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Abstract

Importance sampling is a widely used variance reduction technique to compute sample
quantiles such as value at risk. The variance of the weighted sample quantile estimator is
usually a difficult quantity to compute. In this paper we present the exact convergence rate
and asymptotic distributions of the bootstrap variance estimators for quantiles of weighted
empirical distributions. Under regularity conditions, we show that the bootstrap variance
estimator is asymptotically normal and has relative standard deviation of order O(n−1/4).
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1. Introduction

In this paper we derive the asymptotic distributions of the bootstrap quantile variance
estimators for weighted samples. Let F be a cumulative distribution function (CDF), let f

be its density function, and let αp = inf{x : F(x) ≥ p} be its pth quantile. It is well known
that the asymptotic variance of the pth sample quantile is inversely proportional to f (αp)

(cf. [6]). When f (αp) is close to 0 (e.g. p is close to 0 or 1), the sample quantile becomes very
unstable since the ‘effective sample’ size is small. In the Monte Carlo scenario, one solution
is to use importance sampling for variance reduction by distributing more samples around a
neighborhood of the interesting quantile αp. Such a technique has been widely employed in
multiple disciplines. In portfolio risk management, the pth quantile of a portfolio’s total asset
price is an important risk measure. This quantile is also known as the value at risk. Typically,
the probability p in this context is very close to 0 (or 1). A partial literature list of using
importance sampling to compute the value at risk includes [14], [23]–[25], [29], and [42]–[44].
In recent work Hult and Svensson [30] discussed efficient importance sampling for risk measure
computation for heavy-tailed distributions. In the system stability assessment of engineering,
the extreme quantile evaluation is of interest. In this context, the interesting probabilities are
typically of a smaller order than those of the portfolio risk analysis.

Upon considering p to be close to 0 or 1, the computation of αp can be viewed as the inverse
problem of rare event simulation. The task of the latter topic is computing the tail probabilities
1−F(b) when b tends to ∞. Similar to the usage in quantile estimation, importance sampling is
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also a standard variance reduction technique for rare event simulation. The first to work on this
topic was Siegmund [41], who not only presented an efficient importance sampling estimator but
also defined a second-moment-based efficiency measure. We will later see that such a measure
is also closely related to the asymptotic variance of the weighted quantiles. Such a connection
allows us to adapt the efficient algorithms designed for rare event simulations to the computation
of quantiles (cf. [26] and [30]). More recent works of rare event simulations for light-tailed
distributions include [17], [19], and [39], and for heavy-tailed distributions include [3], [4],
[8]–[11], [18], and [31]. There are also standard textbooks, such as [2] and [13].

Another field related to this line of work is survey sampling where unequal probability
sampling and weighted samples are prevailing (cf. [32] and [36]). The weights are typically
defined as the inverse of the inclusion probabilities.

The estimation of the distribution quantile is a classic topic. The almost-sure result of the
sample quantile was established in [6]. The asymptotic distribution of the (unweighted) sample
quantile can be found in a standard textbook, such as [15]. Estimation of the (unweighted)
sample quantile variance via bootstrap was proposed in [5], [22], [37], [38], and [40]. There
are also other kernel-based estimators (to estimate f (αp)) for such variances (cf. [21]).

There are several other works that are closely related to this work. The first is that of Hall and
Martin [28], who derived the asymptotic distribution of the bootstrap quantile variance estimator
for unweighted independent and identically distributed (i.i.d.) samples. Another is the work
of Glynn [27], who derived the asymptotic distribution of weighted quantile estimators; see
also [14] for a confidence interval construction. A more detailed discussion of these results is
given in Section 2.2.

The asymptotic variance of the weighted sample quantile, as reported in [27], contains
the density function f (αp), whose evaluation typically consists of the computation of high-
dimensional convolutions and is therefore usually not straightforward. In this paper we propose
using the bootstrap method to compute/estimate the variance of such a weighted quantile.
Bootstrap is a generic method that is easy to implement and does not consist of tuning parameters
in contrast to the kernel-based methods for estimating f (αp). In this paper we derive the
convergence rate and asymptotic distribution of the bootstrap variance estimator for weighted
quantiles. More specifically, the main contributions are to first provide conditions under
which the quantiles of weighted samples have finite variances and develop their asymptotic
approximations. Second, we derive the asymptotic distribution of the bootstrap estimators for
such variances. Let n denote the sample size. Under regularity conditions (for instance, moment
conditions and continuity conditions for the density functions), we show that the bootstrap
variance estimator is asymptotically normal with a convergence rate of order O(n−5/4). Given
that the quantile variance decays at a rate of O(n−1), the relative standard deviation of a
bootstrap estimator is O(n−1/4). Lastly, we present the asymptotic distribution of the bootstrap
estimator for one particular case where p → 0.

This work is technically challenging because many classic results of order statistics are not
applicable. This is mainly caused by the variations introduced by the weights, which in the
current context is the Radon–Nikodym derivative, and the fact that the weighted sample quantile
does not map directly to the ordered statistics. In this paper we employ Edgeworth expansion
combined with the strong approximation of empirical processes (see [33]) to derive the results.

This paper is organized as follows. In Section 2 we present our main results and summarize
the related results in the literature. A numerical implementation is given in Section 3 to
illustrate the performance of the bootstrap estimator. The proofs of the theorems are provided
in Sections 4, 5, and 6.
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2. Main results

2.1. Problem setting

Consider a probability space (�, F , P) and a random variable X admitting CDF F(x) =
P(X ≤ x) and density function

f (x) = F ′(x)

for all x ∈ R. Let αp be its pth quantile, that is,

αp = inf{x : F(x) ≥ p}.

Consider a change of measure Q, under which X admits a CDF G(x) = Q(X ≤ x) and density

g(x) = G′(x).

Let

L(x) = f (x)

g(x)
,

and let X1, . . . , Xn be i.i.d. copies of X under Q. Assume that P and Q are absolutely continuous
with respect to each other. Then EQ L(Xi) = 1. The corresponding weighted empirical CDF is

F̂X(x) =
∑n

i=1 L(Xi)I (Xi ≤ x)∑n
i=1 L(Xi)

, (1)

where I (·) denotes the indicator function. A natural estimator of αp is

α̂p(X) = inf{x ∈ R : F̂X(x) ≥ p}. (2)

Of interest in this paper is the variance of α̂p(X) under the sampling distribution of Xi , that is,

σ 2
n = varQ(α̂p(X)). (3)

The notation EQ(·) and varQ(·) are used to denote the expectation and variance under the
measure Q.

Let Y1, . . . , Yn be i.i.d. bootstrap samples from the empirical distribution

Ĝ(x) = 1

n

n∑
i=1

I (Xi ≤ x).

The bootstrap estimator for σ 2
n in (3) is defined as

σ̂ 2
n =

n∑
i=1

Q̂(α̂p(Y ) = Xi)(Xi − α̂p(X))2, (4)

where Y = (Y1, . . . , Yn) and Q̂ is the measure induced by Ĝ, that is, under Q̂, Y1, . . . , Yn are
i.i.d. with empirical distribution Ĝ. Note that both Ĝ and Q̂ depend on X. To simplify the
notation, we omit X in the notation of Q̂ and Ĝ.
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Remark 1. There are multiple ways to form an estimate of F . One alternative to (1) is

F̃X(x) = 1

n

n∑
i=1

L(Xi)I (Xi ≤ x). (5)

The analysis of F̃X is analogous to and simpler than that of (1). This is because the denominator
is a constant. The weighted sample CDF in (5) depends only on samples below x. This is an
important feature for the variance reduction of extreme quantile estimation when the change of
measure Q is designed to be concentrated on the region below F−1(p). We will provide more
detailed discussions later.

