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1. Introduction

Let f be a homogeneous polynomial in n variables with integer coefficients. For any

integer m, consider the affine subvariety of Rn defined by

Vm ¼ fx 2 Rn : fðxÞ ¼ mg:

It is a classical problem in number theory to understand the distribution of the set

VmðZÞ of integer points in Vm.

Two basic types of questions have been studied in the literature. The first type of

problem is perhaps more well-known. Here, for a fixed integer m, one sets

NðOÞ ¼ #VmðZÞ \ O for any nice compact subset O of Vm.

One is then interested in the asymptotics of NðOiÞ for a nice family of growing com-

pact subsets Oi � Vm, for i ¼ 1; 2; . . . . For example, one would like to show that

NðOiÞ 	 volðOiÞ as i !1 ð1:1Þ

for a suitably normalized measure on Vm. The second type of problem deals with a

family of varieties instead of a single one. To be more precise, in order to compare

VmðZÞ for different positive integers m, one does a rescaling by radially projecting

VmðZÞ to a fixed (nonempty) variety, say V1. Note that the radial projection p
of Vm onto V1 is given by x 7!m
 1

dð f Þ � x where dð f Þ is the degree of f. One can then

ask whether the points pðVmðZÞÞ are equidistributed in V1 as m !1. In other

words, for nice compact subsets O1 and O2 of V1, one would like to show that

#pðVmðZÞÞ \ O1
#pðVmðZÞÞ \ O2

	
volðO1Þ
volðO2Þ

as m !1.
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This problem was raised by Linnik in the early sixties and particular examples

were studied by Linnik and Skubenko ([LS] and [Li]). Hence, following Sarnak

[Sa], we shall call a question of this type Linnik’s problem.

The only known general approach to these two types of problems is the Hardy–

Littlewood circle method. However, this applies only when the number of

variables involved is much larger compared to the degree of the homogeneous

polynomial in question and in many interesting cases, this condition is not satis-

fied. When the Hardy-Littlewood method does not apply, both problems are hope-

less ventures in the generality of the above setting. The expectation highlighted in

[Sa] is that if one restricts attention to the case where the varieties in question are

homogeneous varieties of a linear semisimple algebraic group, then both problems

can be related to the harmonic analysis of the group, thus becoming more tract-

able. We refer the reader to [Sa] for references to earlier works which exploit this

relation. Subsequent to the appearance of [Sa], this expectation was realized for

the first type of problem by Duke, Rudnick and Sarnak in [DRS], where (1.1)

was shown when Vm is an affine symmetric space. The method of [DRS] allows

one in principle to obtain an estimate on the rate of convergence in (1.1). A sim-

pler proof of the results in [DRS] was given by Eskin and McMullen in [EM],

using the decay of matrix coefficients and some geometric property of affine

symmetric spaces. A few years later, Eskin, Mozes and Shah extended these to

a much greater generality, using Ratner’s results on unipotent flows on homo-

geneous spaces. This method unfortunately does not provide information on rates

of convergence.

The purpose of the present paper is the realization of the expectation expressed

in [Sa] for Linnik’s problem. For the sake of simplicity, we assume that the group

in question is Q-split in the introduction. Thus, let G be a connected reductive
Q-split algebraic group with absolutely simple derived group and one dimensional

center. Set G ¼ GðRÞ0 and G0 ¼ ½G;G�. Let i : G! GLnðCÞ ¼ GLðVÞ be a rational
representation defined over Z such that the identity component of the center of

G acts by nontrivial scalars on V. Suppose that the polynomial f is a semi-invariant

of G, that is, for some nontrivial Q-rational character w of G, fðvgÞ ¼ wðgÞfðvÞ for
any v 2 V and g 2 G. Then G0 acts on each Vm. Let v0 2 V1ðZÞ be such that the

stabilizer of v0 in G0 does not possess any nontrivial Q-rational character. Note

that the ½G;G�-orbit of v0 in V may not be Zariski closed; so that the stabilizer

of v0 is not necessarily reductive (cf. [BH]). Then we have the following equidistri-

bution statement, whose special case for f ¼ det was proven by Linnik and

Skubenko [Li, Thm. 1, LS]:

THEOREM 1.2. Fix a compact subset O � v0G0 and for any small E > 0, consider the
standard division of Rn into E-cubes. Then there exists an effective constant mO;E such

that for any positive integer m > mO;E, any E-cube intersecting the interior of O contains

at least one point in the radial projection of VmrðZÞ into V1. Here r is an explicit positive

integer which depends only on G, i and deg(f) and is given in ð8:1Þ.
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We emphasize that our proof of Theorem 1.2, essentially making use of harmonic

analysis of G, does yield an effective estimate for the constant mO;E.

COROLLARY 1.3. Given any open set U � v0G0, there exists a constant mU such

that U contains a point in the radial projection VmrðZÞ for any positive integer m > mU.

In particular, the subset
S1

m¼1 pðVmðZÞÞ is dense in v0G0.

Remarks. (1) As we explain in Section 9 (Exs. 2 and 3), there are fundamental

obstructions to having such a theorem for any sequence m tending to infinity; so the

restriction to a sub-sequence of an rth power of m is not that surprising, and is even

necessary.

(2) If V1 is the union of finitely many G0-orbits each of which possessing an inte-

ger point, then one can replace v0G0 by the whole variety V1 in Theorem 1.2. For

example, in the case of a regular prehomogeneous vector space with a unique semi-

invariant, each Vm, for m 6¼ 0, is the union of finitely many G0-orbits. Therefore

the classification of Q-split irreducible regular prehomogeneous vector spaces given

by Sato and Kimura in [SK] provides explicit examples to which Theorem 1.2

applies, with v0G0 replaced by V1, as long as each G0-orbit contains an integer

point.

(3) Assuming only that the derived group of G is Q-isotropic, we obtain a slightly
weaker version of Theorem 1.2 (see Theorem 5.1).

To prove Theorem 1.2, we introduce for each m 2 N a subset G½m� of GQ as

follows:

G½m� ¼ fg 2 GQ : iðgÞ 2 EndðVZÞ and w0ðgÞ ¼ mg

where w0 denotes the basis element of the character group of G whose restriction to
the center of G is a positive multiple of the central character of i. If GZ is the arith-

metic subgroup of G associated to the Chevalley Z-structure, each G½m� is a (pos-

sibly empty) finite union of GZ-double cosets. For some fixed r0 2 N (depending

only on G and i), we shall see that #GZnG½m
r0 �5mb�r0 for some fixed constant

b > 0 independent of m 2 N and further v0G½m
r0 � � VmrðZÞ. Thus the subsets

G½mr0 � allow us to produce many integer points in Vmr starting from v0 2 V1ðZÞ.

There is of course no reason to expect that every point in VmrðZÞ is obtained in

this way. In fact, in the general case, there will be primitive or new points in

VmrðZÞ which do not arise from any lower stratum in this way. There is no doubt

that these primitive points are the most interesting from the arithmetic point of

view. However, for the purpose of Linnik’s problem, and in particular for the

proof of Theorem 1.2, there is no harm in discarding these points. Indeed, Theo-

rem 1.2 is an immediate consequence of the following equidistribution statement,

which is of independent interest:

THEOREM 1.4. Fix a nice ðsee Def. 4:5Þ compact subset O of v0G0 and 0 < E� 1.

Then there exists a constant CO;E such that for any positive integer m,
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1

#GZnG½mr0 �
�

X
y2GZnG½m

r0 �

#v0GZy \ RþO

 !

 volðOÞ

������
������4CO;E �m


r0kþE:

Here the volume of O is with respect to a suitably normalized G0-invariant measure on

v0G0 and RþO ¼ fx 2 Rn : tx 2 O for some t > 0g. Moreover, r0 is an explicit positive

integer depending only on G and i ðsee ð7:3ÞÞ and the exponent k > 0 is independent of O
and is explicitly computable ðsee ð7:7ÞÞ.

Remarks. (1) Though in the above we have restricted ourselves to homogeneous

varieties defined by a single polynomial, there are in fact no additional difficulties in

dealing with a more general case, where the varieties are defined by several poly-

nomials.

(2) When the stabilizer of v0 in G0 is trivial, Theorem 1.4 yields

#v0G½m
r0 � \ RþO 	 #GZnG½m

r0 � � volðOÞ as m !1:

It will be very interesting to know whether in general the asymptotic of above type

exists. Some new results are obtained in this direction [EO].

The main tool in the proof of Theorem 1.4 is the use of Hecke operators. The rela-

tion of Hecke operators to Linnik’s problem was first observed by Sarnak in [Sa].

Our starting point is then an equidistribution result for Hecke points in ZGnG where
Z is the connected center of G and G is a congruence subgroup of G. This result was
recently proved by Clozel, Oh and Ullmo in [COU] for simple and simply-connected

algebraic groups over Q (not necessarily Q-split). For our purpose, we need to

extend this to a slightly more general class of algebraic groups. This extension is pro-

vided in Section 3 using a suitably modified definition of Hecke operators given in

Section 2. Using this extension, we obtain in Section 4 an equidistribution result

for Hecke points on homogeneous varieties of G with an estimate on the rate of con-

vergence. The difficulties involved in passing from an equidistribution result on G to

that on a homogeneous variety of G are analytic in nature and are addressed in

Section 4. In Section 7, we deduce Theorem 7.6, which directly implies Theorem

1.4, from the (rate of) equidistribution of Hecke points on homogeneous varieties

of G. To do so, we need to estimate the number of GZ-double cosets in G½mr0 � as well

as the number of single GZ-cosets in each double coset. These are handled in Sections

6 and 7.

