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Abstract

Graph theory, a branch of mathematics that focuses on the study of graphs (networks of nodes
and edges), provides a robust framework for analysing the structural and functional properties of
biomolecules. By leveraging molecular dynamics (MD) simulations, atoms or groups of atoms
can be represented as nodes, while their dynamic interactions are depicted as edges. This network-
based approach facilitates the characterization of properties such as connectivity, centrality,
and modularity, which are essential for understanding the behaviour of molecular systems.
This review details the application and development of graph theory-based models in studying
biomolecular systems. We introduce key concepts in graph theory and demonstrate their
practical applications, illustrating how innovative graph theory approaches can be employed to
design biomolecular systemswith enhanced functionality. Specifically, we explore the integration
of graph theoreticalmethodswithMDsimulations to gaindeeper insights into complex biological
phenomena, such as allosteric regulation, conformational dynamics, and catalytic functions.
Ultimately, graph theory has proven to be a powerful tool in the field of molecular dynamics,
offering valuable insights into the structural properties, dynamics, and interactions of molecular
systems. This review establishes a foundation for using graph theory in molecular design and
engineering, highlighting its potential to transform the field and drive advancements in the
understanding and manipulation of biomolecular systems.
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Introduction

A network or a graph provides a structured representation of the relationships among entities
within a complex system. Graphs are composed of a set of nodes/vertices or components and
edges, which refers to direct interaction between nodes. Graph theory, a branch ofmathematics, is
then employed to analyse and study these networks, revealing global properties as well as
deciphering the rules governing the local interactions (Barabási and Pósfai, 2016). For several
decades, graph theory has been extensively used to study diverse systems, including social
networks, transportation networks, electrical circuits, communication systems, chemical systems,
and biomolecular systems.Molecular dynamics (MD) studies, which involve the simulation of the
physicalmovements of atoms andmolecules, benefit significantly from graph theoreticalmethods
to understand complex molecular systems and predict interactions by analysing large datasets.
This review explores the integration of graph theoretical models withMD simulations to enhance
the understanding of complex biological phenomena, such as allosteric regulation, conformational
dynamics, and catalytic functions.

The dynamic motions obtained through MD simulations can be described as graphs, repre-
senting atoms or groups of atoms as nodes, and their interactions are depicted as edges (Barabási
and Pósfai, 2016). This network-based approach enables the characterization of various properties
of graphs, including connectivity, centrality, and modularity, which are crucial for understanding
the behaviour of molecular systems. Network models derived from graph theory have been
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instrumental in elucidating the mechanisms of allosteric regulation
in large biomolecular complexes, allowing for the identification of
key residues or regions that play significant roles in the propagation
of allosteric signals (Cui and Karplus, 2008; Dokholyan, 2016; Guo
and Zhou, 2016; Liu and Nussinov, 2016; Wagner et al., 2016;
Bowerman and Wereszczynski, 2016a; Wodak et al., 2019; Arantes
et al., 2022). In recent years, network models of biomolecular
complexes have been improved through the integration of enhanced
sampling simulation methods, obtaining enhanced network models
to evaluate the effect of long-timescale dynamics on the biomole-
cular network (East et al., 2020a). This approach allows describing
how the allosteric signalling is transmitted along slow dynamical
motions, which are typical of the allosteric response (Kern and
Zuiderweg, 2003) and can be compared with relaxation data from
solution NMR experiments (Kern and Zuiderweg, 2003; Nierzwicki
et al., 2021; Skeens et al., 2024).

The application of graph theory in MD simulations has led to
significant advancements in understanding the allosteric mechan-
isms in large protein-nucleic acid complexes. Early studies by
Luthey-Schulten and colleagues implemented the combination of
graph theory and MD to decipher the allosteric network in a tRNA
synthase (Sethi et al., 2009).More recent applications include studies
of the transcription proteins, obtaining graphs that define the signal
transduction in the initiation complex (Yan et al., 2019), the nucleo-
some core particle, revealing how allosteric signals propagate
through histone proteins to influence DNA packaging and accessi-
bility and drug – drug synergy (Bowerman and Wereszczynski,
2016b; Adhireksan et al., 2017; Bowerman et al., 2019), and the
spliceosome, with insights into the dynamic assembly of small
ribonucleoproteins and RNA (Casalino et al., 2018; Saltalamacchia
et al., 2020). Graph theoretical analyses integrated with MD simu-
lations have also identified critical residues and conformational
changes that govern catalysis and selectivity in the CRISPR-Cas9
system (Saha et al., 2022), a transformative tool for gene editing that
relies on precise allosteric regulation for its function (Nierzwicki
et al. 2020; Zuo and Liu, 2020). In this review article, we detail the
application and development of graph theory-based models using
the CRISPR-Cas9 genome editing systemand its Cas12a andCas13a
colleagues as case studies (Saha et al., 2022). CRISPR-associated
proteins (Cas) are RNA-guided enzymes that use a guide RNA to
recognize and cleave any matching DNA sequence, enabling the
editing of DNA and RNA (Chen and Doudna, 2017). These studies
allow us to introduce the key concepts of graph theory and

demonstrate their practical applications on large protein/nucleic
acid complexes.

Overall, graph theory has proven to be a powerful tool for
analysing molecular dynamics simulations, providing insights
into structural properties, dynamics, and interactions of
molecular systems. This review delves into the application of
graph theoretical techniques and concepts in the analysis of
molecular structures, interactions, and dynamics. We discuss
the fundamental theory and report innovative approaches that
are transforming the field. We showcase applications to char-
acterize allosteric mechanisms in biomolecules, and we highlight
how innovative graph-theory approaches can be used to design
biomolecular systems with improved functionality. This estab-
lishes the foundations to use graph theory for molecular design
and engineering.