2.2. Related results

In this section we present two related results in the literature. First, Hall and Martin [28]
established the asymptotic distribution of the bootstrap variance estimator for (unweighted)
sample quantiles. In particular, they showed that if the density function f (x) is Hölder
continuous with index 1

2 + δ0 then

n5/4(σ̂ 2
n − σ 2

n ) ⇒ N(0, 2π−1/2[p(1 − p)]3/2f (αp)−4) (6)

as n → ∞, where ‘⇒’ denotes weak convergence. This is consistent with the results in
Theorem 2 below, setting L(x) ≡ 1. This paper can be viewed as a natural extension of [28],
though the proof techniques are different.

In the context of importance sampling, as shown in [27], if EQ |L(x)|3 < ∞, the asymptotic
distribution of a weighted quantile is

√
n(α̂p(X) − αp) ⇒ N

(
0,

varQ(Wp)

f (αp)2

)
(7)

as n → ∞, where Wp = L(X)(I (X < αp) − p). More general results in terms of weighted
empirical processes are given in [30].

We now provide a brief discussion of the efficient quantile computation via importance
sampling. The sample quantile admits a large variance when f (αp) is small. One typical
situation is that p is very close to 0 or 1. To fix ideas, we consider the case where p tends to 0.
The asymptotic variance of the pth quantile of n i.i.d. samples is

1 − p

np

p2

f (αp)2 .

Then, in order to obtain an estimate of an ε error with at least a 1 − δ probability, the necessary
number of i.i.d. samples is proportional to p−1p2/f 2(αp), which grows to ∞ as p → 0.
Typically, the inverse of the hazard function, p/f (αp), varies slowly as p tends to 0. For
instance, p/f (αp) is bounded if X is a light-tailed random variable and grows at most linearly in
αp for most heavy-tailed distributions (e.g. the regularly varying and log-normal distributions).

The asymptotic variance of the quantiles of F̃X defined in (5) is

varQ(L(X)I (X ≤ αp))

np2

p2

f (αp)2 .

There is a wealth of literature on the design of importance sampling algorithms, particularly
those adapted to the context in which p is close to 0. A well-accepted efficiency measure is
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precisely based on the relative variance p−2 varQ(L(X)I (X ≤ αp)) as p → 0. More explicitly,
the change of measure is called strongly efficient if p−2 varQ(L(X)I (X ≤ αp)) is bounded
for arbitrarily small p. For recent developments in importance sampling algorithms in a rare
event setting, see, e.g. [1], [7], [9], [12], and [17]. Therefore, the change of measure designed
to estimate p can be adapted without much additional effort to the quantile estimation problem.
For a more thorough discussion, see [14] and [30]. We will provide the analysis of one special
case in Theorem 3 below.

2.3. The results for regular quantiles

In this subsection we provide an asymptotic approximation of σ 2
n and the asymptotic

distribution of σ̂ 2
n . We first list a set of conditions which we will refer to in the statements

of our theorems.

(C1) There exists an α > 4 such that

EQ |L(X)|α < ∞.

(C2) There exists a β > 3 such that
EQ |X|β < ∞.

(C3) Assume that
α

3
>

β + 2

β − 3
.

(C4) There exists a δ0 > 0 such that the density functions f (x) and g(x) are Hölder continuous
with index 1

2 + δ0 in a neighborhood of αp, that is, there exists a constant c such that

|f (x) − f (y)| ≤ c|x − y|1/2+δ0 , |g(x) − g(y)| ≤ c|x − y|1/2+δ0 ,

for all x and y in a neighborhood of αp.

(C5) The measures P and Q are absolutely continuous with respect to each other. The likelihood
ratio L(x) ∈ (0, ∞) is Lipschitz continuous in a neighborhood of αp.

(C6) Assume that f (αp) > 0.

Theorem 1. Let F and G be the cumulative distribution functions of a random variable X

under the probability measures P and Q, respectively. The distributions F and G have density
functions f (x) = F ′(x) and g(x) = G′(x). We assume that conditions (C1)–(C6) hold. Let

Wp = L(X)I (X ≤ αp) − pL(X),

and let α̂p(X) be as defined in (2). Then,

σ 2
n := varQ(α̂p(X)) = varQ(Wp)

nf (αp)2 + o(n−5/4), EQ(α̂p(X)) = αp + o(n−3/4),

as n → ∞.

Theorem 2. Suppose that the conditions in Theorem 1 hold and that L(X) has density under Q.
Let σ̂ 2

n be defined as in (4). Then, under Q,

n5/4(σ̂ 2
n − σ 2

n ) ⇒ N(0, τ 2
p) (8)

as n → ∞, where
τ 2
p = 2π−1/2L(αp)f (αp)−4(varQ(Wp))3/2.
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Remark 2. In Theorem 1, we provided bounds on the errors of the asymptotic approximations
for EQ(α̂p(X)) and σ 2

n in order to assist the analysis of the bootstrap estimator. In particular, in
order to approximate σ 2

n with an accuracy of order o(n−5/4), it is sufficient to approximate
EQ(α̂p(X)) with an accuracy of order o(n−5/8). Thus, Theorem 1 indicates that α̂p can
be viewed as asymptotically unbiased. In addition, given that the bootstrap estimator has a
convergence rate of Op(n−5/4), Theorem 1 suggests that, when computing the distribution of
the bootstrap estimator, we can use the approximation of σ 2

n to replace the true variance.
In Theorem 2, if we let L(x) ≡ 1, that is, P = Q, then α̂p is the regular quantile and the

asymptotic distribution (8) recovers the result of [28] given in (6).

Remark 3. Note that the weak convergence in (7) requires weaker conditions than those in
Theorems 1 and 2. The weak convergence does not require α̂p(X) to have a finite variance. In
contrast, in order to apply the bootstrap variance estimator, we need to have the estimand well
defined, that is, varQ(α̂p(X)) < ∞. Conditions (C1)–(C3) are imposed to ensure that α̂p(X)

has a finite variance under Q.
The continuity assumptions on the density function f and the likelihood ratio function L

(conditions (C4) and (C5)) are typically satisfied in practice. Condition (C6) is necessary for
the quantile to have a variance of order O(n−1).

2.4. Results for extreme quantile estimation

In this subsection we consider the particular case in which p tends to 0. The analysis in
the context of extreme quantile estimation is sensitive to the underlying distribution and the
choice of change of measure. Here, we only consider a stylized case, one of the first two
cases considered in the rare event simulation literature. Let X = ∑m

j=1 Zi , where the Zis are
i.i.d. random variables with mean 0 and density function h(z). The random variable X has
density function f (x) that is the mth convolution of h(z). Note that both X and f (x) depend
on m. To simplify the notation, we omit the index m when there is no ambiguity. We further
consider the exponential change of measure

Q(X ∈ dx) = eθx−mϕ(θ)f (x) dx,

where ϕ(θ) = log
∫

eθxh(x) dx. We say that ϕ is steep if, for every a, ϕ(θ) = a has a solution.
For ε > 0, let αp = −mε be in the large deviations regime. We let θ be the solution to
supθ ′(−θ ′ε − ϕ(θ ′)) and I = supθ ′(−θ ′ε − ϕ(θ ′)). Then, a well-known approximation of the
tail probability is given by

P(X < −mε) = c(θ) + o(1)√
m

e−mI

as m → ∞. The likelihood ratio is given by

LR(x) = e−θx+mϕ(θ).

We use the notation LR(x) to distinguish it from the previous likelihood ratio L(x).

Theorem 3. Suppose that X = ∑m
j=1 Zi , where the Zis are i.i.d. mean-zero random variables

with Lipschitz continuous density function. The log-moment-generating function ϕ(θ) is steep.
For ε > 0, the equation

ϕ′(θ) = −ε
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has one solution denoted by θ . Let αp = −mε, and let X1, . . . , Xm be i.i.d. samples generated
from the exponential change of measure

Q(X ∈ dx) = eθx−mϕ(θ)f (x) dx.