We conclude the introduction by discussing the classical example treated by

Linnik and Skubenko in [LS] and [Li], and revisited by Sarnak in [Sa].

EXAMPLE. Consider the action of GLn on the spaceMn of n� n matrices by right

multiplication. The determinant map is a homogeneous polynomial onMn of degree

n. Then for any n5 3,

VmðZÞ ¼ fA 2 MnðZÞ : detðAÞ ¼ mg ¼ G½m�:
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Set kAk ¼ ð
P

i;j A
2
ijÞ
1
2. Then, taking v0 to be the identity matrix In, Theorem 1.4

implies that for any given R > 0 and 0 < E� 1, as m !1,

#fA 2 MnðZÞ : detðAÞ ¼ m; and kAk4m
1
nRg

¼ cn;R � #SLnðZÞnG½m� � ð1þOR;Eðm

 1

2n2þ2
þE
ÞÞ ð1:5Þ

Here cn;R is the volume of the set fA 2 SLnðRÞ : kAk4Rg with respect to the Haar

measure of SLnðRÞ giving SLnðZÞnSLnðRÞ volume 1. For n ¼ 2, the same asymptotic

holds except that the error term should be replaced by m
 1
20þE.

Furthermore one can show that (cf. [COU])

#SLnðZÞnG½m� 	 bm;n as m !1;

where

bm;n ¼ ½SLnðZÞ : SLnðZÞ \ diagðm; 1; . . . ; 1ÞSLnðZÞdiagðm

1; 1; . . . ; 1Þ�

¼
Y
i

ð pkiþ1
i 
 1Þ � � � ð pkiþn
1

i 
 1Þ

ð pi 
 1Þ � � � ð p
n
1
i 
 1Þ

when m ¼
Q

i p
ki

i is the prime factorization of m.

The above example is deceptively simple because of the following reasons.

Firstly, r0 ¼ r ¼ 1 and every point in VmðZÞ is obtained from v0 via G½m�, i.e.

VmðZÞ ¼ v0G½m�. Hence, Theorem 1.4 gives a precise result for all integer points.

As mentioned before, this is far from being true in general. Secondly, the stabilizer

of v0 in GLn is trivial. This ensures that the sets v0SLnðZÞy appearing in Theorem

1.4 are disjoint as y ranges over SLnðZÞnG½m�. When the stabilizer of v0 is nontri-

vial, this will not be the case and Theorem 1.4 should be interpreted as an equidis-

tribution theorem of integer points counted with multiplicities (see the remark

following Theorem 1.4). In Section 8, we give a couple of examples which illustrate

these phenomenons.

2. Hecke Operators

We begin with some preliminaries on global and local Hecke operators. In particu-

lar, we shall give a modified definition of global Hecke operators, which possesses

good localization properties.

Let G be a connected reductive linear algebraic group over Q, and let Z be the
identity component of the center of G. Suppose that the algebraic group ZnG is abso-
lutely simple with Q-rank at least 1. This assumption is not strictly necessary but it

results in cleaner statements for our main results. We set

G ¼ GðRÞ0; Z ¼ ZðRÞ0; �GG ¼ ZnG; GQ ¼ GðQÞ \ G:

For any subset S � G, �SS will denote the image of S in �GG.
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Let GðAfÞ be the group of finite adeles attached to G. It is the restricted direct pro-
duct over all primes of the groups GðQpÞ with respect to some family of open com-

pact subgroups Kp � GðQpÞ. For almost all p, Kp is a hyperspecial maximal compact

subgroup of GðQpÞ. Without loss of generality, we may assume that for all p, Kp is a

special maximal compact subgroup. The group GðAÞ of adeles attached to G is equal
to GðRÞ � GðAfÞ.

Let G � GQ be an arithmetic subgroup of G such that

G ¼ GQ \U

for some open compact subgroup U ¼
Q

p Up of GðAfÞ.

To define global Hecke operators with nice localization properties, we assume that

GðAÞ ¼ GðQÞ � G �U; ð2:1Þ

ZðAÞ ¼ ZðQÞ � Z � ðU \ ZðAfÞÞ: ð2:2Þ

Remark. We note that the above assumptions are satisfied in the following two

cases: (1) When G is simply connected and G is a congruence subgroup: noting that
GðRÞ is connected, (2.1) is just a consequence of the strong approximation property.
(2.2) trivially holds since G is then semisimple and hence Z ¼ feg.

(2) When G is Q-split and, hence, canonically defined over Z and G ¼ G \ GðZÞ: to
see this, note that we have U ¼

Q
p GðZpÞ and hence GðAÞ ¼ GðQÞ � GðRÞ �U (see [PR,

Pg. 486. Cor 2]). Moreover, it was proven by Matsumoto ([BT, Thm. 14.4]) that

GðRÞ ¼ G � SðRÞ for any maximal R-split torus S of G. This implies that for a max-
imal Q-split torus S defined over Z, SðZÞ meets every connected component of

GðRÞ; hence so does GðZÞ, from which (2.1) follows. Since U \ ZðAfÞ ¼
Q

p ZðZpÞ,

(2.2) follows from the well known fact that Q has class number 1.

Via the diagonal embedding, we may consider an element of GQ as an element in

GðAfÞ. For each a 2 GQ, we now set

G½a� ¼ fg 2 GQ : g 2 UaUg:

If G is simply-connected, the strong approximation implies that G½a� ¼ GaG. In gen-
eral G½a� is a union of G-double cosets of GQ.

LEMMA 2.3. The natural map from GnG½a� to UnUaU is a bijection.

Proof. Denote this map by i. It is clear that i sends the set GnG½a� into the set
UnUaU. If b1 and b2 are elements of G½a� such that Ub1 ¼ Ub2, then

b1b

1
2 2 U \ GQ ¼ G. Hence Gb1 ¼ Gb2, and the map is injective. To show the sur-

jectivity, let x 2 UaU, and consider the element ð1; x
1Þ 2 GðAÞ. Then by hypothesis

(2.1), ð1; x
1Þ ¼ ðbr; buÞ for some b 2 GðQÞ, r 2 G and u 2 U. Thus b
1 ¼ r 2 GQ;

b
1 ¼ ux 2 UaU, hence b
1 2 G½a�. Therefore x ¼ u
1b
1 2 UG½a�. The surjectivity is

proved. &
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If we set

degðaÞ ¼ #GnG½a�; degpðaÞ ¼ #UpnUpaUp;

then Lemma 2.3 says that for any a 2 GQ,

degðaÞ ¼
Y
p

degpðaÞ; ð2:4Þ

in particular, degðaÞ <1.

Note that �GG is a lattice in �GG by the well-known theorem of Borel and Harish-Chan-

dra [BH]. Denote by m �GG the Haar measure on
�GG with respect to which the quotient

�GGn �GG ffi ZGnG has volume 1. The hypotheses (2.1) and (2.2) imply that there is a

G-equivariant bijection

f : ZðAÞGðQÞnGðAÞ=U ! �GGn �GG:

This then defines a pullback map f� from functions on the space �GGn �GG to those on the

space ZðAÞGðQÞnGðAÞ=U. Naturally functions on ZðAÞGðQÞnGðAÞ=U can be consi-

dered as right U-invariant functions on ZðAÞGðQÞnGðAÞ. In what follows, we shall
not distinguish these two spaces.

Let Ccð �GGn �GGÞ denote the space of continuous functions with compact support on

the real manifold �GGn �GG, and C1
c ð

�GGn �GGÞ the subspace of smooth functions. One also

has the space Lqð �GGn �GGÞ of Lq-integrable functions relative to the measure m �GG, with

associated norm k � kq. We shall let h
;
i denote the natural sesquilinear pairing

induced by m �GG between Lpð �GGn �GGÞ and Lqð �GGn �GGÞ when p
1 þ q
1 ¼ 1.

If we give the locally compact group ZðAfÞnGðAfÞ its unique Haar measure for

which ðZðAfÞ \UÞnU has volume 1, this together with m �GG defines a measure m0 on
ZðAÞGðQÞnGðAÞ which gives rise to a pairing h
;
i between LpðZðAÞGðQÞnGðAÞÞ
and LqðZðAÞGðQÞnGðAÞÞ when p
1 þ q
1 ¼ 1. Further, given f1 2 Lpð �GGn �GGÞ and

f2 2 Lqð �GGn �GGÞ, we have

h f1; f2i ¼ hf�ð f1Þ;f
�
ð f2Þi: ð2:5Þ

DEFINITION. Fix a 2 GQ. For any function f on �GGn �GG, set

Tað f ÞðgÞ ¼
1

degðaÞ

X
y2GnG½a�

fð ygÞ:

Then Tað f Þ is also a function on �GGn �GG, and is independent of the choice of represen-

tatives y of GnG½a� used. We call Ta the Hecke operator attached to a. Note that Ta

preserves the spaces Ccð �GGn �GGÞ, C1
c ð

�GGn �GGÞ and L2ð �GGn �GGÞ.

For each prime p, one can also define the local analog Tað pÞ, which acts on func-

tions f on ZðAÞGðQÞnGðAÞ=U as follows:

Tað pÞð f ÞðgÞ ¼
1

degpðaÞ

X
y2UpnUpaUp

fðgy
1Þ:
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The operators Tað pÞ, for different primes p, commute with each other, and are equal

to the identity operator for almost all p. Hence, we obtain an operator T̂Ta ¼
Q

p Tað pÞ.

The following lemma relates the global Hecke operators to the local ones. Using

Lemma 2.3, it can be proved in the same way as [COU, Thm. 2.3]:

LEMMA 2.6. Let a 2 GQ. For any function f on �GGn �GG, we have f�ðTað f ÞÞ ¼ T̂Taðf
�
ð f ÞÞ.

