (3.15),
the morphism Spec(W) — Z = X admits a lifting Spec(W’) — X’, where W — W’ is an extension
of valuation rings. We claim that after extending W’, Spec(W’) — X’ factors through Z’. Indeed, if
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&’ denotes the generic point of Spec(W’), as Y’ — Y xx X’ is surjective, after extending W’, we may
assume that there exists an X’-morphism &’ — Y’ which is over & — Y. Since Spec(W’) is integrally
closed in ¢’ and Z’ is integral over X', the morphism Spec(W’) — X’ factors through Z”’ ([Sta23, 0351]).
Finally, let q € Spec(W’) which lies over p € Spec(W), then we get a lifting Spec(W’/q) — Z’ of
Spec(V) — Z, which shows that Z” — Z is a v-covering (as we assume that Z’ — Z is quasi-compact,
cf. 3.1). O

Definition 3.16. Let S° — S be an open immersion of coherent schemes such that S is S°-integrally
closed (2.2). For any S-scheme X, we set X° = §° xXs X. We denote by Is-_,5 the category formed by
coherent S-schemes which are S°-integrally closed.

Note that any S°-integrally closed coherent S-scheme X is also X°-integrally closed by definition. It
is clear that the category (Is-_,5)/x of objects of Is-_,g over X is canonically equivalent to the category
Ix-_x.

Lemma 3.17 [Sta23, 03GV]. Let Y — X be a coherent morphism of schemes, X’ — X a smooth
morphism of schemes, Y’ =Y Xx X'. Then, we have XY =x¥ Xx X'.

Lemma 3.18. Let (Y3 — X))aen be a directed inverse system of morphisms of coherent schemes with
affine transition morphisms Yy — Yy and Xy — X3 (1’ > A). We set Y = limY, and X = lim X),.
Then, (X/){‘ )aea is a directed inverse system of coherent schemes with affine transition morphisms and
we have XY =lim X/){‘.

Proof. We fix an index Ao € A. After replacing X,, by an affine open covering, we may assume that
X,, is affine (3.17). We write X; = Spec(A,) and By = I'(Yy, Oy,) for each 2 > Ay, and we set
A = colim A, and B = colim B,. Then, we have X = Spec(A) and B = T'(Y, Oy) ([Sta23, 009F]). Let
R (resp. R) be the integral closure of A, in B, (resp. A in B). By definition, we have X? = Spec(R,)
and XY = Spec(R). The conclusion follows from the fact that R = colim R ;. |

Lemma 3.19. Let S° — S be an open immersion of coherent schemes.

(1) IfXisan S°-integrally closed coherent S-scheme, then the open subscheme X° is scheme theoretically
dense in X.

(2) If X is an S°-integrally closed coherent S-scheme and X' is a coherent smooth X-scheme, then X' is
also S°-integrally closed.

(3) If (X2)aen is a directed inverse system of S°-integrally closed coherent S-scheme with affine tran-
sition morphisms, then X = lim e X is also S°-integrally closed.

@) IfY — X is a morphism of coherent schemes over S° — S such that Y is integral over X°, then the
integral closure XY is S°-integrally closed with (XY )° =Y.

Proof. (1), (2), (3) follow from [Sta23, 0351], 3.17 and 3.18, respectively. For (4), (X¥)° = X° xx XV
is the integral closure of X° in X° Xx Y =Y by 3.17, which is Y itself. O

3.20. We take the notation in 3.16. The inclusion functor
O Igo g — Sch‘;gh, X — X, (3.20.1)
admits a right adjoint
ot Schfg — Igos, X — X = XX (3.20.2)

Indeed, o* is well defined by 3.19.(4), and the adjointness follows from the functoriality of taking
integral closures. We remark that X~ = X°. On the other hand, the functor
W Iges — SehfP, X — X°, (3.20.3)
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admits a left adjoint

o i SchfYl — Igos, Y — Y. (3.20.4)

Lemma 3.21. With the notation in 3.16, let ¢ : I — Is-_.5 be a functor sending i to X;. If X = lim X;
represents the limit of ¢ in the category of coherent S-schemes, then the integral closure X = xX
represents the limit of ¢ in Ige_,s with X = X°.

Proof. Tt follows directly from the adjoint pair (®*, o) (3.20). m|
It follows from 3.21 that for a diagram X; — Xy « X» in Ig._,g, the fibred product is representable

by
XiXx, Xz = (X1 X, X2) %65 (3:2L1)

Proposition 3.22. With the notation in 3.106, let € be the set of families of morphisms {X; — X}ier of
Iso_s with I finite such that [ 1;c; Xi — X is a v-covering. Then, € forms a pretopology of Iso_s.
Proof. Let {X; — X};er be an element of €. Firstly, we check that for a morphlsm X' — X of Igo_,g,

the base change {X/ — X’};¢; also lies in €, where Z; = X; Xx X’ and X] = Z by 3.21. Applying
3.15 to the following diagram

ier Z;-) — e X[, — llier Zi (3.22.1)
X’ X’ X',

we deduce that [[;¢; X/ — X’ is also a v-covering, which shows the stability of € under base change.

For each i € I, let {X;; — X;};ey, be an element of &. We need to show that the composition
{Xij = X}ier, jey, also lies in €. This follows immediately from the stability of v-coverings under
composition. We conclude that € forms a pretopology. O

Definition 3.23. With the notation in 3.16, we endow the category Is-_,s with the topology generated by
the pretopology defined in 3.22, and we call Is-_, s the v-site of S°-integrally closed coherent S-schemes.

By definition, any object in Is-_,s is quasi-compact. Let O be the sheaf on Is-_,5 associated to the
presheaf X — I'(X, Ox). We call O the structural sheaf of Igo_,g.

Proposition 3.24. With the notation in 3.16, let f : X’ — X be a covering in Iso_,g such that f is
separated and that the diagonal morphism X'° — X'° Xxo X'° is surjective. Then, the morphism of
representable sheaves hi,, — hi, is an isomorphism.

Proof. We need to show that for any sheaf F on Ig-_,g, F(X) — F(X’) is an isomorphism. Since the
composition of X”° — X’ xx- X’° — X’Xx X’ factors through the closed immersion X’ — X"Xx X’
(as f is separated), the closed immersion X’ — X"Xx X" is surjective (3.19.(1)). Consider the following
sequence

F(X) = F(X') 3 F(X')XxX') = F(X). (3.24.1)

The right arrow is injective as X’ — X’Xx X" is a v-covering. Thus, the middle two arrows are actually
the same. Thus, the first arrow is an isomorphism by the sheaf property of F. O

Proposition 3.25. With the notation in 3.16, let « : F1 — F» be a morphism of presheaves on Iso_,s.
Assume that

(i) the morphism Fi(Spec(V)) — Fa(Spec(V)) is an isomorphism for any S°-integrally closed
S-scheme Spec(V), where V is an absolutely integrally closed valuation ring and that
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(ii) for any directed inverse system of S°-integrally closed affine schemes (Spec(Aa))aen over S the
natural morphism colim F;(Spec(A,)) — F;(Spec(colim A,)) is an isomorphism fori = 1,2 (cf.
3.19.(3)).

Then, the morphism of the associated sheaves F}' — JF73 is an isomorphism.
Assume moreover that

(iii) F; sends finite coproducts to finite products fori = 1, 2.

Then, for any product A of absolutely integrally closed valuation rings such that Spec(A) is an S°-
integrally closed S-scheme, the map F1(Spec(A)) — F,(Spec(A)) is bijective.

Proof. Let A be a product of absolutely integrally closed valuation rings such that X = Spec(A) is an
S°-integrally closed S-scheme. Let Spec(V) be a connected component of Spec(A) with the reduced
closed subscheme structure. Then, V is an absolutely integrally closed valuation ring by 3.11.(2), and
Spec(V) is also S°-integrally closed since it has nonempty intersection with the dense open subset X°
of X. Notice that each connected component of an affine scheme is the intersection of some open and
closed subsets ([Sta23, 04PP]). Moreover, since A is reduced, we have V = colim A’, where the colimit
is taken over all the open and closed subschemes X’ = Spec(A’) of X which contain Spec(V). By
assumptions (i) and (ii), we have an isomorphism

colim F; (X') — colim F»(X"). (3.25.1)

For two elements &1, & € F1(X) with ax (€1) = ax (&) in F2(X), by Equation (3.25.1) and a limit
argument, there exists a finite disjoin union X = [[;_; X; such that the images of £; and £| in each
F1(X/) are the same. Therefore, Fi' — JF7 is injective by 3.14. Moreover, under the assumption (iii),
we have &1 = £] in F1(X) = [1;_, F1(X]) (so that F1(X) — F2(X) is injective).

On the other hand, for an element & € F,(X), by Equation (3.25.1) and a limit argument, there
exists a finite disjoin union X = [[;_; X/ such that there exists an element &;; € Fi(X/) for each i
such that the image of & in F>(X;) is equal to ax;(£1,;). Therefore, /i — F73 is surjective by 3.14.
Moreover, under the assumption (iii), let £; be the section (£1)1<i<, € F1(X) = [1;_; F1(X/). Then,
ax (é1) = & € Fo(X) = [1iZ; F2(X/) (so that F1(X) — F>(X) is surjective). O

3.26. We take the notation in 3.16. Endowing Sch®" with the v-topology (3.3), we see that the functors
ot and ¥* defined in 3.20 are left exact (as they have left adjoints) and continuous by 3.15 and 3.22.
Therefore, they define morphisms of sites (2.5)

v o
(Schf3t)y — T s — (Schig),. (3.26.1)
Proposition 3.27. With the notation in 3.26, let a : (Schigll W — S¢, be the morphism of site defined by
the inclusion functor (3.9).

(1) For any torsion abelian sheaf F on Sg,, the canonical morphism ‘¥ (a”'F) = R¥.(a"' F) is an
isomorphism.

(2) For any locally constant torsion abelian sheaf L on Igo_s, the canonical morphism L. — RY,¥~'L
is an isomorphism.

Proof. (1) For each integer ¢, the sheaf R?W, (a~' F) is the sheaf associated to the presheaf X
Hl(X°,a ' F) = HL(X®, ;' F) by 3.9, where fg : Xg — Sg is the natural morphism. If X is the
spectrum of a nonzero absolutely integrally closed valuation ring V, then X° = Spec(V[1/x]) for a
nonzero element 7 € V by 3.11.(1) and 3.19.(1), which is also the spectrum of an absolutely integrally
closed valuation ring (2.1). In this case, Hgt(X",féjl]-') = 0 for g > 0, which proves (1) by 3.25 and
[SGA 4y, VIL5.8].

(2) The problem is local on Is-_,5. We may assume that L is the constant sheaf with value L. Then,
RIY,W~!'L = 0 for ¢ > 0 by applying (1) on the constant sheaf with value L on Sg- For g = 0,
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notice that L is also the sheaf associated to the presheaf X +— Hgt(X ,L), while ¥,¥~'L is the sheaf
X — Hgt(X °, L) by the discussion in (1). If X is the spectrum of a nonzero absolutely integrally closed
valuation ring, then so is X° and so that H (X, L) = HJ,(X°, L) = L. The conclusion follows from 3.25
and [SGA 4y, VIL5.8]. ]

4. The arc-descent of perfect algebras

Definition 4.1. For any F,-algebra R, we denote by Rp.;r the filtered colimit

Rpert = colim R “4.1.1)
Frob

indexed by (N, <), where the transition map associated to i < (i + 1) is the Frobenius of R.

It is clear that the endo-functor of the category of F),-algebras, R +— Rperf, commutes with colimits.

4.2. We define a presheaf Oy on the category Sch%‘jj’ of coherent U-small F,,-schemes X by

Operf(X) =I(X, 0X)perf~ “4.2.1)

For any morphism Spec(B) — Spec(A) of affine F,-schemes, we consider the augmented Cech complex
of the presheaf Opert,

0— Aperf - Bperf - Bperf ®4 Bperf — “4.2.2)

perf

Lemma 4.3 [Sta23, 0EWT]. The presheaf Opers is a sheaf on Sch]%‘;h with respect to the fppf topology
([Sta23, 021L]). Moreover, for any coherent F,-scheme X and any integer q,

Hz)pf(X, Operf) = Cgrl(gan(X, OX) (431)

Proof. Firstly, we remark that for any integer g, the functor Hf‘;pf(X ,—) commutes with filtered colimit

coh

of abelian sheaves on (Sch % )ippt for any coherent scheme X ([Sta23, 0739]). Since the presheaf O
sending X to I'(X, Ox) on Sch]%‘;h is an fppf-sheaf, we have H?ppf(X , Ogerf) = colimpgyop Hg) pf(X ,0) =
Opert(X). Thus, Oper is an fppf-sheaf. Moreover, quppf(X , Operf) = coliMgrob Hg)pf(X ,0) =
colimpop H? (X, Ox) by faithfully flat descent ([Sta23, 03DW]).

Lemma 4.4. Let T € {fppf, h, v, arc}. The following propositions are equivalent:

(1) The presheaf Opert on SchﬁF‘zjh is a t-sheaf and HY(X, Opert) = colimpygy H4(X, Ox) for any
coherent F,-scheme X and any integer q.

(2) Forany t-covering Spec(B) — Spec(A) of affine F ,-schemes, the augmented Cech complex (4.2.2)
is exact.

Proof. For an affine scheme X = Spec(A), H?(X,Ox) vanishes for ¢ > 0 and H°(X,Ox) = A.
For (1) = (2), the exactness of Equation (4.2.2) follows from the Cech—cohomology-to-cohomology
spectral sequence associated to the T-covering Spec(B) — Spec(A) [Sta23, 03AZ]. Therefore, (1) and
(2) hold for T = fppf by 4.3. Conversely, the exactness of Equation (4.2.2) shows the sheaf property
for any 7-covering of an affine scheme by affine schemes, which implies the fppf-sheaf Operr is a
r-sheaf (cf. [Sta23, OETM]). The vanishing of higher Cech cohomologies implies that HZ (X, Opert) =0
for any affine F),-scheme X and any ¢ > 0 ([Sta23, 03F9]). Therefore, for a coherent Fj,-scheme X,
HI(X, Opert) can be computed by the hyper-Cech cohomology of a hypercovering of X formed by
affine open subschemes ([Sta23, 01GY]). In particular, we have HZ (X, Operf) = Hf{)pf(X , Operf) for any
integer ¢, which completes the proof by 4.3. O
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Lemma 4.5 (Gabber). The augmented Cech complex (4.2.2) is exact for any h-covering Spec(B) —
Spec(A) of affine F,-schemes.

Proof. This is a result of Gabber; see [BST17, 3.3] or [Sta23, OEWU], and 4 .4. ]

Lemma 4.6 [BS17, 4.1]. The augmented Cech complex (4.2.2) is exact for any v-covering Spec(B) —
Spec(A) of affine F,-schemes.

Proof. We write B as a filtered colimit of finitely presented A-algebras B = colim B,. Then, Spec(B,) —
Spec(A) is an h-covering for each A by 3.2. Notice that Bpert = colim B perf, then the conclusion follows
from applying 4.5 on Spec(B,) — Spec(A) and taking colimit. O

Lemma 4.7 [BS17, 6.3]. For any valuation ring V and any prime ideal p of V, the sequence

0—V-5Vpav, 2 v,/pv, — 0 “7.1)

is exact, where a(a) = (a,a) and (a, b) = a — b. If moreover V is a perfect E,-algebra, then for any
perfect V-algebra R, the base change of Equation (4.7.1) by V — R,

0 — R —> R/pR® R, —> R,/pR, —> 0 4.7.2)

is exact.

Proof. The sequence (4.7.1) is exact if and only if p = pV},. Leta € p and s € V' \ p. Since p is an ideal,
s/a ¢ V,thus a/s € V as V is a valuation ring. Moreover, we must have a/s € p as p is a prime ideal.
This shows the equality p = pV,.

The second assertion follows directly from the fact that Tor?(B, C) = 0 for any ¢ > 0 and any
diagram B < A — C of perfect F-algebras ([BS17, 3.16]). m]

Lemma4.8 [BM21,4.8]. The augmented Cech complex (4.2.2) is exact for any arc-covering Spec(B) —
Spec(A) of affine Fp,-schemes with A a valuation ring.