Network models derived from graph theory

Graph theory emerged from Leonard Euler’s work in the 18th
century, inspired by his exploration of the seven bridges of Königs-
berg (Barabási and Pósfai, 2016). This mathematical discipline
began with Euler’s solution to whether a path could traverse each
bridge exactly once, marking the inception of graph theory. Since
then, the field has flourished, finding applications across various
domains such as communication science (e.g., social media net-
works), economics, geology, and physics. Graph theory’s impact
extends notably to systems biology, where it models complex
interactions within biological systems.

Early representations of proteins as graphs were performed by
Vishveswara and co-workers reporting topological networks of
biomolecules (Brinda and Vishveshwara, 2005) and by the group
of Luthey-Schulten, who proposed a protocol to study the dynamic
allosteric communication in biomolecules based on their studies on
a tRNA synthase (Sethi et al., 2009). The authors used correlation
analysis to construct graphs that represent long-range communica-
tion (Figure 1). In these dynamical network models, the biomole-
cular system is represented as a graph where nodes correspond to
amino acids (Cα atoms) andnucleotides (P atoms,N1 in purines and
N9 in pyrimidines) (Melo et al., 2020), and edges denote their
connections. The length of edges reflects the degree of correlations,
positioning strongly correlated nodes closer together (resulting
in shorter edges). This approach fundamentally builds upon

Figure 1. Biomolecular dynamic network. Overview of a biomolecular complex (a) and its representation as a network of nodes and edges (b) through correlation analysis. In panel
a, the CRISPR-Cas9 system (PDB 4UN3) represents a typical protein/nucleic acid complex. Adapted with permission from Palermo et al.(Palermo et al., 2017) Copyright 2017
American Chemical Society. In panel b, a network map is shown from Pacific RISA Core Network Map Eigenvector FA2 Region 10 K (https://www.flickr.com/photos/pacificrisa/
11345330443 (CC BY-NC-ND 2.0)).
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correlation analysis for identifying dynamic correlations between
spatially distant sites.

One common method is cross-correlation analysis, which
involves computing Pearson’s correlations between the fluctuations
of Cα atoms relative to their average positions (Freddolino et al.,
2013). The cross-correlation coefficients, CCij , are computed over
the course of the simulation using equation (1), where Δri and Δrj

are the fluctuation vectors of the atoms i and j , respectively.
The angle bracket represents an average over the sampled period.
The value of CCij ranges from �1 to 1. Positive CCij values
represented a correlated motion between atoms i and j , while
negative CCijvalues describe anticorrelated motions.

CCij ¼
〈Δ ri

! tð Þ �Δ rj
! tð Þ〉

〈Δ ri
! tð Þ2〉〈Δ rj

! tð Þ2〉� �1
2

(1)

This approach helps reveal patterns of coordinated motion
within biomolecular systems but overlooks correlated motions
that occur out of phase (i.e., that are not collinear), prompting
for the use of alternative correlation analysis approaches. The
Generalized Correlation (GC) method (Lange and Grubmüller,
2006) assesses the correlation between residues by considering
mutual information, which captures non-linear correlations.
Through this method, two variables (xi, xj ) can be considered
correlated when their joint probability distribution p xi,xj

� �
, is

larger than the product of their marginal distributions p xið Þ �p xj
� �

.
The mutual information ( MI ) is a measure of the degree of
correlation between xi and xj defined as a function of, p xi,xj

� �
pðxiÞ, pðxjÞ according to:

MI xi,xj
� �¼ ðð

p xi,xj
� �

ln
p xi,xj
� �

p xið Þ �p xj
� �dxidxj (2)

Notably, MI is closely related to the definition of the Shannon
entropy, H x½ � , i.e., the expectation value of the information of a
random variable x, with probability distribution p xið Þ:

H½x� ¼�
Z

pðxÞlnpðxÞdx (3)

and thus it can be computed as:

MI xi,xj
� �¼H xi½ �+H xj

� ��H xi,xj
� �

(4)

Where H xi½ � and H xj
� �

are the marginal Shannon entropies,
and H xi,xj

� �
is the joint entropy. Since MI varies from 0to+∞,

normalized generalized correlation coefficients (GCij ), ranging
from 0 (independent variables) to 1 (fully correlated variables),
are defined as:

GCij xi,xj
� �¼ 1� e�

2MI xi ,xj½ �
d

( )�1
2

(5)

where d¼ 3 is the dimensionality of xi and xj . In this
approach, the marginal and joint Shannon entropies for atomic
vector displacements are computed as ensemble averages over
multiple trajectories. Since the correlated motions are derived
from mutual information, this method effectively identifies any
form of dependence in atomic motions, irrespective of their
directional relationships. Building on this correlation analysis
approach, one can create detailed graph models of proteins and
nucleic acids that reveal insights into their structural and func-
tional dynamics (Rivalta et al., 2012; Gasper et al. 2012; Miao
et al. 2013). Correlation analysis is also extremely helpful per se,
to identify the coupled dynamics of spatially distant sites, which
is at the basis of allostery in biomolecules (Guo and Zhou, 2016).
As an example, it was used to describe howDNA binding induces
coupled protein dynamics and triggers activation of the Cas12a
genome editing system (Figure 2a). Cas12a is an extraordinarily
rapid enzyme that enables the swift and ultrasensitive detection
of nucleic acids (Chen et al., 2018) through the DETECTR
technology. This technology has been instrumental in detecting
the SARS-CoV-2 coronavirus during the COVID-19 pandemic
(Broughton et al., 2020). As part of the tremendous effort to
combat COVID-19 through MD simulations (Arantes et al.,
2020), extensive MD simulations of Cas12a were carried out
(Rossetti et al., 2022; Saha et al., 2024; Strohkendl et al., 2024).
Correlation analysis on MD trajectories of Cas12a was per-
formed before and after DNA binding (i.e., by comparing the
RNA- and DNA-bound forms).

