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Nonexistence of non-Hopf
Ricci-semisymmetric real hypersurfaces
in CP2 and CH2

Qianshun Cui and Zejun Hu

Abstract. In this paper, we solved an open problem raised by Cecil and Ryan (2015, Geometry of
Hypersurfaces, Springer Monographs in Mathematics, Springer, New York, p. 531) by proving the
nonexistence of non-Hopf Ricci-semisymmetric real hypersurfaces in CP2 and CH2 .

1 Introduction

Let M̄n(c), for an integer n ≥ 2 and a real number c /= 0, be a nonflat complex space
form of complex dimension n with constant holomorphic sectional curvature c. A
complete and simply connected complex space form is complex analytically isometric
to the complex projective space CPn if c > 0, or the complex hyperbolic space CHn if
c < 0.

There are a great many of studies on real hypersurfaces of M̄n(c) (see, e.g., [3,
16] and the references therein). In particular, it is known that there do not exist real
hypersurfaces with parallel Ricci tensor in nonflat complex space forms M̄n(c) for
n ≥ 2 (see [8, 10, 19]). Moreover, it was further shown in [9, 12, 17] (cf. also Theorem
6.29 in [16]) that there do not exist Ricci-semisymmetric real hypersurfaces in M̄n(c)
for n ≥ 3, and there do not exist Hopf Ricci-semisymmetric hypersurfaces in M̄2(c).
Based on these results, in their wonderful book [3], Cecil and Ryan stated in Remark
8.70 of [3] that “The existence of non-Hopf Ricci-semisymmetric hypersurfaces in CP2

and CH2 is an open question,” and then they further raised the following interesting
problem.

Problem 1.1 (cf. page 531 of [3]) Do there exist non-Hopf Ricci-semisymmetric
hypersurfaces in CP2 and CH2?

In this paper, we shall solve the above problem by proving the following theorem.

Theorem 1.1 There do not exist non-Hopf Ricci-semisymmetric hypersurfaces in both
CP2 and CH2.
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Nonexistence of non-Hopf Ricci-semisymmetric real hypersurfaces 189

To introduce the related notions, we recall that every connected orientable real
hypersurface M of an almost Hermitian manifold (M̄ , J) is associated with a Reeb
vector field, called also the structure vector field, defined by ξ ∶= −JN , where N is the
unit normal vector field of M ↪ M̄. M is called a Hopf hypersurface if the integral
curves of ξ are geodesics. In particular, by Berndt, Bolton, and Woodward [2], a real
hypersurface of any nearly Kähler manifold is Hopf if and only if its Reeb vector field
is a principal vector field. As is well known, Takagi [20] investigated homogeneous
real hypersurfaces in CPn and gave a well-known list, which is often referred to as
Takagi’s list: (A1), (A2), (B), (C), (D), (E). Then, Montiel [15] provided a similar
list of the real hypersurfaces in CHn , which is often referred to as Montiel’s list: (A0),
(A1), (A2), (B). Kimura [11] proved that a Hopf hypersurface of CPn with constant
principal curvatures is locally congruent to one of the Takagi’s list, whereas Berndt [1]
proved that a Hopf hypersurface of CHn with constant principal curvatures is locally
congruent to one of the Montiel’s list. These hypersurfaces can be seen as the tubes
over a submanifold of the ambient spaces.

To study the Ricci-semisymmetric real hypersurfaces in CP2 and CH2, we recall
that a Riemannian manifold M is called Ricci-semisymmetric (or Ricci-semiparallel)
if

g(R(X , Y)S(Z) − S(R(X , Y)Z), W) = 0, ∀X , Y , Z , W ∈ TM ,(1.1)

or simply write R ⋅ S = 0. Here, R and S are the curvature tensor and the Ricci operator
of M, respectively.