Let

F̃X(x) = 1

n

n∑
i=1

LR(Xi)I (Xi ≤ x), α̂p(X) = inf(x ∈ R : F̃X(x) ≥ p). (9)

Let Y1, . . . , Yn be i.i.d. samples from the empirical measure Q̂, and let σ̂ 2
n be as defined in (4).

If m (growing as a function of n and denoted by mn) admits the limit m3
n/n → c∗ ∈ [0, +∞)

as n → ∞ then
n5/4

τ̃p

(σ̂ 2
n − σ 2

n ) ⇒ N(0, 1)

as n → ∞, where σ 2
n = varQ(α̂p(X)),

τ̃ 2
p = 2π−1/2LR(αp)f (αp)−4(varQ(W̄p))3/2, and W̄p = LR(X)I (X ≤ αp).

Remark 4. Theorem 3 establishes the asymptotic distribution of the bootstrap variance
estimator for a very stylized rare event simulation problem. For more general situations, further
investigations are necessary; for example, in the heavy-tailed cases the likelihood ratios do not
behave as well as those of the light-tailed cases even for strongly efficient estimators.

Remark 5. To simplify the notation, we drop the subscript n in the notation of mn and write
m whenever there is no ambiguity.

As m tends to ∞, the term τ̃ 2
p is no longer a constant. With the standard large deviations

results (see, e.g. Lemma 6 below), we know that τ̃ 2
p is of order O(m5/4). Therefore, the

convergence rate of σ̂ 2
n is O(m5/8n−5/4). In addition, σ 2

n is of order O(m1/2n−1). Thus, the
relative convergence rate of σ̂ 2

n is O(m1/8n−1/4). Choosing n so that m3 = O(n) is sufficient
to estimate αp with ε accuracy and σ 2

n with ε-relative accuracy.
The empirical CDF in Theorem 3 is different from those in Theorems 1 and 2. We emphasize

that it is necessary to use (9) to obtain the asymptotic results. This is mainly because the variance
of LR(X) grows exponentially fast as m tends to ∞. Then, the normalizing constant of the
empirical CDF in (1) is very unstable. In contrast, the empirical CDF in (9) depends only on
the samples below x. Note that the change of measure is designed to reduce the variance of
LR(X)I (X ≤ αp). Thus, the asymptotic results hold when n grows on the order of m3 or faster.

3. A numerical example

In this section we provide a numerical example to illustrate the performance of the bootstrap
variance estimator. In order to compare the bootstrap estimator with the asymptotic approxi-
mation in Theorem 1, we choose an example for which the marginal density f (x) is in a closed
form and αp can be computed numerically. Consider the partial sum

X =
m∑

i=1

Zi,

where the Zis are i.i.d. exponential random variables with rate 1. Then, the density function of
X is

f (x) = xm−1

(m − 1)!e−x.
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Table 1: Comparison of variance estimators for fixed m = 10 and n = 10 000. Here σ 2
n is the quantile

variance computed using crude Monte Carlo simulations, σ̃ 2
n is the asymptotic approximation of σ 2

n in
Theorem 1, and σ̂ 2

n is the bootstrap estimate of σ 2
n .

p α1−p α̂1−p σ 2
n σ̃ 2

n σ̂ 2
n

0.05 15.70 15.67 0.0032 0.0031 0.0027
0.04 16.16 16.13 0.0034 0.0033 0.0029
0.03 16.73 16.70 0.0037 0.0036 0.0032
0.02 17.51 17.47 0.0042 0.0041 0.0037
0.01 18.78 18.74 0.0054 0.0052 0.0047

Table 2: Comparison of variance estimators as m → ∞ for αp = 1.5m and n = 10 000.

m p α1−p α̂1−p σ 2
n σ̃ 2

n σ̂ 2
n

10 7.0 × 10−02 15 14.95 1.1 × 10−03 1.0 × 10−03 1.2 × 10−03

30 7.3 × 10−03 45 44.95 2.2 × 10−03 2.2 × 10−03 1.7 × 10−03

50 9.0 × 10−04 75 74.98 3.0 × 10−03 3.2 × 10−03 2.4 × 10−03

100 5.9 × 10−06 150 149.99 4.8 × 10−03 4.9 × 10−03 5.0 × 10−03

We are interested in computing the Xs (1−p)th quantile via an exponential change of measure,
that is,

dQθ

dP
=

m∏
i=1

eθZi−ϕ(θ),

where ϕ(θ) = −log(1 − θ) for θ < 1. We further choose θ = arg supθ ′(θ ′αp − mϕ(θ ′)).
We generate n i.i.d. replicates of (Z1, . . . , Zm) from Qθ , that is, (Z

(k)
1 , . . . , Z

(k)
m ) for

k = 1, . . . , n; then, we use Xk = ∑m
i=1 Z

(k)
i , k = 1, . . . , n, and the associated weights to

form an empirical distribution and further α̂1−p(X). Let σ 2
n = varQθ (α̂1−p(X)), let σ̃ 2

n be the
asymptotic approximation of σ 2

n , and let σ̂ 2
n be the bootstrap estimator of σ 2

n . We use Monte
Carlo simulations to compute both σ 2

n and σ̂ 2
n by generating independent replicates of α̂1−p(X)

under Q and bootstrap samples under Q̂, respectively.
We first consider the situation in which m = 10. In Table 1 we present the numerical results

of estimators based on the empirical CDF in Theorem 2 with n = 10 000. The column labeled
σ 2

n gives the variances of α̂1−p estimated using 1000 Monte Carlo simulations. In addition,
we consider the case in which αp = 1.5m and m → ∞. In Table 2 we present the numerical
results of the estimators given in Theorem 3 based on n = 10 000 simulations.

4. Proof of Theorem 1

Throughout our discussion, we use the following notation for the asymptotic behavior. We
say that 0 ≤ g(b) = O(h(b)) if g(b) ≤ ch(b) for some constant c ∈ (0, ∞) and all b ≥ b0 > 0.
Similarly, g(b) = �(h(b)) if g(b) ≥ ch(b) for all b ≥ b0 > 0. We also write g(b) = �(h(b))

if g(b) = O(h(b)) and g(b) = �(h(b)). Finally, g(b) = o(h(b)) as b → ∞ if g(b)/h(b) → 0
as b → ∞.

Before we present the proof of Theorem 1, we need a few useful lemmas.
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Lemma 1. Let X be a random variable with finite second moment. Then

E X =
∫

x>0
P(X > x) dx −

∫
x<0

P(X < x) dx,

E X2 =
∫

x>0
2x P(X > x) dx −

∫
x<0

2x P(X < x) dx.

Lemma 2. Let X1, . . . , Xn be i.i.d. random variables with E Xi = 0 and E |Xi |α < ∞ for
some α > 2. For each ε > 0, there exists a constant κ depending on ε, E X2

i , and E |Xi |α such
that

E

∣∣∣∣
n∑

i=1

Xi√
n

∣∣∣∣
α−ε

≤ κ

for all n > 0.

The proofs of Lemmas 1 and 2 are elementary, and are thus omitted.

Lemma 3. Let h(x) be a nonnegative function. There exists ζ0 > 0 such that h(x) ≤ xζ0 for
all sufficiently large x. Then, for all ζ1, ζ2, λ > 0 such that (ζ1 − 1)λ < ζ2, we obtain

∫ nλ

0
h(x)�(−x + o(xζ1n−ζ2)) dx =

∫ nλ

0
h(x)�(−x) dx + o(n−ζ2)

as n → ∞, where � is the CDF of a standard Gaussian distribution. In addition, we write
an(x) = o(xζ1n−ζ2) if an(x)x−ζ1nζ2 → 0 as n → ∞ uniformly for x ∈ (ε, nλ).

Proof. We first split the integral:

∫ nλ

0
h(x)�(−x + o(xζ1n−ζ2)) dx

=
∫ (log n)2

0
h(x)�(−x + o(xζ1n−ζ2)) dx +

∫ nλ

(log n)2
h(x)�(−x + o(xζ1n−ζ2)) dx.

