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Abstract

Transfer learning has been highlighted as a promising framework to increase the accuracy of the data-driven model in
the case of data sparsity, specifically by leveraging pretrained knowledge to the training of the target model. The
objective of this study is to evaluate whether the number of requisite training samples can be reduced with the use of
various transfer learning models for predicting, for example, the chemical source terms of the data-driven reduced-
order modeling (ROM) that represents the homogeneous ignition of a hydrogen/air mixture. Principal component
analysis is applied to reduce the dimensionality of the hydrogen/air mixture in composition space. Artificial neural
networks (ANNs) are used to regress the reaction rates of principal components, and subsequently, a system of
ordinary differential equations is solved. As the number of training samples decreases in the target task, the ROM fails
to predict the ignition evolution of a hydrogen/air mixture. Three transfer learning strategies are then applied to the
training of the ANN model with a sparse dataset. The performance of the ROM with a sparse dataset is remarkably
enhanced if the training of the ANNmodel is restricted by a regularization term that controls the degree of knowledge
transfer from source to target tasks. To this end, a novel transfer learning method is introduced, Parameter control via
Partial Initialization and Regularization (PaPIR), whereby the amount of knowledge transferred is systemically
adjusted in terms of the initialization and regularization schemes of the ANN model in the target task.

Impact Statement

The training dataset of reduced-order modeling (ROM) for chemically reactive flows comprises multidimen-
sional numerical simulations. Still the number of high-quality training samples could be sparse under practical
scenarios. To resolve this issue, we adopt four different transfer learning methods to a data-based ROM for
predicting the ignition of a homogeneous hydrogen/air mixture with a sparse dataset. The present work illustrates
that the requisite amount of training samples for neural network model training can be remarkably reduced with
the use of regularization-based transfer learning methods. Furthermore, a novel transfer learning model, PaPIR,
is introduced in the present study. The PaPIR provides a unified transfer learning framework in terms of
initialization and regularization of the neural network model.

1. Introduction

With the continuous advancement of chemical kinetic mechanisms, detailed chemical mechanisms of
large-hydrocarbon fuels can be comprised of thousands of species and tens of thousands of elementary
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chemical reactions (Lu and Law, 2009). The sheer size of the mechanisms and their wide range of
temporal scales are major challenges for high-fidelity numerical simulations of turbulent reacting flows
with large-hydrocarbon fuels. Various approaches have been developed to reduce the number of variables
in composition space. A conventional way is to develop skeletal/reduced chemical kinetic mechanisms, in
which key species and elementary chemical reactions are extracted from a detailed mechanism using
techniques such as directed relation graph (DRG) (Lu and Law, 2005), DRG with error propagation
(Pepiot-Desjardins and Pitsch, 2008), computational singular perturbation (Lam and Goussis, 1994), and
path flux analysis (Sun et al., 2010), thereby reducing the overall size and computational cost of
simulations.

More recently, a data-based dimensionality reduction method has also been applied to chemically
reactive flows, where a low-dimensional manifold of the original thermochemical state variables is
defined based on data-based dimensionality reduction techniques, including linear and non-linear
principal component analysis (PCA) (Parente et al., 2009; Sutherland and Parente, 2009; Mirgolbabaei
and Echekki, 2013, 2014). The distinct features of the data-driven technique compared with physics-
based low-dimensional manifolds, such as the steady laminar flamelet model (Peters, 1983, 1984), the
unsteady flamelet/progress variable approach (Pierce and Moin, 2004; Ihme et al., 2005), and flamelet
generated manifolds (van Oijen and de Goey, 2000), are that the correlations of the thermochemical state
vector are identified by a “training dataset” that is prepared a priori, and the rank of the low-dimensional
manifold can be easily adjusted by the user depending on the trade-off between the compression ratio and
accuracy. Either linear mapping or a non-linear regression method (e.g., artificial neural network [ANN]
and Gaussian process regression [GPR]) is employed for the closure of the governing equations
(Sutherland and Parente, 2009; Isaac et al., 2015). A PCA-based reduced-order modeling (ROM) has
shown its applicability to replicate characteristics of turbulent flames through a priori (Sutherland and
Parente, 2009; Mirgolbabaei and Echekki, 2013; Parente and Sutherland, 2013; Dalakoti et al., 2021) and
a posteriori evaluations (Biglari and Sutherland, 2015; Echekki and Mirgolbabaei, 2015; Owoyele and
Echekki, 2017; Malik et al., 2021, 2022; Abdelwahid et al., 2023; Kumar et al., 2023; Jung et al., 2024).

Despite the advantages of the data-based ROM for reactive flow simulations, one of the drawbacks of
the model is associated with its strong dependency on the quality of training data. For instance, Owoyele
and Echekki performed two-dimensional (2D) and three-dimensional (3D) surrogate direct numerical
simulations (DNS) of a premixed methane/air flame in a vortical flow with the transport of principal
components (PCs) (Owoyele and Echekki, 2017), revealing that a low-dimensional manifold defined
from a one-dimensional (1D) training dataset fails to reproduce 2D flame characteristics because of
missing curvature effects in the 1D training dataset. Our previous study of 2D surrogate DNS on the
compression ignition of large hydrocarbon fuels with the data-based ROM (Jung et al., 2024) showed that
the performance of the ROM significantly degrades if the initial temperatures between the training and
target dataset are different. Dalakoti et al. (2021) also pointed out that a PCA-based ROM constructed
using either a zero-dimensional (0D) homogeneous reactor or a 1D non-premixed igniting flamelet
dataset is unable to fully represent the heat release characteristics of a 3D spatially developing turbulent n-
dodecane jet flame at high-pressure conditions. These findings indicate that a data-driven ROM for
chemically reactive flows requires high-quality training data, usually obtained by carrying out multidi-
mensional simulations with a detailed chemical kinetic mechanism, to reproduce the characteristics of the
full-order modeling (FOM) accurately. However, given that one of the main purposes of adopting ROMs
for reactive flow simulations is to alleviate the computational cost, an argument can be made that it would
be impractical to always obtain a sufficient number of high-quality training samples whenever operating
conditions of a combustion system change (e.g., temperature, Reynolds number, and turbulent intensity).
In other words, the amount of high-quality training data, necessary to optimize a ROM for chemically
reactive flows with limited computational resources, can be sparse under practical conditions.

In the machine learning community, transfer learning has been highlighted as a promising framework
to improve performance in the case of data sparsity, together with providing a robust initialization scheme
and speeding up the learning process (Pan and Yang, 2009). The central idea of transfer learning in the
context of machine learning is that a pretrained machine learning model, optimized with a sufficient
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number of training samples, is utilized to train a target machine learning model that has sparse training
data. Numerous studies demonstrate that the performance of the machine learning model with a sparse
dataset is remarkably enhanced by applying transfer learning for clustering (Yang et al., 2009;Mieth et al.,
2019; Wang et al., 2021), classification (Hosny et al., 2018; Quattoni et al., 2008; Yao and Doretto, 2010;
Zhu et al., 2011), and regression cases (Salaken et al., 2019; Subel et al., 2021; Liu et al., 2022; Yang et al.,
2022).

There are different ways of “transferring” knowledge from the previous model (or sourcemodel) to the
target model, such as instance-based algorithms, feature-based algorithms, model-based algorithms, and
relation-based algorithms (Yang et al., 2020). In the present study, a model-based transfer learning
algorithm, also known as parameter-based transfer learning (Yang et al., 2020), is adopted to utilize the
parameters obtained from the previous machine learning model for the optimization of the target model
with sparse training samples. The straightforward way is to freeze all (or some of) the parameters of the
target machine-learning model with those obtained from the pretrained model (Pan and Yang, 2009). The
parameters of the previous machine learning model can also be used as an initial guess of the parameter
values in the target machine learning model. A regularization-based transfer learning method has recently
been introduced (Li et al., 2018, 2019; De and Doostan, 2022) in which the knowledge of the previous
machine learning model can be “partially” transferred to the target model by adjusting the magnitude of
the regularization parameter.