The study of Ricci-semisymmetric real hypersurfaces in M̄n(c) has a long history.
First, Kimura and Maeda [12] proved that the Hopf hypersurfaces of CPn , n ≥ 2,
cannot be Ricci-semisymmetric. Ki, Nakagawa, and Suh [9] classified cyclic Ricci-
semisymmetric (or cyclic Ryan) hypersurfaces of the nonflat complex space forms
M̄n(c), n ≥ 3. Moreover, we know from the results of [9] that all the cyclic Ricci-
semisymmetric hypersurfaces are not Ricci-semisymmetric. Hence, there do not exist
Ricci-semisymmetric real hypersurfaces in M̄n(c) for n ≥ 3. Niebergall and Ryan [17]
proved that the Hopf hypersurfaces in M̄2(c) cannot be semisymmetric, i.e., R ⋅ R = 0.
As a Riemannian 3-manifold is semisymmetric if and only if R ⋅ S = 0, we see that
Hopf hypersurfaces of M̄2(c) cannot be Ricci-semisymmetric. In summary, we have
the following.

Theorem 1.2 (Theorem 6.29 of [16]) In a complex space form of constant holomorphic
sectional curvature 4c, c ≠ 0, there exists no real hypersurface M2n−1 , n ≥ 3, satisfying
R ⋅ S = 0. For n = 2, there are no Hopf hypersurfaces satisfying R ⋅ S = 0.

Combining Theorems 1.1 and 1.2, we have the following.

Corollary 1.1 There do not exist Ricci-semisymmetric hypersurfaces in nonflat com-
plex space forms M̄n(c), n ≥ 2. In particular, there do not exist non-Hopf semisymmetric
hypersurfaces in both CP2 and CH2.

Remark 1.1 In contrast to Corollary 1.1, we know by Theorem 6.30 of [16] and
Theorem 8 of [7] that there exist real hypersurfaces in the nonflat complex space forms
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M̄n(c) (n ≥ 2) satisfying

g(R(X , Y)S(Z) − S(R(X , Y)Z), W) = 0, ∀X , Y , Z , W ∈ {ξ}⊥ .(1.2)

A real hypersurface of M̄n(c) satisfying (1.2) is said to be pseudo-Ryan, whereas
Hopf pseudo-Ryan hypersurfaces in M̄n(c) coincide with the pseudo-Einstein ones
for all n ≥ 2. See Remark 8.70 of [3] for details.

Remark 1.2 As related results, we would mention some nice researches about real
hypersurfaces of an almost Hermitian manifold with recurrent Ricci tensor (see [4–6,
13, 14]). Recall that a Riemannian manifold M is called having recurrent Ricci tensor S
if there exists a one-form ω on M such that (∇X S)Y = ω(X)S(Y) for all X , Y ∈ TM.
Loo [13] and Hamada [5] proved independently that there are no real hypersurfaces
with recurrent Ricci tensor in M̄n(c) for n ≥ 3, and then in Theorem 20 of [14], Loo
further proved that the Ricci operator S being recurrent implies that S is semiparallel.
Thus, combining with Theorem 1.1, we have shown that there do not exist non-Hopf
hypersurfaces in M̄2(c) with recurrent Ricci tensor. Finally, we noticed that very
recently Wang [21] studied Ricci η-recurrent real hypersurfaces in M̄2(c).

This paper is organized as follows. In Section 2, we review the necessary materials
about real hypersurfaces of the nonflat complex space forms. In Section 3, we establish
three basic lemmas about the non-Hopf Ricci-semisymmetric hypersurfaces in the
nonflat complex planes M̄2(c). In Section 4, we complete the proof of Theorem 1.1.

2 Preliminaries

2.1 Geometry of hypersurfaces in nonflat complex space forms

Let M̄n(c) be the nonflat complex space form with the constant holomorphic sec-
tional curvature c, the complex structure J, and the Kähler metric ḡ, respectively. Let
M be a connected real hypersurface of M̄n(c)with unit normal vector field N. Denote
by ∇̄ the Levi–Civita connection of the metric ḡ, and g the induced metric on M. Put

JN = −ξ, JX = ϕX + η(X)N , ∀X ∈ TM ,(2.1)

where ϕX and η(X)N are the tangential and normal parts of JX, respectively. ξ is
called the Reeb vector field or the structure vector field, ϕ is a tensor field of type (1, 1),
and η is a 1-form on M. By definition, for any X , Y ∈ TM, the following relations hold:

{
η(X) = g(X , ξ), ϕ2(X) = −X + η(X)ξ, η(ϕX) = 0,
g(ϕX , Y) = −g(X , ϕY), g(ϕX , ϕY) = g(X , Y) − η(X)η(Y).

