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On Maps Preserving Products

M. A. Chebotar, W.-F. Ke, P.-H. Lee, and L.-S. Shiao

Abstract. Maps preserving certain algebraic properties of elements are often studied in Functional

Analysis and Linear Algebra. The goal of this paper is to discuss the relationships among these prob-

lems from the ring-theoretic point of view.

1 Introduction

The study of linear preserver problems is an active research area in matrix theory
and operator theory. Some of these problems concern linear operators on the spaces

of matrices or operators which preserve certain relations [23, 24, 28]. Given a rela-
tion ∼ on an algebra A, one studies the linear preservers of ∼, that is, those linear
operators φ on A satisfying φ(A) ∼ φ(B) whenever A ∼ B. For example, when
∼ means commutativity, then the objects will be those linear operators φ satisfying

φ(A)φ(B) = φ(B)φ(A) whenever AB = BA. Putting A ∗ B = [A, B] = AB − BA,
the Lie product of A and B, we can also say that this relation ∼ means zero Lie prod-
uct, that is, A ∼ B means [A, B] = 0, and that φ preserves zero Lie products, that
is, [A, B] = 0 implies [φ(A), φ(B)] = 0. In fact, one can define ∗ in various ways,

for example, A ∗ B = AB + BA, the Jordan product, or even A ∗ B = AB, the usual
product. In the last case, the corresponding linear preservers are usually referred to
as zero-product preserving maps.

Much work has been done concerning zero-product preserving maps [11, 13, 15,

20, 29, 33]. In these papers, bijective maps f satisfying the condition f (x) f (y) = 0
whenever xy = 0 were investigated in the cases of matrix algebras or operator alge-
bras. As a rule, it was proved under certain assumptions that such maps differ from
ordinary automorphisms by central elements. However, it is not possible to obtain

such a kind of description for algebras which do not have enough zero-divisors. For
example, in division rings all additive maps preserve zero products.

Here is another way to look at the zero-product preserving maps. If φ preserves
zero products, and if AB = 0 = CD, then φ(A)φ(B) = 0 = φ(C)φ(D). In a broader

way, we may ask what we can say about φ if φ preserves “(not necessarily zero) con-
stant products.” Or, even more general, we state the following

Problem 1.1 Let A and B be algebras, S a nonempty subset of A and X a relation
on S. Suppose that f : S → B is a map such that

(1.1) f (x) f (y) = f (u) f (v) whenever (x, y), (u, v) ∈ X with xy = uv.

Is it possible to describe f under certain reasonable conditions on A, B, S, X, and f ?
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In case A = B is a division ring, S = A, X = {(x, y) | x, y ∈ A, xy = k} where k

is a nonzero element in A, and f : A → A is a bijective additive map, the preceding

problem is specified as

Problem 1.2 Let K be a division algebra and k a nonzero element in K. Suppose
that f : K → K is a bijective additive map such that

(1.2) f (x) f (y) = f (u) f (v) whenever xy = uv = k.

Is it possible to describe f ?

Note that if f = λϕ, where λ is a central element in K and ϕ : K → K is an
automorphism, then f certainly satisfies (1.2). If, in addition, k is a central element

in K, then f = λϕ also satisfies (1.2) where ϕ : K → K is an antiautomorphism. On
the other hand, in case the specified element is k = 1, the converse is also true. In
other words, any bijective additive map f : K → K such that f (x) f (y) = f (u) f (v)
whenever xy = uv = 1 is of the form f = λϕ where λ is a central element in K and

ϕ : K → K is either an automorphism or an antiautomorphism (see Theorem 2.1).
This result is equivalent to a theorem of Hua [19] under the additional condition that
f (1) = 1. In Section 2, we shall remove the condition f (1) = 1 in Hua’s result and
thus solve the problem.