The cross-correlations matrix (i.e., a two-by-two plot of the Cα
CC coefficients) of Cas12a shows a conserved pattern of correlated/
anticorrelated motions in both RNA- and DNA- bound states
(Figure 2b). Notably, the recognition lobe (REC) of the enzyme
preserves anticorrelated motions (i.e., CC < 0) with the nuclease
lobe (NUC).

Figure 2. Correlation analysis of Cas12a. a. Overview of the CRISPR-Cas12a complex. The Cas12a protein is shown as molecular surface, highlighting the individual domains using
different colours (REC1: light grey, REC2: dark grey, PAM-interacting, PI: red, RuvC: blue, Nuc: green). Nucleic acids are shown as ribbons. b-c. Cross-correlation (CC, upper triangles)
and generalized correlations (GC, lower triangles) matrices were computed for Cas12a in both the RNA-bound state (b) and upon DNA binding (c). The strength of the CC and GC
coefficients is represented according to the scales on the right. The protein sequence is also displayed. Boxes highlight anticorrelated motions (CC ≤ 0) and highly coupled GC
between REC andNUC, which are also illustrated in the cartoon of Cas12a (a). Adaptedwith permission fromSaha et al.(Saha et al. 2020) Copyright 2020 American Chemical Society.
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This indicates a tendency for REC to move in the opposite
direction relative to NUC, facilitating the ‘open-to-close’ conform-
ational transition characteristic of Cas proteins (Palermo et al.,
2016), which is essential for nucleic acid binding. The generalized
correlation matrix, which goes beyond the reach of Pearson-like
CC analysis, shows that while in the RNA-bound state of Cas12a
coupled motions are mainly detected among the REC lobe, upon
DNA binding, correlated motions of the REC and NUC lobes
become more prominent (Figure 2c). This revealed that DNA
binding induces a switch in the conformational dynamics of
Cas12a, activating the distal REC and NUC lobes to enable nucleic
acid cleavage. Notably, the highly coupled dynamics of the REC2
and NUC regions suggest that REC2 could regulate the nuclease
function, similar to the CRISPR-associated nuclease Cas9 (Dagdas
et al., 2017; Palermo et al., 2018). These mutual domain dynamics
may be critical for the nonspecific binding of DNA and the mech-
anistic functioning of DETECTR technology (Broughton et al.,
2020). Since REC is a key determinant of the system’s specificity,
these findings also provided a rational basis for engineering
improved genome editing and viral detection tools.

Graph construction and community network analysis

As introduced above, networks are constructed by ‘weighting’ the
edges through correlations obtained through dynamics, where the
weight ( wij) of the edge between nodes i and j is computed as:

wij ¼�log½GCij� (6)

This ‘weighted graph’ represents the system as a dynamic net-
work that highlights critical nodes crucial for communication
within the complex (Figure 1). Two nodes are commonly con-
sidered connected if any heavy atomof the two residues iswithin 5Å
of each other (i.e., distance cutoff) for at least the 75% of the
simulation time (i.e., frame cutoff). These cutoffs are selected
according to extensive convergence studies following community
network analysis (CNA). In this analysis, a set of ‘communities’ can
be identified as groups of nodes with dense internal connections but
sparse connections between groups. These local substructures can
be detected using theGirvan-Newman algorithm, a divisivemethod
that partitions the network based on ‘edge betweenness’ (EB). The
EB, g vð Þ, is defined as:

g vð Þ¼
X
s≠ v ≠ t

σst vð Þ
σst

(7)

where σst vð Þ is the total number of shortest paths from node s to
node t that crosses the edge v, whereas σst is the total number of
shortest pathways existing between nodes s and t . Edges with the
highest betweenness connect multiple pairs of nodes through the
shortest paths, serving as critical links between different communi-
ties. Hence, pairs of nodes associated with edges of high betweenness
are crucial for communication flow within the weighted network. It
quantifies the ‘traffic’ flowing through edges,measuringhowoften an
edge serves as a bridge in the communication flow between nodes.
Using the EB parameter, the Girvan-Newman algorithm (Newman
and Girvan, 2004) establishes community structure through an
iterative process. Here, the edge with the highest betweenness is
removed from the network, and the betweenness of the remaining
edges is recalculated. As the process continues, it progressively
isolates communities until the network is divided into the desired
number of communities, or each node represents its own

community. The optimal division of the network should ensure that
each community contains nodes that are highly interconnected
internally, while different communities are poorly interconnected.
Toward this end, the ‘modularity’ parameter, denoted as Q,measures
the strength or quality of the community structure and is used to
determine the optimal division of the network. Q represents the
difference in probability between intra-community and inter-
community connections for a given network division and is defined
as follows:

Q¼
X
i

ðeii�a2i Þ (8)

where eii is the fraction of edges that link nodes in community
i to other nodes in community i, while ai ¼

P
jeij is the fraction

of edges that connect to at least one node in the community i. The
modularity value falls in the range of 0 to 1, with larger values
indicating higher community structure quality.