Note that we can bound the second term:

∫ nλ

(log n)2
h(x)�(−x + o(xζ1n−ζ2)) dx ≤ nλ(ζ0+1)�

(
− (log n)2

2

)
= o(n−ζ2).

For the first term, note that, for all 0 ≤ x ≤ (log n)2,

�(−x + o(xζ1n−ζ2)) = (1 + o(xζ1+1n−ζ2))�(−x).

Then

∫ (log n)2

0
h(x)�(−x + o(xζ1n−ζ2)) dx =

∫ (log n)2

0
h(x)�(−x) dx + o(n−ζ2).

Therefore, the conclusion follows immediately.
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Proof of Theorem 1. Let α̂p(X) be defined as in (2). To simplify the notation, we omit the
index X and write α̂p(X) as α̂p. We use Lemma 1 to compute the moments. In particular, we
need to approximate the following probability:

Q(n1/2(α̂p − αp) > x) = Q(F̂X(αp + xn−1/2) < p)

= Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)
. (10)

For some λ ∈ (1/4(α − 2), 1
8 ), we provide approximations for (10) in the following three cases:

0 < x ≤ nλ, nλ ≤ x ≤ c
√

n, and x >
√

n. The development for

Q(n1/2(α̂p − αp) < x)

in the region x ≤ 0 is the same as that of the positive side.

Case 1: 0 < x ≤ nλ. Let

Wx,n,i = L(Xi)(I (Xi ≤ αp + xn−1/2) − p) − F(αp + xn−1/2) + p.

According to the Berry–Esseen bound (cf. [20]),

Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)

= Q

(
(1/n)

∑n
i=1 Wx,n,i√

varQ Wx,n,1/n
< −F(αp + xn−1/2) − p√

varQ Wx,n,1/n

)

= �

(−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

)
+ D1(x). (11)

There exists a constant κ1 such that

|D1(x)| ≤ κ1

(varQ Wx,n,1)3/2 n−1/2.

Case 2: nλ ≤ x ≤ c
√

n. Thanks to Lemma 2, for each ε > 0, the (α − ε)th moment of
(1/

√
n)

∑n
i=1 Wx,n,i is bounded. By Chebyshev’s inequality, we obtain

Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)

= Q

(
1√
n

n∑
i=1

Wx,n,i ≤ √
n

(
p − F

(
αp + x√

n

)))

≤ κ1

(
1√

n(F (αp + xn−1/2) − p)

)α−ε

≤ κ2x
−α+ε.

Since λ > 1/4(α − 2), we choose ε small enough such that

∫ c
√

n

nλ

x Q(α̂p − αp > xn−1/2) dx = O(n−λ(α−2−ε)) = o(n−1/4). (12)
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Case 3: x > c
√

n. Note that

Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)

is a nonincreasing function of x. Therefore, for all x > c
√

n, from case 2, we obtain

Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)
≤ κ2(c

√
n)−α+ε = κ3n

−α/2+ε/2.

For c
√

n < x ≤ nα/6−ε/6, we have

Q

( n∑
i=1

L(Xi)(I (Xi ≤ αp + xn−1/2) − p) < 0

)
≤ κ3n

−α/2+ε/2 ≤ κ3x
−3.

In addition, note that, for all xβ−3 > n1+β/2,

Q

(
α̂p > αp + x√

n

)
≤ Q(sup

i

Xi > αp + xn−1/2)

= 1 − Gn(αp + xn−1/2)

≤ O(1)n1+β/2x−β

= O(x−3).

Therefore, Q(α̂p > αp + x/
√

n) = O(x−3) on the region {c√n < x ≤ nα/6−ε/3}∪{x >

n(β+2)/2(β−3)}. Since α/3 > (β + 2)/(β − 3), we can choose ε small enough such that
x > nα/6−ε/6 implies that xβ−3 > n1+β/2. Therefore, for all x > c

√
n, we obtain

Q

(
α̂p > αp + x√

n

)
≤ x−3

and ∫ ∞

c
√

n

x Q

(
α̂p > αp + x√

n

)
dx = O(n−1/2). (13)

Summarizing cases 2 and 3, more specifically (12) and (13), we obtain
∫ ∞

nλ

x Q

(
α̂p > αp + x√

n

)
dx = o(n−1/4).

Using the result in (11), we obtain
∫ ∞

0
x Q

(
α̂p > αp + x√

n

)
dx

=
∫ nλ

0
x

[
�

(−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

)
+ O(n−1/2)

]
dx + o(n−1/4)

=
∫ nλ

0
x�

(−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

)
dx + O(n2λ−1/2) + o(n−1/4). (14)
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Given that λ < 1
8 , we have O(n2λ−1/2) = o(n−1/4). Thanks to condition (C4) and the fact that

varQ(Wx,n,1) = (1 + O(xn−1/2)) varQ(W0,n,1), we have

−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

= − xf (αp)√
varQ W0,n,1

+ O(x3/2+δ0n−1/4−δ0/2).

Insert this approximation into (14). Together with the results from Lemma 3, we obtain

∫ nλ

0
x Q

(
α̂p > αp + x√

n

)
dx =

∫ nλ

0
x�

(
− xf (αp)√

varQ W0,n,1

)
dx + o(n−1/4).

Therefore,∫ ∞

0
x Q(α̂p − αp > x) dx = 1

n

∫ ∞

0
x Q

(
α̂p > αp + x√

n

)
dx

= 1

n

∫ ∞

0
x�

(
− xf (αp)√

varQ W0,n,1

)
dx + o(n−5/4)

= varQ W0,n,1

nf 2(αp)

∫ ∞

0
x�(−x) dx + o(n−5/4)

= varQ W0,n,1

2nf 2(αp)
+ o(n−5/4).

Similarly,∫ ∞

0
Q(α̂p > αp + x) dx = 1√

n

∫ ∞

0
Q

(
α̂p > αp + x√

n

)
dx

= 1√
n

∫ ∞

0
�

(
− xf (αp)√

varQ W0,n,1

)
dx + o(n−3/4).

For Q(α̂p < αp − x) and x > 0, the approximations are identical and are therefore omitted.
Summarizing the results for x > 0 and x ≤ 0 we obtain

EQ(α̂p − αp)2 =
∫ ∞

0
x Q(α̂p > αp + x) dx +

∫ ∞

0
x Q(α̂p < αp − x) dx

= n−1
(

varQ W0,n,1

f 2(αp)
+ o(n−1/4)

)
,

EQ(α̂p − αp) =
∫ ∞

0
Q(α̂p > αp + x) dx −

∫ ∞

0
Q(α̂p < αp − x) dx

= o(n−3/4).

5. Proof of Theorem 2

We first present a lemma that localizes the event. This lemma can be proven straightforwardly
by standard results of empirical processes (cf. [33]–[35]) along with the strong law of large
numbers and the central limit theorem. Therefore, we omit it. Let Y1, . . . , Yn be i.i.d. bootstrap
samples, and let Y be a generic random variable equal in distribution to Yi . Let Q̂ be the
probability measure associated with the empirical distribution Ĝ(x) = (1/n)

∑n
i=1 I (Xi ≤ x).
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Lemma 4. Let Cn be the set in which the following events occur.

(E1) EQ̂ |L(Y )|ζ < 2 EQ |L(X)|ζ , ζ = 2, 3, α; EQ̂ |L(Y )|2 > 1
2 EQ |L(X)|2; and EQ̂ |X|β ≤

2 EQ |X|β .

(E2) Suppose that α̂p = X(r). Then, assume that |r/n−G(αp)| < n−1/2 log n and |α̂p−αp| <

n−1/2 log n.

(E3) There exists δ ∈ (0, 1) such that, for all 1 < x <
√

n,

δ ≤
∑n

i=1 I (X(i) ∈ (α̂p, α̂p + xn−1/2])
n Q(αp < X ≤ αp + n−1/2x)

≤ δ−1

and

δ ≤
∑n

i=1 I (X(i) ∈ (α̂p − xn−1/2, α̂p])
n Q(αp − n−1/2x < X ≤ αp)

≤ δ−1.