Next, let A and B be algebras, S an additive subgroup of A and f : S → B an
additive map such that f (x) f (y) = f (u) f (v) for all x, y, u, v ∈ S with xy = uv. It
is easy to see that if A contains an identity 1, then f (1) lies in the centralizer of f (S)

in B. If S is multiplicatively closed and contains the identity 1 of A, then f (1) f (xy) =

f (x) f (y) for all x, y ∈ S. When S = A, B has an identity and λ = f (1) is invertible
in B, we see that λ−1 f is a homomorphism from A into B.

In case A does not have an identity, the situation is a little more difficult. In

addition to some restrictions on f (S), we need to make use of a newly developed
theory of functional identities. We will state some basic definitions and results on
functional identities in Section 3, and then consider in Section 4 the cases when S

need not be closed under multiplication (for example, S is a Lie ideal of A, or the set

of all skew elements of A in the presence of involution).

Note that we do not assume additivity of f in considering Problem 1.1. The 2-local
automorphisms introduced by Šemrl [30], which are not necessarily additive, are

easily seen to satisfy (1.1) in case X = {(x, y) | x, y ∈ A, xy = 1}. In Section 5,
we prove that all 2-local automorphisms of a finite dimensional division algebra of
characteristic zero are automorphisms or antiautomorphisms.

2 A Generalization of Hua’s Theorem

In 1949 Hua [19] proved that every bijective additive map α : K → K on a division

ring K satisfing α(aba) = α(a)α(b)α(a) and α(1) = 1 is an automorphism or an
antiautomorphism. This result was reformulated by Artin in 1957 as [2, Theorem
1.15]: Any bijective additive map α : K → K on a division ring K satisfying α(a−1) =

α(a)−1 and α(1) = 1 is an automorphism or an antiautomorphism. A similar result
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was also established for the n × n matrix rings over a division ring K [14]. Here we
shall extend [2, Theorem 1.15] as

Theorem 2.1 Let K be a division ring with center Z and α : K → K a bijective addi-

tive map such that

α(a−1)α(a) = α(b−1)α(b) for all nonzero a, b ∈ K.

Then α = λϕ, where ϕ : K → K is an automorphism or an antiautomorphism and

λ = α(1) ∈ Z.

Proof Let x, y ∈ K be nonzero elements with xy 6= 1. Then x− y−1 is not zero and

neither is x−1 − (x − y−1)−1. Thus we have the following beautiful identity due to
Hua:

(2.1) (x−1 − (x − y−1)−1)−1
= x − xyx.

Let z = α(1−1)α(1) 6= 0; then z = α(a−1)α(a) = α(a)α(a−1) and so

α(a)z = α(a)(α(a−1)α(a)) = (α(a)α(a−1))α(a) = zα(a)

for all nonzero a ∈ K. Also, it is trivial that α(0)z = 0 = zα(0). Therefore we
conclude that z ∈ Z by the surjectivity of α. Now, applying α to (2.1) and using

α(a−1) = zα(a)−1, we obtain

α(xyx) = α(x) − α
(

(x−1 − (x − y−1)−1)−1
)

= α(x) − zα
(

x−1 − (x − y−1)−1
)−1

= α(x) − z
(

α(x−1) − α
(

(x − y−1)−1
))−1

= α(x) − z
(

zα(x)−1 − z
(

α(x) − α(y−1)
)−1)−1

= α(x) −
(

α(x)−1 −
(

α(x) − zα(y)−1
)−1)−1

= α(x) −
(

α(x)−1 −
(

α(x) − (z−1α(y))−1
)−1)−1

= α(x) − (α(x) − α(x)z−1α(y)α(x))