The main objective of the present study is to investigate the possibility of alleviating the requisite
number of training samples for optimizing data-driven ROMs for chemically reactive flows by utilizing
different transfer learning methods. It has been shown that an accurate prediction of the source term is one
of themost challenging parts of the framework of data-drivenROMs (Dalakoti et al., 2021). Therefore, the
main focus of the present study is to utilize transfer learning methods to mitigate the requisite number of
training samples in the prediction of the 0D homogeneous ignition of a hydrogen/air mixture in a constant
volume reactor. While the PC-transport ROM has non-stiff transport terms (Sutherland and Parente,
2009), these terms can be easily predicted by using a shallow neural network model, compared with the
more complex neural network model required for predicting the chemical source term (Owoyele and
Echekki, 2017; Kumar et al., 2023).

The dimensionality of the hydrogen/air mixture in composition space is reduced by applying PCA, and
the non-linear relationship between the PCs and their reaction rates is mapped by optimizing ANN
models. The effect of the number of training samples on the performance of the data-driven ROM is first
investigated, and subsequently, different transfer learning approaches are adopted to predict the reaction
rates of the PCs with a sparse dataset. To this end, we introduce a novel transfer learning method called
“Parameter control via Partial Initialization and Regularization (PaPIR),”where the amount of knowledge
transferred from source to target ANN model can be systemically adjusted for the initialization and
regularization of the target ANN model.

The outline of the article is as follows. Section 2 presents the details of the data-driven ROM, ANN
models, and various transfer learning methods. Section 3 illustrates the results of the PCA-based data-
driven ROM for the 0D ignition process of a hydrogen/air mixture with various initial conditions
depending on the number of training samples. Transfer learning is not applied thus far to highlight the
importance of the training data on the performance of the model. In Section 4, four different transfer
learning methods are utilized for the training of the ANN model with a sparse dataset, from which the
performance of the transfer learning methods for various target tasks is evaluated.

2. Methodology

Homogeneous ignition of a hydrogen/air mixture in a constant volume reactor is predicted by applying
PCA-based data-driven ROM (PC-transport ROM). Since the integration of numerically stiff chemistry is
a bottleneck for many reactive flow simulations, it is reasonable to consider that the present homogeneous
reactor configuration is an important benchmark case for evaluating the efficiency of PC-transport ROM
to accurately reproduce reactive flow simulations.

Data-Centric Engineering e42-3

https://doi.org/10.1017/dce.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.50


The temporal evolution of the original thermochemical-state vector with different initial condi-
tions is first collected by performing a series of 0D simulations of the homogeneous hydrogen/air
mixture, and subsequently, a low-dimensional manifold is defined by applying PCA to the collected
data. Here, the new variables defined by PCA are denoted as the PCs. The reaction rates of the PCs are
predicted as a function of PCs using an ANN. After training the ANN model on one task, the
knowledge of the trained ANNmodel is transferred to another task where the size of the training data
is forced to be sparse. The performance of the different transfer learning methods is then systemically
investigated by varying (1) the task similarity between the source and target tasks, and (2) the degree
of data sparsity in the target task. The methodology of these investigations is described in this
section.

2.1. Zero-dimensional ignition dataset for a homogeneous hydrogen/air mixture

In a spatially homogeneous constant volume reactor, the temporal evolution of species and temperature
starting from the initial time, t = 0, is computed by solving the system of ordinary differential equations
(ODEs) defined by

dθ
dt

= _ωθ, t∈ 0, tf
� �

(2.1)

where θ represents the thermochemical state vector (i.e., species mass fraction and temperature), _ωθ the
reaction rate vector divided by themixture density, and tf the end time. For the initial conditions, the initial
pressure of the system, p0, is fixed to be atmospheric, and different values for the initial temperature, T0,
are used including 1000, 1050, 1100, 1300, and 1400 K. The initial mass fractions of the hydrogen/air
mixture are determined by an equivalence ratio, ϕ, which ranges from 0.1 to 3.0. A detailed chemical
kinetic mechanism for hydrogen/air mixtures, developed by Li et al. (2004), is used where the dimension
of the original thermochemical state vector is 10. A six-stage, fourth-order Runge–Kutta method
(Kennedy and Carpenter, 1994) with a uniform time step, dt, of 0.2 ns is adopted for time integration.
The CHEMKIN library (Kee et al., 1996) is used to compute the chemical kinetics and thermodynamic
properties of the mixture.

Figure 1 shows the ignition delay time, τig, of the hydrogen/air mixture for various ϕ and T0. As
expected, the variation in τig exhibits a “U”-shaped profile as a function of ϕ. Here, τig is defined as the
time at which the temperature gradient is maximum. In accordance with Arrhenius Law, τig notably
changes with changes in T0.

In the present study, the objective of the PC-transport ROM is to replicate the ignition characteristics of
the hydrogen/air mixture over a wide range of ϕ at a specific T0, meaning that training samples, the low-
dimensional manifold, and the corresponding ANN model are separated by T0. To reasonably provide a
data-sparse scenario, an underlying assumption of the present study is that there exists a sufficient number
of training samples spanning over ϕ at T0 of 1000 K, while the training data size for the cases where T0 >
1000 K is assumed to be sparse (see the symbols in Fig. 1 as an example).

Specifically, at T0 = 1000 K, the training dataset is collected by carrying out 30 different 0D
simulations varying ϕ (i.e., Δϕ = 0.1; ϕ ranging from 0.1 to 3.0), and then the low-dimensional manifold
is defined by applying PCA to the training dataset. Training of the ANN model by using a sufficient
number of training samples at T0 = 1000 K is considered as the “source task” for the present study. Here,
Nϕ is defined as the number of 0D simulations at a given T0 such that Nϕ of the source task is 30. For the
“target tasks”where T0 is higher than 1000 K (i.e., 1050, 1100 1300, and 1400 K),Nϕ is set to be ≤4, such
that the number of training data for the target task is forced to be sparse. In this study, a “sparse dataset”
refers to a dataset with insufficient training samples such that the corresponding ANN model is unable to
replicate the ignition characteristics of a fuel/air mixture with a wide range of ϕ (i.e., ϕ= 0:1�3:0) at a
given T0. The description of the dataset with differentNϕ is summarized in Table 1. Note that the range of
T0 (i.e., 1000 ≤T0 ≤ 1400K) is carefully selected to ensure that the overall distributions of the input and
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output datasets between the source and target tasks are similar, yet noticeably different. This difference
becomes more pronounced as T0 increases in the target task.

While the present study provides a data-sparse scenario based on a series of 0D simulations, such an
imbalance in the number of training samples can also be observed frommultidimensional simulations and
experiments (Humbird et al., 2020; Subel et al., 2021). It is also noted that transfer learning methods used
in the present study are not limited to specific source and target tasks. Rather, thesemethods can be applied
to various scenarios (e.g., different pressure or equivalence ratio conditions between source and target
tasks), provided that there is a task similarity between the two tasks.

For each 0D simulation, the thermochemical state vector and their reaction rate, θ and _ωθ, respectively,
are uniformly sampled from t of 0 to 2τig. The number of samples for each 0D simulation is set to be
20,000 such that the first 10,000 samples are assigned to the preignition period and the remaining 10,000
samples are related to the postignition period. The “test dataset” at a given T0 is also prepared to evaluate
the accuracy of the PC-transport ROM. It consists of 29 different 0D simulation results at a given T0 (Δϕ =
0.1; ϕ ranging from 0.15 to 2.95) and is separated from the training dataset.