Proof. We follow the proof of Bhatt—Mathew [BM21, 4.8]. Let B = colim B, be a filtered colimit of
finitely presented A-algebras. Then, Spec(B,) — Spec(A) is also an arc-covering by 3.2. Thus, we may
assume that B is a finitely presented A-algebra.

An interval I = [p,q] of a valuation ring A is a pair of prime ideals p C q of A. We denote by
A; = (A/p)q. The set T of intervals of A is partially ordered under inclusion. Let P be the subset
consisting of intervals I such that the lemma holds for Spec(B ®4 A;) — Spec(Ay). It suffices to show
that P = 7.

(1) If the valuation ring Ay is of height < 1, we claim that Spec(B®4 A;) — Spec(A;) is automatically
a v-covering. Indeed, there is an extension of valuation rings A; — V of height < 1 which factors
through B®4 Aj. As A — V is faithfully flat, Spec(B ®4 A;) — Spec(Aj) is a v-covering by 3.2
and 3.4.(1). Therefore, I € P by 4.6.

(2) For any interval J C I'if I € P, then J € P. Indeed, applying ®r, (A )pert to the exact sequence
(4.2.2) for Spec(B ®4 Ar) — Spec(Ar), we still get an exact sequence by the Tor-independence of
perfect F,-algebras ([BS17, 3.16]).

(3) If p C A is not maximal, then there exists q 2 p with 7 = [p, q] € P. Indeed, if there is no such /
with the height of A; no more than 1, then p = ﬂqu q, and thus,

Ay/pAp, = colim  Aj. 4.8.1)
I=[p.q].a2p

Since Spec(B ®4 Ap/PAp) — Spec(Ap/pAy) is an h-covering as A, /pA, is a field (and we have
assumed that B is of finite presentation over A), there exists an interval / in the above colimit such
that Spec(B®4 Ay) — Spec(Ay) is also an h-covering by 3.4.(3). Therefore, this / lies in P by 4.6.
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(4) If p C A is nonzero, then there exists q C p with 7 = [q,p] € P. This is similar to (3).

(5) If 1,J € P are overlapping, then / U J € P. Indeed, by (2) and replacing A by Ajus, we may
assume that / = [0,p], J = [p, m] with m the maximal ideal. In particular, A; = A,, Ay = A/p
and Ajny = Ap/pA,. Since for each R = ®§p€ Bpert we have the short exact sequence (4.7.2), we

rf
get/UJ eP.
In general, by Zorn’s lemma, the above five properties of P guarantee that P = Z (see [BM21,4.7]). O

Lemma 4.9 (cf. [BM21, 3.30]). The augmented Cech complex (4.2.2) is exact for any arc-covering
Spec(B) — Spec(A) of affine F,-schemes with A a product of valuation rings.

Proof. We follow closely the proof of 3.25. Let Spec(V) be a connected component of Spec(A) with
the reduced closed subscheme structure. Then, V is a valuation ring by 3.11.(2). By 4.8, the augmented
Cech complex

0— Vperf — (B®a V)perf — (B®a V)perf ®Vper1‘ (B®a V)perf e 4.9.1)

is exact. Notice that each connected component of an affine scheme is the intersection of some open and
closed subsets ([Sta23, 04PP]). Moreover, since A is reduced, we have V = colim A’, where the colimit
is taken over all the open and closed subschemes Spec(A’) which contain Spec(V).

Therefore, by a limit argument, for an element f € ®}  Bpe,r which maps to zero in ® +1
pe

n
rf Aperf BpCI'f’ as

Spec(A) is quasi-compact, we can decompose Spec(A) into a finite disjoint union I_[f‘:’ 1 Spec(A;) such
that there exists g; € ®2f' f(B ®a Ai)perf Which maps to the image f; of f in ®’; f(B ®4 Aji)pert. Since
i,per i,per

we have
N
®ZPETprerf - 1_[ ®;l\i,p5rf (B ®A Ai)perf’ (492)
i=1
the element g = (81’),?\:]1 maps to f, which shows the exactness of Equation (4.2.2). O

Proposition 4.10 [BS22, 8.10]. Let T € {fppf, h, v, arc}.

(1) The presheaf Oyerr is a T-sheaf over Sch“;h, and for any coherent F,-scheme X and any integer g,
HI(X, Operf) = Cglill)an(X, Ox). (4.10.1)
TO!

(2) For any t-covering Spec(B) — Spec(A) of affine F,-schemes, the augmented Cech complex

0— Aperf - Bperf - Bperf ®4 Bperf — (4.10.2)

perf
is exact.

Proof. We follow closely the proof of Bhatt—Scholze [BS22, 8.10]. (1) and (2) are equivalent by 4.4,
and they hold for 7 € {fppf, h, v} by 4.3, 4.5 and 4.6. In particular,

Hg(Spec(A), Operf) = Aperf and H{(Spec(A), Opert) =0, Vg > 0. (4.10.3)

We take a hypercovering in the v-topology Spec(A.) — Spec(A) such that A, is a product of valuation
rings for each degree n by 3.14 and [Sta23, 094K and ODB 1]. The associated sequence

0— Aperf - AO,perf - Al,perf e 4.10.4)

is exact by the hyper—Cech—cohomolggy-to-cohomology spectral sequence [Sta23, 01GY].
Consider the double complex (Af) where the i-th row A} is the base change of Equation (4.10.2) by
Apert = A pert, that is, the augmented Cech complex (4.2.2) associated to Spec(B ®4 A;) — Spec(A;)
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(we set A_; = A). On the other hand, the j-th column A{ is the associated sequence (4.10.4) to the
hypercovering Spec(A. ®4 (®f43)) — Spec(®fAB), which is exact by the previous discussion. Since

At — Tot(Aj J;O is a quasi-isomorphism ([Sta23, 0133]), for the exactness of the (—1)-row A* , we
only need to show the exactness of the i-th row A? for any i > 0 but this has been proved in 4.9 thanks

to our choice of the hypercovering, which completes the proof. O

5. Almost pre-perfectoid algebras

Definition 5.1.

(1) A pre-perfectoid field K is a valuation field whose valuation ring Ok is nondiscrete, of height 1 and
of residue characteristic p, and such that the Frobenius map on Ok /pOk is surjective.

(2) A perfectoid field K is a pre-perfectoid field which is complete for the topology defined by its
valuation (cf. [Sch12, 3.1]).

(3) A pseudo-uniformizer n of a pre-perfectoid field K is a nonzero element of the maximal ideal mg
of O K-

A morphism of pre-perfectoid fields K — L is a homomorphism of fields which induces an extension
of valuation rings Og — Of.

Lemma 5.2. Let K be a pre-perfectoid field with a pseudo-uniformizer n. Then, the fraction field K of
the rt-adic completion of Ok is a perfectoid field.

Proof. The n-adic completion Ok of Ok is still a nondiscrete valuation ring of height 1 with residue
characteristic p (see [Bou06, VI.§5.3, Prop.5]). If p # 0 in Ok, then it is canomcally 1somorph10 to the
p-adic completion of Ok so that there is a canonical isomorphism Ok / pOx — OK / p(’)K, from which
we see that K is a perfectoid field. If p = 0 in Ok, then the Frobenius induces a surjection Ox — Ok
if and only if Ok is perfect. Thus, @; is also perfect, and we see that Kisa perfectoid field. O

5.3. Let K be a pre-perfectoid ﬁeld. There is a unique (up to scalar) ordered group homomorphism
vk : K* — R such that v‘l(O) = , where the group structure on R is given by the addition. In
partlcular Ok \0=vg I(Rso) and mg \O =vg 1(Rx) (see [Bou06, VI.§4.5 Prop.7] and [Bou(7, V.§2
Prop.1, Rem.2]). The nondiscrete assumption on Ok implies that the image vk (K*) C R is dense. We
set vg (0) = +oo.

Lemma 5.4 [Sch12, 3.2]. Let K be a pre-perfectoid field. Then, for any pseudo-uniformizer n of K, there
exists m, € Mg for each integer n > 0 such that ro = m and t,, = u, -7r£+1 for some unit u, € (’)IXC and
mg is generated by {n, }n>0. We call my+1 a p-th root of 7, up to a unit for simplicity.

Proof. If vk (nr) < vk (p), since the Frobenius is surjective on Ok /p, there exists m; € Ok such that
v (m — ) = vk (p). Then, vk (n) = vg () and thus 7 = u - 71} with u € O}. In general, since
vk (K*) C R is dense, any pseudo-uniformizer r is a finite product of pseudo-uniformizers whose
valuation values are strictly less than vk (p), from which we get a p-th root 71| of 7 up to a unit. Since 7
is also a pseudo-uniformizer, we get rr,, inductively. As vk (7r,,) tends to zero when n tends to infinity,
mg is generated by {7, },,>0- O

5.5. Let K be a pre-perfectoid field. We briefly review almost algebra over (Og, mg) for which we
mainly refer to [AG20, 2.6], [AGT16, V] and [GRO3]. Remark that mg ®o, mg = m%{ = mg is flat
over Ok .

An Og-module M is called almost zero if mgM = 0. A morphism of Og-modules M — N is
called an almost isomorphism if its kernel and cokernel are almost zero. Let ./ be the full subcategory
of the category Ok -Mod of Og-modules formed by almost zero objects. It is clear that .4 is a Serre
subcategory of Og-Mod ([Sta23, 02MO]). Let S be the set of almost isomorphisms in Og -Mod. Since
A is a Serre subcategory, S is a multiplicative system, and moreover the quotient abelian category
Ok -Mod/./ is representable by the localized category S™!Og-Mod (cf. [Sta23, 02MS]). We denote
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S~'Ok-Mod by (9;1 -Mod, whose objects are called almost Ok -modules or simply O%-modules (cf.
[AG20, 2.6.2]). We denote by

a* : Ox-Mod — O%-Mod, M — M* (5.5.1)

the localization functor. It induces an Ok -linear structure on (’)j‘g -Mod. For any two Og-modules M
and N, we have a natural Ok -linear isomorphism ([AG20, 2.6.7.1])

Homoa;é_Mod(Mal, N = Homo, -mod (Mx ®0, M, N). (5.5.2)

The localization functor o* admits a right adjoint

. : Og-Mod — Og-Mod, M +— M. = Homey veq(Ok - M), (5.5.3)
and a left adjoint
@, : O4-Mod — Og-Mod, M +— M, = mg ®p, M.. (5.5.4)

Moreover, the natural morphisms
(M) — M, M — (M))" (5.5.5)

are isomorphisms for any (’)*,‘g-module M (cf. [AG20, 2.6.8]). In particular, for any functor ¢ : I —
O% -Mod sending i to M;, the colimit and limit of ¢ are representable by

colim M; = (colim M;,), lim M; = (lim M) (5.5.6)
The tensor product in Og-Mod induces a tensor product in O% -Mod by
MY ®ou N = (M ®0p, N)* (5.5.7)

making O% -Mod an abelian tensor category ([AG20, 2.6.4]). We denote by O% -Alg the category of
commutative unitary monoids in (’)?}—Mod induced by the tensor structure, whose objects are called
almost Ok -algebras or simply O%-algebms (cf. [AG20, 2.6.11]). Notice that R* (resp. R.) admits
a canonical algebra structure for any Ok -algebra (resp. (’)';lé—algebra) R. Moreover, a* and a. induce
adjoint functors between Ok -Alg and O%-Alg ([AG20, 2.6.12]). Combining with Equations (5.5.5)

and (5.5.6), we see that for any functor ¢ : I — O‘}‘;-Alg sending 7 to R;, the colimit and limit of ¢ are
representable by (cf. [GR03, 2.2.16])

colim R; = (colim R;,)%, lim R; = (lim R;,)™. (5.5.8)
In particular, for any diagram B «— A — C of C’)ﬁ{l—algebras, we denote its colimit by
B®a C = (B, ®4. C,)Y, (5.5.9)

which is clearly compatible with the tensor products of modules. We remark that ¢* commutes with
arbitrary colimits (resp. limits), since it has a right adjoint e, (resp. since the forgetful functor (’)';‘<1 -Alg —
O#-Mod and the localization functor ¢* : Ox-Mod — O%-Mod commute with arbitrary limits).

5.6. For an element a of Ok, we denote by (Ok/aOk)¥-Mod the full subcategory of O%—Mod
formed by the objects on which the morphism induced by multiplication by a is zero. Notice that for
an (Og/ aOK)al-module M, M., is an Ok /aOg-module. Thus, the localization functor a* induces an
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essentially surjective exact functor (Og /aOk)-Mod — (O /aOk )*-Mod, which identifies the latter
with the quotient abelian category (O /aOg)-Mod/ A N (Ok [aOk)-Mod.

Let  be a pseudo-uniformizer of K dividing p with a p-th root 7y up to a unit (5.4). The Frobe-
nius on Ok /7O induces an isomorphism Ok /7 Ok SN Ok /nOk . The Frobenius on (O /x)-
algebras and the localization functor o* induce a natural transformation from the base change functor
(Ok [m)M-Alg — (O /m)¥-Alg, R — (Ok /) ®Frob, (0x /) R to the identity functor.

(Ok [m)"-Alg —— (Ok [71)"-Alg —— (O /m)"-Alg (5.6.1)

T e
id

For an (O /m)¥-algebra R, we usually identify the (Ok /m;)¥-algebra R/m R with the (O /m)¥-
algebra (Ok /7) ®krob,(0x/x) R, and we denote by R/mR — R the natural morphism
(Ok [7) ®Frob,(0x/x) R — R induced by the Frobenius (cf. [GR03, 3.5.6]). Moreover, the natural
transformations induced by Frobenius for (O /x)-Alg and (O /m)*-Alg are also compatible with the
functor a... Indeed, it follows from the fact that for any (Og /7)-algebra R, the composition of

Hom (mg ,Frob)

(Ok [m) ®(0k /7) Hom(mg, R) — Hom(mg, (Ok /7) ®(Ok /7) R) ———— = Hom(mg, R)
(5.6.2)

is the relative Frobenius on (Ral)* = Homo, -Mod (M, R).

5.7. Let C be a site. A presheaf F of Og-modules on C is called almost zero if F(U) is almost zero
for any object U of C. A morphism of presheaves F — G of Og-modules on C is called an almost
isomorphism if F(U) — G(U) is an almost isomorphism for any object U of C (cf. [AG20, 2.6.23]).
Let &/ be the full subcategory of the category Og-Mod¢ of sheaves of Og-modules on C formed by
almost zero objects. Similarly, ./ is a Serre subcategory of Ox-Modc. Let Dy (Ox-Modc) be the
full subcategory of the derived category D(Og-Modc) formed by complexes with almost zero co-
homologies. It is a strictly full saturated triangulated subcategory ([Sta23, 06UQ]). We also say that
the objects of Dy (Og-Modc) are almost zero. Let S be the set of arrows in D(Og-Mod¢) which
induce almost isomorphisms on cohomologies. We also call the elements of S almost isomorphisms.
Then, S is a saturated multiplicative system ([Sta23, 05RG]), and moreover the quotient triangu-
lated category D(Ox-Modc) /Dy (Ox-Modc) is representable by the localized triangulated category
S 'D(Og-Modc) ([Sta23, 05RI]). The natural functor

S™'D(Ok-Modc) — D(OL-Modc) (5.7.1)

is an equivalence by [Sta23, 06XM] and Equation (5.5.5) (cf. [GRO3, 2.4.9]).

Lemma 5.8. Let K be a pre-perfectoid field with a pseudo-uniformizer n, M a flat Ok -module. We fix
a system of p"-th roots (,)n>0 of T up to units (5.4), then the map

ﬂ 7'M — (M™), = Homo, moa (k. M), a — (x — xa), (5.8.1)

n>0

where n,'M C M|[1/r], is an isomorphism of Ok -modules. Moreover, for an extension of valuation
rings Og — R of height 1, we have R = ;5 7,,' R and the above isomorphism coincides with the unit
map R — (RY),.