(2.2)

Let ∇ be the induced Levi–Civita connection on M, and let R be its Riemannian
curvature tensor. The formulas of Gauss and Weingarten are given by

∇̄X Y = ∇X Y + h(X , Y), ∇̄X N = −AX , ∀X , Y ∈ TM ,(2.3)
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where h is the second fundamental form and A is the shape operator of M, which are
related by h(X , Y) = g(AX , Y)N . From (2.1) and ∇̄J = 0, we obtain

∇X ξ = ϕAX , (∇X ϕ)Y = η(Y)AX − g(AX , Y)ξ.(2.4)

The Gauss and Codazzi equations of M are given, for any X , Y , Z ∈ TM, by

R(X , Y)Z = c
4{g(Y , Z)X − g(X , Z)Y + g(ϕY , Z)ϕX − g(ϕX , Z)ϕY
− 2g(ϕX , Y)ϕZ} + g(AY , Z)AX − g(AX , Z)AY ,

(2.5)

(∇X A)Y − (∇Y A)X = c
4{g(X , ξ)ϕY − g(Y , ξ)ϕX − 2g(ϕX , Y)ξ}.(2.6)

By the Gauss equation (2.5), we have

SX = c
4{(2n + 1)X − 3η(X)ξ} + mAX − A2 X , ∀X ∈ TM ,(2.7)

where m = traceA is the mean curvature, and S is the Ricci operator.

2.2 The standard non-Hopf frame and their connections

From this subsection on, we shall restrict to the nonflat complex planes M̄2(c). For a
non-Hopf hypersurface M of M̄2(c), there exists nonempty open subset

Ω = {p ∈ M ∣ ξ is not a principal vector field at p} ⊂ M .

As our study is of local in nature, we shall assume Ω = M in the sequel. Then, as
ϕ∇ξ ξ = ϕ2Aξ = −Aξ + η(Aξ)ξ, we get

Aξ = η(Aξ)ξ − ϕ∇ξ ξ =∶ αξ + βU ,(2.8)

where α = η(Aξ), β = ∣ϕ∇ξ ξ∣ /= 0, and U = − 1
β ϕ∇ξ ξ. It is clear that {ξ, U , ϕU} is an

orthonormal frame field of M which, following that in [3], is called the “standard non-
Hopf frame” of M. Then, there are smooth functions γ, δ, and μ on M such that

AU = βξ + γU + δϕU , AϕU = δU + μϕU .(2.9)

By using (2.4), (2.8), and (2.9), direct calculations give the following.

Lemma 2.1 (cf. [18]) With respect to the standard non-Hopf frame, there are smooth
functions κi (1 ≤ i ≤ 3) such that the following relations hold:

∇U ξ = −δU + γϕU , ∇ϕU ξ = −μU + δϕU , ∇ξ ξ = βϕU ,
∇U U = κ1ϕU + δξ, ∇ϕU U = κ2ϕU + μξ, ∇ξU = κ3ϕU ,(2.10)
∇U ϕU = −κ1U − γξ, ∇ϕU ϕU = −κ2U − δξ, ∇ξϕU = −κ3U − βξ.

Moreover, taking X = ξ, U , ϕU in (2.7), respectively, together with the use of (2.8)
and (2.9), we obtain

Sξ = ( c
2 + αγ + αμ − β2)ξ + βμU − βδϕU ,

SU = βμξ + ( 5
4 c + αγ + γμ − β2 − δ2)U + αδϕU ,(2.11)

SϕU = −βδξ + αδU + ( 5
4 c + αμ + γμ − δ2)ϕU .
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3 Basic lemmas on non-Hopf Ricci-semisymmetric
real hypersurfaces

In this section, we establish three basic lemmas on non-Hopf Ricci-semisymmetric
real hypersurfaces in M̄2(c). To begin with, we have the following lemma.