2.2. Principal component analysis

Consistent with previous studies applying PC-transport ROMs (Parente et al., 2009; Sutherland and
Parente, 2009; Mirgolbabaei and Echekki, 2013, 2014), the dimension of the original thermochemical
vector is reduced by applying PCA. Assuming that M number of samples of the N-dimensional
thermochemical state vectors are collected by performing multiple 0D simulations at a given T0, the
dataset of the thermochemical vector, Θ = [θ1, θ2,…, θM], is composed of a N ×M dimensional matrix.
Note that Θ is normalized based on the min–max normalization before PCA. The N ×N dimensional

Figure 1. Variations in 0D ignition delay time, τig, of the hydrogen/air mixture for different initial
temperatures, T0, as a function of equivalence ratio, ϕ. In the present study, it is assumed that the number
of training samples at the source task (T0 = 1000 K) is sufficient, while the number of training samples at

the target tasks (T0 > 1000 K) is sparse.

Table 1. Description of the dataset with different Nϕ

Nϕ ϕ Number of samples (M)

2 0.5, 1.5 40,000
3 0.5,1.5, 2.5 60,000
4 0.2, 1.0, 2.0, 3.0 80,000
30 0.1–3.0 (Δϕ = 0.1) 600,000
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matrix of orthonormal eigenvectors,QT , of the covariance matrix ofΘ is constructed, and subsequently,
the dataset of the PC vector, Ψ, can be defined as

Ψ=QTΘ (2.2)

where Ψ∈ℝN ×M represents the M numbers of collections of the PC vector, ψ = [ψ1, ψ2, …, ψN ]
T.

Note that the first PC,ψ1, is a linear combination of the original thermochemical state vector that captures
the maximum variance of the dataset. The second PC, ψ2, is then orthogonal to the first PC, and all the
subsequent PCs follow the same concept. In the present study, the leading first five PCs (i.e., NPC = 5) are
retained from ψ such that the dimensionality of the system is reduced from 9 (except for N2) to 5, which
captures over 99% of the original total variance. In other words, a N ×NPC matrix of A is constructed that
contains the leading NPC eigenvectors from Q. The low-dimensional manifold then becomes

Ψred =ATΘ (2.3)

where Ψred ∈ℝNPC ×M represents the dataset of the truncated PC vector, ψred
� �

= [ψ1, ψ2, …, ψNPC
]T.

Hereinafter, Ψred and ψred are referred to as Ψ and ψ, respectively, for the sake of brevity.
The systemofODEs for the low-dimensionalmanifold canbedefinedbyprojectingEq.2.1on thematrixAT:

dψ
dt

= _ωψ , t∈ 0, tf
� �

(2.4)

where _ωψ is the reaction rate term for ψ, defined by _ωψ = AT _ωθ (Sutherland and Parente, 2009). In the
framework of the PC-transport ROM, the time integration of Eq. 2.4 is solved instead of solving Eq. 2.1,
and then a conversion fromψ into θ is carried out as a postprocessing step. An ANNmodel is used for the
regression of _ωψ as a function of ψ.

Figure 2 shows the PC modes with respect to the original thermochemical vector defined by using
different training datasets in terms of T0. For all the cases,Nϕ is set to be 30. It is readily observed from the
figure that the PC modes show a similar trend irrespective of the dataset, implying that transfer learning
can be effectively applied to the dataset. This result is consistent with the previous study (Biglari and
Sutherland, 2012) which shows that the PCA basis is insensitive to the spatial filter width in the context of
large eddy simulations. Specifically, the first PC mode is negatively correlated with the fuel and oxidizer,
while it is positively correlated with the product, H2O, and temperature. Accordingly, the first PC
represents the oxidation progress of the hydrogen/air mixture. The second PCmode is primarily correlated
with the fuel, and the third PC mode is correlated with the formation of HO2. The results indicate that the
PCs obtained through the data-driven approach are linked to a physical interpretation of the combustion
system, consistent with previous findings (Owoyele and Echekki, 2017; Malik et al., 2021).

Nonetheless, it is important to note that the PC modes are slightly altered with a change of T0, which
can have a significant impact on the application of transfer learning to the ROM. In other words, a unified
definition of the low-dimensionalmanifold throughout taskswould be preferred to transfer the knowledge
efficiently. In the present study,AT defined from the source task (i.e.,Nϕ = 30 and T0 = 1000 K) is applied
to all target tasks to ensure consistency in the definitions of ψ and _ωψ . Such an approach is based on the
observation that despite the presence of slight differences in the PC modes, the first PC, which also
accounts for most of the data variance, also exhibits the least difference when T0 is varied.

Note, however, that using a unified AT has a potential risk of introducing noticeable errors during the
conversion from ψ to θ in the target task, especially if the reconstruction is carried out by using a matrix
conversion step, θ≈Aψ. To address this issue, another non-linear ANN model is employed to convert
from ψ to θ for all cases, instead of using the matrix inversion. This ensures that the performance of the
reconstruction is mainly affected by the number of samples,M, in the target task rather than the choice of
AT. As will be discussed, such an ANNmodel is found to require far fewer parameters compared with the
other ANN models that predict _ωψ . Hence, this ANN model shows a reasonable accuracy even when
trained with a sparse dataset. It is also noted that the non-linear ANN was found to reduce the
reconstruction error during the conversion from ψ to θ as compared with the matrix inversion, θ≈Aψ
(Mirgolbabaei and Echekki, 2015).
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The sensitivity of the ANNmodel performance depending on the definition of the eigenvector matrix,
AT, is shown in Fig. S1 in Supplementary Material (SM). It is shown that the effect of a PCA basis
(i.e.,AT) plays a secondary role in determining the optimal ANNmodel in the target task, while the main
source of the error arises from the source term regression errors.

Figure 3 shows the temporal evolution of the first three PCs for three different ϕ of 0.85, 1.35, and 2.95
at T0 of 1000 K, obtained by projecting the FOM result onto AT. As discussed earlier, the first PC
represents the progress variable of the mixture, such that the first PC switches from negative to positive
values near the ignition delay time. For the third PC, its mode is mainly correlated with the intermediate
species, namely HO2, such that it is maximum just before ignition of the mixture.

2.3. Artificial neural network

A fully connected, multi-input, and multi-output ANN model is used to predict the reaction rates of the
PCs. The PC vector is used as the input of the ANN, and the reaction rates of these PCs are the output. The
architecture of the ANNmodel is determined by performing a grid search method fromwhich the number

Figure 2. Modes of the first five PCs depending on the training dataset varying T0 with Nϕ of 30.
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of hidden layers and nodes are set to 3 and 30, respectively. The hyperbolic tangent activation function is
adopted for all hidden layers. For cases without the application of transfer learning methods, the Xavier
normal initialization method (Glorot and Bengio, 2010), which is a commonly used initialization scheme
and is compatible with the hyperbolic tangent activation function, is employed. Note that the goal of
training the ANN model is to optimize weights (w) and biases (b) vectors, which together make up the
parameter vector, h = [w, b]. We apply the early stopping callback function based on the validation loss,
and a plateau learning rate scheduler is used to fine-tune the parameters.

As discussed in Section 2.2, another ANN model is also employed and trained for the reconstruction
fromψ to θ. One hidden layer with 10 nodes is found to be sufficient for this ANNmodel to reconstruct the
original thermochemical scalars with reasonable accuracy. Note that such an ANN model requires
considerably fewer training samples, and, therefore, transfer learning is not applied to this model.