The convergence of the community repartitioning is important
to estimate the appropriate distance and frame cutoff for CNA. The
Community Repartition Difference (CRD) is defined as:

CRD c1,c2ð Þ¼ 1�
P

ni ,nj
z ni,nj,c1
� �

z ni,nj,c2
� �

P
ni ,nj

z ni,nj,c1
� � (9)

where z ni,nj,ci
� �

is defined as 1 if nodes ni and nj belong to the
same community in a given partition ci (i.e., the community
structure) and 0 otherwise. CRD provides a normalized count of
pairs that are grouped together in two community structures,
offering a reliable estimate of the similarities between different
network partitions. By computing the CRD for different frame
and distance cutoffs, one can evaluate the convergence of the
community structure and evaluate the appropriate cutoff values.

Overall, in a typical community network visualization, commu-
nities are linked by bonds whose thickness corresponds to the total
EB corresponding to the intercommunity edges, indicating the
strength of communication between communities. Indeed, the total
EB between pairs of communities serves as a significant indicator of
their communication strength. This metric helps in understanding
the extent to which communities within a network are intercon-
nected and how strongly they influence each other’s dynamics and
functions.

Community network analysis (CNA) was applied to the
CRISPR-Cas9 system to characterize the allosteric role of the Pro-
tospacer AdjacentMotif (PAM)which is a short DNA sequence that
facilitates targeting of the desired DNA sequence across the genome
by the Cas9 enzyme (Figure 3a) (Jinek et al., 2012). Biochemical
studies indicated that in CRISPR-Cas9, PAM binding activates the
concerted function of the two catalytic domains, HNH and RuvC,
which are located distally from PAM (Sternberg et al., 2014, 2015).
Upon PAM binding, the striking conformational plasticity of HNH
would activate its nuclease function while simultaneously activating
the other RuvC nuclease, leading to the cleavage of both of the DNA
strands through a mechanism that involves metal ions (Casalino
et al., 2020; Nierzwicki et al., 2022). However, the allosteric mech-
anism by which PAM binding communicates with the HNH and
RuvC domains remained unknown. CNA identified communities of
closely correlated residues and quantified the strength of correl-
ations between them, represented by a set of nodes and edges
weighted according toGCs (vide supra) (Palermo et al., 2017).When
comparing the structural communities in Cas9 with and without
PAM (wPAM and w/oPAM, respectively), CNA revealed that PAM
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binding reduces the number of communities (Figure 3b), thereby
enhancing allosteric signalling.

In the absence of PAM, the communities are significantly more
fragmented, weakening the essential correlations for effective allo-
steric signalling. Additionally, PAM strengthens the correlation
between communities #1 and #8, which comprise the RuvC and
HNH domains, respectively. This is depicted in Figure 3b by a
thicker bond between these communities. The connection between
communities #1 and #8 is notably weaker in the absence of PAMdue
to the increased fragmentation. Thus, PAM clearly induces a stron-
ger communication channel between the HNH and RuvC domains,
activating their catalytic activity and offering a rationale for previous
biochemical studies (Sternberg et al., 2014, 2015).

Shortest path calculations

Network analysis provides valuable insights by identifying ‘shortest
pathways’ between distally located node pairs using algorithms like
Floyd-Warshall (Floyd, 1962). The shortest path calculation
involves finding the path between a pair of nodes such that the
sum of weights of constituent edges is minimized. These pathways
often represent efficient communication routes among allosteric
sites and help identify ‘signal transducers’ in biomolecular systems.
The Floyd-Warshall algorithm sums the edge lengths ( wij) across
different paths to identify the shortest path. It is a well-established
tool for shortest-path calculations, which finds the optimal route
for all node pairings. Another useful algorithm for shortest path
calculations is the Dijkstra algorithm (Dijkstra, 1959), commonly
used in cartography to find the shortest routes to destinations. As
opposed to Floyd-Warshall, which is best for finding the shortest

path between all pairs of nodes, especially in a dense network,
Dijkstra is best when the shortest path between a single node and
all other nodes is required, especially for sparse graphs. The algo-
rithm’s shortest path search begins with defined starting and des-
tination points and aims to minimize the total distance (maximize
correlation) between nodes connected by ( wij) inter-node connec-
tions (Figure 4a). Together, these shortest path algorithms are
remarkable for uncovering the potential pathways through which
molecular signals propagate. It is important to note, however, that
in large biological systems, the number of possible pathways
between distant nodes grows with the interconnectedness of nodes.
Moreover, signalling transfer within biomolecular systems does not
always follow a single optimal path; instead, it can involve a variety
of alternative sub-optimal routes. For this reason, shortest path
analysis commonly integrates the top sub-optimal routes alongside
the shortest ‘optimal’ pathway in the evaluation of the signal
transduction.