It is clear from the definition of T̂Ta, considered as an operator on

L2ðZðAÞGðQÞnGðAÞ=UÞ, that kT̂Tak ¼ 1; hence by (2.5) and the above lemma, Ta also

has norm 1 as an operator on L2ð �GGn �GGÞ.

LEMMA 2.7. Let a 2 GQ.

ðiÞ We have degðaÞ ¼ degða
1Þ.

ðiiÞ Whenever both sides in the following converge, we have hTaf;ci ¼ h f;Ta
1ci.

Proof. For any function f on �GGn �GG, set f 0 ¼ f�ð f Þ for simplicity. Also set
X ¼ ZðAÞGðQÞnGðAÞ. By (2.5) and Lemma 2.6, it suffices to prove the lemma for T̂Ta.

Observe that

degðaÞ � hT̂Ta f
0;c0i ¼

Z
X=U

X
x2U\a
1UanU

f 0ðgðaxÞ
1Þ

0
@

1
A � c0ðgÞ dm0ðgÞ

¼

Z
X=U

X
x2U=U\a
1Ua

f 0ðgxa
1Þ

0
@

1
A � c0ðgÞ dm0ðgÞ

¼

Z
X=U\a
1Ua

f 0ðga
1Þ � c0ðgÞ dm0ðgÞ

¼

Z
X=U\aUa
1

f 0ðtÞ � c0ðtaÞ dm0ðtÞ

¼

Z
X=U

f 0ðtÞ �
X

y2U=U\aUa
1

c0ðtyaÞ

0
@

1
A dm0ðtÞ

¼

Z
X=U

f 0ðtÞ �
X

y2U\aUa
1nU

c0ðtða
1yÞ
1Þ

0
@

1
A dm0ðtÞ

¼

Z
X=U

f 0ðtÞ �
X

y2UnUa
1U

c0ðty
1Þ

0
@

1
A dm0ðtÞ

¼ degða
1Þ � h f 0; T̂Ta
1c
0
i

The above equality applied to constant functions f 0 and c0 yields (i). (ii) then
follows from (i) and the above equality. &
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We illustrate the above discussion by considering the case when G is simply-con-
nected; this is the case treated in [COU]. Then G½a� ¼ GaG is a single G-double coset
and (2.4) holds (cf. [COU, Lemma 2.2]). In [COU], (2.4) and Lemma 2.6 allow one to

reduce the global problem considered there to local harmonic analysis on GðQpÞ.

When G is not simply-connected, the definition of Ta given above is designed so that

the passage between local and global Hecke operators continues to hold.

3. Equidistribution of Hecke Points on ZGnG

The main result of [COU] is an equidistribution theorem for Hecke points on GnG,
where G is simple and simply-connected. In this section, we shall extend this theorem
to the class of G considered in the previous section. To state the result, we need to
introduce more notations.

For each prime p, let Ap be a maximalQp-split torus of G such that Kp is good with

respect toAp in the sense of [Oh2, Prop. 2.1], and letX
�ðApÞ andX�ðApÞbe the character

and cocharacter groups respectively. Let Fp � X�ðApÞ be the set of non-multipliable

roots in the root system FðG;ApÞ. We fix a system of positive roots Fþ
p . Denoting by

h
;
i the canonical perfect pairing between X�ðApÞ and X�ðApÞ, we now set

Pþp ¼ fl 2 X�ðApÞ : hl; ai5 0 for all a 2 Fþ
p g:

Then there exists a finite set Op contained in the centralizer of ApðQpÞ in GðQpÞ such

that

GðQpÞ ¼
[
l2Pþp

[
$2Op

Kplð pÞ$Kp;

where the union above is disjoint (cf. [Si]). Using this decomposition, we regard a

element a 2 X�ðApÞ as a bi-Kp-invariant function on GðQpÞ. More precisely, if

g ¼ k1lð pÞ$k2, then we set aðgÞ ¼ phl;ai 2 Q�.

Let Sp � Fþ
p be a maximal strongly orthogonal system of positive roots in the

sense of [Oh1]. Such a system is not uniquely determined. However, the element

Zp :¼
P

a2Sp
a 2 X�ðApÞ is independent of the choice of Sp and has been determined

in [Oh1]. Following [Oh2], we set

xSp
ðgÞ ¼

Y
a2Sp

Xp
aðgÞ 0
0 1

� 

for each g 2 GðQpÞ:

Here, Xp is the Harish-Chandra function of PGL2ðQpÞ; it is bi-invariant under

PGL2ðZpÞ, and is uniquely determined by:

Xp
x 0
0 1

� 

¼ p


jordpðxÞj

2 �
jordpðxÞj � ðp
 1Þ þ ðpþ 1Þ

pþ 1

� 

for any x 2Q

�
p : ð3:1Þ

In the above, ordp denotes the valuation onQp such that ordpð pÞ ¼ 1 with associated

absolute value j � jp. We refer the reader to [Oh2] for more details on the properties of
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the function xSp
and remark only that 0 < xSp

ðgÞ4 1 and for any E > 0, there exists a
constant Cp;E > 0 such that

jZpðgÞj
1
2
p 4xSp

ðgÞ4Cp;E � jZpðgÞj
1
2
E
p for any g 2 GðQpÞ: ð3:2Þ

From the explicit formula given in (3.1), it is not difficult to see that for a fixed

E > 0, there exists a constant NE > 0 such that the constant Cp;E can be chosen to

be 1 for each prime p > NE.

Henceforth, for each prime p, we fix a maximal strongly orthogonal system Sp.

Setting

R1 ¼ fprimes p : Qp-rank of ZnG ¼ 1g;
R2 ¼ fprimes p : Qp-rank of ZnG5 2g;

we define a real-valued function x on GQ by

xðgÞ ¼
Y
p2R1

xSp
ðgÞ

1
2 �
Y
p2R2

xSp
ðgÞ: ð3:3Þ

Note that almost all terms in the above product is 1. Since almost all the constants

Cp;E can be taken to be 1 in (3.2), we deduce:

LEMMA 3.4. Given E > 0, there exists a constant CE > 0 such that

xðgÞ4CE

Y
p2R1

jZpðgÞj
1
4
E
p �

Y
p2R2

jZpðgÞj
1
2
E
p

for any g 2 GQ.

We now introduce the Sobolev norm on C1ð �GGn �GGÞ and our exposition below fol-

lows [BR, Appendix B] closely. Let g be the Lie algebra of �GG and fix a basis fXig of g.
Each Xi acts on each f 2 C1ð �GGn �GGÞ by infinitesimal right translation and we set

Skð f Þ ¼
X

kXafk
2
2

� �1
2

where the sum is taken over all monomials Xa ¼ Xi1Xi2 . . .Xin of order 4 k in the

universal enveloping algebra of g. Note that if f 2 C1
c ð

�GGn �GGÞ, then Skð f Þ <1. Then

Sk is called the kth Sobolev norm on C1ð �GGn �GGÞ. Henceforth, set

k ¼ the smallest integer >
1

2
� dimð �GGÞ:

If we fix a closed embedding i : ZnG,!GLn, we obtain a norm function k � k on �GG

by setting

kgk ¼ max
i;j
fjiðgÞijj; jiðg


1Þijjg:

Let B ¼ fg 2 �GG : kgk4 2g: Then B is a symmetric compact neighbourhood of the

identity element in �GG. For each x 2 �GG, we set
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wðxÞ ¼ ðthe maximal cardinality of the fibers of pxÞ
1
2

where the map px : B ! �GGn �GG is given by g 7!xg. This defines a function w on �GG

which is left-invariant under �GG. The following lemma gives the key property of w
we need:

LEMMA 3.5. There exists constants C > 0 and r5 1 such that wðgÞ4C � kgkr for

any g 2 �GG.

Proof. This is not difficult to prove using reduction theory. See for example [MW,

Lem. I.2.4(a), pp. 25–26]. &

The importance of the function w lies in its role in the following Sobolev type

inequality [BR, Prop. B.2, p. 349]:

PROPOSITION 3.6. There exists a constant C > 0 such that jfðxÞj4C � wðxÞ � Skð f Þ

for any f 2 C1ð �GGn �GGÞ and x 2 �GGn �GG.

Having introduced the necessary notations, we can now state the main result of

this section, which is an extension of [COU, Thm. 1.1 and Thm. 1.7] to a more gen-

eral class of groups:

THEOREM 3.7. ðiÞ There exists a constant C > 0 such that for any f 2 L2ð �GGn �GGÞ and

any a 2 GQ,

kTað f Þ 


Z
�GGn �GG

fðgÞ dm �GGðgÞk24C � k f k2 � xðaÞ:

ðiiÞ There exists a constant C > 0 such that for any f 2 C1
c ð

�GGn �GGÞ, x 2 �GGn �GG and

a 2 GQ,

jTað f ÞðxÞ 


Z
�GGn �GG

fðgÞ dm �GGðgÞj4C � wðxÞ � Skð f Þ � xðaÞ:

ðiiiÞ For any f 2 C1
c ð

�GGn �GGÞ and x 2 �GGn �GG, we have

lim
degðaÞ!1

Tað f ÞðxÞ ¼

Z
�GGn �GG

fðgÞ dm �GGðgÞ:

The rest of the section is devoted to the proof of the above theorem. Using the

definition of the Hecke operator Ta given in the previous section, the proof of (i)

is virtually identical to that of [COU, Thm. 1.1]. Hence, we shall only give a brief

sketch of the proof:

(1) The main point of the proof is to give an upper bound for the operator norm

jjTajj for the action of Ta on the subspace L0 of functions in L2ð �GGn �GGÞ which are

orthogonal to the constant functions. Using Lemma 2.6 and the fact that f� is an
isometry, we are reduced to estimating the operator norm of T̂Ta on the subspace
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of U-invariant functions in the orthogonal complement L̂L0 of the constant functions

in L2ðZðAÞGðQÞnGðAÞÞ.
(2) By an elementary but crucial observation [COU, Prop. 2.6], this is equivalent to

estimating the size of matrix coefficients for the unitary representations of GðQpÞ

intervening in the representation L̂L0 of GðAÞ. This observation puts us in a position
to apply [Oh2, Thm. 1.1], at least when the Qp-rank of ZnG is 5 2.