For both source and target tasks, 80% of the dataset is used as a training dataset, and the remaining 20%
is allocated as the validation set to assess the model’s performance and prevent overfitting. The mean
absolute error (MAE) loss function is applied for the ANN training, consistent with previous studies

Figure 3. Temporal evolution of the first three PCs for three different equivalence ratios, ϕ, of 0.85, 1.35,
and 2.95, obtained by projecting AT onto the FOM result. The vertical lines in (a) represent the ignition
delay time for different ϕ. Here, the ignition delay time is defined by the time at which the temperature

gradient reaches its maximum value.
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showing that the choice of the MAE results in a better performance than RMSE andMSE in capturing an
ignition process of a fuel/air mixture (Han et al., 2020, 2022). The Adam optimizer (Kingma and Ba,
2014) is used for stochastic optimization. Once the ANNmodel is optimized using the training dataset, it
is both a priori and a posteriori evaluated against the test dataset, which is not involved in the training
process.

To efficiently capture the ignition process of the hydrogen/air mixture, the dataset is divided into three
clusters (Cl#1–Cl#3): (Cl#1) earlier ignition period (ψ3�ψ3,0 < 0.005 andψ1 < 0:0), (Cl#2) later ignition
period (ψ3�ψ3,0 ≥ 0.005 and ψ1 < 0:0), and (Cl#3) post ignition period (ψ1 ≥ 0:0), where the ψ3,0
denotes the magnitude of ψ3 at the initial condition. The clustering criteria are based on the observation
that ψ1 and ψ3 effectively represent the progress variable and evolution of intermediate species,
respectively, as depicted in Figure 3. For more complicated numerical configurations, unsupervised
clustering algorithms (e.g., k-means algorithm or Vector Quantization Principal Component Analysis
[VQPCA]) could be adopted to automatically determine the clustering criteria, as described in (D’Alessio
et al., 2023; Savarese et al., 2024). Note that the data clustering method has been proven as an effective
way to capture the ignition process of various fuel/air mixtures (Han et al., 2020; Han et al., 2022; Jung,
Kumar, et al., 2024). The performance of the ROM will later be evaluated in each cluster.

2.4. Transfer learning methods

In this study, four different transfer learning methods are applied to the target tasks. Let hs denote the
parameter vector (weights and biases vectors) extracted from the pretrained source task. The first transfer
learning method (TL1) is that the knowledge of the pretrained ANNmodel obtained from the source task
is fully shared with the target task. In other words, the parameter vector in the target task, denoted by h, is
identical to hs, and no fine-tuning step is performed in TL1. Therefore, it can be conjectured that TL1 is
likely to show good performance only when the task similarity between the source and target is very high.
The second transfer learning method (TL2) is to set the initial parameter vector in the target task, h0, with
hs, and then fine-tune the model using the sparse dataset in the target task. In other words, TL2 serves to
initialize the ANNmodel in the target task by using hs, and as such, hwill be different from hs after fine-
tuning.

As discussed in Li et al. (2029), a drawback of TL2 is that previous knowledge obtained from the
source taskmay be lost during the fine-tuning step. To resolve this issue, the third transfer learningmethod
(TL3), which is associated with parameter restriction, is applied. The total loss function, L, in TL3
includes a regularization term (X. Li et al., 2018, 2029), which is slightly different from the conventional
l2 regularizer, as follows:

L=MAEþ λ1∥h�hs∥22: (5)

In this expression, MAE represents the mean absolute error loss function, and λ1 is the regularization
parameter. Here, the magnitude of λ1 mainly controls the degree of knowledge transferred from source to
target task during the fine-tuning step in the target task. Consistent with TL2, h0 in TL3 is set to be hs, and
subsequently, theANNmodel is fine-tuned by using the dataset in the target task. It is evident thathwill be
identical to hs as the magnitude of λ1 is very high, whereas there is no penalty for h to change during the
fine-tuning step at λ1 = 0. Therefore, it can be considered that TL3 becomes equivalent to TL1 and TL2 as
the magnitude of λ1 becomes very large or approaches zero, respectively.

Lastly, we introduce a novel transfer learning method called “Parameter control via Partial Initialization
and Regularization (PaPIR).” The central idea of PaPIR is to provide a unified transfer learning framework
in terms of initialization and regularization. In addition to applying λ1 to adjust the effect of the regularization
during training, another variable, λ2, is introduced in PaPIR so that the amount of previous knowledge
transferred to the target task in terms of the initialization can also be controlled by changing themagnitude of
λ2. The initialization method of the PaPIR is a combination of two initialization schemes, namely Xavier
normal initialization (Glorot and Bengio, 2010) and initialization with hs. Xavier normal initialization is a
family of theGaussian-based initialization techniquewith zeromean and a determined variance. Thus, it is a
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sort of random initialization strategy and is unrelated to the pretrained knowledge. On the other hand,
initialization with hs is categorized as a data-driven initialization strategy (Narkhede et al., 2022).

The initialization process in PaPIR follows a normal distribution function, N, which is expressed as
follows:

w0 =N λ2w
s,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

f iþ f o

s
1� λ2ð Þ

" #2
0@ 1A (2.6)

b0,b =N λ2b
s,02

� �
(2.7)

and b0 represent the initial weights and biases vector of the ANN model in the target task (i.e., h0 = [w0,
b0]), andws and bs represent theweight and biases vector extracted from the source task (i.e., hs = [ws, bs]).
Here, f i and f o represent the number of incoming and outgoing nodes at each layer, respectively, which are
identical to those used in the Xavier normal initialization scheme (Glorot and Bengio, 2010).

As λ2 in Eqs. 2.6–2.7 approaches zero, the initialization scheme becomes equivalent to the Xavier
normal initialization method. As λ2 approaches unity, on the other hand, h0 simply becomes identical to
hs. Thus, the degree of knowledge transfer for the initialization of the target task can be adjusted by
varying the value of λ2 between zero and unity, which equivalently represents a bound between the Xavier
normal initialization method and hs, respectively. As demonstrated in Section 3, PC-transport ROMwith a
sparse dataset generally fails to capture the overall ignition process of a hydrogen/air mixture if the ANN
model is trained from scratch. This shortcoming ismainly attributed to the propensity of theANNmodels to
get stuck in local minima, especially with a sparse dataset. Given that an appropriate initialization scheme
can help avoid local minima (Narkhede et al., 2022), PaPIR has the potential advantage of enhancing the
performance of transfer learning by introducing some degree of randomness during the initialization
process. Table 2 summarizes and compares the four transfer learning methods used in the present study.

3. Results without transfer learning

The results of the PC-transport ROM for predicting the 0D ignition process of hydrogen/air mixture over a
wide range of ϕ at a given T0 are presented. Transfer learning is not applied in this section. For the source
task (T0 = 1000 K), a sufficient amount of training data is provided to train the ANN (i.e., Nϕ = 30), and
thus, the PC-transport ROM is expected to accurately capture the overall ignition characteristics of the
hydrogen/air mixture. Subsequently, the effect of the number of training samples on the performance of
the PC-transport ROM is investigated by gradually decreasing the number of training samples.

3.1. Source task: T0 = 1000 K

In the source task, the ANN models for predicting the reaction rate of PCs are trained by using the training
dataset with Nϕ of 30 (ϕ= 0:1�3:0; Δϕ = 0.1) at T0 of 1000 K. A system of ODEs, Eq. 2.4, is solved for
29 different 0D simulations listed in the test dataset, and then the performance of the PC-transport ROM is
evaluated against the FOMby comparing τig between two different simulations. As mentioned earlier, τig is
defined by the time atwhich the temperature gradient reaches itsmaximumvalue, and τig in the PC-transport
ROM can be predicted after reconstructing the temperature profile from the evolved PC solutions.