Shortest path analysis through the Dijkstra algorithm was used
to find the shortest pathways that connect the sites of DNA binding
(i.e., three recognition domains, REC1–3) with the nuclease
domains (i.e., HNH and RuvC) in CRISPR-Cas9 (Figure 4b). In
this study, shortest path analyses were performed on MD trajec-
tories obtained through enhanced sampling, using a Gaussian
accelerated MD (GaMD) approach (Miao et al., 2015; Wang
et al., 2021), to improve the configurational sampling and access
long-timescale dynamics, which is critical for protein allostery
(Kern and Zuiderweg, 2003). This enhanced network model was
used to evaluate the effect of long-timescale dynamics on the
biomolecular network and was compared with the slow dynamical
motions measured through solution NMR in the isolated Cas9
domains (East et al., 2020a). The computed pathways consisted
of residue-to-residue steps that optimize the overall correlation
between amino acids 789/794 and 841/858, which belong to the
HNH domain but are adjacent to RuvC and REC2, respectively.
This calculation provided an estimation of the principal channels of
communication between RuvC and REC2. Notably, the top-ranked
shortest pathway that maximizes the dynamic transmission
between RuvC and REC2 through HNH shows a ~ 70% overlap
with the pathway experimentally identified in an isolated construct
of the HNH domain using NMR CPMG relaxation dispersion. We
note that, while the experimental approach is limited to the isolated
domain, the computation of the optimal pathways considers the
full-length complex, offering an interpretation of HNH allosterism
within the context of the Cas9 protein bound to RNA and DNA
(East et al., 2020b).

Building on the agreement between NMR and the theoretical
approach, the pathway connecting REC-HNH-RuvC was used as a
reference to measure alterations in the allosteric communication in
a Geobacillus stearothermophilus Cas9 species that is functional in
human plasma and opens new avenues for applications in the
genome editing field (Belato et al., 2022a; Belato et al., 2022b).
Alterations in the allosteric pathway connecting REC and HNH
were also observed in the presence of mutations in the REC3
domain that increase the specificity of Cas9 against off-target effects
(Ricci et al., 2019; Mitchell et al., 2020; Skeens et al., 2024).

These findings indicated that CRISPR-Cas9 achieves altered
selectivity by modulating its allosteric communication, a concept
that paved theway for successful engineering toward improved gene
editing (Chen et al., 2017; Schmid-Burgk et al., 2020). Furthermore,
the agreement between shortest-path calculations andCPMG relax-
ation dispersion underscores the effectiveness of using shortest-path
calculations to analyse allosteric pathways (East et al., 2020b).

Figure 3. Community Network Analysis (CNA) of CRISPR-Cas9. a. Overview of the
CRISPR-Cas9 system, highlighting the individual domains using different colours
(⍺-helical lobe: light grey, PAM-interacting C-terminal: red, RuvC: blue, HNH: green).
Nucleic acids are shown as ribbons. A close-up view shows the PAM recognition region,
highlighting the PAM sequence in red). b. CNA of CRISPR-Cas9 in the absence of PAM
(without PAM, w/oPAM, left) and upon PAMbinding (with PAM, wPAM, right), shown in a
2D representation of the community network. Bonds connect communities and
measure their intercommunication strength. Adapted with permission from Ricci
et al.(Ricci et al., 2019) Copyright 2019 American Chemical Society; and from
Palermo et al.(Palermo et al., 2017) Copyright 2017 American Chemical Society.
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Networks of communication gain and loss

As mentioned earlier, edge betweenness (EB) is a crucial metric for
assessing the ‘traffic’ through network edges. It has been further
employed to create circular networks depicting mutation-induced
allosteric gain or loss. In a detailed study investigating the improved
specificity inCRISPR-Cas9 obtained through three lysine-to-alanine
mutations (K810A, K855A, K848A, Figure 5a) (Slaymaker et al.,
2016), the mutation-induced change in EB (ΔEB) was calculated as
the difference between the EB of the mutant and wild-type
(WT) systems (Nierzwicki et al., 2021). The normalized ΔEB values
were visualized using circular networks, where the HNH commu-
nities computed throughCommunityNetworkAnalysis (vide supra)
are arranged in a circle and connected by links with thickness
proportional to the ΔEB (Figure 5b).

Communities hosting the residues that form the allosteric path-
ways, i.e., the ‘allosteric communities’ (A), were defined based on
the agreement between CPMG relaxation dispersion and shortest
path analysis (Figure 4) and distinguished from non-allosteric

communities (NA). Negative ΔEB values (ΔEB < 0, blue) indicate
a loss of communication, while positive values (ΔEB > 0, red)
signify a communication gain due to the mutation. The study
revealed a significant loss of communication between the allosteric
routes that connect the functional sites (i.e., the A1–A3 communi-
ties Figure 5b). Conversely, non-allosteric sites (NA1–NA4)
showed increased communication, suggesting that mutations
enhancing Cas9 specificity also disrupt its allosteric signalling. To
experimentally validate this observation, an ‘NMR-derived net-
work analysis’ that fully integrates NMR relaxation dispersion with
MD and graph theory was introduced (Figure 5c). Here, the com-
putational communities were used as a reference, while the
dynamic exchange among them was based on NMR, confirming
a loss in crosstalk between allosteric communities. This approach
showed that the K-to-A mutations dramatically reduce the
dynamic exchange between allosteric communities in HNH, cor-
roborating the theoretical outcomes. In summary, these networks
effectively highlight allosteric communication changes induced by
mutations in biomolecular systems.