Proof. Since mg is generated by {7, },,>0, any Ok -linear morphism f : mg — M is determined by its
values f(r,) € M. Notice that (n/n,) - f(r,) = f(x) and M is n-torsion free so that f must be given
by the multiplication by an element a = f () /7m € M[1/x]. It is clear that such a multiplication sends
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mg to M if and only if a € N,,5 7,,' M, which shows the first assertion. If Ox — R is an extension of
valuation rings of height 1, then we directly deduce from the valuation map v : R[1/7] \ 0 — R (5.3)
the equality R = (,,50 7' R. O

Lemma 5.9. Let K be a pre-perfectoid field, R an Ok -algebra, Ox — V an extension of valuation
rings of height 1. Then, the canonical map

Homo,-alg(R, V) — Homgy Ag(R V) (5.9.1)

is bijective.

Proof. There are natural maps

Homo, (R, V) — Homoﬁ_A]g(Ra‘, V) — Homo,-aig(R, (V¥).) — Homo,aig(R, V),
(5.9.2)

where the middle isomorphism is given by adjunction and the last isomorphism is induced by the inverse
of the unit map V — (V&), by 5.8. The composition is the identity map, which completes the proof. O

Definition 5.10. Let K be a pre-perfectoid field. We say that an (’)‘}}-module M (resp. an Og-module
M) is flat (resp. almost flat) if the functor (’)'}‘é-Mod — O?} -Mod given by tensoring with M is exact
(resp. M is flat).

Remark 5.11. In general, one can define the flatness of a morphism of O%-algebras (see [GRO3, 3.1.1.
(i)]). We say that a morphism of O -algebras A — B is almost flat if A*' — B is flat.

Lemma 5.12. Let K be a pre-perfectoid field with a pseudo-uniformizer n. Then, an (9% -module M is
Sfat if and only if M, is n-torsion free. In particular, an Og-module N is almost flat if and only if the
submodule of nt-torsion elements of N is almost zero.

Proof. First of all, for any (9*,“(1 -modules L and L,, we have a canonical isomorphism
Homgy voq (M ®cu L1, L2) = Hompu yioq (L1, Homoy Moa(Ms, L2.)Y) (5.12.1)

by Equations (5.5.2), (5.5.5) and (5.5.7). Therefore, the functor defined by tensoring with M admits a
right adjoint, and thus it is right exact. Consider the sequence

0— 0 =5 0% — (O [1OK)" — 0, (5.12.2)

which is exact since the localization functor o* is exact. If M is flat, tensoring the above sequence with
M and applying a., we deduce that M, is m-torsion free since a, is left exact (as a right adjoint to «*).
Conversely, if M, is n-torsion free, then it is flat over O . For any injective morphism L; — L, of
O% -modules, L. — Ly, is also injective, and it remains injective after tensoring with M,. Therefore,
Ly — L, also remains injective after tensoring with M since a* is exact. This shows that M is flat.

The second assertion follows from the almost isomorphism N — (N¥), and the fact that (N¥), =
Homp, -Med Mk, N) has no nonzero almost zero element. O

Lemma 5.13. Let K be a pre-perfectoid field with a pseudo-uniformizer n, M a flat (’)% -module, x an
element of O. Then, the canonical morphism M, [xM, — (M [xM), is injective, and for any € € mg,
the image of pe : (M /exM), — (M /xM), is M. /xM.. In particular, the canonical morphism

lim M. /7" M, —> (lim M /z" M), (5.13.1)
n n

is an isomorphism of Og-modules.
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Proof. We follow the proof of [Sch12, 5.3]. Applying the left exact functor a. to the exact sequence

0 M—s=M M/xM —— 0, (5.13.2)

we see that M,./xM, — (M /xM), is injective.

To show that the image of ¢, is M. /xM.,, it suffices to show that ¢, factors through M. /xM,. We
identify (M /xM), with Homo -moea (M, M../xM,) by Equations (5.5.5) and (5.5.2) so that M../xM.
identifies with the subset consisting of the Ok -morphisms mg — M. /xM, sending y to ya for some
element a € M, /xM,. For an Og-morphism f : mg — M,/exM., let b be an element of M, which
lifts f(€). Notice that M, is n-torsion free by 5.12. With notation in 5.8, we have b = (e/n,,) - f(7,,)
mod exM, for n big enough so that the element b/e € M.[1/x] lies in ;50 7,,' M. = M,. Moreover,
7, - (b/€) = f(m,) mod xM, for n big enough. As ¢, (f) is determined by its values on 7, for n big
enough, it follows that ¢ (f) = a, where a is the image of b/e in M. /xM..

Finally, the previous result implies that the inverse system ((M /7" M).), > is Mittag—LefHer so that
the ‘in particular’ part follows immediately from the fact that o, commutes with arbitrary limits (as a
right adjoint to a*) ([Sta23, 0596]). m]

Definition 5.14. Let K be a pre-perfectoid field. For any O -algebra R, we define a perfect ring R” as
the projective limit

b_ .
R _:(;L?)R/pze (5.14.1)
TO

indexed by (N, <), where transition map associated to i < (i + 1) is the Frobenius on R/pR. We call R
the tilt of R.

Lemma 5.15 [Sch12, 3.4]. Let K be a perfectoid field with a pseudo-uniformizer nt dividing p.

(1) The projection induces an isomorphism of multiplicative monoids

liLnOK —>£iLn(’)K/7r(’)K. (5.15.1)
Frob Frob

In particular, the right-hand side is canonically isomorphic to (Ok)® as a ring.
(2) We denote by

i (Ok)” — Ok, x> x%, (5.15.2)

the composition of the inverse of Equation (5.15.1) and the projection onto the first component.
Then vk o : (Ok)?\ 0 — Ry defines a valuation of height 1 on (Ok)’.
(3) The fraction field K” of (Ok) is a perfectoid field of characteristic p and the element

2= (oo xl P 2P 1 0) € (Ok) (5.15.3)

is a pseudo-uniformizer of K, where 7 = u - nf with 71 € mg and u € (’)IX<.
(4) We have Ok = (Ok)P, and there is a canonical isomorphism

Oxs /7Oy —> Ok |10k (5.15.4)

induced by (1) and the projection onto the first component.

5.16. We see that the tilt defines a functor Og-Alg — Ogy-Alg, R — RY, which preserves almost zero
objects and almost isomorphisms. For an O%-algebra R, we set R” = ((R,)?)® and call it the rilt of
R, which induces a functor O% -Alg — (92 ,-Alg, R — RP. Note that the tilt functor commutes with
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the localization functor a* up to a canonical isomorphism and commutes with the functor a. up to a
canonical almost isomorphism.

Definition 5.17 [Sch12, 5.1]. Let K be a perfectoid field, = a pseudo-uniformizer of K dividing p with

a p-th root 7y up to a unit (5.4).

(1) A perfectoid (9;1 -algebra is an (9;1 -algebra R such that

(i) Ris flat over O%;
(ii) the Frobenius of R/ R induces an isomorphism R/mR — R/nR of O%-algebras (5.6);
(iii) the canonical morphism R — lin R /"R is an isomorphism in O?}—Alg.
n
We denote by O% -Perf the full subcategory of O% -Alg formed by perfectoid O% -algebras.

(2) A perfectoid (Ok |m)™-algebrais a flat (O /7)*-algebra R such that the Frobenius map induces an
isomorphism R/m R — R. We denote by (O /x)-Perf the full subcategory of (Ok /m)*-Alg
formed by perfectoid (O /m)¥-algebras.

Lemma 5.18. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th root

71 up to a unit (5.4). Then, for an Ok -algebra R, the following conditions are equivalent:

(1) The almost algebra R associated to the n-adic completion R of R is a perfectoid (9;21 -algebra.

(2) The Og-module R is almost flat, and the Frobenius of R/nR induces an almost isomorphism
R/mR — R/nR.

Proof. We have seen that Kisa perfectoid field in 5.2 and & is obviously a pseudo-uniformizer of K.

Since the localization functor a* : Og-Alg — (9%' -Alg commutes with arbitrary limits and colimits

(5.5), we have a canonical isomorphism RY = llril RY / 7" R4, Thus, the third condition in 5.1 7.(1)

holds for R*. Since there are canonical isomorphisms
R/miR — R/mR, R/aR — R/nR, (5.18.1)

the conditions (1) and (2) are clearly equivalent. |

Definition 5.19. Let K be a pre-perfectoid field, 7 a pseudo-uniformizer of K dividing p with a p-th root
711 up to a unit (5.4). We say that an Ok -algebra is almost pre-perfectoid if it satisfies the equivalent
conditions in 5.18.

We remark that in 5.19, if a morphism of Og-algebras R — R’ induces an almost isomorphism
R/n"R — R’/n" R’ for each n > 1, then the morphism of the 7-adic completions R — R’ is an almost
isomorphism since a* commutes with limits. In particular, R is almost pre-perfectoid if and only if R’
is almost pre-perfectoid.

Lemma 5.20. Let K be a pre-perfectoid field with a pseudo-uniformizer nt, R an Ok -algebra. If R is
almost flat (resp. flat) over Ok, then the w-adic completion R is almost flat (resp. flat) over Og.

Proof. For any integer n > 0, there is a canonical isomorphism
R/m"R — R/n"R. (5.20.1)

Let x € R be a n-torsion element. Since any r-torsion element of R is almost zero (resp. zero)
by 5.12, for any € € mg (resp. € = 1), the image of ex in R/n"R lies in 7"~ 1R/7T"R Therefore,
€x € (so "™ IR = 0, which amounts to say that R is almost flat (resp. flat) over O. O

Lemma 5.21. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th root
71 up to a unit (5.4), R a flat Ok -algebra. Then, the following conditions are equivalent:

(1) The Frobenius induces an injection R/m1R — R/nR.
(2) Foranyx € R[1/n], ifx? € R, then x € R.
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Proof. We follow the proof of [Schl2, 5.7]. Assume first that R/miR — R/nR is injective. Let
x € R[1/n] with x? € R, k the minimal natural number such that y = 7r/1‘x € R. If k > 1, then
yP = n{’ kxP € nR. Therefore, y € w1 R by the injectivity of the Frobenius. However, as R is m-torsion
free, we have y’ = y/m = ﬂ’l‘_lx € R which contradicts the minimality of k.

Conversely, for any x € R with x? € 7R, we have (x/71)? € R. Thus, x/m; € R by assumption, that

is, x € m R, which implies the injectivity of the Frobenius. O

Lemma 5.22. Let K be a pre-perfectoid field, n a pseudo-uniformizer of K dividing p with a p-th root m
up to a unit (5.4), R an Ok -algebra which is almost flat. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost isomorphism) R/mt R — R/nR.
(2) The Frobenius induces an injection (resp. isomorphism) (R*), /71 (RY), — (RY), /7 (RY)..

Proof. We follow the proof of [Sch12, 5.6]. Notice that the Frobenius is compatible with the functors
a* and @, (5.6). (2) = (1) follows from the almost isomorphism R — (R¥),. The ‘injection’ part of (1)
= (2) follows from the inclusions (5.13)

(R, /71 (RM). € ((R/miR)YM)., (RY)./n(RY). C ((R/7R)M).. (5.22.1)

For the ‘isomorphism’ part of (1) = (2), notice that (R¥), /7 (R¥), — (RY)./n(R™), is almost
surjective. Let 7, be a p-th root of 7 up to a unit (5.4). Then for an element x of (Ral)*, there

exist elements y and x’ of (R¥), such that nbx = yP + *x’. Thus, x = = yP 4 np “Px’, where

y = y/m € (RY).[1/x] (as (RY), is flat over Ok by 5.12). In fact, y’ lies in (R¥), by 5.21 and the

‘injection’ part of (1) = (2). By applying this process to x’, there exist elements y” and x”’ of (R¥), such
2 2 2

that x’ = y”” + 7 “Px”".In conclusion, we have x = y'? + zl P (y"P + 7 "Px") = (' + 7r§_1y”)’7

mod 7(R™),, which shows the surjectivity of (R¥), /71 (RY), — (RY), /7 (RYM),. o

Lemma 5.23. Let K be a pre-perfectoid field, R an almost flat Ok -algebra, nt, n’ pseudo-uniformizers
dividing p with p-th roots 1, nt{, respectively, up to units. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost surjection) R/mtiR — R/nR.
(2) The Frobenius induces an almost injection (resp. almost surjection) R/n{R — R/n’R.

In particular, the definitions 5.17.(1) and 5.19 do not depend on the choice of the pseudo-uniformizer.

Proof. Notice that (R¥), is flat over Og by 5.12. The ‘injection’ part follows from 5.21 and 5.22. For
the ‘surjection’ part, we assume that R/m1R — R/nR is almost surjective. Let € € mg. We can take a
pseudo-uniformizer 7 of K dividing p with 77{’ =mand vg(m)/3 < vg () < vk (m)/2. For any x € R,
by the almost surjectivity, we have ex = y” + 72z for some y,z € R. We also have 7z = v” + 7w for
some v, w € R, then ex = y? + wvP + maw. Since y? +7vP = (y + m1v)Pmod pR, R’ /xR — R/n’'R
is almost surjective for any pseudo-uniformizer n’ dividing p with vk (n”) < 4vk (7)/3. By induction,
we see that R’/n{R — R/n’R is almost surjective in general. O

Proposition 5.24. Let K be a pre-perfectoid field of characteristic p with a pseudo-uniformizer nr, R
an Ok -algebra, R the n-adic completion of R. Then, R is almost pre-perfectoid if and only if (RY), is

perfect.

Proof. Note that Ok is perfect by definition. If R is almost pre-perfectoid, then R is almost flat so
that (Ral) is m-adically complete by taking M = R™ in 5.13. Moreover, the Frobenius induces an
isomorphism (Ral)* /n"(Ral)* (Ral)*/ﬂP”(Ral)* for any integern > 1by 5.22 and 5.23, which implies
that (Rdl)* is perfect. Conversely, assume that (R"l)* is perfect. For any n-torsion element f € (R“l)*,
we have 7!/P" f = 0 for any integer n > 0, which shows that R is almost flat by 5.12. Moreover, it is
clear that the Frobenius induces an isomorphism (R®), /zx(R™), — (R™),/x? (R™),, which shows that
R is almost pre-perfectoid by 5.22 and 5.23. m}
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Proposition 5.25. Let K be a pre-perfectoid field with a pseudo-uniformizer nr, R an Ok -algebra which
is almost flat, R’ the integral closure of R in R[1/x]. If the Frobenius induces an almost injection
R/mR — R/nR, then R — R’ is an almost isomorphism.

Proof. Since R — (R¥), is an almost isomorphism, we may replace R by (R¥), so that we may assume
that R = (RY),, R C R[1/x] by 5.12 and for any x € R[1/x] such that xP € R, then x € R by 5.21
and 5.22. It suffices to show that R is integrally closed in R[1/x]. Suppose that x € R[1/n] is integral

over R. There is an integer N > 0 such that x” is an R-linear combination of 1, x, . .. ,xN for any r > 0.
Therefore, there exists an integer k > 0 such that 78x” € R for any r > 0. Taking r = p", we get
x € Nypso T, 'R = (RY), = R by 5.8, which completes our proof. O

Lemma 5.26. Let R be a ring, n a nonzero divisor of R, R the n-adic completion of R, ¢ : R[1/n] —
R[1/x] the canonical morphism. Then, o' (x"R) = n"'R for any integer n.

Proof. Remark that R is also n-torsion free by 5.20. Take an element x/7% of R[1/x] (where x € R,
k > 0) such that ¢ (x/7%) = 2™y for some y € R. After enlarging k, we may assume that k +n > 0. Thus,
we deduce from the canonical isomorphism R/7**"R — R / 7k R that x € 7%*"R, which completes
the proof. O

Lemma 5.27. Let K be a pre-perfectoid field with a pseudo-uniformizer nr, R an Ok -algebra such that
its m-adic completion R is almost flat (resp. flat) over Og, R[n*] the R-submodule of elements of R
killed by some power of n. Then, (R[x®])" is almost zero (resp. zero) and the canonical morphism
R— (R/R[x®])" is surjective and is an almost isomorphism (resp. an isomorphism,).