Figure 4 shows the variations in τig for the hydrogen/air mixture at T0 = 1000 K with various ϕ
predicted by the PC-transport ROM and FOM. As shown in the figure, τig predicted by the PC-transport
ROM shows excellent agreement with the FOM. The relative percentage error is below 2% for the entire
range of ϕ, demonstrating that PC-transport ROM with a sufficient number of training samples can
accurately reproduce the ignition process of a hydrogen/air mixture over a wide range of ϕ at a given T0.
Note that the relative percent error for the fuel-lean mixture is slightly higher than that for the fuel-rich
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mixture, which is attributed to the fact that the number of training samples assigned to the fuel-lean
mixture is fewer than that assigned to the fuel-rich mixture. Also, τig shows a steeper variation with ϕ as ϕ
becomes less than 0.5, which also affects the result.

Figure 5 presents the temporal evolution of the original thermochemical state vector of the hydrogen/
air mixture at T0 of 1000 K and ϕ of 1.35, as predicted by the PC-transport ROM and FOM. It is readily
observed that the profiles of the thermochemical state variables reconstructed from the PC-transport ROM
are in good agreement with the results from FOM for bothmajor andminor species. This finding indicates

Table 2. Summary of the transfer learning methods used in this study. “α” in the PaPIR model
represents α =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= f iþ f oð Þðp

1� λ2ð Þ

Model Description
Further
training Objective Initialization Similar to

TL1 Parameter sharing No – – TL3 withλ1 =∞
PaPIR with λ1 =∞

TL2 Fine-tuning Yes Target data misfit w0 = ws TL3 with λ1 = 0
b0 = bs PaPIR with λ1 = 0, λ2 = 1

TL3 Parameter restriction Yes Target data misfit w0 = ws PaPIR λ2 = 1with
withλ1∥h�hs∥22 b0 = bs

PaPIR Parameter control Yes Target data misfit w0 =
via partial initialization withλ1∥h�hs∥22 N(λ2ws, α2)
and regularization b0 = N(λ2bs, 02)

Figure 4.Variations in (a) 0D ignition delay time, τig, predicted by FOM (solid symbol) and PC-transport
ROM (dashed-dot line), and (b) the relative error of the PC-transport ROM compared with FOM for the
homogeneous hydrogen/air mixture with various ϕ (i.e., ϕ = 0.15–2.95; Δϕ =0.1) at T0 = 1000 K.
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that the number of PCs retained in this study (NPC = 5) is sufficient to recover the original thermochemical
state scalars, together with the successful validation of using the ANN model to convert from ψ to θ.

3.2. Target task with data sparsity

The results of the PC-transport ROM for a target task where T0 is 1050 K are investigated depending on the
number of training samples. In this task, ANN models are trained by using each of the different training
datasets, each with different numbers of training samples (i.e., Nϕ = 2�30), and both a priori and a posteriori
evaluations are carried out to assess the performance of the ROM depending on Nϕ. At a given Nϕ, the ANN
model training is repeated 10 times to take into account the sensitivity of the model arising from the
randomness of the initial parameters and the stochastic nature of the optimization process. The best achievable
(orminimum) error is then evaluated over 10 repetitions at a givenNϕ. The normalized rootmean squared error
(NRMSE) is adopted to a priori quantify the error of the ANN for predicting _ωψ and is defined by

NRMSE %½ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥bωψ,p� bωψ∥22

∥bωψ∥22

s
× 100 (2.8)

where bωψ,p and bωψ represent the normalized reaction rates of the PC vector predicted by the ANNmodel
and obtained from the FOM, respectively. The minmax normalization method is used to normalize the
reaction rates of the PC.

Figure 6 shows the variations in NRMSE of the test set in the target task with T0 of 1050 K and various
Nϕ. The NRMSE of the test set generally shows a decreasing trend with an increase of Nϕ, such that the
optimal value of NRMSE for the case with Nϕ = 30 approaches O(10�1) [%] for all the clusters. This
outcome clearly indicates that the number of training samples plays a crucial role in determining the
performance of the PC-transport ROM. In addition, the variations in the NRMSE as a result of repeating
the ANN model training 10 times exhibit a noticeable fluctuation at a given Nϕ. Consequently, for Cl#1

Figure 5. Temporal evolution of the thermochemical state scalars of a homogeneous hydrogen/air
mixture at T0 = 1000 K and ϕ = 1.35. Solid line: FOM result, Dashed line: reconstructed from the

PC-transport ROM result with Nϕ = 30.
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and Cl#3, the worst cases withNϕ = 30 have a similar magnitude of NRMSE compared with the best cases
with Nϕ = 15. This result suggests that a multistart-based optimization algorithm would be necessary to
obtain the nearest optimal neural network model at a given Nϕ.

Next, a series of 0D simulations is carried out by using the ANNmodels trained with different numbers
of training samples. For the casewithNϕ = 30, τig is predicted by using the best andworst ANNmodels out
of 10 repetitions of the ANN model training. For the other cases, τig is predicted by using the best ANN
model only. Figure 7 summarizes the variations in τig for the hydrogen/air mixture with T0 of 1050 K and
various ϕ listed in the test set, predicted by using the ANN models with different Nϕ.

Figure 7 shows that the PC-transport ROM fails to capture the overall ignition characteristics of a hydrogen/
air mixture withNϕ ≤ 15. In this regard, the datasets withNϕ ≤ 15 are regarded as “sparse datasets.”Note that
the PC-transport ROM performs relatively well when the target equivalence ratio is adjacent to one of the
equivalence ratios listed in the training dataset. For instance, the training dataset withNϕ = 3 consists of the 0D
simulation results with ϕ of 0.5, 1.5, and 2.5, where the relative error of the PC-transport ROM is relatively
small near ϕ of 0.5, 1.5, and 2.5, while the performance of the PC-transport ROM declines as the target
equivalence ratio moves farther from the training dataset. It is also important to note that even when a large
amount of training samples are used (i.e.,Nϕ = 30), the simulation results occasionally do not agree well with
the results from the FOM, consistent with the a priori evaluation in Figure 6. This result not only highlights that
the number of training samples is a crucial part of optimizing the ANN model but also indicates that the
uncertainty of the ANN model training is noticeable and is primarily because of the stochastic nature of the
training process and/or the randomness of the initial parameter vectors (i.e., weights and biases).

4. Results with transfer learning

From the previous discussion, the main issues associated with the PC-transport ROM for capturing the
reaction rates of PCswith a sparse dataset are twofold: (1) the PC-transport ROM inaccurately predicts the
reaction rate of the PCs over a wide range of ϕ because of scarcity of training samples, and (2) a multistart-

Figure 6. Variations in NRMSE of the test set in the target task with T0 of 1050 K as a function of Nϕ for
(a) Cluster 1, (b) Cluster 2, and (c) Cluster 3. The closed circle symbol represents the averaged NRMSE

obtained from 10 repetitions of the ANN model training.
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based optimization strategy is required to figure out the nearest optimal ANN model for a given training
dataset. To address these issues, the previous knowledge gained from the source task (T0 = 1000K andNϕ

= 30; see Section 3.1) is transferred to the target tasks. Four different transfer learningmethods, TL1, TL2,
TL3, and PaPIR, are applied to different target tasks in terms of the task similarity (i.e., T0 difference
between source and target task) and the degree of data sparsity in the target tasks (i.e.,Nϕ in the target task).

4.1. TL1–TL3: general characteristics

As a baseline case, the result of applying three transfer learningmethods (TL1, TL2, and TL3) to the target
task where T0 = 1050K andNϕ = 4 is discussed first. In this case, the difference of T0 between source and
target tasks is relatively small (i.e., ΔT = 50 K), such that task similarity between the two tasks is
considered to be high. The parameters obtained from the source task are used to train the ANN model in
the target task in various ways.

As shown in Table 2, TL3 (parameter restriction) becomes equivalent to TL1 (parameter sharing) and
TL2 (fine-tuning) as the value of the regularization parameter, λ1, in Eq. 2.5 approaches near infinity and
zero, respectively. Thus, the performance of the ANN model using three different transfer learning
methods can be evaluated by adjusting the magnitude of λ1. Similar to the previous cases where transfer
learning is not employed, ANN training is repeated 10 times to evaluate the uncertainty of the ANNmodel
training.