Figure 4. Shortest path calculation. a. The Dijkstra algorithm is used for shortest path calculation by defining a starting point and a destination (i.e., nodes A and C) and
iteratively optimizing the path from the former to the latter. In each iteration, the algorithm designates the closest unvisited node as the current node, updating the distances to
the remaining unvisited nodes until the destination is reached. For biomolecular allostery, the algorithm employs correlation coefficients asmetrics to identify the closest nodes
(i.e., wij ¼�logCG) thereby maximizing the correlation between the starting and destination nodes. b. In the context of the HNH domain of CRISPR-Cas9, the Dijkstra algorithm
identifies an allosteric pathway connecting the DNA recognition region (REC2) to the RuvC cleavage site. The signaling route identified through this algorithm (illustrated by the
pink line) overlaps with the slow dynamic residues found through solution NMR (represented by purple spheres). Adapted with permission from East et al.(East et al., 2020a)
Copyright 2020 American Chemical Society.
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Signal-to-noise ratio (SNR) of communication efficiency

Traditional shortest-pathmeasurements obtained from the dynamic
network serve a valuable purpose in identifying the most probable
communication pathways between predefined sites (Sethi et al.,
2009). However, they fall short of providing insight into how these
pathways compare within the broader communication network, as
assessing the favourability is crucial for identifying dominant allo-
steric communication pathways. To address this gap, we recently
introduced a Signal-to-Noise Ratio (SNR)metric (Sinha et al., 2024),
which quantifies the preference for communication between path-
ways of similar length in the network (the “noise”) connecting
distant sites (the “signal”) (Figure 6). In this approach, the ‘noise’
is computed as the distributionof the sumof edge betweennesses, EB,
g vð Þ, (i.e., the cumulative betweennesses, measuring the total traffic
passing through the edges) among all residues and nucleobases.
The ‘signal’ is derived from the distribution of cumulative edge
betweennesses of pathways connecting the regions of interest. In
detail, the cumulative betweennesses of each pathway ( Sk) is calcu-
lated as the sum of the betweennesses of all the constituent edges in
that specific pathway:

Sk ¼
Xn�1

i¼1
gkðiÞ (10)

where gkðiÞ is the edge betweenness of the edge in the kth

between node i and i+ 1, and n is the number of edges in the
kth pathway. Then, SNR is determined as:

SNR¼
E S½ �

Var Sð Þ
E N½ �

Var Nð Þ
(11)

where E S
N

� �
and Var S

N

� �
are the expectation and variance of the

signal/noise distribution, respectively. High SNR values indicate the
preference of the network to communicate through the signal over

other noisy routes. We recently introduced the SNR to identify the
allosteric signalling responsible for the activation of Cas13a
(Figure 6a), an RNA-targeting protein that shows promise for
RNA detection and imaging (O’Connell, 2019). Cas13a uses a
CRISPR RNA (crRNA) to target RNA sequences and trigger the
catalytic action of a composite active site, which is distally located
with respect to the sites of RNA binding and is formed by two
‘Higher Eukaryotes and Prokaryotes Nucleotide’ (HEPN) domains,
cleaving any solvent-exposed RNA.

To establish how the allosteric communication controls the
RNA cleavage activity in Cas13a, multi-microsecond MD simula-
tions, reaching almost ~170 μs of sampling, were performed. SNR
analysis was performed over the obtained trajectories to elucidate
the signalling efficiency between the guide RNA and catalytic sites.
This analysis showed that, in the inactive protein (i.e., the binary
complex formed by the protein bound to the crRNA), the signal
overlaps with the noise (Figure 6b) resulting in lower SNR values.
Upon target RNA binding, the signal stands out over the noise,
indicating remarkable communication efficiency, and identifies the
region of the guide RNA sourcing most allosteric communications
(i.e., the switch region, displaying high SNR values).

This explains previous experimental observations reporting that
the binding of the target RNA to the switch region of the guide RNA
results in the activation of the protein toward RNA cleavage. This
approach also pinpointed the critical activation hotspots in the
protein (R377, N378, and R973, Figure 6c). We have also shown
that alanine mutation of these residues increases sensitivities to
single-nucleotide mismatches. These variants have also been tested
for detecting singlenucleotide polymorphisms in SARS-CoV-2
variants, demonstrating their potential for disease diagnostics. This
has paved new avenues for the development of highly selective
RNA-based cleavage and detection tools. Building on these find-
ings, the SNR emerges as a useful tool to distinguish allosteric
signals from non-allosteric inter-residue communications in

Figure 5. Circular Networks. a. Allosteric pathway of information transfer (pink) spanning HNH (green) from the DNA recognition lobe (REC) to the RuvC core. The K810A, K855a, and
K848A enhancing specificity mutations are indicted. b. Circular networks of mutation-induced edge betweenness change (ΔEB) noting gain (blue) or loss (red) in allosteric crosstalk
between MD-derived communities (shown for the K855A and K810A mutants). HNH communities are plotted on a circle, connected through links the thickness of which is
proportional to ΔEB. c. Networks integrating the MD-derived communities (circles), with the experimental dynamic exchange among them (bonds with thickness proportional to
CPMG relaxation dispersion NMR upon normalizing the number of flexible residues in each community). Adapted with permission fromNierzwicki et al. (Nierzwicki et al., 2021) 2021
eLIFE.
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biomolecular complexes and identify critical hotspots for muta-
tional analysis aimed at improving biomolecular function and
specificity.