Then,
lim

n→∞ Q(Cn) = 1.

Lemma 5. Under conditions (C1) and (C5), let Y be a random variable with CDF Ĝ. Then,
for each λ ∈ (0, 1

2 ),

sup
|x|≤cnλ−1/2

|varQ̂[L(Y )(I (Y ≤ α̂p + x) − p)] − varQ[L(X)(I (αp + x) − p)]|

= Op(n−1/2+λ).

Proof. Note that

EQ̂ L2(Y )(I (Y ≤ α̂p + x) − p)2

= 1

n

n∑
i=1

L2(Xi)(I (Xi ≤ α̂p + x) − p)2

= 1

n

n∑
i=1

L2(Xi)(I (Xi ≤ αp + x) − p)2

+ L2(αp)Op

(
1

n

n∑
i=1

I (min(αp, α̂p) ≤ Xi − x ≤ max(αp, α̂p))

)
.

For the first term, by the central limit theorem, the continuity of L(x), and Taylor’s expansion,
we obtain

sup
|x|≤cn−1/2+λ

∣∣∣∣1

n

n∑
i=1

L2(Xi)(I (Xi ≤ αp + x) − p)2 − EQ(L2(X)(I (X ≤ αp + x) − p)2)

∣∣∣∣
= Op(n−1/2+λ).

Thanks to the weak convergence of the empirical measure and α̂p − αp = O(n−1/2), we have

L2(αp)Op

(
1

n

n∑
i=1

I (min(αp, α̂p) ≤ Xi − x ≤ max(αp, α̂p))

)
= Op(n−1/2).
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Therefore,

sup
|x|≤cn−1/2+λ

|EQ̂L2(Y )(I (Y ≤ α̂p + x) − p)2 − EQ(L2(X)(I (X ≤ αp + x) − p)2)|

= Op(n−1/2+λ).

Using a very similar argument, we have

sup
−cn−1/2≤x≤cn−1/2

|EQ̂L(Y )(I (Y ≤ α̂p + x) − p) − EQ(L(X)(I (X ≤ αp + x) − p))|

= Op(n−1/2+λ).

This completes the proof.

Proof of Theorem 2. Let X(1), . . . , X(n) be the order statistics of X1, . . . , Xn in ascending
order. Since we aim to prove weak convergence, it is sufficient to consider the case in which
X ∈ Cn, as in Lemma 4. Throughout the proof, we assume that X ∈ Cn.

As in the proof of Theorem 1, we abbreviate α̂p(X) to α̂p, but we keep the notation α̂p(Y )

to differentiate between them. We use Lemma 1 to compute the second moment of α̂p(Y )− α̂p

under Q̂, that is,

σ̂ 2
n =

∫ ∞

0
xQ̂(α̂p(Y ) > α̂p + x) dx +

∫ ∞

0
xQ̂(α̂p(Y ) < α̂p − x) dx.

We first consider the case in which x > 0 and proceed using a derivation similar to that used in
the proof of Theorem 1. Choose λ ∈ (1/4(α − 2), 1

8 ).

Case 1: 0 < x ≤ nλ. Similarly to the proof of Theorem 1, by the Berry–Esseen bound, for all
x ∈ R,

Q̂(n1/2(α̂p(Y ) − α̂p) > x) = �

(
−

∑n
i=1 L(Xi)(I (Xi ≤ α̂p + xn−1/2) − p)√

n varQ̂ W̃x,n

)
+ D2,

where

W̃x,n = L(Y )

(
I

(
Y ≤ α̂p + x√

n

)
− p

)
− 1

n

n∑
i=1

L(Xi)

(
I

(
Xi ≤ α̂p + x√

n

)
− p

)

and (thanks to (E1))

|D2| ≤ 3 EQ̂ |W̃x,n|3√
n(varQ̂ W̃x,n)3/2

= O(n−1/2).

In what follows, we further consider the cases in which x > nλ. We will essentially follow
cases 2 and 3 in the proof of Theorem 1.

Case 2: nλ ≤ x ≤ c
√

n. Note that

n∑
i=1

L(Xi)(I (Xi ≤ α̂p) − p) = O(1).
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With exactly the same argument as used in case 2 of Theorem 1 and thanks to (E1), we
obtain, for each ε > 0,

Q̂

(
α̂p(Y ) − α̂p >

x√
n

)

≤ κ

(
1√
n

n∑
i=1

L(Xi)

(
I

(
Xi ≤ α̂p + x√

n

)
− p

))−α+ε

= κ

(
1√
n

n∑
i=1

L(Xi)I

(
α̂p < Xi ≤ α̂p + x√

n

)
+ O

(
1√
n

))−α+ε

.

Furthermore, thanks to (E3), we have

Q̂

(
α̂p(Y ) − α̂p >

x√
n

)
= O(x−α+ε).

With sufficiently small ε, we have

∫ √
n

nλ

xQ̂

(
α̂p(Y ) − α̂p >

x√
n

)
dx = O(n−λ(α−ε−2)) = o(n−1/4).

Case 3: x > c
√

n. Note that

Q̂

( n∑
i=1

L(Yi)

(
I

(
Yi ≤ α̂p + x√

n

)
− p

)
< 0

)

is a monotone nonincreasing function of x. Therefore, for all x > c
√

n, from case 2, we
obtain

Q̂

( n∑
i=1

L(Yi)

(
I

(
Yi ≤ α̂p + x√

n

)
− p

)
< 0

)
≤ κ3n

−α/2+ε/2.

For x ≤ nα/6−ε/6, we obtain

Q̂

( n∑
i=1

L(Yi)

(
I

(
Yi ≤ α̂p + x√

n

)
− p

)
< 0

)
≤ κ3n

−α/2+ε/2 ≤ κ3x
−3.

Thanks to condition (C3), with sufficiently small ε, x > nα/6−ε/6 implies that xβ−3 >

n1+β/2. Therefore, because of (E1), for all x > nα/6−ε/6 (therefore, xβ−3 > n1+β/2),

Q̂

(
α̂(Y ) > α̂p + x√

n

)
≤ Q̂

(
sup

i

Yi > α̂p + x√
n

)
= O(1)n1+β/2x−β = O(x−3).

Therefore, we have

∫ ∞

c
√

n

xQ̂

(
α̂p(Y ) − α̂p >

x√
n

)
dx = O(n−1/2).
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From the results of cases 2 and 3, we obtain, for X ∈ Cn,
∫ ∞

nλ

xQ̂

(
α̂p(Y ) > α̂p + x√

n

)
dx = o(n−1/4). (15)

Using exactly the same proof, we can show that
∫ ∞

nλ

xQ̂

(
α̂p(Y ) < α̂p − x√

n

)
dx = o(n−1/4). (16)

Case 1 revisited. Cases 2 and 3 imply that the integral in the region where |x| > nλ can be
ignored. In the region 0 ≤ x ≤ nλ, on the set Cn, for λ < 1

8 , we obtain

∫ nλ

0
xQ̂

(
α̂p(Y ) > α̂p + x√

n

)
dx

=
∫ nλ

0
x

[
�

(
−

∑n
i=1 L(Xi)(I (Xi ≤ α̂p + xn−1/2) − p)√

n varQ̂ W̃x,n

)
+ D2

]
dx

=
∫ nλ

0
x�

(
−

∑n
i=1 L(Xi)(I (Xi ≤ α̂p + xn−1/2) − p)√

n varQ̂ W̃x,n

)
dx

+ o(n−1/4). (17)

We now take a closer look at the integrand. Note that

n∑
i=1

L(Xi)

(
I

(
Xi ≤ α̂p + x√

n

)
− p

)

=
n∑

i=1

L(Xi)(I (Xi ≤ α̂p) − p) +
n∑

i=1

L(Xi)I

(
α̂p < Xi ≤ α̂p + x√

n

)
. (18)

Suppose that α̂p = X(r). Then

r∑
i=1

L(X(i)) ≥ p

n∑
i=1

L(Xi) and
r−1∑
i=1

L(X(i)) < p

n∑
i=1

L(Xi). (19)

Therefore,

p

n∑
i=1

L(Xi) ≤
n∑

i=1

L(Xi)I (Xi ≤ α̂p) < L(α̂p) + p

n∑
i=1

L(Xi).