Figure 8 shows the NRMSE values against the training and test sets, along with the percentage
differences in the optimized parameters between the source and target tasks, represented by
∥h�hs∥22/∥h

s∥22 × 100, as a function of λ1 for the case where T0 = 1050 K and Nϕ = 4. Several points
are noted in the figure.

Figure 7. Variations in (a) 0D ignition delay time, τig, predicted by the FOM (symbol) and PC-transport
ROMs trained using a different number of training samples, and (b) the relative-error of the PC-transport
ROMs compared with FOM for a homogeneous hydrogen/air mixture with various ϕ (i.e., ϕ= 0.15�2.95;

Δϕ = 0.1) at T0 = 1050 K.
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First, given that λ1 serves as a penalty term during the fine-tuning, the NRMSE of the training set
generally decreases with a decrease of λ1 for all the clusters. On the other hand, ∥h�hs∥22/∥h

s∥22 continues
to increase as λ1 decreases, indicating that the parameters in the target task become more dissimilar to
those in the source task with a decrease of λ1. This trend demonstrates that the magnitude of λ1 mainly
controls the degree of knowledge transfer from the source to the target task.

Second, as the magnitude of λ1 becomes sufficiently large (i.e., >104), h becomes nearly identical to
hs, illustrating that the transfer learning method for this case is equivalent to TL1, where the knowledge
gained from the source task is fully transferred to the target task. In that case, the NRMSE of the test set
can be notably higher than the case without applying transfer learning (see Figure 8b and d as an
example), indicating that TL1 would play a negative role in predicting the ignition delay of the
hydrogen/air mixture for the target task even if the difference in T0 is relatively small. This would
be primarily attributed to the non-linear nature of chemical kinetics, where reaction rates are highly
sensitive to temperature change.

Third, as the magnitude of λ1 approaches near zero, the corresponding transfer learning method
represents TL2, where the parameters obtained from the source task are used to initialize the parameters in
the target task. In this scenario, ∥h�hs∥22/∥h

s∥22 is relatively high, indicating that the knowledge acquired
from the source task is prone to be lost during the fine-tuning process. Nonetheless, it is worth mentioning
that the NRMSE of the test set using TL2 nearly equals that obtained from the best ANN model without
applying transfer learning. Furthermore, the results of TL2 show less fluctuation from the 10 repetitions of
training compared with the results without applying transfer learning. This suggests that initializing the

Figure 8. A priori evaluation of (left) the NRMSE for the training set (i.e., T0 = 1050 K, Nϕ = 4) and
∥h�hs∥22/∥h

s∥22 × 100, and (right) the NRMSE for the test set for the target task with T0 = 1050 K andNϕ

= 29 as a function of λ1. The highlighted regions on the right represent the range of NRMSE of the test set
predicted by the PC transport model without applying transfer learning.
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ANN model of the target task with the parameters gained from the source task can be considered an
appropriate initialization scheme, provided that the similarity between the source and target tasks is high.

Lastly, the NRMSE of the test set reaches its minimum as the magnitude of λ1 has a finite value
(i.e., λ1 = O(10�4�10�1)) for all the clusters. In this case, the resultant NRMSE is approximately an order
of magnitude lower than that obtained from training the ANN model from scratch, clearly demonstrating
that TL3 with an optimal value of λ1 can remarkably improve the performance of the neural network
model for the target task. Note that to achieve a comparable level of NRMSE as that obtained from TL3,
the ANNmodel trained from scratch requires a larger number ofNϕ, ranging from 15 to 30, indicating that
TL3 can reduce the requisite number of training samples up to eight times. Furthermore, the ANNmodel
training with the use of the optimal value of λ1 is nearly insensitive to the number of training repetitions.
This is attributed to the well-known effect of regularization on the stochastic optimization process. Hence,
the overall number of training repetitions required to find the optimal ANNmodel in the target task can be
significantly reduced by applying TL3 with an optimal value of λ1, provided that the source and target
tasks are similar in parameter space.

Based on the observations in Figure 8, it can be inferred that the loss function in the target task is likely
to contain multiple local minima such that the training result of the ANNmodel may not reach the global
minima of the loss function, especially with the sparse dataset. One method to address this issue and
improve the performance of the ANN model is to utilize the pretrained ANN model. If the source and
target tasks are similar to each other in the parameter space, then initializing the parameter in the target task
(h0) with that from the source task (hs) can assist in searching for the optimal parameters. Hence, the
performance of the ANNmodel with TL2 has the potential to show better performance compared with the
ANNmodel trained from scratch. Furthermore, TL3 with the optimal value of λ1 can help prevent h from
significantly deviating from hs during the fine-tuning step, which can enhance the accuracy in predicting
τig in the target task.

Regarding the computational cost for trainingANNmodels, the present study assumes that the number of
training samples in the target task is small, resulting in a significantly lower training cost for the target task
compared with the source task. For instance, the wall clock time required to train the source task at T0 =
1050 K with Nϕ = 30 is 3150 s for Cl#2, while the wall clock time for training target task for T0 = 1050 K
with Nϕ = 4 is 328 s when using TL3 with λ1 = 10�4 (see Figure S2 in Supplementary Material). This is
simply because the number of training samples in the target task is noticeably smaller than that in the source
task. Moreover, the convergence rate for training the target task can be further improved if an ANNmodel
trainedwith a specific λ1 is used as an initial guess for the training of the nextANNmodelwith a different λ1.

It is alsoworthmentioning that the computational cost of collecting training samples relative to the cost of
performing the sensitivity evaluations by varying λ1 is case-specific and mainly determined by the target
configuration. For example, in our previous study, the computational cost for generating training samples
accounts for 12.5% of the target 2DDNS run (Jung et al., 2024), and is expensive compared with the ANN
training cost which accounts for �0.1% of the 2D DNS run. Therefore, the proposed TL approach is
particularly useful when the computational cost for obtaining high-fidelity training samples is expensive.

Next, a posteriori evaluation of the PC-transport ROM with different transfer learning strategies is
carried out by performing a series of 0D simulations of a hydrogen/air mixture using the PC-transport
ROM for the target task, where T0 = 1050 K and Nϕ = 4. Figure 9 shows the variations in τig as a function
of ϕ depending on the different transfer learning methods. The PC-transport ROM fails to predict the
overall ignition trend when the ANN is trained from scratch or trained with TL1. Note that the
PC-transport ROM with TL1 inaccurately captures the early stage of 0D ignition, leading to error
accumulation over time. Consequently, the PC-transport ROM with TL1 fails to undergo a thermal
runaway crossing for the full range of ϕ and, hence, τig approaches infinity.

The overall performance of the PC-transport ROM with TL2 is better than the PC-transport ROM
without applying the transfer learning method or with TL1, demonstrating the importance of the
initialization scheme and the fine-tuning step on the result, respectively. Here, τig predicted by the
PC-transport ROM with TL2 is in relatively good agreement with that from the FOM when ϕ is near
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those in the target task training dataset (i.e., ϕ of 0.2, 1.0, 2.0, and 3.0), while the performance of the ANN
model decreases as ϕ becomes farther from those in the training dataset of the target task.

For the PC-transport ROM with the optimal value of λ1 (i.e., TL3), it is readily observed that the
PC-transport ROM shows a good performance of predicting τig over a wide range of ϕ. This result
substantiates that the regularization-based transfer learning framework can increase the accuracy of the
ANN model with the sparse training dataset. Figure 10 presents the temporal evolution of the PCs with
four different values of ϕ of 0.15, 0.65, 1.55, and 2.55, predicted by the FOM and the PC-transport ROM
with an optimal value of λ1. Although a slight time lag exists between the FOMand the PC-transport ROM
results as ϕ deviates farther from values in the training dataset, the PC-transport ROM can reasonably
capture the onset of ignition and the subsequent equilibrium period of the PCs.