Lemma 3.1 Let M be a non-Hopf Ricci-semisymmetric hypersurface in the nonflat
complex planes M̄2(c), and {ξ, U , ϕU} is the standard non-Hopf frame such that (2.8)–
(2.10) hold. Then we have the following equations:

δ = 0,(3.1)

αγ − β2 = − c
4 ,(3.2)

c + 4αμ + γμ − μ2 = 0.(3.3)

Proof First of all, taking (X , Y , Z , W) = (ξ, U , ϕU , U) in (1.1), then by direct
calculations with the use of (2.11) and Gauss equation (2.5), we can obtain

c
4 βδ = 0.

As β ≠ 0 and c /= 0, we have δ = 0 as claimed.
Next, taking in (1.1),

(X , Y , Z , W) = (ξ, ϕU , U , ϕU), (ξ, ϕU , ξ, ϕU), (U , ϕU , U , ϕU),

respectively, with the use of (3.1), (2.11), and (2.5), we obtain

μ(αγ − β2 + c
4 ) = 0,(3.4)

( 3c
4 + γμ − αγ + β2)(αμ + c

4 ) − β2 μ2 = 0,(3.5)

(c + γμ)(αμ − αγ + β2) − β2 μ2 = 0.(3.6)

Now, we claim that μ ≠ 0. Indeed, if μ = 0, from (3.6), we shall get αγ − β2 = 0.
Then, from (3.5), we obtain c = 0. This is a contradiction to the assumption.

From (3.4) and μ ≠ 0, we obtain (3.2).
Finally, substituting (3.2) into (3.5) or (3.6), we get (3.3). ∎

Next, applying Lemma 3.1, the Gauss–Codazzi equations and some techniques, we
have the following basic lemma.

Lemma 3.2 Let M be a non-Hopf Ricci-semisymmetric hypersurface in the nonflat
complex planes M̄2(c), and {ξ, U , ϕU} is the standard non-Hopf frame such that (2.8)–
(2.10) hold. Then we have the following equations:

U(β) = ξ(γ) = βκ2
μ2+c (4αγ − 8αμ + γ2),(3.7)

βκ1 + μκ3 − γμ − γκ3 = 0,(3.8)
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U(α) = ξ(β) = κ2(γ−μ)
μ2+c (αγ + 4α2 − γ μ

2 ),(3.9)

ξ(μ) = βκ2 ,(3.10)

ϕU(α) = β(α + κ3 − 3μ),(3.11)

ϕU(β) = αμ − 2γμ + c
2 + αγ + βκ1 ,(3.12)

ϕU(γ) = −μκ1 + γκ1 + βγ + 2βμ,(3.13)

U(μ) = γκ2 − μκ2 ,(3.14)

ξ(κ2) − ϕU(κ3) = −2βμ − βκ3 − κ3κ1 + μκ1 ,(3.15)

U(κ2) − ϕU(κ1) = −2γμ − κ2
1 − γκ3 − κ2

2 − μκ3 − c,(3.16)

ξ(κ1) − U(κ3) = κ2κ3 − κ2γ,(3.17)

ξ(α) = βκ2
μ2+c (c + αγ + 4α2 + 2αμ),(3.18)

U(γ) = κ2(γ−μ)
μ2+c (4c + γ2 + 4αγ + 2γμ).(3.19)

Proof Taking (X , Y) = (ξ, U) in Codazzi equation (2.6) and using (3.1), we obtain

U(β) = ξ(γ),(3.20)

U(α) = ξ(β),(3.21)

γκ3 + γμ − μκ3 − αγ + β2 − βκ1 = c
4 .(3.22)

Then, from (3.2) and (3.22), we obtain (3.8).
Similarly, taking in (2.6), (X , Y) = (ξ, ϕU), (U , ϕU), respectively, with the use of