Substituting this into (18) we obtain

n∑
i=1

L(Xi)

(
I

(
Xi ≤ α̂p + x√

n

)
− p

)

= O(L(α̂p)) +
n∑

i=1

L(Xi)I

(
α̂p < Xi ≤ α̂p + x√

n

)
. (20)
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In what follows, we study the dominating term in (17) via (20). For all x ∈ (0, nλ), thanks
to (20), we obtain

�

(
−

∑n
i=1 L(Xi)(I (Xi ≤ α̂p + xn−1/2) − p)√

n varQ̂ W̃x,n

)

= �

(
−

∑n
i=1 L(Xi)I (α̂p < Xi ≤ α̂p + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)
. (21)

Note that the above display is a functional of (X1, . . . , Xn), and also a stochastic process indexed
by x. In what follows, we show that it is asymptotically a Gaussian process. The distribution
of (21) is not straightforward to obtain. The strategy is to first consider a slightly different
quantity and then connect it to (21). For each (x(r), r) such that |x(r) − αp| ≤ n−1/2 log n

and |r/n − G(αp)| ≤ n−1/2 log n, conditional on X(r) = x(r), X(r+1), . . . , X(n) are equal in
distribution to the order statistics of n − r i.i.d. samples from Q(X ∈ · | X > x(r)). Thanks to
the fact that L(x) is locally Lipschitz continuous and (E3), we obtain

�

(
−

∑n
i=r+1 L(X(i))I (x(r) < X(i) ≤ x(r) + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)

= �

(
− L(x(r))√

n varQ̂ W̃x,n

n∑
i=r+1

I

(
X(i) ∈

(
x(r), x(r) + x√

n

])
+ O(x2n−1/2)

)
. (22)

In the above inequality, we replace L(X(i)) by L(X(r)). The error term is

O(1)
L′(X(r))xn−1/2 ∑n

i=r+1 I (x(r) < X(r) ≤ x(r) + xn−1/2)√
n varQ̂ Wx,n

= O(x2n−1/2).

Note that (22) equals (21) if α̂p = X(r) = x(r). For the time being, we proceed by condi-
tioning only on X(r) = x(r) and then further derive the conditional distribution of (21) given
α̂p = X(r) = x(r). Owing to Lemma 5, we further simplify the denominator and (22) becomes

�

(
− L(x(r))√

n varQ W0,n

n∑
i=r+1

I

(
X(i) ∈

(
x(r), x(r) + x√

n

])
+ O(x2n−1/2+λ)

)
. (23)

Let

Gx(r)
(x) = G(x(r) + x) − G(x(r))

1 − G(x(r))
= Q(X ≤ x(r) + x | X > x(r)).

Thanks to the result of strong approximation (see [33]–[35]), given X(r) = x(r), there exists a
Brownian bridge {B(t) : t ∈ [0, 1]} such that

n∑
i=r+1

I

(
X(i) ∈

(
x(r), x(r) + x√

n

])

= (n − r)Gx(r)

(
x√
n

)
+ √

n − rB

(
Gx(r)

(
x√
n

))
+ Op(log(n − r)), (24)
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where the Op(log(n − r)) is uniform in x. Again, we can localize the event by considering a
set in which the error term in the above display is O(log(n − r))2. We substitute this strong
approximation into (23) and obtain

�

(
− L(x(r))√

n varQ W0,n

(n − r)Gx(r)

(
x√
n

)
+ Op(x2n−1/2+λ(log n)2)

)

− ϕ

(
− L(x(r))√

n varQ W0,n

(n − r)Gx(r)

(
x√
n

)
+ Op(x2n−1/4(log n)2)

)

× (n − r)1/2L(x(r))√
n varQ W0,n

B

(
Gx(r)

(
x√
n

))
. (25)

In addition, thanks to condition (C4),

L(x(r))√
n varQ W0,n

(n − r)Gx(r)

(
x√
n

)
= f (x(r))√

varQ W0,n

x + O(xδ0+3/2n−1/4−δ0/2). (26)

Let

ξ(x) = (n − r)1/2L(x(r))√
n varQ W0,n

B

(
Gx(r)

(
x√
n

))
, (27)

which is a Gaussian process with mean 0 and covariance function

cov(ξ(x), ξ(y)) = (n − r)L2(x(r))

n varQ W0,n

Gx(r)

(
x√
n

)(
1 − Gx(r)

(
y√
n

))

= (1 + O(n−1/4+λ/2))
L(x(r))f (x(r))

varQ W0,n

x√
n

for 0 ≤ x ≤ y ≤ nλ. Insert (26) and (27) into (25) to obtain, given X(r) = x(r),

∫ nλ

0
2x�

(
−

∑n
i=r+1 L(X(i))I (x(r) < X(i) ≤ x(r) + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)
dx

=
∫ nλ

0
2x�

(
− f (x(r))√

varQ W0,n

x + o(x2n−1/4)

)
dx

−
∫ nλ

0
2xϕ

(
− f (x(r))√

varQ W0,n

x + o(x2n−1/4)

)
ξ(x) dx + o(n−1/4), (28)

where ϕ(x) is the standard Gaussian density function. Owing to Lemma 3 and |x(r) − αp| ≤
n−1/2 log n, the first term on the right-hand side of (28) is equal to

(1 + o(n−1/4))

∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx + op(n−1/4). (29)

The second term on the right-hand side of (28) multiplied by n1/4 converges weakly to a
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Gaussian distribution with mean 0 and variance

√
n

∫ nλ

0

∫ nλ

0
4xyϕ

(
− f (x(r))√

varQ W0,n

x + o(x2n−1/4)

)

× ϕ

(
− f (x(r))√

varQ W0,n

y + o(x2n−1/4)

)
cov(ξ(x), ξ(y)) dx dy

= (1 + o(1))

∫ nλ

0

∫ nλ

0
4xyϕ

(
− f (x(r))√

varQ W0,n

x

)
ϕ

(
− f (x(r))√

varQ W0,n

y

)

× L(x(r))f (x(r))

varQ W0,n

min(x, y) dx dy

= (1 + o(1))
L(αp)(varQ W0,n)

3/2

f 4(αp)
√

π
. (30)

To obtain the last step in the above display, we need the following calculation:

var

(∫ ∞

0
2xϕ(x)B(x) dx

)
=

∫ ∞

0

∫ ∞

0
4xyϕ(x)ϕ(y) min(x, y) dx dy

=
∫ ∞

0

∫ ∞

0
4r3 cos θ sin θ min(cos θ, sin θ)

1

2π
e−r2/2 dx dy

= 8
∫ π/4

0

∫ ∞

0
r4 cos θ sin2 θ

1√
2π

1√
2π

e−r2/2 dr dθ

= 8
1

3

1

23/2

1√
2π

3

2

= 1√
π

.

We insert estimates (29) and (30) into (28) and obtain, conditional on X(r) = x(r),

n1/4
[∫ nλ

0
2x�

(
−

∑n
i=r+1 L(X(i))I (x(r) < X(i) ≤ x(r) + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)
dx

−
∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

]

⇒ N
(
0, 1

2τ 2
p

)
(31)

as n − r, r → ∞ subject to the constraint that |r/n − G−1(αp)| ≤ n−1/2 log n, where τ 2
p is

defined in the statement of the theorem. We could consider the left-hand side of (31) indexed
by r and n − r . The limit is in the sense that both r and n − r tend to ∞ in the region where
|r/n − G−1(αp)| ≤ n−1/2 log n.