(3) To be able to apply [Oh2, Thm. 1.1], it is necessary to show the following

lemma:

LEMMA 3.8. Fix a direct integral decomposition of L̂L0 into irreducible unitary

representations of GðAÞ. Let A be the set of irreducible unitary representation p ¼ �̂�vpv
of GðAÞ occurring in the direct integral decomposition of L̂L0 such that p has a nonzero

U-invariant vector and for some finite prime p, pp is one-dimensional. Then the set A
has measure zero with respect to the measure giving the direct integral decomposition

of L̂L0.

Proof. Let us decompose the unitary representation L̂L0 into the direct sum of its

continuous and discrete spectrum. The continuous spectrum has been described by

Langlands in terms of the discrete spectrum of Levi subgroups, using his theory of

Eisenstein series ([MW]). One sees directly from this description that the set of

irreducible representations p 2 A which occur in the continuous spectrum indeed has
measure zero. Thus it remains to deal with the discrete spectrum.

Suppose V is a subspace of L̂L0 which affords the irreducible unitary representation

p. Let ~GG be the simply-connected cover of the derived group of G. Then there is a
natural projection map ~GGðQÞn ~GGðAÞ ! ZðAÞGðQÞnGðAÞ and using this, we can pull
back a function f 2 V to obtain a function ~ff on ~GGðQÞn ~GGðAÞ. Suppose that there is a
finite prime p such that ~ff is right-invariant under ~GGðQpÞ. Suppose that f is continuous;

hence so is ~ff. Since ~ff is left ~GGðQÞ-invariant and right ~GGðQpÞ-invariant, it follows by the

strong approximation theorem for ~GG that ~ff is constant. Since the continuous func-

tions in V are dense in V, we deduce that all functions in V are fixed by the image

of ~GGðAÞ in GðAÞ, as well as by ZðAÞ. This implies that V is a one-dimensional space
spanned by a unitary character w of GðAÞ, which is trivial on GðQÞ and ZðAÞ. Since
V � L̂L0, w is a nontrivial character.
Now suppose further that w is trivial on U. Then it follows by the hypothesis (2.1)

that w gives rise to a nontrivial character on �GG. This is a contradiction, since �GG is a

connected semisimple real Lie group and has no nontrivial character. The lemma is

proved. &

With the lemma, we can now apply [Oh2, Thm. 1.1] to obtain the desired bound

on matrix coefficients, when the Qp-rank of ZnG is 5 2. On the other hand, if the

Qp-rank of ZnG is equal to 1, one appeals to [CU, Thm. 5.1], which is a p-adic ana-

logue of the results of Burger and Sarnak [BS], and the Gelbart–Jacquet bound

towards the Ramanujan conjecture of GL2, as in the proof of [COU, Thm. 1.1]. This

completes a sketch of the proof of (i) in the theorem.
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The statement (ii) now follows from (i), using Proposition, 3.6 and the fact that the

Hecke operator Ta commutes with all infinitesimal right translations. (iii) is a direct

consequence of (ii), since xðaÞ ! 0 as degðaÞ ! 1.

This completes the proof of Theorem 3.7.

4. Equidistribution of Hecke Points on ZHnG

In this section, we extend the equidistribution result in Theorem 3.7 to homogeneous

varieties of G. Keeping the same notation of the previous sections, we further let

H � G be a Q-algebraic subgroup and let H ¼ HðRÞ \ G. Assume that �GG \ �HH is a lat-

tice in �HH, or equivalently that the identity component of ðZ \HÞnH does not possess
any nontrivial Q-rational character. Let m �HH be the right H-invariant measure on

�HH

which gives ð �GG \ �HHÞn �HH volume 1. The measures m �GG and m �HH induce a unique G-invar-

iant measure m on the homogeneous space �HHn �GG ffi ZHnG. Given a measurable subset

O of �HHn �GG, we shall write volðOÞ for its measure with respect to m.
Given an integrable function f with compact support on �HHn �GG, we define a function

F on �GGn �GG by:

FðgÞ ¼
X

g2ð �GG\ �HHÞn �GG

fðggÞ: ð4:1Þ

Observe that the support of F is compact if and only if �GG \ �HH is cocompact in �HH and

F is an integrable function on �GGn �GG:Z
�GGn �GG

FðgÞdm �GGðgÞ ¼ mð f Þ :¼
Z

�HHn �GG

fðgÞdmðgÞ:

We would like to show that for any x 2 �GGn �GG,

TaðFÞðxÞ ! mð f Þ as degðaÞ ! 1:

This is not a consequence of Theorem 3.7, since we do not know that F is smooth of

compact support, or even square-integrable. Nevertheless, the following theorem

says that the above limit holds in the weak sense and further that the rate of conver-

gence can be estimated.

THEOREM 4.2. Let f be an integrable function of compact support on �HHn �GG, and let F

be constructed from f as in ð4:1Þ.

ðiÞ For any c 2 C1
c ð

�GGn �GGÞ, hTaF;ci ! hmð f Þ;ci as degðaÞ ! 1:

ðiiÞ For any c 2 C1
c ð

�GGn �GGÞ and a 2 GQ,

jhTaðFÞ 
 mð f Þ;cij4Cf � Cc � xða
1Þ
d

where Cf > 0 is a constant depending on f,
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Cc ¼
SkðcÞ; if �GG \ �HH is cocompact in �HH;
SkðcÞ þ kck1 þ kck1; otherwise;

�

and d is a positive constant 4 1, with equality when �GG \ �HH is cocompact in �HH.

Proof. By Lemma 2.7(ii), we have hTaðFÞ;ci ¼ hF;Ta
1ci: Note also that

hmð f Þ;ci ¼ hF; m �GGðcÞi. Hence

hTaðFÞ 
 mð f Þ;ci ¼ hF;Ta
1c
 m �GGðcÞi:

This latter integral can be written as:Z
�HHn �GG

fðgÞ �

Z
ð �GG\ �HHÞn �HH

ðTa
1 ðcÞðhgÞ 
 m �GGðcÞÞdm �HHðhÞ

� 

dmðgÞ:

Statement (i) now follows from Theorem 3.7(iii), applied to c, and the dominated
convergence theorem. Similarly, the cocompact case in statement (ii) follows imme-

diately from Theorem 3.7(ii), using the fact that the function w is bounded on com-

pact subsets of �GGn �GG.

It remains to consider the case when �GG \ �HH is not cocompact in �HH, which is much

more involved. Let us fix a compact subset ~OO � �GG which maps bijectively to the clo-

sure of the support of f. We first obtain a bound for the integral

FðgÞ :¼
Z

�ðGðG\ �HHÞn �HH

jTa
1 ðcÞðhgÞ 
 m �GGðcÞj dm �HHðhÞ;

as g varies over ~OO. This is done by dividing the domain of the integration, using Sie-
gel sets and reduction theory, as we now explain.

We first recall what a Siegel set is. Let LdU be a Levi decomposition of the (pos-
sibly disconnected) algebraic group ðZ \HÞnH with U its unipotent radical. Choose
a maximal Q-split torus A of L and let P be a minimal parabolic subgroup of L0
containing A, with unipotent radical N . Then the Levi subgroup of P containing
A is an almost direct productM �A, whereM is an anisotropic reductive algebraic

group over Q: P ¼ NMA:

The choice ofP determines a system of simple rootsD forL relative toA, and we set:

At ¼ fa 2 AðRÞ0 : aðaÞ5 t for all a 2 Dg:

Choose compact subsets o1 � ðN �MÞðRÞ and o2 � UðRÞ. Then for a suitable max-
imal compact subgroup K of LðRÞ, the subset o2o1AtK � ððZ \HÞnHÞðRÞ is called a
Siegel set.

The natural map �HH ! ðZ \HnHÞðRÞ has finite kernel and cokernel. Using this,
we let S � �HH be the inverse image of o2o1AtK. Reduction theory (cf. [Bo] and

[PR, Ch. 4]) says that for some t < 1, o1 and o2 which will be fixed henceforth, there
exists a finite number h1; . . . ; hr of elements in �HH such that

S
i hi � S is a fundamental

set for the quotient ð �GG \ �HHÞn �HH.
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Now for R5 1 > t, we set

At;R ¼ fa 2 AðRÞ0 : t4aðaÞ4R for all a 2 Dg;

which is a compact subset of At and let S4R � �HH be the inverse image of

o2o1At;RK. Setting S>R ¼ S n S4R, we deduce from the above that FðgÞ4
F4RðgÞ þ F>RðgÞ, where

F4RðgÞ ¼
X
i

Z
S4R

jTa
1cðhihgÞ 
 m �GGðcÞj dm �HHðhÞ;

F>RðgÞ ¼
X
i

Z
S>R

jTa
1cðhihgÞ 
 m �GGðcÞj dm �HHðhÞ:

We first give a bound for F>RðgÞ. Using standard integration formulas [PR, p. 213],

it is not difficult to check that
R
S>R
dm �HH 4C1 � R


n, for some constants C1 and n.