= z−1α(x)α(y)α(x)

for all nonzero x, y ∈ K such that xy 6= 1. It easy to see that

(2.2) α(xyx) = z−1α(x)α(y)α(x)

is in fact true for all x, y ∈ K even if xy = 0 or xy = 1. Setting x = 1 in (2.2) we ob-
tain α(y) = z−1α(1)α(y)α(1), that is, α(y) = α(1)−1α(y)α(1) for all y ∈ K. Hence
λ = α(1) ∈ Z since α is surjective. Let ϕ : K → K be defined by ϕ(a) = λ−1α(a)

for a ∈ K. Clearly ϕ is a bijective additive map on K, ϕ(1) = 1, and ϕ(a−1)ϕ(a) = 1
for all nonzero a ∈ K. Thus ϕ is an automorphism or an antiautomorphism in light
of Hua’s theorem [2, Theorem 1.15] and the proof is then complete.
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3 Functional Identities and d-Free Sets

The material in this section is taken from the papers [3, 4]. For readers interested
in the theory of functional identities, the survey papers by Beidar, Chebotar and
Mikhalev [6] and Brešar [8] will be very helpful.

Let S be a nonempty set, Q an algebra with 1, C the center of Q and α : S → Q a
map of sets. Let N be the set of all positive integers and for n ∈ N we let Sn denote
the n-th Cartesian power of S. The symbol xn will be used for (x1, . . . , xn) ∈ Sn. For
convenience, we use f : S0 → Q to mean that f is a fixed element in Q.

Let f : Sm → Q be an arbitrary map where m ∈ N. For 1 ≤ i < j ≤ m + 2 define
f̂ i : Sm+1 → Q, f̂ i j : Sm+2 → Q and f̂ ji : Sm+2 → Q by

f̂ i(xm+1) = f (x1, . . . , xi−1, xi+1, . . . , xm+1) and

f̂ i j(xm+2) = f̂ ji(xm+2) = f (x1, . . . , xi−1, xi+1, . . . , x j−1, x j+1, . . . , xm+2).

Now let I, J ⊆ {1, 2, . . . , m} where m ∈ N and m ≥ 2, and for each i ∈ I, j ∈ J,

let Ei, F j : Sm−1 → Q be arbitrary maps. The basic functional identities are of the
form

(3.1)
∑

i∈I

Êi
i (xm)α(xi) +

∑

j∈ J

α(x j)F̂
j
j (xm) = 0 for all xm ∈ Sm,

or a slightly more general one,

(3.2)
∑

i∈I

Êi
i (xm)α(xi) +

∑

j∈ J

α(x j)F̂
j
j (xm) ∈ C for all xm ∈ Sm.

A natural possibility that makes (3.1) (and hence (3.2) too) to be true is when there
exist maps pi j : Sm−2 → Q (i ∈ I, j ∈ J and i 6= j) and λk : Sm−1 → C (k ∈ I ∪ J)

such that

(3.3) Êi
i (xm) =

∑

j∈ J
j 6=i

α(x j)p̂
i j
i j(xm) + λ̂i

i(xm),

F̂
j
j (xm) = −

∑

i∈I
i 6= j

p̂
i j
i j(xm)α(xi) − λ̂

j
j(xm), and

λk = 0 if k /∈ I ∩ J,

for all xm ∈ Sm, i ∈ I, j ∈ J. Indeed, one can readily check that (3.3) implies (3.1).

Definition 3.1 Notations as above. Let d ∈ N. The set α(S) is said to be a d-

free subset of Q if, for all m ∈ N and I, J ⊆ {1, 2, . . . , m}, both of the following
conditions are satisfied:

(a) If max{|I|, | J|} ≤ d, (3.1) implies (3.3).
(b) If max{|I|, | J|} ≤ d − 1, (3.2) implies (3.3).
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The class of prime rings abounds in d-free subsets as the following two theorems
show.

Theorem 3.2 ([3, Theorems 2.4 and 2.20]) Let A be a prime ring with maximal right

quotient ring Q and extended centroid C. Let

deg(A) = sup{deg(x) | x ∈ A},

where deg(x) is the degree of x over C if x is algebraic over C, or ∞ if x is not algebraic

over C (see [5, Chapter 2]).