Proof. The exact sequence 0 — R[n®] — R — R/R[n*] — 0 induces an exact sequence of the
m-adic completions

0 —— (R[x°])" —= R —— (R/R[x™])" —=0, (5.27.1)

since R/R[n*] is flat over Ok ([Sta23, 0315]). As R[7r ] is almost zero (resp. zero) by assumption
(5.12), the canonical morphism R[7*]¥ — RY (resp. R[7r ] — R) factors through 0, and thus so is
the morphism (R[7*])"* — R (resp. (R[x®])" — R). The conclusion follows from the exactness of
Equation (5.27.1). |

Lemma 5.28. Let K be a pre-perfectoid field. Given a commutative diagram of Ok -algebras

B—%.p (5.28.1)

AL a

we denote by C (resp. C’) the integral closure of A in B (resp. of A’ in B’). Assume that f and g are
almost isomorphisms. Then, the morphism C — C’ is an almost isomorphism.

Proof. Since C — C’ is almost injective as g is, it remains to show the almost surjectivity. For any

€ € mg and x” € C’ with identity x"" +a;1_1)c’"‘1 +- +a1x +a0 = 0in B’, where a - a(') €A,
there exist a,_1,...,a0 € A and x € B such that f(a;) = €""a; (0 < i < n) and g(x) = ex’. Thus,
g(x™ + ap_1x" ' + - -ax + ap) = 0. Since g is almost injectlve, we see that ex € C. It follows that
C — ('’ is almost surjective. O

Proposition 5.29. Let K be a pre-perfectoid field with a pseudo-uniformizer nr, A an Ok -algebra such
that its m-adic completlon A is almost flat over Og. We denote by B (resp. B’) the mtegral closure of A

in A[1/x] (resp. ofA in A[l/7r]) Then, the canonical morphism of n-adic completions B — B’ isan
almost isomorphism of Ok -algebras.
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Proof. We take a system of p*-th roots (7% )x >0 of 7 up to units (5.4). By 5.27 and 5.28, we can replace
A by its image A/A[n%] in A[1/x] so that we may assume that A is 7-torsion free (and thus so is A).
Let ¢ : A[1/n] — A[1/n] be the canonical morphism. It suffices to show that ¢ induces an almost
isomorphism B/n"B — B’/x" B’ for any n > 0.

For any element x’ € B’, there exists » > 0 such that 7" x'P "€ A for any k > 0. We take an element

i -~ k ¢~
Xki € A such that p(xg;) —n"x'P € 7P A fori = 0, k. Thus, ga(xfo) - go(ﬂ’(pk’l)xkk) e P A. By

K c k_ .
5.26, we see that xy, Ja"(P=D _ xip € n” A. In particular, (xko/n;(p D)P* € A, which implies that

K _ -
xko/nr(p D ¢ B. Notice that tp(xk()/ﬂ;(p Dy (n/my] Yy’ e a7 (P* DA, Since k is an arbitrary

positive integer, we see that B/n"B — B’/n" B’ is almost surjective.

For any element x € B such that ¢(x/n™) € B’, there exists r > 0 such that ﬂ’go(x/n")l’k € A for any
k > 0. We take y € A such that nrgo(x/ﬂ")pk —p(y) € nA, and then we see that 7" (x/n”)Pk —-yenA
by 5.26. In particular, (x/z;” k_r)Pk € A, which implies that x/7;” ™" € B. Since k is an arbitrary
positive integer, we see that B/n"B — B’/n" B’ is almost injective. O

Corollary 5.30. Let K be a pre-perfectoid field with a pseudo-uniformizer nr, R an Ok -algebra which is
almost pre-perfectoid, R’ the integral closure of R in R[1/x]. Then, the morphism of w-adic completions
R — R’ is an almost isomorphism. In particular, R’ is also almost pre-perfectoid.

Proof. We consider the following commutative diagram
—— R ——
where R” is the integral closure of R in R[1/x]. Since R — R” is an almost isomorphism by 5.25,

R” is also perfectoid. The conlusion follows from the fact that R’ — R” is an almost isomorphism by
5.29. O

— > R[4] (5.30.1)

>U)<7%

Theorem 5.31 (Tilting correspondence [Schl2, 5.2, 5.21]). Let K be a perfectoid field, n a pseudo-
uniformizer of K dividing p with a p-th root 7ty up to a unit (5.4).

(1) The functor O?} -Perf — (Ok /n)¥-Perf, R — R/nR, is an equivalence of categories.
(2) The functor O;‘;b-Perf — (Ogs/7)-Perf, R — R/n"R is an equivalence of categories, and the
unctor (O /7)) -Perf — O3 -Perf, R — R’ is a quasi-inverse.
f ( K Kb q
(3) Let R be a perfectoid O%-algebm with tilt R”. Then, R is isomorphic to Oil for some perfectoid
eld L over K if and only if R is isomorphic to O, for some perfectoid field L’ over K.
1% L )4

In conclusion, we have natural equivalences

O -Perf — (Ok [m)"-Perf — (O, /n")"!-Perf «— O, -Perf, (5.31.1)

where the middle equivalence is given by the isomorphism (5.15.4) O /nb(’)Kb — Ok /nOk. We
remark that the natural isomorphisms of the equivalence in (2) are defined as follows: For a perfectoid
O;‘}b-algebra R, the natural isomorphism R — (R/z”R)" is induced by the homomorphism of Q-
algebras R, — (R./n"R.)" sending x to (- - ,x'/P*, x!/P_x) (notice that R, is perfect by 5.24); for a
perfectoid (O /n”)¥-algebra R, the natural isomorphism R’ /7”R” — R is induced by the projection
on the first component (R,)” — R, of O xv-algebras (cf. [Sch12, 5.17]). Consequently, for a perfectoid

https://doi.org/10.1017/fms.2024.26 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.26

26 T. He

(9}1 -algebra R, the morphism of (Og» /7)) = (O [n)¥-algebras
R*/n°R* — R/#R (5.31.2)

induced by the projection on the first component is an isomorphism.

Proposition 5.32. Let K be a perfectoid field with a pseudo-uniformizer n of K dividingp, B — A — C
a diagram of perfectoid O%-algebms. Then, the n-adically completed tensor product B®4C is also
perfectoid.

Proof. We follow closely the proof of [Sch12, 6.18]. Firstly, we claim that (B ®4 C)/x is flat over
(O /m). Since (B ®4 C)/n = (B” ®4 C”)/x", it suffices to show the flatness of B® ® ,, C” over
(’)?}b, which amounts to say that the submodule of 7-torsion elements of (B, )" ®(a,) (C.)" is almost
zero as BP ® b CP = ((B,)® ®(a,) (COMAIf £ e (B,)® ®(a,) (C.,)" is a #°-torsion element, then by
perfectness of (B.)" ®(a,)b (C.)?, we have (7°)!/P" f = 0 for any n > 0, which proves the claim.

Thus, (B ®4 C)/r is a perfectoid (O /m)¥-algebra. It corresponds to a perfectoid (’)"}}-algebra D
by 5.31 and it induces a morphism B®4C — D by universal property of m-adically completed tensor
product. We use dévissage to show that (B®4 C)/x"" — D /x" is an isomorphism for any integer n > 0.
By induction,

(B®s C)/n"" — > (B®s C) /7" — = (B®4 C)/Jmr —=0 (5.32.1)
0 D/r" z D /" D/x 0

the vertical arrows on the left and right are isomorphisms. By snake’s lemma in the abelian category
(’)'}‘<1 -Mod ([Sta23, 010H]), we know that the vertical arrow in the middle is also an isomorphism. In
conclusion, B®,C — D is an isomorphism, which completes the proof. O

Corollary 5.33. Let K be a pre-perfectoid field, B «— A — C a diagram of Ok -algebras which are
almost pre-perfectoid. Then, the tensor product B ® 4 C is also almost pre-perfectoid.

Proof. Since a* commutes with arbitrary limits and colimits (5.5), we have (B®,C)* = Bi® Tl C: al
which is perfectoid by 5.32. O

Lemma 5.34. Let K be a perfectoid field, O — V an extension of valuation rings of height 1. Then,
there exists an extension of perfectoid fields K — L and an extension of valuation rings V. — Oy, over
Ok.

Proof. Let 1 be a pseudo-uniformizer of K, E the fraction field of V, E an algebraic closure of E, V the
integral closure of V in E. Let m be a maximal ideal of V. It lies over the unique maximal ideal of V as
V > Vis integral. Setting W = ‘_/m, according to [Bou06, VI.§8.6, Prop.6], V — W is an extension of
valuation rings of height 1. Since W is integrally closed in the algebraically closed fraction field E, the
Frobenius is surjective on W/pW. Thus, the fraction field of W is a pre-perfectoid field over K. Passing
to completion, we get an extension of perfectoid fields K — L by 5.2. O

Theorem 5.35 (cf. [BS22, 8.10]). Let K be a pre-perfectoid field with a pseudo-uniformizer nt dividing
p, R — R’ a homomorphism of Ok -algebras which are almost pre-perfectoid. If Spec(R’) — Spec(R)
is a w-complete arc-covering, then for any integer n > 1, the augmented Cech complex

0> R/a" > R'/n" - (R"® R')/n" — --- (5.35.1)

is almost exact.
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Proof. We follow closely to the proof of [BS22, 8.10]. After replacing Ok, R, R’ by their m-adic
completions, we may assume that K is a perfectoid field and that R* and R"* are perfectoid O% -algebras
such that Spec(R’) — Spec(R) is a m-complete arc-covering by 3.4.(6). Moreover, since R — (R™), is
an almost isomorphism, after replacing R by (R%), and R’ by (R"), ®& R’, we may assume further that
R = (RY),. Then, the Frobenius induces an isomorphism (resp. almost isomorphism) R/7| R —R /7R
(resp. R’/m R’ — R’/nR’) by 5.22, where | is a p-th root of 7 up to a unit (5.4). Thus, we see that
the projection on the first component induces an isomorphism (note that R = (R™), is n-torsion free by
5.12)

R’/x°R® = R/xR (5.35.2)
and an almost isomorphism (by the preceding isomorphism for (R"*), or by Equation (5.31.2))
R’/x"R" — R'[nR’. (5.35.3)

In particular, Spec(R" /) — Spec(R"/z") is an arc-covering as Spec(R’ /) — Spec(R/x) is so.

On the other hand, since the localization functor @* commutes with arbitrary limits and colimits
(5.5), (@;R’)al = @JI;alR’al is still a perfectoid O%-algebra by 5.32 for any k > 0. In particular, @;R’
is almost flat over Ok . Then, by dévissage, it suffices to show the almost exactness of the augmented
Cech complex when n = 1, that is, the almost exactness of

0— R"/n* = R”/n" = (R” @p» R") /7" — -+ . (5.35.4)

We claim that the natural morphism X = Spec(R"”) [[ Spec(R"[1/x°]) — Y = Spec(R") is an arc-
covering. Firstly, we see that X — ¥ = Spec(R”/2") | Spec(R"[1/7"]) is surjective as we have shown
that Spec(R" /) — Spec(R"/x”) is an arc-covering. Therefore, we only need to consider the test map
Spec(V) — Y, where V is a valuation ring of height 1. There are three cases:

(1) If #° is invertible in V, then we get a natural lifting R*[1/2°] — V.

(2) If 7 is zero in V, then R” — V factors through R"/7” — R/, and thus there is a lifting
R /n® - R'|m — W.

(3) Otherwise, Ok, — V is an extension of valuation rings. After replacing V by an extension
(5.34), we may assume that V[1/z"] is a perfectoid field over K with valuation ring V. By tilting
correspondence 5.31, it corresponds to a perfectoid field over K with valuation ring vH, together
with an Ok -morphism R — % by 5.9. Since R — R’ gives a m-complete arc-covering, there is an
extension V# — W of valuation rings of height 1 and a lifting R” — W. After replacing W by an
extension (5.34), we may assume that W[1/x] is a perfectoid field over K with valuation ring W.
By tilting correspondence 5.31 and 5.9, we get a lifting R — W’ of R® — V.

Now, we apply 4.10 to the arc-covering X — Y of perfect affine F),-schemes. We get an exact augmented

Cech complex

1 1 1
0— R = R"xR'[=] = (R" X R°[=]) &g (R* X R'[=]) — -+ . (5.35.5)
T T T

Since each term is a perfect [F),-algebra, the submodule of nP-torsion elements is almost zero, in other
words, each term is almost flat over Og». Modulo n'b, we get the almost exactness of Equation (5.35.4),
which completes the proof. O

Definition 5.36. Let K be a pre-perfectoid field, A — B a morphism of Ok -algebras.

(1) We say that A — B is almost étale if A* — B* is an étale morphism of O% -algebras in the sense
of [GRO3, 3.1.1.Giv)].
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(2) We say that A — B is almost finite étale if it is almost étale and if B! is an almost finitely presented
A%-module in the sense of [GR03, 2.3.10] (cf. [Sch12, 4.13], [AGT16, V.7.1]).

We remark that in 5.36 if A — B is a morphism of K-algebras, then it is almost étale (resp. almost
finite étale) if and only if it is étale (resp. finite étale).

Proposition 5.37. Let K be a pre-perfectoid field, € the full subcategory of the category of Ok -algebras
formed by those Ok -algebras which are almost pre-perfectoid.

(1) The subcategory € is stable under taking colimits and products.
(2) Let A — B be an almost étale morphism of Ok -algebras. If A € Ob(®), then B € Ob(%).

Proof. Let  be a pseudo-uniformizer of K dividing p with a p-th root 7| up to a unit (5.4).

(1) The subcategory ¥ is stable under taking tensor products by 5.33. Let (R)1ea be a directed system
of objects in € and R = colimep R,. It is clear that the Frobenuis induces an a almost isomorphism
R/mR — R/nR. On the other hand, R is the m-adic completion of colim ep R,. Since the latter is
almost flat over O so is R (5.20). Thus, ¥ is stable under taking colimits.

Let (Ry),en be a set of objects in €. Since R/ R = [] 1ea Ra/7 R4, the Frobenius induces an almost
isomorphism R/m1R — R/nR. Moreover, the submodule of r-torsion elements of R=11 1eA R, is
almost zero, which implies that R is almost flat over Og (5.12). We conclude that € is stable under
taking products.

(2) Since B is almost flat over A, it is almost flat over Ok and thus B is almost flat over O z (5.20).
Since B is almost étale over A, the map B/m B — B/nB induced by the Frobenius is almost isomorphic
to the base change of the map A/mjA — A/nA by A — B ([GRO3, 3.5.13]), which completes the
proof. O

Lemma 5.38. Let K be a pre-perfectoid field with a pseudo-uniformizer nr, R an Ok -algebra which is
almost flat and almost pre-perfectoid, R’ an R-algebra which is almost finite étale. Then, the integral
closure of R in R’ is almost isomorphic to both R’ and the integral closure of R in R'[1/x].

Proof. Notice that R’ is also almost flat and almost pre-perfectoid by 5.37. Since R’ is almost finitely
generated over R as an R-module, the elements of mg R’ are integral over R (see [GRO3, 2.3.10]).
Thus, the integral closure of R in R’ is almost isomorphic to R’. On the other hand, since R’ is almost
isomorphic to its integral closure in R’[1/x] by 5.25, the integral closure of R in R’ is almost isomorphic
to the integral closure of R in R’[1/x] by 5.28. O

5.39. We recall some basic definitions about affinoid algebras used in [Sch12] in order to prove the
almost purity theorem 5.41 by reducing to loc.cit. Let K be a complete valuation field of height 1. A
Tate K-algebra is a topological K-algebra R whose topology is generated by the open subsets a’Rg for
a subring Rg € R and any a € K*. We denote by R° the subring of power-bounded elements of R,
which is thus an Ok -algebra. An affinoid K-algebra is a pair (R, R*) consisting of a Tate K-algebra R
and a subring R* of R° which is open and integrally closed in R. A morphism of affinoid K-algebras
(R,R*) = (R’,R’*) is a morphism of topological K-algebras f : R — R’ with f(R*) € R’*. Such
a morphism is called finite étale in the sense of [Sch12, 7.1. (i)] if R’ is finite étale over R endowed with
the canonical topology as a finitely generated R-module and if R’* is the integral closure of R* in R’.

For a perfectoid field K and an affinoid K-algebra (R, R*), the inclusion R* C R° is an almost
isomorphism. Indeed, for any € € mg and any power-bounded element x € R°, we have (ex)" € R* for
n € N large enough as R* is open. Thus, ex € R* as R* is integrally closed. We remark that (R, R*)
is perfectoid in the sense of [Sch12, 6.1] if and only if R° is bounded and almost perfectoid over Ok
([Sch12, 5.5, 5.6]).