Together with the fact that kTa
1 ðcÞk14 kck1, one sees that for some constant
C0
1 > 0

F>RðgÞ4C0
1 � ðkck1 þ kck1Þ � R


n for any g 2 �GG:

It remains to estimate F4RðgÞ, as g varies over ~OO. Applying Theorem 3.7(ii), we
deduce that

F4RðgÞ4Cf � SkðcÞ � xða
1Þ � sup
h2S4R

wðhÞ

for some constant Cf > 0 depending on the support of f. By Lemma 3.5, it is not dif-

ficult to check that suph2S4R
wðhÞ4C2 � R

m, for some positive constants C2 > 0 and

m5 1.

In conclusion, we have shown that for any g 2 ~OO,

FðgÞ4C0
f � ðSkðcÞ � xða
1Þ � Rm þ ðkck1 þ kck1Þ � R


nÞ

for some constant C0
f > 0 depending on f and some constants m5 1 and n5 1 (inde-

pendent of f). Putting R ¼ xða
1Þ

1
mþn 5 1 > t, we have

FðgÞ4C00
f � ðSkðcÞ þ kck1 þ kck1Þ � xða


1Þ
d;

where d ¼ n=ðmþ nÞ < 1. Since

jhTaðFÞ 
 mð f Þ;cij4
Z

�HHn �GG

j fðgÞj � FðgÞdmðgÞ;

the desired result follows and Theorem 4.2 is proved completely. &

We shall henceforth specialize to the case where f is the characteristic function of a

compact subset O of �HHn �GG so that mð f Þ ¼ volðOÞ. The function FO constructed from f

by (4.1) satisfies FOðgÞ ¼ #Og
1 \ v0G, where v0 denotes the coset of the identity ele-
ment in �HHn �GG. Further, for any a 2 GQ, we have:
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TaðFOÞðgÞ ¼
1

degðaÞ
�
X

y2GnG½a�

#Og
1 \ v0Gy: ð4:3Þ

We should remark here that the subsets v0Gy of �HHn �GG need not be disjoint as y ranges

over GnG½a�, though they are disjoint if H is trivial. The goal of this section is to use
Theorem 4.2 to obtain an asymptotic formula for TaðFOÞð1Þ as degðaÞ ! 1. To con-

vert the weak convergence of Theorem 4.2 to a pointwise convergence, we shall need

to restrict the class of compact subsets to consider.

Recall that we have chosen a basis fXig of the Lie algebra g of �GG. This induces a

Euclidean metric on g, and a �GG-invariant metric on �GG. For a sufficiently small E > 0,
and DE ¼ fx 2 g : jxj < Eg, we set UE :¼ expðDEÞ � �GG; and call this the E-neighbor-
hood of the identity element in �GG.

LEMMA 4.4. For a sufficiently small E > 0, there exists a nonnegative function

cE 2 C1
c ð

�GGn �GGÞ which is supported on the image of UE in �GGn �GG and which satisfies:

kcEk1 ¼ 1; kcEk14C � E
d; SkðcEÞ4C � E
d
1;

where C is a constant independent of d ¼ dimð �GGÞ and E.
Proof. For a sufficiently small E0, the natural map j : DE0 !

�GGn �GG is a local dif-

feomorphism and thus provides a local chart at the identity coset. So we are reduced

to the question of finding a function cE supported on the disc DE in g with suitable
properties, for all E4 E0 say. Let f be a bump function on D1, i.e. a nonnegative

smooth function supported on D1 with integral 1. Now set fEðxÞ ¼ ð1=EdÞfðx=EÞ;
which is supported on DE. Then it suffices to take cE to be the multiple of fE � j


1

with L1-norm 1. &

We now make the following definition:

DEFINITION 4.5. A compact subset O � �HHn �GG is nice if for all sufficiently small

E > 0 (depending on O), volð@O �UEÞ < CO � E for some constant CO > 0 depending

on O. Here @O denotes the boundary of O.

Note that this definition is independent of the choice of the metric on g. A com-
pact subset being nice is a very mild condition. Any compact subset of the manifold
�HHn �GG with piecewise smooth boundary is nice in the above sense. In particular, any

point x of �HHn �GG has a basis of neighborhoods consisting of nice compact subsets. The

main property of nice compact subsets we need is contained in the following lemma

([EM, Prop. 3.3]):

LEMMA 4.6. Let O be a nice compact subset of �HHn �GG. For any sufficiently small

E > 0, we have

volðOEþÞ 
 CO � E4 volðOÞ4 volðOE
Þ þ CO � E;

where OE
 ¼ \u2UEOu and OEþ ¼ [u2UEOu.
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We can now prove the main result of this section:

THEOREM 4.7. Let O be a nice compact subset of �HHn �GG. There exists a constant CO

ðdepending only on OÞ such that for any a 2 GQ, we have

1

degðaÞ
�

X
y2GnG½a�

#v0Gy \ O

 !

 volðOÞ

������
������4CO � xða
1Þ

d
dþ2;

where 0 < d4 1 is the exponent appearing in Theorem 4:2ðiiÞ and d ¼ dimð �GGÞ.

Proof. Fix a sufficiently small E > 0; we will specify its value later. Let cE be the

function supported on UE furnished by Lemma 4.4. For any g 2 UE, it is clear that

OE
g

1 � O � OEþg


1 and, hence, by virtue of (4.3), we have

TaFOE
ðgÞ4TaFOð1Þ4TaFOEþðgÞ:

Since
R
cE ¼ 1, we see that

hTaFOE
 ;cEi4TaFOð1Þ4 hTaFOEþ ;cEi:

On the other hand, by Theorem 4.2(ii) and Lemma 4.4, we have

jhTaFOE! ;cEi 
 volðOE!Þj4CO � xða
1Þ
d
� E
d
1; ð4:8Þ

for some constant CO, and some 0 < d4 1.

Now using (4.8) and Lemma 4.6, there is a constant C0
O such that

jTaðFOÞð1Þ 
 volðOÞj4C0
O � ðEþ E
d
1 � xða
1ÞdÞ;

for all sufficiently small E > 0. Now take E ¼ E0 � xða
1Þ
d

dþ2 for a sufficiently small E0
(independent of a). Then we conclude that for some constant C00

O > 0

jTaFOð1Þ 
 volðOÞj4C00
O � xða


1Þ
d

dþ2;

as required. &

The following is an immediate corollary of Theorem 4.7, though it can also be

directly deduced from (4.8) and Theorem 4.2(i).

COROLLARY 4.9. Let O be a nice compact subset of �HHn �GG. Then

lim
degðaÞ!1

1

degðaÞ
�
X

y2GnG½a�

#v0Gy \ O ¼ volðOÞ:

5. Integer Points on Homogeneous Varieties

With the results of the previous section, we now give a proof of a somewhat wea-

kened version of Theorem 1.2 for any Q-isotropic G. Let us briefly recall the setting.

Suppose that f is a homogeneous polynomial of degree dð f Þ with integer coefficients

on V ¼ Rn.
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Let

VmðZÞ ¼ fx 2 Zn : fðxÞ ¼ mg for each m 2 Z

and fix v0 2 V1ðZÞ. Let G be a connected reductive linear algebraic group defined over
Q with one-dimensional center and i : G! GLðVÞ a Q-rational representation with

respect to which f is a semi-invariant. Assume that G0 :¼ ½G;G� is absolutely simple
and Q-isotropic. Assume that the identity component of the stabilizer H of v0 in

G0 has no nontrivial Q-rational character.
Since v0G0ðRÞ0 ¼ v0Gsc

0 ðRÞ, there is no loss of generality in assuming that G0 is sim-
ply connected. In this case, G0 :¼ G0ðRÞ is connected and all the assumptions we
made in Section 2 hold (cf. the remark following (2.2)), with G the stabilizer in G0
of the lattice Zn. Under these conditions, we shall show the following:

THEOREM 5.1. Fix a compact subset O � v0G0 and for any small E > 0, consider the
standard division of Rn into E-cubes. Then there exists an effective constant mO;E such

that for any positive integer m > mO;E, any E-cube intersecting the interior of O contains

at least one point in the radial projection of VNmr ðZÞ into V1. Here N and r are explicit

positive integers which depend only on G, i and degð f Þ.

The rest of the section is devoted to the proof of the theorem. Since G0 is Q-iso-
tropic, there is a nontrivial Q-rational one-parameter subgroup l : Gm ! G0. There
exist an element h 2 GLnðQÞ and integers k1; . . . ; kn (depending only on l and i and
not all zero) such that

lðtÞ ¼ h � diagðtk1 ; . . . ; tknÞ � h
1 for all t 2 Gm:

Now let us set am ¼ lðmÞ 2 GQ for each positive integer m. Setting

r ¼ 
min14 i4 nfkig > 0;

it is easy to see that there is a positive integer N (depending only on l and i) such that
Nmram preserves the lattice Z

n. Indeed, we see that

v0GðNmramÞG � VNdð f Þmrdð f Þ ðZÞ

and thus the radial projection of these points onto V1 are precisely the points

v0GamG.
For each open E-cube B intersecting the interior IntðOÞ of O, fix a nice compact sub-

set oB � B \ IntðOÞ; as we remarked after the definition of nice compact sets in the
previous section, this is possible since every point in v0G0 has a basis of (compact)

neighbourhoods which are nice compact sets. Since the number of E-cubes B intersect-
ing IntðOÞ is finite, there is a constant d > 0 such that volðoBÞ > d for each such B. As

an immediate consequence of Corollary 4.9 and the fact that xðamÞ ! 0 as m ! 1,

we see that the ineffective version of the theorem (i.e. for which one has no control on

the constant mO;E) holds for the sequence fN
dð f Þmdð f Þr : m 2 Z>0g.