(1) If deg(A) ≥ d, then A is a d-free subset of Q.

(2) If deg(A) ≥ d + 1, then any noncentral Lie ideal of A is a d-free subset of Q.

(3) If A has an involution and deg(A) ≥ 2(d + 1), then both the set of skew elements

and the set of symmetric elements in A are d-free subsets of Q.

Theorem 3.3 ([3, Theorem 2.8]) Let Q be an algebra with 1, C the center of Q, B ⊆
R nonempty subsets of Q and d ∈ N. If B is d-free, so is R.

One of the important concepts in the theory of functional identities is that of
quasi-polynomials. Here we give the definition of the quasi-polynomials in a loose
manner and refer the reader to [4] for details.

Let S be an additive group, Q an algebra with 1, C the center of Q and α : S → Q

an additive map. We say that a map E : S → Q is an additive quasi-polynomial in α
if there exists an element λ ∈ C and an additive map µ : S → C such that

E(x) = λα(x) + µ(x) for all x ∈ S,

where λ and µ are called the coefficients of E. In the case when µ = 0, E is said to be

without constant coefficient.
Next, a map E : S2 → Q is said to be a bi-additive quasi-polynomial in α if there

exist elements λ1, λ2 ∈ C , additive maps µ1, µ2 : S → C and a bi-additive map
ν : S2 → C such that

E(x, y) = λ1α(x)α(y) + λ2α(y)α(x) + µ1(x)α(y) + µ2(y)α(x) + ν(x, y)

for all x, y ∈ S. As before, λ1, λ2, µ1, µ2 and ν are called the coefficients of E, and E

is said to be without constant coefficient if ν = 0.

In this way, we can define an m-additive quasi-polynomial in α which involves
summands such as

(3.4) λα(x1) · · ·α(xm),

µ(x1)α(x2) · · ·α(xm), . . . , µ(xm)α(x1) · · ·α(xm−1),

ν(x1, x2)α(x3) · · ·α(xm), . . . , ν(xm−1, xm)α(x1) · · ·α(xm−2),

and so on.
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Theorem 3.4 ([4, Theorem 1.1]) Let S be an additive group, Q an algebra with 1, C

the center of Q and α : S → Q an additive map. Suppose that E : Sm → Q is an m-ad-

ditive quasi-polynomial in α such that E(xm) = 0 for all xm ∈ Sm. If α(S) is m-free and

E is without constant coefficient, or if α(S) is m + 1-free, then all the coefficients of E are

zero.

Now, we are ready to continue our investigation.

4 Equal-Product Preserving

Proposition 4.1 Let A and Q be associative rings with A2
= A, and C the center of

Q which is a field. Suppose that α : A → Q is an additive map such that α(x)α(y) =

α(u)α(v) for all x, y, u, v ∈ A with xy = uv. If α(A) is a 3-free subset of Q, then

α = λϕ where λ ∈ C and ϕ : A → Q is a homomorphism.

Proof It suffices to consider the case when α is a nonzero map. We first note that

(4.1) α(xy)α(z) = α(x)α(yz) for all x, y, z ∈ A,

and so α(xy) is a bi-additive quasi-polynomial in α by [4, Theorem 1.2]. That is,

(4.2) α(xy) = λ1α(x)α(y) + λ2α(y)α(x) + µ1(x)α(y) + µ2(y)α(x) + ν(x, y),

for some elements λ1, λ2 ∈ C , additive maps µ1, µ2 : A → C and biadditive map
ν : A2 → C . Substituting (4.2) into (4.1) we obtain a tri-additive quasi-polynomial
in α without constant coefficient

λ2α(x)α(z)α(y) − λ2α(y)α(x)α(z) + µ2(z)α(x)α(y)

+ [µ1(y) − µ2(y)]α(x)α(z) − µ1(x)α(y)α(z) + ν(y, z)α(x) − ν(x, y)α(z)

which vanishes for all x, y, z ∈ A. Since α(A) is a 3-free subset of Q, it follows from
Theorem 3.4 that λ2 = µ1 = µ2 = ν = 0. Thus α(xy) = λ1α(x)α(y) for all
x, y ∈ A and so ϕ = λ1α is a homomorphism. Since A2

= A and α is nonzero, we
have λ1 6= 0. Therefore α = λϕ where λ = λ−1

1
and so the proof is complete.