(3.1), we can obtain (3.10)–(3.14).
Next, taking in Gauss equation (2.5),

(X , Y , Z) = (ξ, ϕU , U), (U , ϕU , ϕU), (ξ, U , U),

respectively, and using (3.1), we can calculate to obtain (3.15)–(3.17).
To prove the remaining equations (3.7), (3.9), (3.18), and (3.19), more computations

are needed.
●Taking the derivative of (3.2) with respect to ϕU and using (3.11)–(3.13), we obtain

0 = ϕU(α)γ + ϕU(γ)α − 2βϕU(β)(3.23)
= βγκ3 + βγμ − αμκ1 + αγκ1 − βc − 2β2κ1 .
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From (3.8), we have γμ + γκ3 = βκ1 + μκ3. Substituting it into (3.23), we have

0 = β(βκ1 + μκ3) − αμκ1 + αγκ1 − βc − 2β2κ1

= κ1(αγ − β2) + βμκ3 − αμκ1 − βc.

By using (3.2), the above equation can be rewritten as

0 = −κ1(αμ + c
4 ) + β(μκ3 − c).(3.24)

Substituting (3.2) into (3.5), we have

0 = (c + γμ)(αμ + c
4 ) − β2 μ2 .(3.25)

As βμ ≠ 0, we get from (3.25) that αμ + c
4 ≠ 0. It follows from (3.24) and (3.25) that

∣ −κ1 μκ3 − c
c + γμ −βμ2 ∣ = 0.

That is,

0 = μ2(βκ1 − γκ3) − c(μκ3 − γμ) + c2 .

By (3.8), we have βκ1 − γκ3 = γμ − κ3 μ. Substituting it into the above equation, we
have

0 = (μ2 + c)(γ − κ3)μ + c2 ,(3.26)

which implies that

κ3 ≠ γ, μ2 + c ≠ 0.(3.27)

● Taking the derivative of (3.3) along ξ and using (3.10), we have

0 = μ(4ξ(α) + ξ(γ)) + βκ2(4α + γ − 2μ).

It follows that

ξ(α) = − βκ2(4α+γ−2μ)
4μ − 1

4 ξ(γ).(3.28)

● Taking the derivative of (3.3) along U and using (3.14) and (3.21), we obtain

0 = μ(4U(α) + U(γ) − U(μ)) + (4α + γ − μ)U(μ)
= μ(4ξ(β) + U(γ)) + κ2(γ − μ)(4α + γ − 2μ).

It follows that

U(γ) = −κ2(γ−μ)(4α+γ−2μ)
μ − 4ξ(β).(3.29)

● Taking the derivative of (3.2) along ξ, we have

0 = ξ(α)γ + αξ(γ) − 2βξ(β).(3.30)

● Taking the derivative of (3.2) along U, and using (3.20) and (3.21), we obtain

0 = ξ(β)γ + αU(γ) − 2βξ(γ).(3.31)
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Substituting (3.28) into (3.30), and (3.29) into (3.31), we have
⎧⎪⎪⎪⎨⎪⎪⎪⎩

− 2βξ(β) + (− γ
4 + α)ξ(γ) = γβκ2(4α+γ−2μ)

4μ ,

(γ − 4α)ξ(β) − 2βξ(γ) = α(γ−μ)κ2(4α+γ−2μ)
μ .

(3.32)

Since

∣ −2β − γ
4 + α

γ − 4α −2β ∣ = 4β2 + (γ−4α)2

4 > 0,

we can solve (3.32) to obtain
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ(β) = κ2(4α+γ−2μ)

μ(4β2+
(γ−4α)2

4 )

[ − β2 γ
2 − α(γ − μ)(− γ

4 + α)],

ξ(γ) = βκ2(4α+γ−2μ)

μ(4β2+
(γ−4α)2

4 )

(−αγ + 2αμ − γ2

4 ).