5.40. There is a typical example for constructing affinoid algebras from commutative algebras (see
[And18, Sorite 2.3.1]). Let K be a complete valuation field of height 1 with a pseudo-uniformizer x, R
a flat Ok -algebra. The K-algebra R[1/n] endowed with the r-adic topology defined by R is a Tate K-
algebra. Let R be the integral closure of R in R[1/x]. It is clear that any element of Ris power-bounded.
Thus, (R[1/7], R) is an affinoid K-algebra.
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Let S be a finite R[1/nr]-algebra endowed with the canonical topology. More precisely, the topology
can be defined as follows: We take a finite R-algebra R’ contained in S which contains a family of
generators of the R[1/n]-algebra S; then the canonical topology of S = R’[1/x] is the m-adic topology
defined by R’ (which is independent of the choice of R’). Let R be the integral closure of R” in R’[1/x],
which is also the integral closure of R in R’[1/x]. We remark that (R[1/x],R) — (R’[1/x],R’) is a
finite étale morphism of affinoid K-algebras if and only if R[1/7] — R’[1/x] is finite étale.

Theorem 5.41 (Almost purity, [Sch12, 7.9]). Let K be a pre-perfectoid field with a pseudo-uniformizer
7, R an Ok -algebra which is almost pre-perfectoid, R’ the integral closure of R in a finite étale R[1/n]-
algebra.

(1) The Ok -algebra R’ is almost pre-perfectoid and the nt-adic completion R’ is almost finite étale over
R.
(2) IfR is n-torsion free, then R’ is almost finite étale over R.

Proof. (1) By 5.27, we can replace R by its image R/R[7*] in R[1/x] (which does not change R’) so
that we may assume that R is 7-torsion free (and thus so is R).LetS (resp. S’) be the integral closure of
R in R[1/x] (resp. of R" ®r Rin R/ " ®r R[1/x]). Then, we obtain a finite étale morphism of affinoid
Kalgebras (R[1/x],S) = (R’ ®& R[l/n] S’) by 5.40.

Since R is almost perfectoid, R — S is an almost isomorphism (5.25). Thus, § is bounded and
almost perfectoid over Og. In other words, (ﬁ [1/x],S) is a perfectoid affinoid K -algebra. Then, by

almost purity ([Sch12, 7.9.(iii)]), the Og-algebra S” is almost perfectoid (thus §" — S’ is an almost
isomorphism by definition) and almost finite étale over S. R
On the other hand, the two O -algebras R” and R’ ®g R have the same n-adic completion R’. Thus,

the m-adic completions of the 1ntegral closures of R’ and R’ ®g Rin R [1/x] and R’ ®r R[1/7r]
respectively, are almost isomorphic to that of R’ in R’[ /7] by 5.29. In other words, R’ - § isan
almost isomorphism. In conclusion, R’ is almost pre-perfectoid, and R’ is almost finite étale over R.
(2) As R is torsion free, we can proceed the same argument as above and use the same notation.
We firstly consider a special case where (R, 7R) is a Henselian pair. Recall that the category of almost
O -algebras finite étale over R¥ (resp. over R¥) is equivalent to that over (R/7R)¥ via the base
change functor ([GRO03, 5.5.7.(iii)]). Hence, there exists an R-algebra R”” which is almost finite étale

over R such that (R” ®g R)™ is isomorphic to I?’al, On the other hand, recall that the category of finite
étale R[1/m]-algebras is equivalent to the category of finite étale R[1/x]- -algebras via the base change
functor ([GRO3, 5.4.53]). Notice that R”[1/7] ®r R = R’[l/ﬂ] by the construction of R” and that

R'[1/7]®r R=FR [1/n] by the almost isomorphisms R—>8 s (with the same notation as above).
Hence, there is an isomorphism R”[1/x] = R’[1/x]. By 5.38, we see that R” is almost isomorphic to
R’, which completes the proof in the special case.

In general, let (T, nT) be the Henselization of the pair (R, 7R). Then, T’ = T ®g R’ is the integral
closure of T in a finite étale T[1/x]-algebra (see 3.17, 3.18). By the special case above, we see that
T’ is almost finite étale over T. Notice that R — R[1/x] x T is faithfully flat. By almost faithfully flat
descent [AGT16, V.8.10], we see that R’ is almost finite étale over R. O

6. Brief review on covanishing fibred sites
We give a brief review on covanishing fibred sites, which are developed by Abbes—Gros [AGT 16, VI].

6.1. A fibred site E/C is a fibred category = : E — C whose fibres are sites such that for a cleavage
and for any morphism f : 8 — « in C, the inverse image functor f* : E, — Eg gives a morphism of
sites (so that the same holds for any cleavage) (see [SGA 41, VI.7.2]).

Let x be an object of E over @ € Ob(C). We denote by

i Ey > E 6.1.1)

https://doi.org/10.1017/fms.2024.26 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.26

30 T. He

the inclusion functor of the fibre category E, over « into the whole category E. A vertical covering of
x is the image by (¢, of a covering family {x,, — x}menm in E,. We call the topology generated by all
vertical coverings the total topology on E (see [SGA 4y, VI.7.4.2]).

Assume further that C is a site. A Cartesian covering of x is a family {x,, — x},en of morphisms
of E such that there exists a covering family {a,, — a},en in C with x,, isomorphic to the pullback of
x by a,, — « for each n.

Definition 6.2 [AGT16, VI.5.3]. A covanishing fibred site is a fibred category E/C endowed with a
normalized cleavage ([SGA 1, VL.7.1]), a topology on C and a topology on the fibre category E, for
any @ € Ob(C) satisfying the following conditions:

(1) Fibred products are representable in C.

(2) Finite limits are representable in the fibre category E,, for any @ € Ob(C).

(3) For any morphism f : 8 — « in C, the inverse image functor f* : E, — Eg is left exact and
continuous (see 2.5).

We associate to E the covanishing topology which is generated by all vertical coverings and Cartesian
coverings. We simply call a covering family for the covanishing topology a covanishing covering.

Definition 6.3. Let £/C be a covanishing fibred site. We call a composition of a Cartesian covering
followed by vertical coverings a standard covanishing covering. More precisely, a standard covanishing
covering is a family of morphisms of E

{xnm - x}neN,meM,, (631)

such that there is a Cartesian covering {x, — x},en and for each n € N a vertical covering {x,,,, —
Xn }mEMn-

Proposition 6.4 [AGT16, VI.5.9]. Let E/C be a covanishing fibred site. Assume that in each fibre any

object is quasi-compact, then a family of morphisms {x; — x};c; of E is a covanishing covering if and
only if it can be refined by a standard covanishing covering.

6.5. Let E/C be a fibred category. Fixing a cleavage of E/C, to give a presheaf F on E is equivalent
to give a presheaf F, on each fibre category E, and transition morphisms F, — fPFg for each
morphism f : f§ — « in C satisfying a cocycle relation (see [SGA 4y, VI.7.4.7]). Thus, we simply
denote a presheaf F on E by

F = (Fa)acov(c)> (6.5.1)

where F,, = £, F is the restriction of F on the fibre category E,. If E/C is a fibred site, then F is a
sheaf with respect to the total topology on E if and only if F, is a sheaf on E, for each a ([SGA 4y,
V1.7.4.7]). Moreover, we have the following description of a covanishing sheaf.

Proposition 6.6 [AGT16, V1.5.10]. Let E/C be a covanishing fibred site. Then, a presheaf F on E is a
sheaf if and only if the following conditions hold:

(V) The presheaf Fo = (5, F on E, is a sheaf for any a € Ob(C).
(c) For any covering family {fi : a; — a}icr of C, if we set a;j = a; Xo @j and fij : ajj — a, then the
sequence of sheaves on E 4,

Foo | [ fiFa 3 ] fisoFanss (6.6.1)

iel i,jel
Is exact.
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7. Faltings ringed sites

7.1.Let Y — X be a morphism of U-small coherent schemes, and let Ey_,x be the category of
morphisms V — U of U-small coherent schemes over the morphism ¥ — X, namely, the category of
commutative diagrams of coherent schemes

Vv U

Y

— X.
Given a functor I — Ey_,x sending i to V; — U;, if lim V; and lim U; are representable in the category
of coherent schemes, then lim(V; — U;) is representable by lim V; — lim U;. We say that a morphism
(V' > U") — (V — U) of objects of Ey_,x is Cartesian if V' — V Xy U’ is an isomorphism. It is
clear that the Cartesian morphisms in Ey _,x are stable under base change.
Consider the functor

_

(7.1.1)

¢" Ey_x — Sch%’(h, V-oU —U. (7.1.2)

The fibre category over U is canonically equivalent to the category Schj?}‘y of coherent Uy -schemes,
where Uy =Y Xx U. The base change by U’ — U gives an inverse image functor Sch??}‘y — Schj‘l’}‘, ,
Y

which endows Ey _,x / Sch%’(h with a structure of fibred category. We define a presheaf on Ey _,x by

BV - U)=T(UY,0yv), (7.1.3)

where UV is the integral closure of U in V.

Definition 7.2. Let Y — X be a morphism of coherent schemes. A morphism (V' — U’) — (V — U)
in Ey_, x is called érale if U’ — U is étale and V' — V Xy U’ is finite étale.

Lemma 7.3. Let Y — X be a morphism of coherent schemes, (V"' — U"’) LN (V' - U L (V-
U) morphisms in Ey _x.

(1) Iffis étale, then any base change of f is also étale.
(2) Iffand g are étale, then f o g is also étale.
(3) Iffand f o g are étale, then g is also étale.

Proof. It follows directly from the definitions. O

7.4. LetY — X be a morphism of coherent schemes. We still denote by X (resp. Xre) the site formed

by coherent étale (resp. finite étale) X-schemes endowed with the étale topology. Let Ef}_)x be the full

subcategory of Ey_,x formed by V — U étale over the final object Y — X. It is clear that Ei’}_}x is
stable under finite limits in Ey _,x. Then, the functor (7.1.2) induces a functor

" ES L — Xg, (Vo U)— U, (7.4.1)

which endows E'}é}_)x/ Xg with a structure of fibred sites, whose fibre over U is the finite étale site

Uy r¢. We endow E;",t_) « With the associated covanishing topology, that is, the topology generated by
the following types of families of morphisms

W) {(Vsy > U) = (V> U)}mem, where M is a finite set and [[,,,cps Vin — V is surjective;
©) {(Vxy U, > U,) = (V- U)}lpen, wWhere N is a finite set and [ [,,cny U, — U is surjective.

It is clear that any object of E;”,tH « 18 quasi-compact by 6.4. We still denote by B the restriction of the
presheaf % on Ey_,x to E_ if there is no ambiguity.
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coh

Lemma 7.5. Let Y — X be a morphism of coherent schemes. Then, the presheaf on Sch Y

to T(XY', Oyy') is a sheaf with respect to the fpqc topology ([Sta23, 022A]).

sending Y’

Proof. We may regard Oyy- as a quasi-coherent Ox-algebra over X. It suffices to show that for a finite
family of morphisms {Y; — Y};¢; with Y’ = [[,; ¥; faithfully flat over Y, the sequence of quasi-
coherent Ox -algebras

0——s OxY —— OXY/ 3 OXY’XyY’ (751)
is exact. Thus, we may assume that X = Spec(R) is affine. We set A9 = I'(Y,Oy), A} = T'(Y’, Oy-),

Ay = T(Y' Xy Y/, Oyixyy), Ry = T(XY,0xv), Ri = T(X¥',Oxy), Ry = T(XY"Y, Oyyryrr).
Notice that R; is the integral closure of R in A; fori =0, 1,2 ([Sta23, 035F]). Consider the diagram

OHRO 4>R1 :;Rz (752)

L

04>A04>A1:A2.

We see that the vertical arrows are injective and the second row is exact by faithfully flat descent. Notice
that Rp = Ap N R, since they are both the integral closure of R in Ag as Ag € A;. Thus, the first row is
also exact, which completes the proof. O

P;ol}osition 7.6. Let Y — X be a morphism of coherent schemes. Then, the presheaf B on B}, is a
sheaf.

Proof. Tt follows directly from 6.6, whose first condition holds by 7.5 and whose second condition holds
by 3.17 (cf. [AGT16, I11.8.16]). m]

Definition 7.7 [Fal02, page 214], [AGT16, VI.10.1]. We call (Eié}_)X, @) the Faltings ringed site of the
morphism of coherent schemes ¥ — X.

Itis clear that the localization (Ef}H )/ (vou) of Eé‘H x atanobjectV — U is canonically equivalent
to the Faltings ringed site Efﬁﬂu of the morphism V — U by 6.4 (cf. [AGT16, VI.10.14]).

7.8. Let Y — X be a morphism of coherent schemes. Consider the natural functors

gt ES L — Y, (Vo U)—V, (7.8.1)
B Yie — EY Ly, Vi— (V> X), (7.8.2)
o X — ES ., Ur— (Y xx U — U). (7.8.3)

They are left exact and continuous (cf. [AGT16, VI 10.6, 10.7]). Then, we obtain a commutative diagram
of sites associated functorially to the morphism Y — X by 2.5,

Ye (7.8.4)
SN
Yiee < ES_ —— X

where p : Yg¢ — Yy is defined by the inclusion functor, and the unlabelled arrow Yg — Xg is induced
by the morphism ¥ — X. Moreover, if Ox,, denotes the structural sheaf on X¢ sending U to I'(U, Oy),
then o+ actually defines a morphism of ringed sites

o (ES ., B) — (Xe, Ox,). (7.8.5)

We will study more properties of these morphisms in the remaining sections.
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Lemma 7.9. Let X be the spectrum of an absolutely integrally closed valuation ring, Y a quasi-compact
open subscheme of X. Then, for any presheaf F on Eié/t—»(’ we have FA(Y — X) = F(Y - X). In
particular, the associated topos ofEf}_)x is local ([SGA 4;;, VI.8.4.6]).

Proof. Notice that Y is also the spectrum of an absolutely integrally closed valuation ring by 3.11.(1)
and that absolutely integrally closed valuation rings are strictly Henselian. Thus, any covering of ¥ — X
in E;”}_)X can be refined by the identity covering by 6.4. We see that 72(Y — X) = F(Y — X) for any
presheaf F. For the last assertion, it suffices to show that the section functor I'(Y — X, —) commutes
with colimits of sheaves. For a colimit of sheaves F = colim JF;, let G be the colimit of presheaves
G = colim F;. Then, we have F = G* and I'(Y — X, F) =TI'(Y — X,G) =colimI'(Y — X, F;). O

7.10. Let (Y3 — X3)aea be a U-small directed inverse system of morphisms of U-small coherent
schemes with affine transition morphisms Yy — Y, and Xy — X3 (4 = ). Weset (Y — X) =
limgep(Ya — X,). We regard the directed set A as a filtered category and regard the inverse system
(Y4 — X2).1ea as a functor ¢ : A°° — E from the opposite category of A to the category of morphisms
of U-small coherent schemes. Consider the fibred category Ef’; — A°P defined by ¢ whose fibre category

over A is E%_} x, and whose inverse image functor ¢}, , : E%_} x, E%’*Xi associated to a morphism
A’ — Ain AP is given by the base change by the transition morphism (Yy — Xy) — (Y3 — X))
(cf. [AGT16, VLI1.2]). Let ¢} : Ef _, — E§_ | be the functor defined by the base change by the
transition morphism (¥ — X) — (Y3 — X)).

Recall that the filtered colimit of categories (E%_} X, )aea is representable by the category 53 whose

objects are those of Ef} and whose morphisms are given by ([SGA 4y, VI 6.3, 6.5])

Hompga ((V - U), (V' -» U')) = colim Homg« (V" — U"), (V' = U")), (7.10.1)
—¢ (V"'=U")—(V-U) ¢
Cartesian
where the colimit is taken over the opposite category of the cofiltered category of Cartesian morphisms
with target V. — U of the fibred category Ef‘; over A° (distinguish with the Cartesian morphisms
defined in 7.1). We see that the functors ¢ induces an equivalence of categories by [EGA 1V, 8.8.2,
8.10.5] and [EGA V4, 17.7.8]

Efg — E . (7.10.2)
Recall that the cofiltered limit of sites (E% X, )aen is representable byE‘z endowed with the coarsest
topology such that the natural functors E‘g_}xl — E:; are continuous ([SGA 4y;, VI.8.2.3)).