Lemma 4.2 Let R and Q be associative rings, A a Lie ideal of R, and C the center of Q

which is a field of characteristic not 2. Suppose that α : A → Q is an additive map satis-

fying the properties that (1) α([A, A]) is not contained in C, and (2)
∑

i α(xi)α(yi)= 0
for all xi , yi ∈ A with

∑

i xi yi = 0. If α(A) is a 5-free subset of Q, then α = λϕ, where

λ ∈ C and ϕ : A → Q is a Lie homomorphism.

Proof Given x, y, z ∈ A, we have

[x, y]z − z[x, y] + [y, z]x − x[y, z] − [x, z]y + y[x, z] = 0,
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and so

α([x, y])α(z) − α(z)α([x, y]) + α([y, z])α(x)

− α(x)α([y, z]) − α([x, z])α(y) + α(y)α([x, z]) = 0.

In light of [4, Theorem 1.2], we conclude that α([x, y]) is a bi-additive quasi-poly-
nomial in α, that is,

(4.3) α([x, y]) = λ1α(x)α(y) + λ2α(y)α(x) + µ1(x)α(y) + µ2(y)α(x) + ν(x, y),

for some elements λ1, λ2 ∈ C , additive maps µ1, µ2 : A → C and bi-additive map

ν : A2 → C . Our goal is to show that λ2 = −λ1 6= 0 and µ1 = µ2 = ν = 0.

Since α([x, y]) + α([y, x]) = 0, we obtain from (4.3) a bi-additive quasi-polyno-
mial in α

(λ1 + λ2)α(x)α(y) + (λ1 + λ2)α(y)α(x) + (µ1(x) + µ2(x))α(y)

+ (µ1(y) + µ2(y))α(x) + (ν(x, y) + ν(y, x))

which vanishes for all x, y ∈ A. Since α(A) is 5-free and a fortiori 3-free, it follows
from Theorem 3.4 that λ1 + λ2 = 0, µ1(x) + µ2(x) = 0 and ν(x, y) + ν(y, x) = 0 for
all x, y ∈ A. Thus (4.3) can be rewritten as

(4.4) α([x, y]) = λ1[α(x), α(y)] + µ1(x)α(y) − µ1(y)α(x) + ν(x, y).

For x, y, u, v ∈ A, we have

x[y, uv] + [x, uv]y + u[v, xy] + [u, xy]v = [xy, uv] + [uv, xy] = 0,

and so

(4.5) α(x)α([y, uv]) + α([x, uv])α(y) + α(u)α([v, xy]) + α([u, xy])α(v) = 0.

Now, we can conclude from [4, Theorem 2.6] that α([u, xy]) is a tri-additive quasi-
polynomial in α. After substituting the quasi-polynomial expression of α([u, xy])
into (4.5) as we did above for α([x, y]), and making use of Theorem 3.4, we will

obtain (with some tedious computations) that

(4.6) α([u, xy]) = c[α(u), α(x)α(y)]

for some c ∈ C . From this we have

α([u, [x, y]]) = α([u, xy]) − α([u, yx])

= c[α(u), α(x)α(y)] − c[α(u), α(y)α(x)] = c[α(u), [α(x), α(y)]].
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On the other hand we obtain from (4.4) that

α([u, [x, y]]) = λ1

[

α(u), λ1[α(x), α(y)] + µ1(x)α(y) − µ1(y)α(x) + ν(x, y)
]

+ µ1(u)
(

λ1[α(x), α(y)] + µ1(x)α(y) − µ1(y)α(x) + ν(x, y)
)

− µ1([x, y])α(u) + ν(u, [x, y]).