Centrality analysis

Centrality is a fundamental concept in network theory, illustrating
the relative influence of a node or cluster of nodes within a network
(Barabási and Pósfai, 2016). Its application in graph theory, par-
ticularly in social media networks, underscores its importance in
information flow. In social networks, nodes with numerous con-
nections act as hubs where information centralizes and transfers
efficiently. Similarly, in biomolecular systems, residues that serve as
hubs govern the system’s behaviour. Three primary measures
define centrality in a network. Degree Centrality (DC) is computed
as the number of edges connected to a node, serving as a local
centrality measure. Betweenness Centrality (BC) quantifies the
number of shortest paths passing through a node, indicating how
often a node acts as a bridge between others. Eigenvector Centrality
(EC) measures a node’s influence based on its connections and the
influence of those connections. The EC is derived from the first
eigenvector of the adjacency matrix A, which is a square matrix
used to describe connections between vertices in a graph. The EC of
a node, cI , is the sum of the centralities of all nodes that are
connected to it by an edge:

ci ¼ 1
λ

Xn
j¼1

Aijcj (12)

where the edges Aij are elements of the adjacency matrix A and
λ is the eigenvalue associated with the eigenvector composed by cI
elements. EC quantifies the connectivity of each amino acid or
nucleobase within the system, identifying elements that signifi-
cantly influence the network. It provides a normalized measure of
connectivity, facilitating comparisons across different conditions
such as mutations or effector binding (CFA et al., 2018).

The EC was used to provide a comparable measure of the
allosteric signalling among the three variants of the Cas9 nuclease.
These variants, namely VQR, VRER, and EQR, have introduced
the ability to recognize alternative PAM sequences (Figure 7a)
(Kleinstiver et al., 2015) as opposed to wild-type Cas9 (WT Cas9)
that recognizes only the canonical 5’-NGG-3’ PAM sequence
(where N can be any base) significantly constraining its applica-
tion towards recognizing a wide-array of genome sequences.
These variants recognize 5’-NGA-30, 5’-NGAG-30, and
5’-NGCG-3’ PAM sequences through mutations of the PAM-
interacting (PI) domain, remarkably expanding the DNA target-
ing capability of Cas9. The EC distribution analysis plotted on the
3D structure of the Cas9 variants (Figure 7b) shows that the most
relevant domains in terms of correlation with the overall motion
of the system are REC1 – 3 HNH, and RuvC. Higher EC values are
associated with HNH and REC2. This is consistent with Commu-
nity Network Analysis (Figure 7c), showing that the interconnec-
tion between REC2 and HNH is the strongest in all variants
(i.e., thicker bonds connect communities #8 and #4). This evi-
dence also agrees well with the EC distribution for the WT Cas9
(Figure 7d) and with single-molecule FRET experiments, indicat-
ing that in the WT Cas9 the motions of REC2 regulate HNH

Figure 6. Signal-to-Noise Ratio of communication efficiency. a. Schematic of the Signal-to-Noise Ratio (SNR) of communication efficiency on the 3D structure of Cas13a. Two black
arrows indicate the signal standing up over the noise, shown using grey arrows. High SNR indicates that the signal stands out over the noise. b. Distribution of the signals from the
crRNA “seed” (green) and “switch” (blue) regions to the catalytic core residues, plotted on the background of noise (grey) in the crRNA- (top) and target RNA-bound (bottom) Cas13a.
c Sites of increased specificity in Cas13a identified through computational analysis and tested throughmutagenesis and DNA cleavage experiments. Adapted with permission from
Sinha et al.(Sinha et al., 2024) Copyright 2023, Published by Oxford University Press on behalf of Nucleic Acids Research.
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(Chen et al., 2017; Dagdas et al., 2017; Sung et al., 2018). Note-
worthy, the eigenvalues associated with the EC distribution
(Figure 7e) follow the same activity trend experimentally meas-
ured for these mutants. Indeed, Kleinstiver et al. have shown that
the activity of these variants in human cells for the 5’-NGG-3’
PAM seems to be WT > EQR > VQR ~ VRER (Kleinstiver et al.,
2015), as also confirmed by independent studies (Hirano et al.,
2016). The eigenvalues associated with the EC distribution are a
quantitative measure of the overall correlation of the system,
indicating the efficiency of the communication.

In the Cas9 variants, a decreased EC distribution strongly indi-
cates a lower degree of communication, reflecting the decreased
experimental activity of these systems. Hence, single point muta-
tions in the PI domain affect the system’s communication, strength-
ening the notion that PAM acts as an allosteric effector of the Cas9
dynamics. Overall, these findings show that the EC analysis allows
reliable comparisons of the system connectivity in comparison with
mutated systems. Moreover, EC helps identify the main mode of
collective correlations in the network, making it a valuable tool for
understanding the connectivity in biomolecular systems.

Figure 7. Eigenvector centrality analysis of Cas9 variants. a. Close-up view of the PAM binding domain in three variants of Cas9 (viz., VQR, VRER and EQR) with mutations in the PAM
binding region(Kleinstiver et al., 2015). The DNA target is shown as ribbons, highlighting the PAM sequence in magenta. The Cas9 residues mutated to alter the protein’s selectivity
(green) and the residues preserved (pink) are shown as sticks. b. Eigenvector centrality distribution plotted on the 3D structure of the Cas9 variants, color-coded from red (lowest EC)
to blue (highest EC). c. Community structures for the EQR, VQR and VRER Cas9 variants. d. EC distribution shown for theWT Cas9, coloured according to the colour scale on the right.
e. Highest eigenvalues of the generalized correlation matrix for the WT Cas9 and its variants.
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Perspective applications

Here, we propose a series of potential applications aimed at advan-
cing the use of graph theory to elucidate biophysical mechanisms
and inform drug design.