To obtain the effective version of Theorem 5.1, we apply Theorem 4.7 to the

element am:
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1

degðamÞ
�

X
y2GnG½am�

#v0Gy \ O

 !

 volðOÞ

������
������4CO � xða
1m Þ

d
dþ2:

It remains to analyze xða
1m Þ more carefully and to show that there is an effectively

computable constant k > 0 such that for any E > 0,

xðamÞ4CE �m

kþE for some constant CE:

Recall that the function x is the product of the local functions xSp
or x

1
2

Sp
(cf. 3.3).

Further, the function xp is defined using a maximal Qp-split torus Ap and a special

maximal compact subgroup Kp which is good with respect to Ap. The sequence fKpg

is furnished by the Q-structure of G0; for almost all p, it can be taken to be the sta-
bilizer of Zn in G0ðQpÞ under the representation i. However, we are allowed to modify
Kp (and correspondingly Ap) as we wish for any given finite set of primes. We now

note:

LEMMA 5.2. Let T be any Q-split torus contained in G0. For all sufficiently large p,

there exists a maximal Qp-split torus Ap such that T � Ap and Kp is good with respect

to Ap.

Proof. Let C be the centralizer of T in G0. For p sufficiently large, we have:

– Kp is a hyperspecial maximal compact subgroup;

– T ðQpÞ \ Kp is the (unique) maximal compact subgroup T0 of T ðQpÞ.

For such primes p, if vp is the unique vertex fixed by Kp in the Bruhat–Tits building

BðG0;QpÞ of G0ðQpÞ, then vp is fixed by T0.

To prove the lemma, we need to show that vp in fact lies in the subset

BðC;QpÞ � BðG0;QpÞ for almost all p. Indeed, if this is the case, then vp lies in some

apartment of BðC;QpÞ. This apartment corresponds to a maximal Qp-split torus Ap

of C and thus of G0. The torus Ap then satisfies the desired properties.

Finally, the claim that vp lies in BðC;QpÞ follows from a result of Prasad and Yu

[PY, Prop. 1.3], which says that BðC;QpÞ ¼ BðG0;QpÞ
T0 . &

Note that this lemma holds for any connected Q-isotropic semisimple G0; we do
not need G0 to be simply-connected or absolutely simple.
We apply the lemma with T equal to the image of l. By modifying the choice ofAp

and Kp for a finite set of primes, we may thus assume that the conclusion of the

lemma holds for all primes p. Then the element am lies in ApðQpÞ for all p and the

desired upper bound for xða
1m Þ follows immediately from Lemma 3.4. This gives

the effective version of Theorem 5.1, i.e. with control on mO;E.

Remarks. If the diagonal torus of GLn intersects iðG0Þ nontrivially, then we can
choose l to take values in the diagonal torus and thus N can be taken to be 1 in

Theorem 5.1. For example, this is the case when G is split and the representation i is
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defined over Z for the canonical Z-structure on G. This gives Theorem 1.2 of the
introduction. However, the sequence fNmrg produced above is almost never optimal.

For instance, in the example where f ¼ det and G ¼ GLn discussed in the introduc-

tion, the above proof gives an equidistribution result only for the sequence

fmn : m > 0g, whereas by Linnik, one knows that Theorem 1.2 holds for the sequence

fm : m > 0g. Further, the above proof does not give the more precise result (1.5). For

that, one would need to consider many Hecke orbits at the same time. For the rest of

the paper, we address these more refined questions in the case when G is a split
group.

6. A Technical Estimate

Henceforth, let G be any connected Q-split reductive algebraic group of semisimple

rank l5 1. It is equipped with a canonical Z-structure such that for each finite prime

p, GðZpÞ is a hyperspecial maximal compact subgroup of GðQpÞ. Recall the function x
from (3.3), which is constructed by bi-GðZpÞ-invariant functions xSp

defined in

Section 3. In this section, we prove the following technical statement which will be

used in the next section.

PROPOSITION 6.1. There exists an explicit constant 0 < c < 1 such that for any

E > 0, there exists a constant CE > 0 such that xðaÞ4CE � degðaÞ

cþE for any a 2 GQ:

Fix a maximal split torus A contained in a Borel subgroup B of G, both of which
are defined over Z. Then GðZpÞ is a good maximal compact subgroup with respect to

A [Oh2, Prop. 2.1]. Let F � X�ðAÞ be the set of roots of G relative to A and set

2r ¼
P

a2Fþ a: The set Fþ determines a positive Weyl chamber:

Pþ ¼ fl 2 X�ðAÞ : hl; ai5 0 for all a 2 Fþg:

For each finite prime p, this gives the Cartan decomposition (cf. [Gr])

GðQpÞ ¼
[
l2Pþ

GðZpÞlð pÞGðZpÞ: ð6:2Þ

We now have:

LEMMA 6.3. For each finite prime p and each E > 0, there exists a constant

CEð pÞ > 0 satisfying:

. for any l 2 Pþ,

phl;2ri4 degpðlð pÞÞ4CEð pÞ � p
hl;2ri�ð1þEÞ:

. CE :¼
Q

p CEð pÞ41.
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Proof. By [Gr, Prop. 7.4], we have

degpðlð pÞÞ ¼
#ðG=PlÞðFpÞ

pdimðG=PlÞ
� phl;2ri;

where Fp ¼ Z=pZ and Pl ¼Ml �N l is a standard parabolic subgroup of G deter-
mined by l. It is thus clear that phl;2ri4 degpðlð pÞÞ: It remains to deal with the upper
bound.

If di 5 2 are the degrees of the group ZnG, and ei 5 1 those of ZnMl, then by the

formulas in [Ca, p. 75]

#ðG=PlÞðFpÞ

pdimðG=PlÞ
¼

Q
i zpðeiÞQ
i zpðdiÞ

;

which is at most zpð1Þ
l, since zp 5 1. Here zpðsÞ ¼ ð1
 p
sÞ


1 is the local factor of the

Riemann z function. We thus see that

degpðlð pÞÞ4zpð1Þ
l
� phl;2ri:

Note that if hl; 2ri 6¼ 0, then

#fi : ei ¼ 1g ¼ the dimension of the center of ZnMl 5 1;

so that
Q

p

Q
i zpðeiÞ diverges.

Now let E > 0 be given and consider the function:

fp;EðxÞ ¼
zpð1Þ

pEx � zpð1þ EÞ
for x5 1:

It is clear that fp;E is bounded for x5 1 and if p is sufficiently large (depending on E),
it is in fact bounded by 1. We let cp;E 5 1 be an upper bound for fp;E, with cp;E ¼ 1 for

almost all p.

Finally, we claim that we can take ClEð pÞ ¼ ðcp;E � zpð1þ EÞÞl; in other words,

degpðlð pÞÞ4 ðcp;E � zpð1þ EÞÞl � phl;2ri�ð1þlEÞ:

This will prove the lemma, since
Q

p zpð1þ EÞ <1 for E > 0, and cp;E ¼ 1 for almost

all p. To prove the above inequality, note that hl; 2ri is a natural number. If
hl; 2ri ¼ 0, then degpðlð pÞÞ ¼ 1, and the result is clear. On the other hand, if
hl; 2ri5 1, then we have:

degpðlð pÞÞ4
zpð1Þ
pE�hl;2ri

� 
l

�phl;2ri�ð1þlEÞ

and the factor in the parenthesis is 4 cp;E � zpð1þ EÞ. The lemma is proved. &

Let
‘

p P
þ denote the set of sequences ðlpÞ, indexed by the finite primes p, of ele-

ments lp 2 Pþ with lp ¼ 0 for almost all p. Each element ðlpÞ 2
‘

p P
þ gives rise to

an element a ¼
Q

p lpð pÞ 2 AQ ¼ AðQÞ \ G. We shall denote the set of elements of

AQ obtained in this way by Aþ
Q
. Then by Cartan decomposition (6.2), the sets of

the form G½a� are naturally parametrized by Aþ
Q
. We now have:
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COROLLARY 6.4. Given any E > 0, there exists a constant CE > 0 such that for any

ðlpÞ 2
‘

p P
þ with corresponding element a 2 Aþ

Q
,Y

p

phlp;2ri4 degðaÞ4CE �
Y
p

phlp;2ri�ð1þEÞ:

Proof of Proposition 6.1. Assume for simplicity that the rank of ZnG is 5 2; the

rank one case can be similarly treated and so we omit the details. Further, by the

discussion before the previous corollary, we may and do assume that a 2 Aþ
Q
. By

Lemma 3.4, we have for any E > 0, there is a constant CE > 0,

xðaÞ4CE

Y
p

jZðaÞj
1
2
E
p :

Here, we have written Z in place of Zp since the group G isQ-split. If fa1; . . . ; alg is the
set of simple roots determined by Fþ, and

Z ¼
Xl

i¼1

niai; 2r ¼
Xl

i¼1

miai;

let us set

c0 ¼ min
14 i4 l

ni

mi
: ð6:5Þ

Note that 04 c04 1. However Z is associated to a maximal strongly orthogonal sys-
tem; hence 0 < c04 1. If a corresponds to the element ðlpÞ 2

‘
p P

þ, thenY
p

jZðaÞjp 4
Y
p

p
c0�hlp;2ri:

Now using the upper bound in Corollary 6.4 and Lemma 2.7(i), we obtain that for

any E > 0, there exists a constant CE > 0 such that the above is at most

CE � degðaÞ

c0þE.

Now it suffices to set c ¼ c0=2 to finish the proof.