4.2. TL1–TL3: parametric study in terms of task similarity and data sparsity

Additional parametric studies are carried out by varying Nϕ or increasing T0 to 1300 and 1400 K.
Figure 11 shows τig as a function of ϕ for the target task with T0 of 1050 K and decreasingNϕ to 2 and 3 by
applying different transfer learning methods. Note that as Nϕ decreases to 2 and 3, the training dataset is
intended not to cover the entire range of the test dataset (i.e., ϕ= 0.5 and 1.5 forNϕ = 2, and ϕ= 0.5, 1.5, and
2.5 forNϕ = 3) such that there exist several test cases where ϕ is outside of the range of the training dataset
(see the highlighted regions in Figure 11). The overall variations in τig predicted by applying different
transfer learning methods show a similar trend regardless of the change of Nϕ. The PC-transport ROM
with TL1 fails to capture the onset of ignition of the hydrogen/air mixture for the entire range of ϕ, while

Figure 9.Variations in (a) 0D ignition delay time, τig, predicted by FOM (solid symbol) and PC-transport
ROMs trained by applying different transfer learning methods, and (b) the relative-error of the

PC-transport ROMs comparedwith FOM for the homogeneous hydrogen/air mixture with various ϕ at T0

= 1050 K. Nϕ of the training set is set to 4. The values of the optimal λ1 for TL3 are 5 × 10�2, 1 × 10�3,
and 1 × 10�3 for Cl#1, Cl#2, and Cl#3, respectively. The ROM with TL1 fails to predict ignition, and

therefore, the result with TL1 is not shown in the figure.

Data-Centric Engineering e42-17

https://doi.org/10.1017/dce.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.50


the results with TL2 show a better performance than those without applying transfer learning. The
PC-transport ROM with the optimal value of λ1 in TL3 outperforms all the other models.

As expected, the accuracy of the PC-transport ROM notably decreases as the target ϕ of the 0D
simulation is outside of the range of the training dataset, which is a well-known drawback of machine
learning models for extrapolation. Nonetheless, the result of the PC-transport ROM with TL3 shows
relatively good performance even for the cases where ϕ is outside of the range of the training set. This
result implies that the previous knowledge obtained from the source task helps increase the accuracy of the
extrapolation of the ANN model, consistent with previous findings (Humbird et al., 2020).

Next, target tasks are considered where T0 is increased further (i.e., T0 = 1300, and 1400 K) such that
the similarity between source and target tasks decreases. Figure 12 shows the variations in τig for the
hydrogen/air mixture with T0 of 1300 and 1400 K and Nϕ of 4 by using various ANN models with or
without applying transfer learning methods. For the cases with T0 = 1300 K, it is found that the
PC-transport ROM with the optimal value of λ1 in TL3 shows a reasonable performance over the entire
range of ϕ, while the results without applying transfer learning or with applying TL2 exhibit a noticeable
error in predicting ignition of a lean mixture. As T0 in the target task further increases to 1400 K, on the
other hand, the result with TL3 shows only a marginal improvement compared with the other cases. This
result demonstrates that the performance of the regularization-based transfer learning method decreases
with a decrease in task similarity between source and target tasks.

4.3. PaPIR: unified transfer learning method

Finally, the performance of the unified transfer learning method, PaPIR, in the different target tasks is
investigated. As discussed in Section 2.4, the central idea of PaPIR is to control the degree of knowledge
transfer from the source to the target task by adjusting the magnitudes of λ1 and λ2, which are associated

Figure 10. Temporal evolution of the PCs that represent the homogeneous hydrogen/air mixture at T0 =
1000 K and ϕ of 0.15, 0.65, 1.55, and 2.55, respectively (left to right). Solid line: PCs projected from the
FOM result, Dashed line: PC-transport ROMusing the optimal λ1 in TL3. The values of the optimal λ1 for

TL3 are 5 × 10�2, 1 × 10�3, and 1 × 10�3 for Cl#1, Cl#2, and Cl#3, respectively.
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with the regularization and initialization of the ANNmodel in the target task, respectively. Unlike TL3, h0
in PaPIR can be distributed by either a normal distribution function following the Xavier normal
initialization method (λ2 = 0), or h

s (λ2 = 1:0), or in between the two (0< λ2 < 1). In this regard, the effect
of the initialization on the performance of transfer learning can be investigated by varying λ2 in PaPIR.

Figure 13 presents the a priori result of the best achievable NRMSE of _ωψ of the test set for three
different target tasks (i.e., T0 = 1050, 1300, and 1400KwithNϕ of 4) as a function of λ1 and λ2, conditional
on each of the three different clusters. Consistent with the previous results, the best achievable
(or minimum) value of NRSME is evaluated by repeating the ANN model training 10 times at a given
λ1 and λ2. As shown in Figure 13a, PaPIR covers all the transfer learning methods discussed in the present
study, namely, TL1, TL2, and TL3. In general, the results with TL1 exhibit a large error and increase with
an increase of T0 in the target task. In TL3, there exists an optimal value of λ1 that results in a lower
NRMSE than for the results either without applying transfer learning or with TL2.

For the case where task similarity is relatively high (i.e., T0 = 1050K in the target task; see Figure 13a–
c), the value of NRMSE is mainly governed by the regularization parameter λ1, whereas it is largely
unaffected by a change of the initialization parameter, λ2. Since the source and target tasks are similar to
each other in this case, the optimal value of λ1 is relatively large (e.g., λ1 = 10�1 in Cl#1). Given that a
regularization term serves to convexify the objective function, a relatively large magnitude of λ1 leads the
ANN model to be insensitive to a change in the initialization scheme. Consequently, PaPIR does not
outperform TL3when the similarity between source and target tasks is high. The best achievable values of
the NRMSE depending on the different transfer learning methods are summarized in Table 3.

AsT0 in the target task increases to 1300K, results withCl#1 (Figure 13d) show that theNRMSEof the
test dataset attains its minimum at a relatively low magnitude of λ1 (= 10�3). Although the overall
variations of the NRMSE are still mainly governed by λ1, the NRMSE is no longer invariant to a change of

Figure 11. Variations in (top) τig predicted by FOM (solid symbol) and PC-transport ROMs trained by
applying different transfer learning methods, and (bottom) the relative error of the PC-transport ROMs
compared with FOM for the homogeneous hydrogen/air mixture with various ϕ at T0 = 1050 K. Here,Nϕ

of the training set is (left) 2, and (right) 3, respectively. The highlighted region represents the cases where
ϕ is out of the range of the training dataset in the target task. The ROM with TL1 fails to predict ignition,

and hence its results are not shown in the figure.
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λ2 at the optimal value of λ1, indicating that λ2 starts to play a role in the optimization of the ANNmodel.
Since the magnitude of the optimal value of λ1 decreases compared with the case with T0 = 1050 K, the
complexity of the loss function at the optimal value of λ1 increases, and consequently, the training result
can be varied with the different initialization schemes. This finding indicates that an initialization scheme
becomes important in the framework of transfer learning as the similarity between the source and target
tasks becomes relatively low. Note that in Figure 13d, the ANNmodel exhibits a slightly lowermagnitude
of NRMSE at λ2 of 0.7 compared with that of 1.0, illustrating the potential advantage of PaPIR over TL3.
Readers are referred to Table 3 to quantify the difference of NRMSE between PaPIR and TL3. For the
results of Cl#2 and Cl#3, on the other hand, λ1 still plays a major role in determining the best achievable
value of NRMSE (see Figure 13e and f). This would be because the decrease of task similarity for these
clusters is not as pronounced as for Cl#1.