Lemma 7.11. With the notation in 7.10, for any covering family W = {fy : (Vx — Ur) — (V —

U)lrek in E?—»x with K finite, there exists an index g € A and a covering family Wy, = {fxa, :

Vikay, = Urkay) = (Vay, = Upy)tiek in E% X, such that fy is the base change of fia, by the
0 0

transition morphism (Y — X) — (Ya, = Xa,)-

Proof. There is a standard covanishing covering W’ = {gnm : (V,,,, = U;) = (V = U)}neN.mem, in
E‘;’,‘_> « with N, M), finite, which refines U by 6.4. The equivalence (7.10.2) implies that there exists an
index 4; € A and families of morphisms 11/'11 ={gnma, : (Vr’lm/11 - Ur,ml) — (Va, = Ux) }neN mem,,
(resp. Wa, = {fxa, : (Via, = Ura,) = (Va, = Ux)) rek) in E%l_)XAI such that g,,,,, (resp. fi) is the
base change of guma, (resp. fia,) by the transition morphism (¥ — X) — (Y, — Xy,) and that
refines Wy, . For each A > Ay, let guma = (V) — U’ ) — (Vo — Uy) (resp. fra : (Via — Ura) —
(Va — U,)) be the base change of g4, (resp. fia,) by the transition morphism (Y — X3) — (Yy, —
Xa,). Since the morphisms [[,ey Uy, — U and [[,,ep, Ve — V Xu U, are surjective, there exists
an index A9 > A; such that the morphisms [, cp U;MO — Uy, and [1,,ep, Vémﬂo — Va, Xuy, Ur/ulo
are also surjective by [EGA V3, 8.10.5], that is, ZIle = {8nmiy fneN,mem, is a standard covanishing

. Thus, Wy, = {fia, tkek is a covering family in ES! O

covering in E&! .
g ) Yy, —X2,

Y, O—>X,10
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roposition 7. s .11]. With the notation in 7.10, € represents the limit of sites
Proposition 7.12 [AGT16, VI.11]. With th 1 in 7.10, E()E}Hx 7 he |
(E%—»X,,MEA' and B = colim e ga/‘llé.

Proof. The first statement is proved in [AGT16, VI.11.3]. It also follows directly from the discussion
in 7.10 and 7.11. For the second statement, notice that colimcp t,o;]% = (colimyep @a,pB)? ([Sta23,
(')()W}]). It suffices to show that B(V — U) = colim/le/\(tp,l,pé)(v — U) for each object V. — U
of E?}HX. It follows from the equivalence (7.10.2) that there exists an index 19 € A and an object
Viy = Uy, of E%OHXA such that V. — U is the base change of V;, — U,, by the transition
morphism. For each A > Ay, let V3 — U, be the base change of V,;, — U,, by the transition morphism
(Ya — Xa) — (Ya, — Xa,). Then, we have COlim/lgA((p,Lpg)(V — U) = colimyep @(Vﬂ — U
by [SGA 4y, VI 8.5.2, 8.5.7]. The conclusion follows from @(V — U) = colimyep @(Vﬂ — U,) by
3.18. O

Definition 7.13. A morphism X — S of coherent schemes is called pro-étale (resp. pro-finite étale) if
there is a directed inverse system of étale (resp. finite étale) S-schemes (X3)1ea With affine transition
morphisms such that there is an isomorphism of S-schemes X = lim,cp X;. We call such an inverse
system (X)),ep & pro-étale presentation (resp. pro-finite étale presentation) of X over S.

Lemma 7.14. Let X - ¥ i) S be morphisms of coherent schemes.

(1) Iffis pro-étale (resp. pro-finite étale), then f is flat (resp. flat and integral).

(2) Any base change of a pro-étale (resp. pro-finite étale) morphism is pro-étale (resp. pro-finite étale).

(3) Iffand g are pro-étale (resp. pro-finite étale), then so is f o g.

@) Iffand f o g are pro-étale (resp. pro-finite étale), then so is g.

(5) If f is pro-étale with a pro-étale presentation Y = limYg, and if g is étale (resp. finite étale), then
there is an index By and an étale (resp. finite étale) S-morphism gg, : Xg, — Yg, such that g is the
base change of gg, by Y — Yg,.

(6) Let Z and Z' be coherent schemes pro-étale over S with pro-étale presentations Z = lim Z,,
Z' =1lim Z[’;, then

Homg(Z,Z') = lién colim Homs (Za, Zg). (7.14.1)
a

Proof. (1) and (2) follow directly from the definition.

(3) We follow closely the proof of 3.6. Let X = lim X, and Y = lim Yz be pro-étale (resp. pro-finite
étale) presentations over Y and over S, respectively. As Y are coherent, for each «, there is an index S,
and an €tale (resp. finite étale) Yg,-scheme X4, such that X, — Y is the base change of X,p, — Y3,
([EGA 1V3, 8.8.2, 8.10.5], [EGA 1V4, 17.7.8]). For each 8 > B,, let X,3 — Yg be the base change of
Xop, — Y, by Yg — Y. Then, we have X = limqy g>p, Xop by [EGA 1V3, 8.8.2] (cf. 3.6), which is
pro-finite étale over S. For (5), one can take X = X,,.

(6) We have

Homg(Z,Z’) = lién Homs(Z, Zs) = li’én colim Homs(Z,, Zj) (7.14.2)

where the first equality follows from the universal property of limits of schemes, and the second
follows from the fact that Z/, — S is locally of finite presentation ([EGA 1V3, 8.14.2]). For (4), we take
Z = X and Z’ = Y. Then, for each index 8, we have an S-morphism X, — Yg for & big enough,
which is also étale (resp. finite étale). Then, X = lim, Xo = limq g Xo Xy, ¥ is pro-étale (resp. pro-finite
étale) over Y. O

Remark 7.15. A pro-étale (resp. pro-finite étale) morphism of U-small coherent schemes X — S admits
a U-small pro-étale (resp. pro-finite étale) presentation. Indeed, let X = lim,ecp X be a presentation
of X — S. We may regard A as a filtered category with an initial object 0. Consider the category
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€ = x\Xo,erat (resp. € = x\ Xo,re) of affine (resp. finite) étale Xo-schemes which are under X. Notice
that € is essentially U-small and that the natural functor A — %°P is cofinal by 7.14.(6) ([SGA 4,
1.8.1.3]). Therefore, after replacing €°P by a U-small directed set A’, we obtain a U-small presentation
X =limyx-epr X' ([SGA 44, 1.8.1.6]).

Definition 7.16. For any U-small coherent scheme X, we endow the category of U-small coherent
pro-étale (resp. pro-finite étale) X-schemes with the topology generated by the pretopology formed by
families of morphisms

{fi : Ui = U}iex (7.16.1)

such that / is finite and that U = |J f;(U;). This defines a site Xprosc (resp. Xproter), called the pro-étale
site (resp. pro-finite étale site) of X.

It is clear that the localization X,ro¢yu (resp. Xprotstyz) Of Xprogt (resp. Xprofsr) at an object U is
canonically equivalent to the pro-étale (resp. pro-finite étale) site Uprog (resp. Uproter) of U. By definition,
any object in Xprogr (resp. Xprofet) is quasi-compact.

7.17. We compare our definitions of pro-étale site and pro-finite étale site with some other definitions
existing in the literature. But we don’t use the comparison result in this paper.

Let X be a U-small Noetherian scheme. Consider the category of pro-objects pro-Xgs of Xg, that is,
the category whose objects are functors F : A — Xpg with A a U-small cofiltered category and whose
morphisms are given by Hom(F,G) = limgep colimye 4 Hom(F(a), G(B)) for any F : A — Xpg
and G : B — Xz ([Sch13, 3.2]). We may simply denote such a functor F by (X4)qeea. Remark that
limyeq X, exists which is pro-finite étale over X. Consider the functor

pro-Xrse — Xprotéts (Xa)aea — (lyig}‘ Xa» (7.17.1)

which is well defined and fully faithful by 7.14.(6) and essentially surjective by 7.15. Thus, according
to [Sch13, 3.3] and its corrigendum [Sch16], Scholze’s pro-finite étale site Xgmfét has the underlying
category Xprofe and its topology is generated by the families of morphisms

{U; NN Uier, (7.17.2)

where f is a morphism in the category Xprofet, I is finite and [[;c; fi : [;e; Ui — U’ is finite étale
surjective, and there exists a U-small well-ordered directed set A with aleast index 0 and a directed inverse
system of U-small coherent pro-finite étale X-schemes (U’)aea such that U = Uj, U’ = limyep Uy and
that for each A € A the natural morphism U/’[ — limg,<y Ul’l is finite étale surjective (cf. [Ker16, 5.5],
7.14 and [EGA 1V3, 8.10.5.(vi)]). It is clear that the topology of our pro-finite €tale site Xprors; is finer
than that of Xsrofét. We remark that if X is connected, then Xsmfét gives a site-theoretic interpretation of
the continuous group cohomology of the fundamental group of X ([Sch13, 3.7]). For simplicity, we don’t
consider X smfét in the rest of the paper, but we can replace Xprofe by X srofét for most of the statements
in this paper (see [Ker16, 6]).

7.18. Let X be a U-small scheme. Bhatt-Scholze’s pro-étale site XB5_ has the underlying category of

proét
U-small weakly étale X-schemes and a family of morphisms {f; : ¥; — Y};¢; in XI]f’r(S)él is a covering if
and only if for any affine open subscheme U of Y, there existsamap a : {1,...,n} — [ and affine open

subschemes U; of Y,y (j = 1,...,n)such that U = U;‘zl fa(jy(U;) (IBS15,4.1.1], cf. [Sta23, 0989]).
Remark that a pro-étale morphism of coherent schemes is weakly étale by [BS15, 2.3.3.1]. Thus, for a

coherent scheme X, Xpo¢ is a full subcategory of Xgrgét.

Lemma 7.19. Let X be a coherent scheme. The full subcategory Xprost of X, ;?rcS)ét is a topologically gen-
erating family, and the induced topology on Xpoe coincides the topology defined in 7.16. In particular,
the topoi of sheaves of V-small sets associated to the two sites are naturally equivalent.
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Proof. For a weakly étale X-scheme Y, we show that it can be covered by pro-étale X-schemes. After
replacing X by a finite affine open covering and replacing Y by an affine open covering, we may assume
that X and Y are affine. Then, the result follows from the fact that for any weakly étale morphism of
rings A — B there exists a faithfully flat ind-étale morphism B — C such that A — C is ind-étale by
[BS15, 2.3.4] (cf. [BS15, 4.1.3]). Thus, Xp0 is a topologically generating family of XBS A family

proét’
of morphisms {f; : ¥; — Y}ies in Xprog is @ covering with respect to the induced topology if and
only if for any affine open subscheme U of Y, there exists a map a : {1,...,n} — I and affine open

subschemes U; of Y, () (j =1,...,n) such that U = U;le Sa(jy(U;) (ISGA 4, I11.3.3]). Notice that ¥;
and Y are coherent, thus {f;};cs is a covering if and only if there exists a finite subset Iy C I such that
Y = Ujey, fi(Y:), which shows that the induced topology on Xp¢ coincides the topology defined in
7.16. Finally, the ‘in particular’ part follows from [SGA 4;, I11.4.1]. m]

Definition 7.20. Let Y — X be a morphism of coherent schemes. A morphism (V' — U’) — (V — U)
in Ey _x is called pro-étale if U" — U is pro-étale and V' — V Xy U’ is pro-finite étale. A pro-étale
presentation of such amorphism is a directed inverse system (V; — Up) e étale over V. — U with affine
transition morphisms Uy — U, and Vy — V, (4’ = ) such that (V' — U’) = limep (Vi — Up).

Lemma 7.21. Let Y — X be a morphism of coherent schemes, (V"' — U"") LN (V' >U L> V-
U) morphisms in Ey _x.

(1) Iffis pro-étale, then it admits a pro-étale presentation.

(2) Iffis pro-étale, then any base change of f is also pro-étale.
(3) Iffand g are pro-étale, then f o g is also pro-étale.

4) Iffand f o g are pro-étale, then g is also pro-étale.

Proof. It follows directly from 7.14 and its arguments. O

Remark 7.22. Similar to 7.15, a pro-étale morphism in Ey_,x admits a U-small presentation.

7.23. Let Y — X be a morphism of coherent schemes, EP'°%,  the full subcategory of Ey_,x formed

by objects which are pro-étale over the final object ¥ — X. It is clear that E'™;

limits in Ey _,x. Then, the functor (7.1.2) induces a functor

x IS stable under finite

¢ Egrftx Xproéts V-U)—U, (7.23.1)

which endows Epmex / Xproet With a structure of fibred sites, whose fibre over U is the pro-finite étale site

Uy profst.- We endow Eproex with the associated covanishing topology, that is, the topology generated by

the following types of families of morphisms

™) {(Viy > U) > (V> U)}yem, where M is a finite set and [],,cps Vi — V is surjective;

©) {(Vxy U, > U,) > (V—>U)},en, where N is a finite set and | | U,, — U is surjective.
neN ]

proét

EY—>X o

if there is no ambiguity. We will show in 7.32 that 98 is a sheafon E

is quasi-compact by 6.4. We still denote by & the restriction of the
proét
Y—-X-*

It is clear that any object in
proét

presheaf % on Ey_x toE, s

Definition 7.24. We call (Ef,rf;(,ﬁ) the pro-étale Faltings ringed site of the morphism of coherent
schemes Y — X.

It is clear that the localization (El;ro_e;tx )/(v>u) of Eg’,rftx atan object V — U is canonically equivalent
proét

to the pro-étale Faltings ringed site Ey,

of the morphism V — U by 6.4.

Remark 7.25. The categories Xproet» Xprofer and Ef,rflx are essentially V-small categories.
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7.26. Let Y — X be a morphism of coherent schemes. Consider the natural functors

Ut ENS s Yorost, (V > U) =V, (7.26.1)
Bt Yoroter — BN Vi (V = X), (7.26.2)
ot Xprost — EN%, U (Y xx U — U). (7.26.3)

They are left exact and continuous (cf. 7.8). Then, we obtain a commutative diagram of sites associated
functorially to the morphism Y — X by 2.5,

Yproét (7264)

RN

proét
Yprofét B EY S5X T o Xproéta

where p : Ypro6t — Yproter is defined by the inclusion functor, and the unlabelled arrow Yprost — Xprost
is induced by the morphism ¥ — X. Moreover, if Ox,,, denotes the structural sheaf on Xproer sending
Uto'(U,Oy), then o* actually defines a morphism of ringed sites

o1 (B B) — (Xprots Oxee)- (7.26.5)

Lemma 7.27. Let Y — X be a morphism of coherent schemes. Then, the inclusion functor

v ES L — ER(V s U) e (V5 U) (7.27.1)

. . . proét ét
defines a morphism of sites v : By, _,, = Ey_ .

Proof. 1t is clear that v* commutes with finite limits and sends a standard covanishing covering in

Ef/t_> x to astandard covanishing covering in Ef,m_f;( (6.3). Therefore, v* is continuous by 6.4 and defines

a morphism of sites. o

Lemma 7.28. Let Y — X be a morphism of coherent schemes. Then, the topology on Ei’}_}x is the

Eproét

topology induced from Ey, .