The limiting distribution of (31) conditional on α̂p = X(r) = x(r). We now further
consider the limiting distribution of the left-hand side of (31) conditional on α̂p = X(r) = x(r).
To simplify the notation, let

Vn = −n1/4
∫ nλ

0
2xϕ

(
− f (αp)√

n varQ W0,n

x + o(x2n−1/4)

)
L(αp)

×
∑n

i=r+1 I (x(r) < X(i) ≤ x(r) + xn−1/2) − (n − r)Gx(r)
(xn−1/2)√

n varQ W0,n

dx.
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Then, ∫ nλ

0
�

(
−

∑n
i=r+1 L(X(i))I (x(r) < X(i) ≤ x(r) + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)
dx

−
∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

= n−1/4Vn + o(n−1/4).

The weak convergence result in (31) says that, for each compact set A,

Q(Vn ∈ A | X(r) = x(r)) → P(Z ∈ A)

as n − r, r → ∞ subject to the constraint that |r/n − G−1(αp)| ≤ n−1/2 log n, where Z is
a Gaussian random variable with mean 0 and variance τ 2

p/2. Note that α̂p = X(r) = x(r) is
equivalent to

0 ≤ H =
r∑

i=1

L(X(i))(1 − p) − p

n∑
i=r+1

L(X(i)) ≤ L(x(r)).

Let

Un =
n∑

i=r+1

L(X(i))I (x(r) < X(i) ≤ x(r) + nλ−1/2) − n P(x(r) < X ≤ x(r) + nλ−1/2)

and
Bn = {|Un| ≤ nλ/2+1/4 log n}.

Note that, given the partial sum Un, H is independent of the Xis in the interval (x(r), x(r) +
nλ−1/2) and is therefore independent of Vn. For each compact set A and An = {Vn ∈ A} ∩ Bn,
we have

Q(An | α̂p = X(r) = x(r))

= Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r), An)

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r))
Q(An | X(r) = x)

= EQ
[

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r), Un)

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r))

∣∣∣∣ X(r) = x(r), An

]

× Q(An | X(r) = x(r)). (32)

The second step of the above equation uses the fact that, on the set Bn,

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r), Un) = Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r), Un, An).

Note that Un depends only on the Xis in (x(r), x(r) + nλ−1/2), while H is the weighted sum of
all the samples. Therefore, on the set Bn = {|Un| ≤ nλ/2+1/4 log n},

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r), Un)

Q(0 ≤ H ≤ L(x(r)) | X(r) = x(r))
= 1 + o(1), (33)

and the o(1) is uniform in Bn. The rigorous proof of the above approximation can be straight-
forwardly developed using the Edgeworth expansion of density functions, but is tedious, so we
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omit it. We substitute (33) into (32). Note that Q(Bn | X(r) = x(r)) → 1 and we obtain, for
each A,

Q(Vn ∈ A | α̂p = X(r) = x(r)) − Q(Vn ∈ A | X(r) = x(r)) → 0.

Thus, we obtain, conditional on α̂p = X(r), |α̂p − αp| ≤ n−1/2 log n, |r/n − G−1(αp)| ≤
n−1/2 log n, and, as n → ∞,

n1/4
[∫ nλ

0
Q̂

(
α̂p(Y ) > α̂p + x√

n

)
dx −

∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

]

= n1/4
[∫ nλ

0
�

(
−

∑n
i=r+1 L(X(i))I (α̂p < X(i) ≤ α̂p + xn−1/2)√

n varQ̂ W̃x,n

+ O(n−1/2)

)
dx

−
∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

]
+ op(1)

= Vn + op(1)

⇒ N

(
0,

τ 2
p

2

)
.

Together with (E2), this convergence indicates that, asymptotically, the bootstrap variance
estimator is independent of α̂p. Therefore, the unconditional asymptotic distribution is given by

n1/4
[∫ nλ

0
Q̂

(
α̂p(Y ) > α̂p + x√

n

)
dx −

∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

]

⇒ N

(
0,

τ 2
p

2

)
. (34)

Using exactly the same argument, the asymptotic distribution of the negative part of the
integral is given by

n1/4
[∫ nλ

0
Q̂

(
α̂p(Y ) < α̂p − x√

n

)
dx −

∫ ∞

0
2x�

(
− f (αp)√

varQ W0,n

x

)
dx

]

⇒ N

(
0,

τ 2
p

2

)
. (35)

Using a conditional independence argument, we find that the negative and positive parts of the
integral are asymptotically independent. Putting together the results in Theorem 1, (15), (16),
(34), (35), and the moment calculations of Gaussian distributions, we conclude that

σ̂ 2
n =

∫ ∞

0
2x[Q̂(α̂p(Y ) < α̂p − x) + Q̂(α̂p(Y ) > α̂p + x)] dx

= 1

n

∫ ∞

0
2x

[
Q̂

(
α̂p(Y ) < α̂p − x√

n

)
+ Q̂

(
α̂p(Y ) > α̂p + x√

n

)]
dx

d= varQ(Wp)

nf (αp)2 + Zn−5/4 + o(n−5/4)

= σ 2
n + Zn−5/4 + o(n−5/4),

where Z ∼ N(0, τ 2
p).
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6. Proof of Theorem 3

Lemma 6. Under the conditions of Theorem 3, we have

EQ(LRγ (X); X < αp) = c(θ) + o(1)

γ
√

m
e−mγ I .

We clarify that LRγ (X) = (LR(X))γ is the γ th moment of the likelihood ratio. With this
result, if we choose m3 = O(n), it is sufficient to guarantee that, with probability tending to 1,
the ratio between the empirical moments and the theoretical moments are within an ε distance
from 1. Thus, the localization results (Lemma 4) are in place.

Lemma 7. Under the conditions of Theorem 3, for each γ > 0, there exist constants δ

(sufficiently small), uγ , and lγ such that

lγ δ ≤ EQ(LRγ (x); αp < X ≤ αp + δ)

EQ(LRγ (x); X < αp)
≤ uγ δ

for all sufficiently large m.

The proofs of the above two lemmas are standard and use the exponential change of measure
and Edgeworth’s expansion. We omit the details.

Proof of Theorem 3. The proof of this theorem is very similar to those of Theorems 1 and 2.
The only difference is that we need to keep in mind that there is another parameter m that tends
to ∞. Therefore, the main task of this proof is to provide a careful analysis and establish a
sufficiently large n so that similar asymptotic results hold as m tends to ∞ in a slower manner
than n.

From a technical point of view, the main reason why we need to choose m3 = O(n) is
that we use the Berry–Esseen bound in the region [0, nλ] to approximate the distribution of√

n(α̂p − αp). In order to have the approximation hold (see case 2 of part 1 below), it is
necessary to have m1/4 = o(nλ). On the other hand, the error term of the Berry–Esseen bound
requires that nλ cannot to too large. The order m3 = O(n) is sufficient to guarantee both.

The proof consists of two parts. In part 1 we establish similar results as those in Theorem 1;
in part 2 we establish the corresponding results given in Theorem 2.

Part 1. We now proceed to establish the asymptotic mean and variance of the weighted
quantile estimator. Recall that in the proof of Theorem 1 we developed the approximations
of the tail probabilities of the quantile estimator and used Lemma 1 to conclude the proof.
In particular, we approximated the right tail of α̂p in three different regions. We go through the
three cases carefully for some max(1/4(α − 2), 1

10 ) < λ < 1
8 (recall that L(X) has at least αth

moment under Q).

Case 1: 0 < x ≤ nλ. We approximate the tail probability using the Berry–Esseen bound:

Q(
√

n(α̂p − αp) > x) = �

(−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

)
+ D1(x). (36)

Here
Wx,n,i = LR(Xi)I (Xi ≤ αp + xn−1/2) − F(αp + xn−1/2)

and

|D1(x)| ≤ c E |Wx,n,1|3
(varQ Wx,n,1)3/2 n−1/2 = O(1)

m1/4

n1/2 .
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The equality in the approximation of D1(x) follows from Lemma 6. In the current case,
Wx,n,i has all the moments, that is, α can be chosen arbitrarily large.