Remark. We note that if G is in addition simply-connected, then the map

GðZÞnGðQÞ=GðZÞ !
a
p

GðZpÞnGððQÞpÞ=GðZpÞ

is bijective. It thus follows that every GðZÞ-double coset of GðQÞ has a representative
in AðQÞ. In general, we have that every G½a� has a representative in AðQÞ by the dis-
cussion before Corollary 6.4.

7. Equidistribution of the Sets G½m� on ZHnG

As in the previous section, we let G be a connected Q-split reductive group with a

canonical Z-structure. Assume that the derived group of G is absolutely simple of
rank l5 1 and the center of G is of dimension 1. Then the assumptions made in
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Section 2 are satisfied with G ¼ GZ :¼ G \ GðZÞ (see the remark there) and Z ffi Gm.

We set G0 ¼ ½G;G�ðRÞ0. Then G ¼ G0 � Z so that G0 ffi �GG.

Let V be a real vector space and let VZ be a lattice in V. This endows the general

linear group GLðVÞ with its canonical integral structure. Suppose that i : G
!GLðVÞ
is a representation of G (acting from the right) defined over Z such that Z acts by
nontrivial scalars on V. The character group X�ðGÞ is a free Z-module of rank 1,

and we let w0 be the basis element such that w0jZ is a positive multiple of the central
character n of i.
For each m 2 N, we set

G½m� ¼ fg 2 GQ : iðgÞ 2 EndðVZÞ and w0ðgÞ ¼ mg:

We first remark that G½m� depends on the representation i, even though we have
suppressed i from the notation. It is of course possible that G½m� is empty; if it is
nonempty, it is clearly a union of GZ-double cosets.

LEMMA 7.1. If a 2 G½m�, then G½a� � G½m�.

Proof. Let b 2 G½a�. Then b ¼ u1au2 for some u1; u2 2
Q

p GðZpÞ. Since
iðbÞ 2 EndðVQÞ and iðbÞ 2

T
p EndðVZpÞ, we have iðbÞ 2 EndðVZÞ. On the other hand,

w0ðba

1Þ 2

Q
p Z

�
p \Q ¼ f!1g. Note that since G is connected, w0ðGÞ � Rþ. There-

fore, w0ðba

1Þ ¼ 1 and, hence, w0ðbÞ ¼ m. Hence, b 2 G½m�. &

The lemma implies that G½m� is a disjoint union of sets of the form G½a� for a 2 GQ.

We now let S½m� be a subset of GQ such that G½m� is the disjoint union of G½a�’s where

a ranges over S½m�.

LEMMA 7.2. Given E > 0, there exists a constant CE such that #S½m�4CE �m
E for

any m 2 N.

Proof. By the discussion before Corollary 6.4, we may assume S½m� � Aþ
Q
.

Then

#S½m�4#fa 2 AðQÞ : iðaÞ 2 EndðVZÞ and w0ðaÞ ¼ mg:

Now let T be a maximal Q-split torus of GLðVÞ defined over Z and such that

iðAÞ � T . With respect to a suitable basis of VZ, we may assume that T is the diag-
onal torus. Since the central character of i is nontrivial and w0 is a basis element of
X�ðGÞ, we deduce that det �i ¼ wk0 for a nonzero integer k. However, since w0jZ is a
positive multiple of the central character n of i, we see that k is positive. Therefore
for C ¼ # kerðiÞ,

#S½m�4C � #
n
ðd1; � � � ; dnÞ 2 Zn :

Y
i

di ¼ mk
o
4C � ð2 � fðmkÞÞ

n;

where n ¼ dimV and fðmÞ denotes the number of divisors of m. To finish the proof,
it suffices to recall the well-known fact that for any E > 0, there exists a constant
CE > 0 such that fðmÞ4CE �m

E for any m 2 N: &
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Consider the set

X :¼fl 2 Pþ : hl; ai > 0 for some a 2 Fþand

iðlðtÞÞ 2 EndðVZÞ for all nonzero t 2 Zg:

Then X is nonempty and for any element l in X, hl; w0i is a positive integer and
hl; 2ri > 0. Let l1 be an element in X such that

hl1; w0i ¼ min
l2X

hl; w0i:

We then set

r0 :¼ hl1; w0i ð7:3Þ

and

b :¼
hl1; 2ri
hl1; w0i

: ð7:4Þ

Observe that r0 2 N and b > 0 depend only on G and i.

LEMMA 7.5. For any m 2 N, maxfdegðaÞ : a 2 G½mr0 �g5mb�r0 :

Proof. If we set for each p, lp ¼ ordpðmÞ � l1; then the element ðlpÞ of
‘

p P
þ

satisfies hlp; 2ri ¼ b � r0 � ordpðmÞ. Moreover, the corresponding element a 2 Aþ
Q
lies

in G½mr0 � and thus the result follows by the lower bound in Corollary 6.4. &

Note that the above lemma implies that G½mr0 � contains many GZ-single cosets

#GZnG½m
r0 �5mb�r0 :

Let H � G be a Q-algebraic subgroup such that H0 has no nontrivial Q-rational

character. Then H � G0, H \ Z is trivial and we have a G0-equivariant bijection:

HnG0 ffi ZHnG:

Let p : HnG ! ZHnG ffi HnG0 be the natural projection and let v0 denote the

identity coset in HnG. Using Theorem 4.7 and the results of Sections 6, we are

now ready to prove the following equidistribution of the subsets G½mr0 �’s on

ZHnG when m !1:

THEOREM 7.6. Let O � HnG0 be a nice compact subset. There exists an explicit

positive integer r0 ð7:3Þ depending only on G and i such that for any E > 0, there exists a

constant CO;E > 0 such that for any m 2 N,

1

#GZnG½mr0 �
�

X
y2GZnG½m

r0 �

#pðv0GZyÞ \ O

 !

 volðOÞ

������
������4CO;E �m


r0kþE:

Here k ðsee 7:7Þ is a positive constant independent of O and m.

Proof. The left-hand side of the inequality in question is equal to:
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I ¼
X

a2S½mr0 �

degðaÞ

#GZnG½mr0 �
�

1

degðaÞ
�

X
y2GZnG½a�

#pðGZyÞ \ O

 !

 volðOÞ

 !
:

By Theorem 4.7, this is bounded above by

CO �
X

a2S½mr0 �

degðaÞ � xða
1Þ
d

dþ2

#GZnG½mr0 �
:

Note that 0 < d=ðdþ 2Þ < 1. Now by Proposition 6.1, there exists a constant

0 < c < 1 such that for any E > 0,

xða
1Þ
d

dþ24CE � degðaÞ

cþE

for some CE > 0. Hence there exists CO;E such that

I4CO;E �
X

a2S½mr0 �

degðaÞ1
cþE

#GZnG½mr0 �
4CO;E �

X
a2S½mr0 �

maxa2G½mr0 � degðaÞ
1
cþE

maxa2G½mr0 � degðaÞ
:

By Lemma 7.5, we see that I4CO;E � #S½m
r0 � �mð
cþEÞ�r0�b, where b > 0 does not

depend on m. Finally the result follows by Lemma 7.2. &

Remark. As for the constant k in Theorem 7.6, we have:

k ¼
b�d

rðFÞ�ðdþ2Þ if the rank of ZnG is5 2;
b�d
4ðdþ2Þ if the rank of ZnG is 1:

(
ð7:7Þ

Here, we recall that d ¼ dimðZnGÞ, d is the exponent in Theorem 4.2 and b defined in
(7.4) is a constant which depends on the representation i. Finally, rðFÞ is a constant
depending only on the root system F of ZnG and is defined by rðFÞ ¼
2 �max14i4l mi=ni; where 2r ¼

P
14i4l miai and Z ¼

P
14 i4 l niai. The value of

rðFÞ is tabulated in [Oh2]. Among these constants, the only one which is not so expli-
cit is d since it depends on the subgroup H. However, when GZ \H is cocompact in

H, we know that d ¼ 1.

8. Proof of Theorems 1.2 and 1.4

We now apply the results of Section 4 and the analysis of the previous two sections to

prove Theorems 1.2 and 1.4 of the introduction. We continue the assumptions and

notations from Section 7.

Fix v0 2 VlðZÞ with l 6¼ 0. Let H be the stabilizer in G of v0 and assume that H0 has
no nontrivial Q-rational character. Now the radial projection p : v0G ! Vl is simply

the natural projection HnG ! ZHnG ffi HnG0. Further, observe that

v0G½m
r0 � � v0G \ VmrlðZÞ, where

r ¼ dð f Þ � r0 � k: ð8:1Þ
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Here, dð f Þ is the degree of f and k is such that n ¼ k � w0 in X�ðZÞ �Q.

Proof of Theorems 1.2 and 1.4. With these identifications and l ¼ 1, Theorem 1.4

of the introduction is simply a restatement of Theorem 7.6. Theorem 1.2 is a simple

corollary of Theorem 1.4 by the same argument as in the proof of Theorem 5.1.

9. Examples

In this section, we give some concrete examples to illustrate Theorems 1.2 and 1.4. In

these examples, the group G will be GLn so that

G ¼ GLnðRÞ
þ; G0 ¼ SLnðRÞ; G ¼ GLnðZÞ

þ
¼ SLnðZÞ

and w0 ¼ det. Moreover,

G½m� ¼ fg 2 MnðZÞ : detðgÞ ¼ mg

and l1 is the cocharacter given by t 7! diagðt; 1; . . . ; 1Þ so that r0 ¼ hl1; w0i ¼ 1 and
b ¼ n
 1.