Proof. After7.27, it suffices to show that for a family of morphisms 2 = {(V; — Uy) — (V — U) }rek

inES_,if v* (W) is a covering in E}* . then W is a covering in ES' . We may assume that K is finite.
There is a standard covanishing covering W’ = {(V;,,, = U;) = (V = U)}nen men, in EX "y with

N, M, finite, which refines v* () by 6.4. We take a directed set Z such that for each n € N, we can take
a pro-étale presentation U;, = limgcg U,’l ¢ over U, and we take a directed set X such that for eachn € N
and m € M,, we can take a pro-finite étale presentation V,,,, = limyex V- over Vxy U,. By 7.14 (5),
for each o € X, there exists an index &, € E and a finite étale morphism Vr’l moéy VxyU r'l (r for
each n and m, whose base change by U, = Uy . isV,,,, = Vxy Uy. Let V,;mg’§ — Vxy Uy . be the
base change of V! & VXU U, £ by the transition morphism U, P U, P foreach & > &, Since
Winem, Viamo — V Xu Uy, is surjective, after enlarging &, we may assume that [],,,cpy, V,;mm’t -
V Xy Ur’lf is also surjective for ¢ > &, by [EGA 1V3, 8.10.5.(vi)]. It is clear that [ [, cn U,’lf — U is
surjective for each ¢ € E. Therefore, lI;TS = {(V,;mmf — U,'lé_.) — (V= U)}neN mem, is a standard

covanishing covering in Ef,‘_)U for each o € X and ¢ > &,. Notice that for eachn € N and m € M,
there exists k € K such that the morphism (V - U E) — (V — U) factors through (Vy — Uy)

for o, & big enough by 7.14 (6), which shows that 2 is a covering in E{}_ .

moé&

]

Lemma 7.29. Let Y — X be a morphism of coherent schemes, U = {(Vi — Ug) = (V —> U)}rek a
proét

v —x With K finite. Then, there exist pro-étale presentations (V> U) =limyep (V) — Uy),

covering inE
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(Vi = Uy) = limyepa (Via — Ukp) over Y — X and compatible étale morphisms (Viy — Uyy) —
(Vi — U,) such that the family Wy = {(Via — Ura) — (Vi = Uy trek s a covering in E;”}_)X.
Proof. We follow closely the proof of 3.6. We take a directed set A such that for each k € K we can
take a pro-étale presentation (Vy — Uy) = limgea (Vg — Ukq) over (V — U). Then, U, = {(fie :
Via = Uka) = (V = U)}rek is a covering family in Ee;}HU for each @ € A by 7.28.

Let (V — U) = limgep(Vg — Up) be a pro-étale presentation over ¥ — X. For each o € A,
there exists an index 8, € B and a covering family U,p, = {fiag, : Vkep, = Ukap,) = Vg, —
Up,)}kek such that fi, is the base change of fiqp, by the transition morphism (V — U) — (Vg, —
Ug,) (7.11). For each B > B, let frap : (Viag = Urap) — (Vg — Ug) be the base change of fiqp,
by the transition morphism (Vs — Ug) — (Vg, — Up,). Wetake A = {(@,8) € AXB |8 = Ba},
(Va = Ua) = (Vg = Ug) and (Vikqa = Uka) = (Vikag — Ukap) for each A = (o, 8) € A. Then, the
families Wy = {(Vka — Ura) — (Vi — U,) ek meet the requirements in the lemma (cf. 3.6). O

Lemma 7.30. Let Y — X be a morphism of coherent schemes, F a presheaf on E‘;'}_)X, V- Uan
object of E;rftx with a pro-étale presentation (V — U) = 1lim(Vy — U,). Then, we have v, F(V —

U) = colim F(Vy — U,), where vt : E&t

proét . ., .
v—x — Ey_y is the inclusion functor.

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4, 1.3.4]

F = colim RS- (7.30.1)
(V'=U)e(EE_)x

Thus, we may assume that F is representable by V' — U’ since the section functor I'(V — U, -)
commutes with colimits of presheaves ([Sta23, 00VB]). Then, we have
vl (V = U) = 0% (V= U) (730.2)
= Homgpos ((V — U), (V' — U"))
Y —»X

= colimHomE? x((V’l - Uy, (V' = U"))
= colim S}, ., (Va — Uy),

where the first equality follows from [Sta23, 04D2], and the third equality follows from [EGA 1V3,
8.14.2] since U’ and V" are locally of finite presentation over X and Y xXx U’, respectively. O
ét

’ Y-X’
V — U an object of Eg’,rftx with a pro-étale presentation (V — U) = lim(Vy, — U,). Then, for any
integer g, we have

Proposition 7.31. Let Y — X be a morphism of coherent schemes, F an abelian sheaf on E

HY(EY™, . v F) = colim HY (ES},_,;, . F), (7.31.1)
where v : El;rf;( — Ef}_> x s the morphism of sites defined by the inclusion functor (7.27). In particular,

the canonical morphism F —s Rv,v™'F is an isomorphism.

Proof. We follow closely the proof of 3.8. For the second assertion, since R7v,v~!F is the sheaf
associated to the presheaf (V — U) — H? (Eg,m_er, v 1F) = HY (E%}_)U, F) by the first assertion,
which is F if ¢ = 0 and vanishes otherwise.

For the first assertion, we may assume that 7 = 7 is an abelian injective sheaf on Ef,‘_)X (cf. 3.8). We
claim that for any covering in EX°% W = {(V} — Ux) — (V — U)}rex with K finite, the augmented

_ Y—-X°
Cech complex associated to the presheaf v,Z,

0— vpI(V - U) - [_] voZ(Vie = Uy) — ]_[ VoI (Vi Xy Vie = Up Xg Upr) = -+ (1.31.2)
k k,k’
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is exact. Admitting this claim, we see that vpZ is indeed a sheaf, that is, v 1T = vpZ, and the vanishing of
higher Cech cohomologies implies that H4 (EI‘),m_éfU, v~1T) = 0 forany ¢ > 0, which completes the proof
together with 7.30. For the claim, let (V — U) = limea (V) — Uy) and (Vi — Ug) = limyep (Via —
Ui) be the pro-étale presentations constructed in 7.29. The family W, = {(Vxkqa — Ura) — (V) —
Ua) }rek is a covering in E‘?Hx. By 7.30, the sequence (7.31.2) is the filtered colimit of the augmented

Cech complexes

0->Z(Vi—-Uy) — I_II(Vk/l — Ura) — ]_[I(Vk/l Xy, Viea = Ura Xy, Upa) — -+ (1.31.3)
k kK

which are exact since Z is an injective abelian sheaf on Ef,‘_, X O

Corollary 7.32. With the notation in 7.31, the presheaf % on Ef,rf; is a sheaf, and the canonical

morphisms v'% — B and B — Rv. B are isomorphisms. If moreover p is invertible on Y, then for
eachinteger n > 0, the canonical morphisms v~ (%/p"B) — B/p" B and B/ p" B — Rv.(B|p" B)
are isomorphisms.

Proof. For any pro-étale presentation (V — U) = lim(V; — U,), we have v 'B(V — U) =

colim B(Vy — Uy) = B(V — U) by 7.30 and 3.18. This verifies that 2 is a sheaf on E};,rié;( and that

VB — B is an isomorphism. The second isomorphism follows from the first and 7.31. For the last
assertion, notice that the multiplication by p” is injective on 98 so that the conclusion follows from the
exact sequence

B RB|p" B — 0. (7.32.1)

]

8. Cohomological descent of the structural sheaves

Definition 8.1. Let K be a pre-perfectoid field of mixed characteristic (0, p), ¥ — X a morphism of
coherent schemes such that ¥ — XY is over Spec(K) — Spec(Ok), where X¥ denotes the integral
closure of X in Y. We say that Y — X is Faltings acyclic if X is affine and if the canonical morphism

A/pA — RT(EN° B/ pB) 8.1.1)

is an almost isomorphism (see 5.7), where A denotes the Ok -algebra @(Y — X) (i.e., X¥ = Spec(A)).

RB|pB) — Rl“(Epmét RB|pB) is an iso-

Remark 8.2. In 8.1, the canonical morphism RF(Eét Y ox

Y—-X°
morphism by 7.32.

Lemma 8.3. Let K be a pre-perfectoid field of mixed characteristic (0, p), C a site, O a sheaf of flat
Ok -algebras over C, A =T'(C, O). Then, the following conditions are equivalent:

(1) For a pseudo-uniformizer m of K, the canonical morphism A/nrA — RI'(C,O/nO) is an (resp.
almost) isomorphism.

(2) Forany pseudo-uniformizer n’ of K, the canonical morphism A/n’A — RI'(C, O/n’O) is an (resp.
almost) isomorphism.

Proof. 1t suffices to show (1) = (2). As A and O are flat over Ok, for any integer n > 0, we have
canonical short exact sequences 0 — A/7A — A/n"A — A/n"'A — 0and 0 — O/70 —
O/n"O — O/a" 'O — 0. Thus, we deduce easily the statement for 7’ = 7" by dévissage.
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For a general pseudo-uniformizer n’, we take an integer n > 0 such that 7 = 7" /z’ is a pseudo-
uniformizer of K. As A and O are flat over Ok, we have a natural morphism of exact sequences

0— = A/n"A ———— S AJT"A————— = AJT'A ————> 0 (8.3.1)

P

0 —— H(C,0/n"O) —— H°(C,0/n"O) —— H°(C, 0/’ O).

By the discussion above, @ is an (resp. almost) isomorphism. Thus, @ is (resp. almost) injective. Since
any pseudo-uniformizer of K is of the form 7"’ = n" /n’ for some pseudo-uniformizer 7’ of K and some
integer n > 0, @3 is (resp. almost) injective. By diagram chasing, we see that a; is an (resp. almost)
isomorphism (and thus so is @3). It remains to show that H?(C,O/n’O) is (resp. almost) zero for
q > 0. Recall that H4(C, O/n" O) is (resp. almost) zero. By the long exact sequence associated to the
short exact sequence 0 — O/7”0 — O/a"O — O/n’O — 0, we see that H' (C, O/n"'O) is (resp.
almost) zero and that HY(C, O /n’O) — H*'(C,O/n"’©) is an (resp. almost) isomorphism. Hence,
we complete the proof by induction. O

Remark 8.4. With the notation in 8.1, we deduce from 8.3 that Y — X is Faltings acyclic if and only if
X is affine and A/nrA — RI’ (E};,rojtx, B |nARB) is an almost isomorphism for any pseudo-uniformizer
of K. We will give a criterion for being ‘Faltings acyclic’ in terms of ‘almost pre-perfectoid’ in 8.24.

Lemma 8.5. Let Y — X be a morphism of coherent schemes such that Y — XY is an open immersion.
Then, the functor

e E];,rf;( — Iy yr, (Vo U)—UY, (8.5.1)

is well defined, left exact and continuous. Moreover, we have Y xxy UY =V.

Proof. Since U’ = XY xx U is integral over U, we have UV = U’V. Applying 3.19.(4) to V — U’
over Y — XY, we see that the XY -scheme UV is Y-integrally closed with ¥ Xyxv UY =V, and thus

the functor €* is well defined. Let (V; — U;) — (Vy — Up) « (Vo2 — U,) be a diagram in Eg,mjtx.

By 3.21, UIV‘YUV0 UZV2 = (UIVl XV U;/Z)V‘XVOV2 = (U xy, U2)""""2 which shows the left exactness
0 0

of €*. For the continuity, notice that any covering in E?,rojg( can be refined by a standard covanishing

covering (6.4). For a Cartesian covering family W = {(V xy U,, = U,,) = (V — U)},,en with N finite,
we apply 3.15 to the commutative diagram

Huen V xv Up — Hpen Uy YY" —— 1 en Un (8.5.2)
1% A4 U

then we see that e*(U) is a covering family in Iy_, xv. For a vertical covering family & = {(V,, —
U) = (V> U)}mem with M finite, we apply 3.15 to the commutative diagram

Wimenrr Vin — Lmem UV —— 1/ (8.5.3)
v uv U
then we see that e* () is also a covering family in Iy _, xv. O
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8.6. Let Y — X be a morphism of coherent schemes such that Y — XV is an open immersion. Then,
there are morphisms of sites

€:Ty_xr — ED (8.6.1)
e:ly_xr — ES (8.6.2)

defined by Equation (8.5.1) and the composition of Equation (8.5.1) with Equation (7.27.1), respectively.
We temporarily denote by OP the presheaf on Iy_,xv sending W to I'(W, Ow ) (thus O = (OP)%).
Notice that we have & = €O (resp. & = £POP*®). The canonical morphism ePOP* — PO (resp.
gPOP™ — £P0O) induces a canonical morphism % — €.0 (resp. B — &.0).

8.7. Let K be a pre-perfectoid field (5.1) of mixed characteristic (0, p), n = Spec(K), S = Spec(Ok),
Y — X amorphism of coherent schemes such that X* is an S-scheme with generic fibre (X¥),, =Y. In
particular, X" is an object of I,,,s.

Lemma 8.8. For any ring R, there is an R-algebra R satisfying the following conditions:

(i) The scheme Spec(R«[1/p]) is pro-finite étale and faithfully flat over Spec(R[1/p]).
(ii) The R-algebra R, is the integral closure of R in R [1/p].
(iii) Any unit t of Re admits a p-th root t'/P in Re.

Moreover, if p lies in the Jacobson radical J(R) of R, and if there is a p>-th root p» € R of p up to a
unit (cf. 5.4) and we write p| = pg , then we may require further that

(iv) the Frobenius of Re/p R induces an isomorphism Re/p1Re — Roo/pRo.

Proof. Setting By = R[1/p], we construct inductively a ring B+ ind-finite étale over B,, and we denote
by R, the integral closure of R in B,,. For n > 0, we set
teT

B,+1 = colim B, [X]/(XP —1), (8.8.1)
T CR Bn

where the colimit runs through all finite subsets 7' of the subset R); of units of R, and the transition
maps are given by the inclusion relation of these finite subsets 7. Notice that B, [X]/(XP —t) is finite
étale and faithfully flat over B,, thus B,y is ind-finite étale and faithfully flat over B,,. Now, we take
B, = colim,, B,,. The integral closure R, of R in B, is equal to colim, R, by 3.18. We claim that R,
satisfies the first three conditions. Firstly, we see inductively that B,, = R,,[1/p] (0 < n < c0) by 3.17.
Thus, (i), (ii) follow immediately. For (iii), notice that we have R}, = colim, R};. For an unit 7 € R}, we
suppose that it is the image of 7, € R)\. By construction, there exists an element x,4; € R+ such that
P . = tn. Thus, 1 admits a p-th root in Re.

For (iv), the injectivity follows from the fact that R, is integrally closed in R [1/p] (see 5.21).
For the surjectivity, let a € R.. Firstly, since R, is integral over R, p also lies in the Jacobson radical
J(Rs) of Re. Thus, 1 + pja € R and then by (iii) there is b € Ry such that b = 1 + pja. We
write (b — 1)? = pya’ for some a’ € a + pjRw. Thus, 1 + a’ — a € R, and then by (iii) there is
¢ € Ry such that ¢” = 1 +a’ — a. On the other hand, since R is integrally closed in R [1/p], we have
x=(b-1)/ps € Re. Now, we have (x —c+ 1)? = xP — c¢” + 1 = a (mod pR), which completes the
proof. O

X

Remark 8.9. In 8.8, it follows from the construction that Spec(R[1/p]) — Spec(R[1/p]) is a
covering in Spec(R[1/p] Srofét (7.17).

Proposition 8.10. With the notation in 8.7, for any object V. — U in El;r:é;(, there exists a covering

{(V; = U;) = (V — U)};e; with I finite such that for each i € I, UiV" is the spectrum of an Ok -algebra
which is almost pre-perfectoid (5.19).
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Proof. After replacing U by an affine open covering, we may assume that U = Spec(A). Consider
the category & of étale A-algebras B such that A/pA — B/pB is an isomorphism, and the colimit
AP = colim B over . In fact, € is filtered and (A", pAP) is the Henselization of the pair (A, pA) (see
[Sta23, 0A02]). It is clear that Spec(A") [ Spec(A[1/p]) — Spec(A) is a covering in Uprost- So we
reduce to the situation where p € J(A) or p € A*. The latter case is trivial since the p-adic completion
of R = T(UY,Oyv) is zero if p is invertible in A. Therefore, we may assume that p € J(A) in the
following.