Case 2: nλ < x ≤ c
√

n. Applying Theorem 2.18 of [16], for each δ > 0, there exist κ1(δ) and
κ2(δ) such that

Q(
√

n(α̂p − αp) > x) = Q

( n∑
i=1

Wx,n,i < n

(
p − F

(
αp + x√

n

)))

≤
(

3

1 + δn var(Wx,n,1)−1(p − F(αp + xn−1/2))2

)1/δ

+ Q
(

min
i=1,...,n

Wx,n,i < δn(p − F(αp + xn−1/2))
)

≤ κ1(δ)(m
−1/4x)−2/δ + κ2(δ)n

−α/2+1

√
m

(m−1/2x)−α.

The last inequality follows from Lemma 7 with γ = 1. Given that we can choose δ

arbitrarily small and α arbitrarily large (thanks to the steepness), and m3 = O(n), we
obtain

Q(
√

n(α̂p − αp) > x) = O(x−α+ε),

where ε can be chosen arbitrarily small. Thus,
∫ c

√
n

nλ

x Q(
√

n(α̂p − αp) > x) dx = o(n−1/4).

Case 3: x > c
√

n. Similarly to the proof of Theorem 1, for c
√

n < x ≤ nα/6−ε/6,

Q(
√

n(α̂p − αp) > x) ≤ κ3x
−3.

For xβ−3 > n1+2β/3 (recall that X has at least βth moment under Q),

Q(
√

n(α̂p − αp) > x) ≤ Q

(
sup

i

Xi > αp + x√
n

)
≤ O(1)n1+β/2mβ/2x−β = O(x−3).

Given the steepness of ϕ(θ), α and β can be chosen arbitrarily large. We then have
1 = α/6 ≥ (1 + 2β/3)/(β − 3). Thus, we conclude that

Q(
√

n(α̂p − αp) > x) = O(x−3)

for all x > c
√

n and∫ ∞

c
√

n

x Q(
√

n(α̂p − αp) > x) dx = O(n−1/2).

Summarizing the three cases, we have∫ ∞

0
x Q(

√
n(α̂p − αp) > x) dx

=
∫ nλ

0
x�

(−(F (αp + xn−1/2) − p)√
varQ Wx,n,1/n

)
dx + o(m1/4n−1/4)

=
∫ nλ

0
x�

(
− f (αp)x√

varQ W0,n,1

)
dx + o(m1/4n−1/4).
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For the last step, we used the fact that varQ Wx,n,1 = (1 + O(xn−1/2)) varQ W0,n,1, which is
an application of Lemma 7. Using Lemma 1, we obtain

EQ(α̂p) = αp + o(m1/4n−3/4), σ 2
n = varQ(α̂p) = varQ(Wp)

nf (αp)2 + o(m1/4n−5/4),

where
Wp = LR(X)I (X ≤ αp)

and the convergence is uniform in m when m3 = O(n). Note that we aim to show that
the bootstrap variance estimator converges to σ 2

n at a rate of O(m5/8n−5/4). Then, we can
basically treat the above approximations as true values in the derivations for the bootstrap
variance estimator.

Part 2. We now proceed to the discussion of the distribution of the bootstrap variance
estimator. The proof needs to go through three similar cases as in part 1 where we derived
the approximation of the mean and variance of α̂p under Q. The difference is that we need to
handle the empirical measure Q̂ instead of Q. As we explained after the statement of Lemma 6,
the localization conditions (Lemma 4) are satisfied when m3 = O(n). Let the set Cn be as
defined in Lemma 4. The analyses of these three cases are identical to those in part 1. We
obtain similar results as in part 1, i.e.

∫ ∞

nλ

xQ̂

(
α̂p(Y ) > α̂p + x√

n

)
dx = o(n−1/4). (37)

We omit the detailed analysis. In what follows, we focus on revisiting case 1 in the proof of
Theorem 2, which is the leading term of the asymptotic result. Then, we continue the derivation
from (17). On the set Cn and with a similar result (for the empirical measure Q̂) as in (36), we
have∫ nλ

0
xQ̂

(
α̂p(Y ) > α̂p + x√

n

)
dx

=
∫ nλ

0
x�

(
−

∑n
i=1 LR(Xi)I (Xi ≤ α̂p + xn−1/2) − np√

n varQ̂ Wx,n

)
dx + o(m1/4n−1/4). (38)

We take a closer look at the above Gaussian probability. Using the same arguments as in (18)
and (19), we obtain

�

(
−

∑n
i=1 LR(Xi)I (Xi ≤ α̂p + xn−1/2) − np√

n varQ̂ Wx,n

)

= �

(
−

∑n
i=1 LR(Xi)I (α̂p < Xi ≤ α̂p + xn−1/2)√

n varQ̂ Wx,n

+ O(m1/4n−1/2)

)
.

We replace LR(Xi) by LR(α̂p) and obtain

�

(−LR(α̂p)
∑n

i=1 I (α̂p < Xi ≤ α̂p + xn−1/2)√
n varQ̂ Wx,n

+ O(x2m−1/4n−1/2 + m1/4n−1/2)

)
.
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Lastly, we replace the empirical variance in the denominator by the theoretical variance.
Similarly to the development in Lemma 5, we obtain the estimates

|varQW0,n − varQ̂ Wx,n| = (1 + Op(m1/4n−1/2 + xn−1/2)) varQ W0,n

for |x| < nλ. Since we are deriving weak convergence results, we can always localize the events
so that Op(·) can be replaced by O(·). Then, the Gaussian probability is approximated by

�

(−LR(α̂p)
∑n

i=1 I (α̂p < Xi ≤ α̂p + xn−1/2)√
n varQ W0,n

+ ζ(x, m, n)

)
,

where ζ(x, m, n) = O(x2m−1/4n−1/2+xn−1/2+m1/4n−1/2). Using the strong approximation
of empirical processes in (24) and the Lipschitz continuity of the density function, we can further
approximate the above probability by

�

(
f (α̂p)√

varQ W0,n

x + ζ(x, m, n)

)

− ϕ

(
f (α̂p)√

varQ W0,n

x + ζ(x, m, n)

)
(n − r)1/2L(α̂p)√

n varQ Wp

B

(
Gα̂p

(
x√
n

))
,

where B(t) is a standard Brownian bridge and

Gy(x) = Q(X ≤ y + x | X > y).

Note that ∫ nλ

0
2x�

(
f (α̂p)√

varQ W0,n

x + ζ(x, m, n)

)
dx

=
∫ nλ

0
2x�

(
f (α̂p)√

varQ W0,n

x

)
dx + O(m3/4n−1/2).

We write

Zn = −n1/4
∫ nλ

0
2xϕ

(
f (α̂p)√

varQ W0,n

x + ζ(x, m, n)

)
(n − r)1/2L(α̂p)√

n varQ Wp

B

(
Gα̂p

(
x√
n

))
dx.

The calculation of the asymptotic distribution of Zn is completely analogous to (30), so we
omit it. Putting all these results together, the integral in (38) can be written as

∫ nλ

0
2xQ̂

(
α̂p(Y ) > α̂p + x√

n

)
dx

=
∫ ∞

0
2x�

(
f (α̂p)√

varQ W0,n

x

)
dx + Zn

n1/4 + o(m5/8n−1/4),

where

Zn√
τp/2

⇒ N(0, 1), τ 2
p = 2π−1/2L(αp)f (αp)−4(varQ(Wp))3/2 = O(m5/4)

as n → ∞ uniformly when m3 = O(n). The derivation for
∫ nλ

0 xQ̂(α̂p(Y ) < α̂p − x/
√

n) dx

is analogous to the positive part. Together with (37), we conclude the proof.
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