From (3.2), we have

4β2 = 4αγ + c.(3.33)

From (3.3) and the fact that μ ≠ 0, we have

γ + 4α = μ − c
μ .(3.34)

Thus, we obtain
4α+γ−2μ

μ(4β2+
(γ−4α)2

4 )

= 4(4α+γ−2μ)
μ(4c+(γ+4α)2)

= −4(c+μ2)

μ2(4c+(μ− c
μ )

2)
= − 4

μ2+c .(3.35)

Then, with the use of (3.33)–(3.35), ξ(β) and ξ(γ) can be rewritten as

ξ(β) = − 4κ2
μ2+c [ −

1
2 (αγ + c

4 )γ − α(γ − μ)(− γ
4 + α)]

=κ2(γ−μ)
μ2+c (αγ + 4α2 − γ μ

2 )(3.36)

and

ξ(γ) = βκ2
μ2+c (4αγ − 8αμ + γ2).(3.37)

From (3.20) and (3.37), we obtain (3.7). From (3.21) and (3.36), we obtain (3.9).
Next, substituting (3.37) into (3.28), we obtain

ξ(α) = − βκ2(4α+γ−2μ)
4μ − βκ2

μ2+c (αγ − 2αμ + γ2

4 )

= − βκ2
(μ2+c) [

(4α+γ−2μ)
4

μ2+c
μ + αγ − 2αμ + γ2

4 ] .

By using (3.3), we have

ξ(α) = βκ2
μ2+c (c + αγ + 4α2 + 2αμ).

So (3.18) is obtained.
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Substituting (3.36) into (3.29), we obtain

U(γ) = − κ2(γ−μ)(4α+γ−2μ)
μ − 4κ2(γ−μ)

μ2+c (αγ + 4α2 − γ μ
2 )

= − κ2(γ−μ)
μ2+c [(4α + γ − 2μ) μ2+c

μ + 4(αγ + 4α2 − γ μ
2 )].

By using (3.3), we have

U(γ) = κ2(γ−μ)
μ2+c (4c + γ2 + 4αγ + 2γμ).

So (3.19) is obtained. We have completed the proof of Lemma 3.2. ∎

Lemma 3.3 Let M be a non-Hopf Ricci-semisymmetric hypersurface in M̄2(c), and
{ξ, U , ϕU} is the standard non-Hopf frame such that (2.8)–(2.10) hold. Then there exists
at least one point p ∈ M such that κ2 ≠ 0 at p.

Proof In fact, if κ2 ≡ 0 on M, by (3.10) and (3.14), we have ξ(μ) = U(μ) = 0. Thus,
we have

0 = {[ξ, U] − (∇ξU −∇U ξ)}(μ) = −(κ3 − γ)ϕU(μ).

From (3.27), we have ϕU(μ) = 0. Thus, we obtain that μ is a constant. It follows from
(3.26) that γ − κ3 is a constant. Then, taking the derivative of γ − κ3 with respect to
ϕU and using (3.13), (3.15), and the fact that κ2 = 0, we obtain

0 = −μκ1 + γκ1 + βγ + 2βμ + (−2βμ − βκ3 − κ3κ1 + μκ1)
= (β + κ1)(γ − κ3).

As κ3 ≠ γ, we have β = −κ1.
Next, by κ2 = 0, (3.7), and (3.19), we have ξ(γ) = U(γ) = 0. Thus,

0 = {[ξ, U] − (∇ξU −∇U ξ)}(γ) = −(κ3 − γ)ϕU(γ).(3.38)

As κ3 ≠ γ, from (3.38), β = −κ1, and (3.13), we obtain

0 = ϕU(γ) = −μκ1 + γκ1 + βγ + 2βμ = 3βμ,

which is a contradiction to β ≠ 0 and μ ≠ 0. This completes the proof of
Lemma 3.3. ∎

4 Proof of Theorem 1.1

Now, we are ready to complete the proof of Theorem 1.1.
Suppose on the contrary that M̄2(c) admits a non-Hopf Ricci-semisymmetric

hypersurface M, and {ξ, U , ϕU} is the standard non-Hopf frame on M such that
(2.8)–(2.10) hold. Then, from (3.3), we have c = μ2 − γμ − 4αμ. Substituting it into
(3.24), we obtain

0 = − κ1(αμ + μ2−γ μ−4α μ
4 ) + β(μκ3 + 4αμ + γμ − μ2)

=μ[κ1(γ−μ)
4 + β(κ3 + 4α + γ − μ)].
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As μ ≠ 0, we have

κ1(μ − γ) = 4β(κ3 + 4α + γ − μ).(4.1)

From (3.26), we have

κ3 = γ + c2

μ(μ2+c) .(4.2)

Now, we claim that γ − μ ≠ 0.