EXAMPLE 1: Pffafian. Let G ¼ GL2n (n5 2) and VZ the lattice of skew symmetric

2n� 2nmatrices with entries in Z. The representation i is given by the action of GL2n
on V by A 7!gtAg. It is not hard to see that det restricted to V is in fact a square of

some integral homogeneous polynomial of degree n on V, which is called the Pffa-

fian. Denote by PfðAÞ the Pffafian of a skew symmetric matrix A whose sign

ambiguity is resolved by setting Pfðv0Þ ¼ 1 where

v0 ¼
0 In

In 0

� 

2 VZ:

Then Vm ¼ f skew symmetric A : PfðAÞ ¼ mg. It is easy to see that

PfðgtAgÞ ¼ detðgÞ � PfðAÞ and the stabilizer of v0 in G0 is Sp2n. The group

G0 ¼ SL2nðRÞ acts transitively on V1 and we have VmðZÞ ¼ v0G½m�: Let

kAk ¼ ð
P

i;j A
2
ijÞ
1
2. Then Theorem 1.4 states that given positive numbers R and

0 < E� 1, as m !1,X
g2SL2nðZÞnG½m�

#fA 2 gtV1ðZÞg : kAk4m
1
nRg ¼ c2n;R � bm;2n � 1þOR;Eðm


kþEÞ
� �

where bm;2n is as defined in the example treated in the introduction and c2n;R is the

volume of fA 2 V1 : kAk4Rg with respect to the measure on

V1 ffi Sp2nðRÞnSL2nðRÞ defined at the beginning of Section 4. Moreover, k can be
computed from the formula in (7.7) and is given by

k ¼
nðnþ 1Þð4n
 1Þ

2ð4n2 þ 1Þð4n3 þ 3n2 þ 11n
 6Þ
:

Note that k > 1
4ð4n2þ1Þ

for each n5 2. In this example, the stabilizer H of v0 in G0 is
nontrivial. Hence the sets in the above sum may not be disjoint.
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In the remaining examples, we let G ¼ GL2 and consider the right action i of GL2
on the space V of binary n-forms given by

A B
C D

� 

: qðx; yÞ 7! qðAxþ By;CxþDyÞ:

This is equivalent to the standard GL2-representation on Sym
n
ðR2Þ and we let VZ be

the lattice of binary n-forms with integer coefficients.

EXAMPLE 2. Binary quadratic forms. Let dðqÞ be the discriminant of a binary

quadratic form qðx; yÞ ¼ ax2 þ bxyþ cy2 Then dðqÞ ¼ b2 
 4ac has degree 2 on V

and is known to generate the ring of polynomial semi-invariants. We have

Vm ¼ binary quadratic form q : dðqÞ ¼ m
� �

and

dðq � gÞ ¼ detðgÞ2 � dðqÞ:

Take q0 2 Vd0ðZÞ for d0 6¼ 0. Then the stabilizer H in SL2 of q0 is isomorphic to

the special orthogonal group associated to the quadratic form q0. It is easy to see

that q0 is isotropic over R (resp. over Q) if and only if d0 is a square in R (resp. in

Q). Hence d0 is not a square in Q if and only if H is Q-anisotropic (note that if

d0 > 0, H is an R-split orthogonal group.) Now fix an integer d0 which is not a

square in Q and q0 2 Vd0ðZÞ. Then H has no nontrivial Q-rational characters

and hence Theorem 1.4 is applicable. Note that we have r ¼ 2 and hence

q0G½m� � Vm2d0 ðZÞ: In general, one would not have equality above. For example,

when q0 ¼ x2 þ y2, q0G½m� 6¼ V
4m2 ðZÞ for any m " 3 (mod 4).

If we set jjqjj ¼ maxfjaj; jbj; jcjg, then Theorem 1.4 says that for any positive num-

bers R and 0 < E� 1,

X
g2SL2ðZÞnG½m�

#fq 2 q0SL2ðZÞg : jjqjj4mRg ¼ cR � bm;2 �
�
1þOR;Eðm


 1
20þEÞ

�

as m !1. Here where bm;2 is defined as in the example treated in the introduc-

tion and cR is the volume of fq 2 Vd0 : jjqjj4Rg with respect to the measure

defined at the beginning of Section 4. Hence we obtain an equidistribution result

such as Theorem 1.2 for the radial projection of Vm2d0ðZÞ on Vd0 as m !1.

Note that for Vd0 ðZÞ to be non-empty, it is necessary and sufficient that d0 " 0

or 1 (mod 4). Therefore, there is an obvious obstruction to having an equidistri-

bution result for the radial projection of Vmi
ðZÞ for any sequence fmig tending to

infinity.

An integer d is a fundamental discriminant if and only if d is either a square-free

integer congruent to 1 mod 4 or 4 times of a square-free integer which is 2 or 3 mod

4. It was shown by Duke [Du, Thm. 1] that the radial projection of VdðZÞ to a fixed
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variety becomes equidistributed as d !1 (or d !
1) along fundamental discri-

minants. This result depends on his proof of a nontrivial bound on the Fourier coef-

ficients of Maass cusp forms of half-integral weight, whereas our result depends on a

known nontrivial bound towards the Ramanujan conjecture for the Fourier coeffi-

cients of cusp forms on GL2 of integral weight.

Combining the two results, one obtains an equidistribution result for the radial

projection of VmðZÞ on a fixed variety for any sequence m " 0 or 1 (mod 4) as

m !1 (or m !
1); see [CU, x 2.3].

EXAMPLE 3. Binary cubic forms. Let dðqÞ be the discriminant of a binary cubic

form qðx; yÞ ¼ ax3 þ bx2yþ cxy2 þ dy3. Then

dðqÞ ¼ b2c2 þ 18abcd
 4ac3 
 4db3 
 27a2d 2

has degree 4 on V and the ring of polynomial semi-invariants of i is generated by d.

Moreover, dðq � gÞ ¼ det ðgÞ6dðqÞ: If we let q0 be the binary cubic form

q0ðx; yÞ ¼ x2y
 xy2; then dðq0Þ ¼ 1, and

Vm ¼ fbinary cubic form q : dðqÞ ¼ mg:

Note that the stabilizer H in G0 of any q with dðqÞ 6¼ 0 is finite. In this case, we have

r ¼ 6 and hence q0G½m� � Vm6ðZÞ:

If we set jjqjj ¼ maxfjaj; jbj; jcj; jdjg, then Theorem 1.4 says that for any positive

numbers R and 0 < E� 1,X
g2SL2ðZÞnG½m�

#fq 2 q0SL2ðZÞg : jjqjj4m
3
2Rg ¼ cR � bm;2 �

�
1þOR;Eðm


 1
20þEÞ

�

as m !1, where bm;2 is as defined in Example 2 and cR is the volume of

fq 2 V1 : jjqjj4Rg with respect to the measure defined at the beginning of Section

4. Thus we obtain an equidistribution result such as Theorem 1.2 for the radial projec-

tion ofVm6ðZÞ asm !1. We note here that the number of SL2ðZÞ-orbits contained in

v0G½m� � Vm6 ðZÞ is at least of order m. On the other hand, it is known [Sh, Prop.

2.17(i), Pg. 186] that if hðmÞ denotes the number of SL2ðZÞ-orbits in VmðZÞ, then

1

N

X
m4N

hðmÞ 	
p2

9
as N !1;

so that the average of the hðmÞ’s are bounded. This shows that for some sequence

fmig of positive integers tending to infinity, the sequence fhðmiÞg is bounded. It easily

follows that we can find a nice compact subset O � V1 such that the number of radial

projections of Vmi
ðZÞ into O is uniformly bounded for all mi, and hence one cannot

have an equidistribution result as in Thm. 1.2 for such a sequence fmig.

EXAMPLE 4. Binary quartic forms. We conclude this section with an example in

which the ring of semi-invariants is a polynomial ring with two generators. Consider
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the representation of GL2 on binary quartic forms. It is known [Ol, p. 29] that the

ring of semi-invariants is a polynomial ring with generators

f1ðqÞ ¼ 12ae
 3bdþ c2;

f2ðqÞ ¼ 72ace
 27eb
2 
 27ad 2 þ 9bcd
 2c2;

where qðx; yÞ ¼ ax4 þ bx3yþ cx2y2 þ dxy3 þ ey4. We remark that the discriminant

d of q is (up to scaling) given by dðqÞ ¼ 4f1ðqÞ
3

 f2ðqÞ

2: For any g 2 GL2,

f1ðq � gÞ ¼ detðgÞ
4
� f1ðqÞ and f2ðq � gÞ ¼ detðgÞ

6
� f2ðqÞ:

Therefore we see that r ¼ 2 in this case. If one takes any q0 2 Vl1;l2 ðZÞ, then

q0G½m� � Vm4l1;m6l2ðZÞ: If q0 has 4 different roots in P1, then the stabilizer of q0 in

SL2 is finite.

Putting kqk ¼ maxfjaj; jbj; jcj; jdj; jejg, Theorem 1.4 says that for positive numbers

R and 0 < E� 1,X
g2SL2ðZÞnG½m�

#fq 2 q0SL2ðZÞg : kqk4m2Rg ¼ cq0;R � bm;2 � ð1þOR;Eðm

 1
20þEÞÞ

as m !1. Here bm;2 is as in Example 2 and cq0;R is the volume of

fq 2 q0SL2ðRÞ : kqk4Rg with respect to the measure used at the beginning of

Section 4.

Note that since the ring of semi-invariants is a polynomial ring, Vl1;l2 is the union

of finitely many SL2ðRÞ orbits for any l1 and l2 [MF, pp. 160–161]. For a generic

choice of l1 and l2, the stabilizer of any point in Vl1;l2 is finite and so if each of these

orbits has an integer point, we have an equidistribution result on Vl1;l2 (instead of

just q0SL2ðRÞ) as in Theorem 7.6.
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