Since R = T'(UY,Oyv) is integral over A, we also have p € J(R). Applying 8.8 to the Ok-
algebra R, we obtain a covering Vo = Spec(Ro[1/p]) — V = Spec(R[1/p]) in Vprore such that
Re = T(UY~, Opyvs) is an Ok -algebra which is almost pre-perfectoid by 5.4 and 5.20. O

Proposition 8.11. With the notation in 8.7, if W is an object of 1,5 such that W is the spectrum of
an Ok -algebra which is almost pre-perfectoid, then for any pseudo-uniformizer nt of K, the canonical
morphism

T(W, Ow)/aT(W, Ow) — RT (1w, —w, 6/70) (8.11.1)

is an almost isomorphism (5.7).

Proof. It suffices to prove the case © = p by 8.3. Let € be the full-subcategory of I,,_,s formed by the
spectrums of Ok -algebras which are almost pre-perfectoid. It is stable under fibred product by 5.33,
5.30 and 3.21, and it forms a topologically generating family for the site I, s by 8.5 and 8.10. It suffices
to show that for any covering in I,,_.g, W = {W; — W},;¢; consisting of objects of € with I finite, the
augmented Cech complex associated to the presheaf W +— T'(W, Ow )/pT'(W, Ow ) on I,,_s (whose
associated sheaf is just 0/p0),

0= T(W,0w)/p = | |[TWiOw)/p = | | TWXwW,, Owzw)lp = -+ (8.11.2)

iel i,jel

is almost exact. Indeed, the almost exactness shows firstly that I'(W, Ow)/p — HO(IWU_,W, O/p0O)
is an almost isomorphism (cf. [Sta23, 00W1]), so that the augmented Cech complex associated to the
sheaf O/ p0 is also almost exact. Then, the conclusion follows from the almost vanishing of the higher
Cech cohomologies of @/p0O by [Sta23, 03F9].

Weset R =T'(W,Ow) and R’ = [];¢; I'(W;i, Ow;,). They are almost pre-perfectoid, and Spec(R”) —
Spec(R) is a v-covering by definition. Thus, the almost exactness of Equation (8.11.2) follows from
5.33,5.30 and 5.35. ]
Theorem 8.12. With the notation in 8.7, let € : Iy _xvy — E‘;,m_f;( be the morphism of sites defined in
8.6. Then, for any pseudo-uniformizer r of K, the canonical morphism

B|nB — Re.(0/n0) (8.12.1)
is an almost isomorphism in the derived category D(Ok -Mod et ) (5.7).
Y -X

Proof. Since R9¢,(0/n0) is the sheaf associated to the presheaf (V — U) — HY(1y,_yv,0/n0)

and any object in E?,m_flx can be covered by those objects whose image under €* are the spectrums of

Ok -algebras which are almost pre-perfectoid by 8.10, the conclusion follows from 8.11. O

Corollary 8.13. With the notation in 8.7, let V.— U be an object of E';ro_e;fx such that U is affine and that
the integral closure UV = Spec(A) is the spectrum of an O -algebra A which is almost pre-perfectoid.
Then, V — U is Faltings acyclic.

Proof. Tt follows directly from 8.12 and 8.11. O
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Corollary 8.14. With the notation in 8.7, let € : Iy _xv — EY « be the morphism of sites defined in

8.6. Then, for any finite locally constant abelian sheaf L. on E¢

Y xo the canonical morphism

L ®; & — Re.(¢7'L & 0) (8.14.1)
is an almost isomorphism in the derived category D((’)K-ModE? X) (5.7).

Proof. The problem is local on E‘;’,‘ x> thus we may assume that L is the constant sheaf with value

Z/p"Z. Then, the conclusion follows from 8.12 and 7.32. O

Remark 8.15. In 8.14, if L is a bounded complex of abelian sheaves on E?-»x with finite locally

constant cohomology sheaves, then the canonical morphism L ®IZ‘ B — Re,(e7'L ®IZ“ 0) is also an
almost isomorphism. Indeed, after replacing L by L®JZf Zp,, we may assume that L is a complex of Z/p"Z-
modules for some integer n ([Sta23, 0DD7]). Then, there exists a covering family {(¥; — X;) — (Y —
X)}ier in E v _x such that the restriction of L on Eet _x, s represented by a bounded complex of finite
locally constant Z/ p"Z-modules ([Sta23, 094G]). Then the conclusion follows directly from 8.14.

Corollary 8.16. With the notation in 8.7, let Y — X; (i = 1,2) be a morphism of coherent schemes
such that Xl.Y is an S-scheme with generic fibre (Xiy),, =Y, L a finite locally constant abelian sheaf on

E;‘_}X If there is a morphism [ : X1 — X, under Y such that the natural morphism g : XY - XY isa

separated v-covering and that g~ (Y) = Y, and if we denote by u : E&!
morphism of sites, then the natural morphism

ét
Yox, E; X the corresponding

L ®; B — Ru,(u™'L @7 B) (8.16.1)
is an almost isomorphism.
Proof. The morphism u is defined by the functor u* E;LXZ Eié/l—>X1 sending (V — U,) to

(V= Up) = (V> X; xx, Ua). Weset Vo = ¥ xx, Uj =Y xx, Us. According to 3.17, U* — U)" is the

base change of le — X;’ by U, — X, and thus it is a separated v-covering. Notice that V}; is an open

subscheme in both U IVO and UZ ?, and moreover Vo = Vo X, v, U YO. Applying 3.15 to the commutative
2

diagram

V—sUY —=U} (8.16.2)

L

\% UV 5 UVO

it follows that U} — U} is also a separated v-covering. Let &; : Iy_xr — Ef . (i = 1,2) be
the morphisms of sites defined in 8.6. The sheaf R7u, (1" 'L ® &) is associated to the presheaf

V> U — H"(EV_)U ,u"'L ®z &B). We have

HY(EY_y,.u”'L ez B) — HI(Ly_yv.&'u"'L ez 0) (8.16.3)
= HY (IV_>UV &, L®Z 0) « Hq(EV_)U ,L®z %)
where the equality follows from the fact that the morphism of representable sheaves associated to

U 1V - U;’ on I;,_,g is an isomorphism by 3.24, and where the two arrows are almost isomorphisms by
8.14, which completes the proof. m}

8.17. Let A be the category formed by finite ordered sets [n] = {0, 1, ...,n} (n > 0) with nondecreasing
maps ([Sta23, 0164]). For a functor from its opposite category AP to the category E of morphisms
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of coherent schemes sending [n] to ¥,, — X,,, we simply denote it by ¥ — X,. Then, we obtain a

fibred site E;”,"_)X. over A°? whose fibre category over [n] is Ef’t,,—»x,, and the inverse image functor
f+ . Eét

S Y- X, <
by the morphism (Y, — X,,,) — (¥, — X,,) associated to /. We endow E?/t.—>x. with the total topology

(6.1) and call it the simplicial Faltings site associated to Yo — X, ([Sta23, 09WE.(A)]). The sheaf B
oneach B . induces a sheaf Be = (B)[acon(a) on Ef. . with the notation in 6.5.
For an augmentation (Y, — X,) — (Y — X) in E ([Sta23, 018F]), we obtain an augmentation of

simplicial site a : ES} |, — E§_ ([Sta23, 0D6Z.(A)]). We denote by ay, Eé;n x, ES o the

natural morphism induced by (¥,, — X)) — (¥ — X). Notice that for any sheaf 7 on Ef}_}x, we have
a'F = (a;l]:)[n]eob(A) with the notation in 6.5 ([Sta23, 0D70]).

— E;‘ _,x. associated to a morphism f : [m] — [n] in A°? is induced the base change

Corollary 8.18. With the notation in 8.7, let L a finite locally constant abelian sheaf on E;t_)x,

Xo — X an augmentation of simplicial coherent scheme. If we set Yo = Y Xx Xo and denote by

a: E;’,t ox. E?}HX the augmentation of simplicial site, assuming that X 5 xYisa hypercovering

in1,,_.s, then the canonical morphism
L ®; B — Ra.(a 'L &z B.) (8.18.1)

is an almost isomorphism.
Proof. Letb : 1,  v. — Iy_ xv be the augmentation of simplicial site associated to the augmentation

of simplicial object Xr 5 XY of I, s ([Sta23, 09X8]). The functorial morphism of sites & : I, _,xv —

E;”}_)X defined in 8.6 induces a commutative diagram of topoi ([Sta23, 0D99])
| —-E (8.18.2)

r, ., —=E&"

Y -XY YoX-
. ét ét .

We denote by a, : Ey \ — Ej \ and b, : 1

Consider the commutative diagram

yoxin Iy _,x» the natural morphisms of sites.

Ra,(a'L® By~ L@B—— 2 ~Re(eLo0O) (8.18.3)
QJ\L \Ltm
Ra,Rew.e7 (7L ® B.) —> Re.(c7'L ® 6,) =—— Re,Rb, b~ (e" L ® 0)

where ¢ = a o &, = £ 0 b, and a; (resp. as) is induced by the canonical morphism e'\B -0 (resp.
£;'%B. — 0,), and other arrows are the canonical morphisms.

Notice that a; is an almost isomorphism by 8.14 and that @4 is an isomorphism by [Sta23, 0D8N] as
X 5 XYisa hypercovering in I, _,s. It remains to show that @5 o @3 is an almost isomorphism. With
the notation in 6.5, we have

a”'L® Ba = (a,'L ® B)[n)cob(a) and (8.18.4)
¢c'L® 0. = (£,'a;'L ® O)[n)con(a)- (8.18.5)
Moreover, by [Sta23, 0D97] we have

Rie..(cT'L ® 0.) = (RYe,. (g5, ;'L ® O))[n]cob(a) (8.18.6)
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for each integer g. Therefore, a 'L ® B4 — Reo.(¢7'L ® 6,) is an almost isomorphism by 8.14 and so
is as o as. O

Lemma 8.19. With the notation in 8.7, assume that XY is the spectrum of an Ok -algebra which is

PO with U affine. Then, UV is the spectrum of an

almost pre-perfectoid. Let V. — U be an object of Ey,

Ok -algebra which is almost pre-perfectoid.

Proof. Consider the following commutative diagram:

V— . yv (8.19.1)

i i

Yxx U UY><xU U

| ' i

Y XY X

i i

Spec(K) — Spec(Ok).

Since taking integral closures commutes with étale base change and filtered colimits (3.17, 3.18), all the
squares in Equation (8.19.1) are Cartesian (3.19). Notice that Uyl g integral over U and thus affine.
Since UY*xV is pro-étale over XY, it is the spectrum of an O -algebra which is almost pre-perfectoid
by 5.37. As V is pro-finite étale over Y xx U, by almost purity 5.41 and 5.37, we see that U" is the
spectrum of an Ok -algebra which is almost pre-perfectoid. m

8.20. Let K be a pre-perfectoid field of mixed characteristic (0, p),n = Spec(K), S = Spec(Ok),Y — X
a morphism of coherent schemes such that XY is an S-scheme and that the induced morphism ¥ — XV
is an open immersion over  — S. Remark that the morphism X}; — X over n — S is in the situation
8.7. We assume further that there exist finitely many nonzero divisors fi, ..., f, of F(XZ s Ox,’;) such
that the divisor D = }}/_, div(f;) on X has support X \ ¥ and that at each strict Henselization of X}
those elements f; contained in the maximal ideal form a subset of a regular system of parameters (in
particular, D is a normal crossings divisor on X?, and we allow D to be empty, i.e., r = 0). We set

Yoo = li;n Speco, (Oy [T1,.... T 1 /(1) = fi,.... T = f)), (8.20.1)

where the limit is taken over N with the division relation. We see that Y, is faithfully flat and pro-finite
étale over Y.

Proposition 8.21 (Abhyankar’s lemma). Under the assumptions in 8.20 and with the same notation, for
any finite étale Yoo-scheme V., the integral closure X,‘;"" is finite étale over X};“.

Proof. We set Z = X}; . Passing to a strict Henselization of Z where D is nonempty, we may assume
that Z is local and regular and that fi,...,f, (# > 1) are all contained in the maximal ideal. We
set ¥, = Speco,, (Oy[T1,.... T /(T = f1,....T}' = f)) and Z, = Specy, (Oz[T1,..., T 1/(T]" -
fi,..., T — f)) for any integer n > 0. Notice that Z,, is still local and regular (thus isomorphic to X 3;"

and that gg = fo1 / " gr = rl /" form a subset of a regular system of parameters for Z, (see the proof
of [SGA 1, XIIL.5.1]). Using [EGA 1V3, 8.8.2, 8.10.5] and [EGA 1V, 17.7.8], there exists an integer

no > 0 and a finite étale Y, -scheme V,,, such that Vo, = Y XY Vio- WesetV,, =Y, XY, Vpo for any

n > ng. According to [SGA 4yy;, XII1.5.2], there exists a multiple n; of ng such that Z,‘,/I"l

. . Va, . . .
over Zy,,. As Zy, = lim Z,, is normal, Z, XZ,, Z,”" ' is also normal and thus isomorphic to Zo‘:"" = X,‘;D“,

is finite étale
which shows that the latter is also finite étale over Z., = X};"“. O
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Corollary 8.22. Under the assumptions in 8.20 and with the same notation, the natural functor
EP — EP sending V. — U to Yoo Xyve V — U induces an equivalence of ringed sites
n

X,);‘X’ —X Yoo X
proét proét =
(B} ) — (B2 5.
Proof. For the equivalence of categories, it suffices to show that the induced functor u* : Ei;yw X
n -
E‘;‘ _,x is an equivalence by 7.14.(6). Since u* is a morphism of fibred categories over Xy, it suffices
to show that for each object U of Xg, the fibre functor uj, : Uf;mfzf‘ v (Yoo Xx U)gg induced by

ut is an equivalence of categories. Notice that if we replace Y — X in 820 by ¥ xx U — U,

then (Y Xx U)w = Yo Xx U. Therefore, the equivalence of categories follows from applying 8.21 to
Yxx U —-U.

To show the equivalence of categories identifies their topologies, it suffices to show that it identifies
the vertical coverings and Cartesian coverings in 7.23. For a finite family {(V,, —» U) — (V = U) }yem
in Eggit_)x, its image in Ef,:fix is { (Yoo Xy Vi = U) = (Yo Xy e V — U)}men. Notice that
Yo xxgm V is adense open subset of V as V is flat over X,’;"" ([EGA 1V>,2.3.7]), and the same holds for V,,,.
X,l]/‘” Vin — Y‘”XX,);“’ \%
is surjective. On the other hand, it is tautological that the equivalence identifies the Cartesian coverings.
Hence, the two sites are naturally equivalent.

The identification of the structural sheaves by the equivalence of sites follows from the fact that V is

integrally closed in Y, X, v. V for any object V. — U of Ei’(rgi‘_)x as V is pro-étale over X,If"’ (3.19). O

Thus, the integral morphism [ [,,,cps Vin — Vissurjectiveifandonly if [ [,,,cps Yoo ¥

Xpe
Corollary 8.23. Under the assumptions in 8.20 and with the same notation, let V.— U be an object of
proét
EYw—>X 3
be an object of E[",r(ﬁtu with U’ affine. Then, UV is the spectrum of an Ok -algebra which is almost

pre-perfectoid.

such that UV is the spectrum of an Ok -algebra which is almost pre-perfectoid, and let V' — U’

Proof. It follows directly from 8.22 and 8.19. O

Theorem 8.24. Under the assumptions in 8.20 and with the same notation, let V. — U be an object of

El;mi x- Then, the following statements are equivalent:

(1) The morphism'V — U is Faltings acyclic.
(2) The scheme U is affine and UY = Spec(A) is the spectrum of an Ok -algebra A which is almost
pre-perfectoid.

Proof. (2)= (1):LetV’ — U be an object of Egcy)it X whose image under the equivalence in 8.22 is iso-
n

morphictoV — U. Then, UY’ = Spec(A),V’ = U,‘;',and RF(Elz,rO_é:U,Q/pg) = RF(E’:,r?iU,Q/pg).
The conclusion follows from 8.13. )

(1) = (2): Firstly, notice that the objects V' — U’ of Ef,:)ix satisfying the condition (8.24) form
a topological generating family by 8.22 and 8.10. Let p; € Ok be a p-th root of p up to a unit (5.4).
Then, we see that the Frobenius induces an almost isomorphism 3/p|% — B/ pAB by evaluating these
sheaves at the objects V' — U’. The Frobenius also induces an almost isomorphism A/p;A — A/pA
by 8.3, which shows that A is almost pre-perfectoid. O
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