In fact, if γ = μ, from (3.3), we get 4αγ + c = 0. This combining with (3.2) implies
that β2 = 0. This is a contradiction, which verifies the claim.

Then, substituting (4.2) into (4.1) and applying (3.34), we obtain

κ1 = 4β
μ−γ (γ + c2

μ(μ2+c) −
c
μ ) =

4β
μ−γ (γ − c μ

μ2+c ) .(4.3)

● Taking the derivative of (4.2) along U and applying (3.14) and (3.19), we obtain

U(κ3) = U (γ + c2

μ(μ2+c)) =
κ2(γ−μ)

μ2+c [4c + γ2 + 4αγ + 2γμ − c2(c+3μ2)
μ2(μ2+c) ].(4.4)

● Taking the derivative of (4.3) along ξ, then applying (3.7), (3.9), and (3.10), we
obtain

ξ(κ1) = 4ξ(β)(μ−γ)−4β(ξ(μ)−ξ(γ))
(μ−γ)2 (γ − c μ

μ2+c )

+ 4β
μ−γ [ξ(γ) − c ξ(μ)(μ2+c)−c μ(2μ ξ(μ))

(μ2+c)2 ]

= 1
(μ−γ)2 [−4κ2(μ−γ)2

μ2+c (αγ + 4α2 − γ μ
2 )

− 4β(βκ2 − βκ2
μ2+c (4αγ − 8αμ + γ2))](γ − c μ

μ2+c )

+ 4β
μ−γ [

βκ2
μ2+c (4αγ − 8αμ + γ2) − c(c−μ2)βκ2

(μ2+c)2 ](4.5)

= κ2
μ2+c{

1
(μ−γ)2 [ − 4(μ − γ)2(αγ + 4α2 − γ μ

2 )

− 4β2(μ2 + c − (4αγ − 8αμ + γ2))](γ − c μ
μ2+c )

+ 4β2

μ−γ [4αγ − 8αμ + γ2 − c(c−μ2)
μ2+c ]}.

From (3.2) and (3.3), we have

4β2 = 4αγ − (4αμ + γμ − μ2) = (μ − γ)(μ − 4α).(4.6)

Substituting (4.6) into (4.5) and applying (3.3), we obtain

ξ(κ1) = κ2
μ2+c{[ − 4(αγ + 4α2 − γ μ

2 ) −
μ−4α
μ−γ (2μ2 − γμ − 4αγ + 4αμ − γ2)]

× (γ − c μ
μ2+c ) + (μ − 4α)[4αγ − 8αμ + γ2 − c(c−μ2)

μ2+c ]}

= κ2
μ2+c{μ(4α + γ − 2μ)(γ − c μ

μ2+c ) + (μ − 4α)[4αγ − 8αμ + γ2(4.7)

− c(c−μ2)
μ2+c ]}.
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In the following, we shall calculate the expression of ξ(κ1) − U(κ3) in two different
ways. On the one hand, from (4.4) and (4.7), we have

ξ(κ1) − U(κ3) = κ2
μ2+c{μ(4α + γ − 2μ)(γ − c μ

μ2+c )

+ (μ − 4α)[4αγ − 8αμ + γ2 − c(c−μ2)
μ2+c ]

− (γ − μ)[4c + γ2 + 4αγ + 2γμ − c2(c+3μ2)
μ2(μ2+c) ]}(4.8)

= κ2
μ2+c{γμ(4α + γ − 2μ) + (μ − 4α)(4αγ − 8αμ + γ2)

+ (μ − γ)(4c + γ2 + 4αγ + 2γμ)

+ (μ − γ) c μ4−c2(c+3μ2)
μ2(μ2+c) + (μ − 4α) c μ4−c μ2(c−μ2)

μ2(μ2+c) }.