Graph theory helps pinpoint critical residues or domains that
serve as hubs for functional interactions. This can be applied tomap
interaction pathways between key players in respiratory chains,
predicting how perturbations or mutations might disrupt these
processes. Complex I of the mitochondrial respiratory chain is
essential for electron transport and proton pumping. Notably, the
ubiquinone reduction site– crucial forComplex I function – extends
nearly 200 Å from the proton channels, raising questions about the
molecular origin of this long-range coupling (Sharma et al., 2015).
Graph representations can be employed to identify structural motifs
or key residues that mediate this coupling. By analysing the con-
nectivity within the complex, critical pathways for energy transfer
and signal propagation during the coupling event can be elucidated.

Applying graph theory could also be instrumental in identifying
efficient pathways for electron transfer in biomolecules (Gray and
Winkler, 1996). For instance, it could provide insights into the
plastocyanin-cytochrome f interaction, where subtle conform-
ational changes in one protein facilitate efficient electron transfer
within the photosynthetic electron transport chain (Cruz-Gallardo
et al. 2012). Additionally, graph theory can be used to model and
compare the effects of mutations or environmental changes (such
as pH or ionic strength) on the interaction network, offering a
deeper understanding of how these factors impact electron transfer
efficiency. Theoretical studies of electron transfer necessitate a
quantummechanical description, and the integration of this frame-
work with graph theory offers promising insights (Arantes et al.,
2022) to elucidate, for instance, how long-range effects influence
the evolution of chemical reactions (Brunk et al., 2011). Bymerging
graph theory with quantum mechanical descriptions, we can gain
valuable insights into the mechanisms of electron transfer and their
broader implications for cellular processes.

Allosteric regulation in large RNAs, such as group II introns and
the spliceosome, involves long-range interactions where changes in
one region of the RNA can influence distant sites (Casalino et al.
2016, Casalino et al., 2018; Saltalamacchia et al., 2020). In these
systems, RNA splicing entails several conformational changes,
driven by both RNA – RNA and RNA-protein interactions. Graph-
based analyses can aid in deciphering RNA folding pathways and
elucidating how communication between distinct regions affects
catalysis, intron cleavage, and exon ligation. This approach could
enhance our comprehensive understanding of the structure – func-
tion relationships within these complex RNA systems.

Combining graph-theoretical approaches with MD simulations
enables the identification of critical nodes (key amino acids or
domains) that may regulate function or serve as allosteric drug
targets (Bernetti et al., 2024). This approach is particularly valuable
for discovering new drug targets, especially in complex systems
characterized by allosteric responses and feedback mechanisms.
Notable examples include imidazole glycerol phosphate synthase
(Rivalta et al., 2012; Calvó-Tusell et al., 2022), which is a target for
the development of antifungal, antibacterial, and herbicidal agents,
and the signal-transducing GTPase K-Ras, a quintessential example
of a small yet allosterically complex protein that is highly relevant in
oncology (Castelli et al., 2024).

In summary, graph theory provides an in-depth analysis of
connectivity and interaction networks, helping to unravel the
mechanistic details of various biological functions. These include

electron transfer in respiratory and photosynthetic chains, the
conformational dynamics of complex RNA – RNA and RNA-
protein interactions, and the allosteric mechanisms of drug targets.
These insights have practical applications in fields like bioenerget-
ics, drug discovery, and the design of biomolecular machines.

Outlook and challenges

Graph theory has significantly deepened our understanding of
complex molecular systems, providing valuable insights into infor-
mation transfer and the structure of biomolecular interaction net-
works. Challenges in graph theory are particularly pronounced
whenmodeling the intricate relationships between cause and effect,
especially in systems wheremultiple variables interact.While graph
theory is invaluable for representing these relationships, inferring
causation demands careful consideration of underlying assump-
tions, such as the presence or absence of key effectors. One
approach to constructing causal graphs involves using causal infer-
ence methods, such as Directed Acyclic Graphs (DAGs) (Barabási
and Pósfai, 2016). In a DAG, edges have a specified direction, and
the graph is acyclic, meaning it is impossible to start at one node and
follow a sequence of directed edges that leads back to the same node.
In causal models, DAGs effectively represent causal relationships
between variables, with each directed edge indicating a causal
influence. In probabilistic models, DAGs can be employed to
represent dependencies between random variables, where nodes
signify variables and edges denote conditional dependencies.

Applying DAGs to decipher causation in biomolecular dynam-
ics is both highly challenging and innovative, as it has yet to be fully
realized in complex biomolecular systems. Key challenges include
the ability to manage large datasets with numerous variables and
the complexity of high-dimensional data, typical in MD simula-
tions. This complexity can obscure causal discovery due to the vast
number of potential relationships. Moreover, creating clear, inter-
pretable visualizations and explanations of causal relationships that
accurately reflect the underlying mechanisms adds another layer of
difficulty. These challenges underscore the need for interdisciplin-
ary approaches that bridge graph theory, statistics, and causal
inference to develop effective solutions.

Conclusions

In conclusion, the integration of graph theory with molecular
dynamics simulations has significantly advanced our understanding
of complex molecular systems, particularly in the context of allo-
steric regulation, conformational dynamics, and catalytic functions.
By providing a structured framework to represent and analyse the
interactions and dynamics within biomolecular networks, graph
theory has enabled the identification of key residues and pathways
critical to these processes. The application of these methods to
systems like the CRISPR-Cas9 genome editing tool underscores
the potential of graph theory not only to elucidate biological mech-
anisms but also to guide the design and engineering of biomolecular
systems with enhanced functionality. As this review highlights,
ongoing developments in graph theoretical approaches promise to
further transform the field, offering new avenues for the exploration
and manipulation of complex biological phenomena.
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