Comparing both expressions for α([u, [x, y]]), we obtain a tri-additive quasi-poly-
nomial in α,

(λ2

1
− c)[α(u), [α(x), α(y)]] + λ1µ1(u)[α(x), α(y)]

+ λ1µ1(x)[α(u), α(y)] − λ1µ1(y)[α(u), α(x)] − µ1([x, y])α(u)

− µ1(u)µ1(y)α(x) + µ1(u)µ1(x)α(y) + ν(u, [x, y])

which vanishes for all u, x, y ∈ A. Since α(A) is 5-free and a fortiori 4-free, it follows
from Theorem 3.4 that λ2

1
= c and µ1 = 0. Thus (4.4) and (4.6) can be rewritten

respectively as

(4.7) α([x, y]) = λ1[α(x), α(y)] + ν(x, y)

and

(4.8) α([u, xy]) = λ2

1
[α(u), α(x)α(y)].

If λ1 = 0, then (4.7) would imply that α([A, A]) is contained in C , contradicting our
hypothesis. Therefore, λ1 6= 0.

It remains to show that ν = 0. Since [x[y, u], v] + [[x, u]y, v] = [[xy, u], v], we
have

α([x[y, u], v]) + α([[x, u]y, v]) = α([[xy, u], v]) for all x, y, u, v ∈ A.

By (4.7) and (4.8), the last equation becomes

λ2

1
[α(x)(λ1[α(y), α(u)] + ν(y, u)), α(v)]

+ λ2

1
[(λ1[α(x), α(u)] + ν(x, u))α(y), α(v)]

= λ3

1
[[α(x)α(y), α(u)], α(v)] + ν([xy, u], v).

Thus we obtain a 4-additive quasi-polynomial in α

λ2

1
ν(y, u)[α(x), α(v)] + λ2

1
ν(x, u)[α(y), α(v)] − ν([xy, u], v)

which vanishes for all u, v, x, y ∈ A. By Theorem 3.4 again, we have ν = 0 since
α(A) is 5-free and λ1 6= 0. Thus α([x, y]) = λ1[α(x), α(y)] for all x, y ∈ A. Then
ϕ = λ1α is a Lie homomorphism and α = λϕ, where λ = λ−1

1
. This completes the

proof.
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In Lemma 4.2 we impose the condition on a Lie ideal A of R that

(4.9)
∑

i

α(xi)α(yi) = 0 for all xi , yi ∈ A with
∑

i

xi yi = 0.

This implies in particular that α is equal-product preserving, that is, α(x)α(y) =

α(u)α(v) for all x, y, u, v ∈ A with xy = uv. The converse implication is true when
R = Mn(F), the algebra of all n × n matrices over a field F, and A = [R, R]. Since
[R, R] is spanned by Ei, j = ei, j , i 6= j and Ei,i = ei,i − e1,1, i 6= 1, in order to verify

(4.9) it suffices to show that

(4.10)
∑

i, j,k,l

α(ai, jEi, j)α(bk,lEk,l) = 0 whenever
∑

i, j,k,l

ai, jEi, jbk,lEk,l = 0,

which can be done by routine, but somewhat tedious, matrix computations. Then
we have the following

Corollary 4.3 Let Q be an associative ring with center C a field of characteristic not 2,

R a matrix algebra over a field F and A = [R, R]. Suppose that α : A → Q is an additive

map satisfying the properties that (1) α([A, A]) is not contained in the center C, and

(2) α(x)α(y) = α(u)α(v) for all x, y, u, v ∈ A with xy = uv. If α(A) is a 5-free subset

of Q, then α = λϕ for some nonzero λ ∈ C and some Lie homomorphism ϕ : A → Q.