By using (3.3), we have

γμ(4α + γ − 2μ) + (μ − 4α)(4αγ − 8αμ + γ2)
+ (μ − γ)(4c + γ2 + 4αγ + 2γμ)
= 12αγμ + γ2 μ − 8αμ2 − 16α2γ + 32α2 μ − 8αγ2 + 4(μ − γ)c − γ3(4.9)
= 8α(4αμ + γμ − μ2) + γ(4αμ + γμ − μ2) + μ2γ + 4(μ − γ)c − γ(γ + 4α)2

= −8αc − 5γc + 4μc + μ2γ − γ(γ + 4α)2

and

(μ − γ) c μ4−c2(c+3μ2)
μ2(μ2+c) + (μ − 4α) c μ4−c μ2(c−μ2)

μ2(μ2+c)

= c
μ2(μ2+c)[3μ5 − (μ − γ)c2 − 4cμ3 − γμ4 + 3cγμ2 − 8αμ4 + 4αμ2c]

= c
(μ2+c)[3μ3 − (μ − γ)(μ − γ − 4α)2 − 4cμ − γμ2 + 3cγ − 8αμ2

+ 4αc](4.10)

= c
(μ2+c)[μ3 − 4α(4αμ + γμ − μ2) − μ(4αμ + γμ − μ2)

− 3γ(4αμ + γμ − μ2) + γ(γ + 4α)2 − 4cμ + 3cγ + 4αc]

= c
(μ2+c)[μ3 + 8αc − 3μc + 6γc + γ(γ + 4α)2].

Substituting (4.9) and (4.10) into (4.8), we obtain

ξ(κ1) − U(κ3) = κ2
μ2+c {4μc − 5γc − 8αc + γμ2 − γ(γ + 4α)2

+ c
μ2+c [μ3 + 8cα − 3cμ + 6cγ + γ(γ + 4α)2]}

= κ2
μ2+c {5μc − 5γc − 8αc + γμ2 − γ(γ + 4α)2(4.11)

+ c
μ2+c [8cα − 4cμ + 6cγ + γ(γ + 4α)2]}.
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On the other hand, substituting (4.2) into (3.17) and applying (3.3), we obtain

ξ(κ1) − U(κ3) = κ2
c2

μ(μ2+c) =
κ2 c

μ2+c (μ − γ − 4α).(4.12)

From (4.11) and (4.12), we obtain

0 = κ2
μ2+c {5μc − 5γc − 8αc + γμ2 − γ(γ + 4α)2

+ c
μ2+c (8cα − 4cμ + 6cγ + γ(γ + 4α)2) − c(μ − γ − 4α)}.

Since κ2
μ2+c ≠ 0, we obtain

0 =4μc − 4γc − 4αc + γμ2 − γ(γ + 4α)2(4.13)
+ c

μ2+c [8cα − 4cμ + 6cγ + γ(γ + 4α)2].

By using (3.34), we can rewrite (4.13) to obtain

0 =4μc − 3γc − c(μ − c
μ ) + γμ2 − γ(μ − c

μ )
2

+ c
μ2+c [8cα − 4cμ + 6cγ + γ(μ − c

μ )
2
].(4.14)

Multiplying both sides of (4.14) by μ2(μ2 + c), we shall obtain

0 = cμ(3μ4 + 2cγμ + c2 + 8cαμ).

Since cμ ≠ 0, we have

0 = 3μ4 + 2cγμ + c2 + 8cαμ.(4.15)

By using (3.3), we can rewrite (4.15) to obtain that

0 = 3μ4 + c2 + 2c(μ2 − c) = (3μ2 − c)(μ2 + c).(4.16)

It follows from (3.27) that

3μ2 − c = 0.(4.17)

● Taking the derivative of (4.17) along ξ and using (3.10), we obtain

μβκ2 = 0.(4.18)

Since β ≠ 0 and μ ≠ 0, we obtain that κ2 ≡ 0, a contradiction to Lemma 3.3.
We have completed the proof of Theorem 1.1.
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