As T0 in the target task further increases to 1400 K, it is found that λ1 still shows a dominant effect on
the NRSME compared with λ2, demonstrating that the primary factor of determining the performance of
transfer learning is a regularization parameter in general. Nonetheless, there are several cases where the
ANNmodel trained with λ2 < 1 exhibits a lower magnitude of NRMSE compared with the best candidate
obtained from TL3 (see Figure 13g). Note that at T0 = 1400 K, the ratio of the best achievable NRMSE
obtained from PaPIR to TL3 is 0.827, 0.984, and 0.866, for Cl#1, Cl#2, and Cl#3, respectively. This result
shows that adjusting the initial values of the parameters in the target task can further enhance the
performance of transfer learning in the target task with a sparse dataset, especially when the similarity
between source and target tasks is low such that the optimal value of the regularization parameter, λ1,
becomes relatively low.

To further investigate the advantage of PaPIR over other transfer learning methods, especially when
the task similarity is relatively low, Figure 14 presents the variations in τig for a hydrogen/air mixture with
T0 of 1400 K and Nϕ of 4, predicted by the FOM and the PC-transport ROMs with different transfer
learning methods. This figure clearly shows that τig predicted by PaPIR shows excellent agreement with
that from the FOMover the entire range of ϕ, which is clearly distinct from the other models. Although the
relative error obtained from PaPIR is slightly higher than that from TL3 or the PC-transport ROMwithout

Figure 12. Variations in (top) τig predicted by (solid symbol) FOM and PC-transport ROMs trained by
applying different transfer learning methods, and (bottom) the relative error of the PC-transport ROMs
compared with FOM for the homogeneous hydrogen/air mixture with various ϕ at (left) T0 = 1300 K and

(right) T0 = 1400 K.
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applying transfer learning at ϕ> 1, the PC-transport ROM with PaPIR shows a more robust performance
for predicting the oxidation process of hydrogen/air mixture over a wide range of ϕ.

One may argue that under the data-sparse scenario, the number of test datasets is also likely to be
insufficient, rendering it infeasible to find the optimal values of λ1 and λ2 by relying on the test dataset. In
future work, a systematic way of estimating the optimal values of those two parameters without relying on
a test dataset will be investigated. One practical example would be adopting the L-curve criterion, a well-
known heuristic method, to find the optimal regularization parameter without relying on the test dataset

Figure 13. Distributions of the best achievable value of NRMSE [%] using PaPIR as a function of λ1 and λ2
for the different test datasets out of 10 repetitions of the ANNmodel training. The target task is varied ranging

from T0 = 1050, 1300, and 1400 K (top to bottom) for Cluster 1, 2, and 3 (left to right) with Nϕ of 4.

Table 3. Best achievable value of NRMSE [%] by using different transfer learning methods for the test
dataset with various T0 and Nϕ = 4, out of 10 repetitions of ANN model training

Model T 0 = 1050 K T0 = 1300 K T0 = 1400 K

Cl#1 Cl#2 Cl#3 Cl#1 Cl#2 Cl#3 Cl#1 Cl#2 Cl#3

w/o TL 1.9818 5.4682 6.0114 1.7982 8.6369 10.961 2.2756 6.8892 11.000
TL1 3.7541 7.7887 2.7417 7.3993 38.760 31.030 13.134 44.246 46.182
TL2 1.7861 5.3703 5.3862 1.9408 6.9736 8.6645 2.1617 6.9680 11.038
TL3 0.1570 0.8949 0.5108 0.3893 2.2277 1.8973 1.0157 2.1242 3.6054
PaPIR 0.1570 0.8967 0.5105 0.3316 2.2227 1.8963 0.8401 2.0896 3.1229
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(Hansen, 1992). Also as future work, we will compare the performance of different methods that
“partially” transfer the knowledge of the pretrained neural network model in the target task. This includes
applying Bayesian transfer learning methods (Soriano et al., 2024) or Hessian-based transfer learning
methods (Jung et al., 2024), through which the efficiency of the TL methods will be elucidated in various
scenarios.

Note also that the present study effectively assesses the efficiency of TLmethods in chemical kinetics,
as temperature is a key factor that significantly influences these processes. Regularization-based transfer
learning has been successfully demonstrated as a robust algorithm not only in the machine learning
community in general but also in combustion systems (e.g., across different equivalence ratios (Soriano
et al., 2024) and numerical configurations (Jung et al., 2024)). Therefore, changes in operating conditions,
such as equivalence ratio and pressure, are likely to provide similar insights as those found in the present
study. The overall efficiency of TL will be further investigated with large hydrocarbon fuels to elucidate
the effect of dimensionality and the complexity of combustion systems on transfer learning.

5. Conclusions

In this study, various transfer learning methods were applied to the prediction of the reaction rate of the
PCA-based low-dimensional manifold that represents the ignition process of a homogeneous hydrogen/
air mixture in a constant volume reactor. A sufficient number of training samples spanning awide range of
ϕ was provided in the source task where T0 = 1000 K, whereas the number of training datasets was
assumed to be sparse in the target task where T0 > 1000K. The effect of the number of training samples on
the performance of the PC-transport ROM was first investigated, followed by the application of three
different transfer learning approaches (i.e., TL1, TL2, and TL3) to the different target tasks. To this end, a

Figure 14.Variations in (top) τig predicted by the (open symbol) FOMandPC-transport ROMs trained by
applying different transfer learning methods, and (b) the relative error of the PC-transport ROMs
compared with the FOM for a homogeneous hydrogen/air mixture with various ϕ at T0 = 1400 K

and Nϕ = 4.
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unified transfer learning framework was proposed in this study to elucidate the role of initialization and
regularization on the performance of transfer learning. The following results are highlighted from the
present study:

• In general, the number of training datasets played a primary role in determining the perform-
ance of the model. Without applying transfer learning, the PC-transport ROM failed to
reproduce the ignition process of a hydrogen/air mixture with a sparse dataset (i.e., Nϕ ≤ 15).
It was also found that the PC-transport ROM without transfer learning shows relatively good
accuracy for the test cases when the initial condition of the ROM is adjacent to that included in
the training dataset.

• Three different transfer learning methods, parameter sharing (TL1), fine-tuning (TL2), and param-
eter restriction (TL3), were then applied to the target task where T0 = 1050 K and Nϕ = 4. The
PC-transport ROMusingTL1 led to a significant error in predicting the PCs’ reaction rates, while the
PC-transport ROM with TL2 showed a slightly better performance than that without applying
transfer learning approaches. An optimal value of the regularization parameter λ1 in TL3 led to a
remarkable decrease in the NRMSE of the test dataset. Moreover, the profiles of the 0D ignition
delay predicted by the PC-transport ROM with TL3 exhibit good agreement with those obtained
from the FOM, demonstrating the importance of the regularization-based transfer learning method.

• Parametric studies were performed by varying T0 and Nϕ in the target tasks to investigate the effect
of task similarity and data sparsity in the target task on the performance of the different transfer
learning methods, respectively. It was found that the knowledge from the source task helped predict
the ignition process of a hydrogen/air mixture outside of the ϕ range in the training dataset,
demonstrating the advantage of applying transfer learning for extrapolation. As T0 in the target
task was increased to 1400 K, the performance of TL3 is degraded because of the decrease of the
similarity between the source and target tasks.

• A novel transfer learning approach, PaPIR, was applied to the various target tasks. When the task
similarity between the source and target tasks is high, the effect of the initialization parameter, λ2, has
a negligible effect on the NRMSE of the test set of the target task, while theminimum of the NRMSE
is primarily determined by λ1. The optimal value of λ1 decreased with a decrease in task similarity,
such that the effect of different initialization schemes on the result became noticeable. Although λ1
still had a dominant effect on the result, an additional performance improvement could be achieved
by changing the magnitude of λ2, illustrating the potential advantage of PaPIR.
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