In light of the above corollary, it is natural to ask

Problem 4.4 Let Q be an associative ring with center C a field of characteristic
not 2, R a prime ring and A a Lie ideal of R. Suppose that α : A → Q is an additive
map such that α(x)α(y) = α(u)α(v) for all x, y, u, v ∈ A with xy = uv. If α(A) is

a d-free subset of Q with sufficiently large d, is it possible to describe α in terms of a
Lie homomorphism?

Theorem 4.5 Let Q be an associative ring with center C a field of characteristic not 2,

R a ring with involution and A the Lie ring of all skew elements of R. Suppose that

α : A → Q is an additive map satisfying (1) α
(

[aba, a]
)

6= 0 for some a, b ∈ A, and

(2) α(x)α(y) = α(u)α(v) for all x, y, u, v ∈ A with xy = uv. If α(A) is a 4-free subset

of Q, then α = γϕ for some nonzero γ ∈ C and Lie homomorphism ϕ : A → Q.

Proof Since for any x, y ∈ A, xyx and yxy are elements of K, we see that

(4.11) α(xyx)α(y) = α(x)α(yxy) for all x, y ∈ A.

Linearizing (4.11) on x and y we get

(4.12) [α(xyu) + α(uyx)]α(v) + [α(xvu) + α(uvx)]α(y)

= α(x)[α(yuv) + α(vuy)] + α(u)[α(yxv) + α(vxy)]
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for all x, y, u, v ∈ A. By [4, Theorem 2.6] we conclude that α(xyu) + α(uyx) is a
tri-additive quasi-polynomial in α . Therefore, we can write

(4.13) α(xyx) = λ1α(x)α(y)α(x) + λ2α(x)2α(y) + λ3α(y)α(x)2

+ µ1(x)α(y)α(x) + µ2(x)α(x)α(y) + µ3(y)α(x)2

+ ν1(x, y)α(x) + ν2(x, x)α(y) + ω(x, y, x)

for some elements λ1, λ2, λ3 ∈ C , additive maps µ1, µ2, µ3 : A → C , bi-additive
maps ν1, ν2 : A2 → C and tri-additive map ω : A3 → C . Using (4.13) to rewrite (4.11)
and replacing x and y by x + u and y + v respectively, we get a 4-additive quasi-poly-

nomial in α without constant coefficient which vanishes for all x, y, u, v ∈ A. And
applying Theorem 3.4 to the resulting identity, we see that λ2 = λ3 = µ1 = µ2 =

µ3 = ν2 = ω = 0 and ν1(x, y) = ν1(y, x) for all x, y ∈ A. Thus (4.13) becomes

(4.14) α(xyx) = λα(x)α(y)α(x) + ν(x, y)α(x),

and linearization on x yields

(4.15) α(xyz + zyx) = λα(x)α(y)α(z) + λα(z)α(y)α(x)

+ ν(x, y)α(z) + ν(z, y)α(x),

where λ = λ1 and ν = ν1. Since

[x, y]yx + xy[x, y] + [y, x]xy + yx[y, x] = [x, y](yx − xy) + (xy − yx)[x, y] = 0,

we see that

(4.16) λα([x, y])α(y)α(x) + λα(x)α(y)α([x, y]) + λα([y, x])α(x)α(y)

+ λα(y)α(x)α([y, x]) + ν([x, y], y)α(x) + ν([y, x], x)α(y) = 0,

or equivalently,

(4.17) λ
[

[α(x), α(y)], α([x, y])
]

+ ν([x, y], y)α(x) + ν([y, x], x)α(y) = 0,

because ν(x, y)α([x, y]) + ν(y, x)α([y, x]) = 0.
Suppose λ = 0; then (4.17) reduces to ν([x, y], y)α(x) + ν([y, x], x)α(y) = 0.

Linearizing on x, y we have

ν([x, y], v)α(u) + ν([u, y], v)α(x) + ν([x, v], y)α(u)

+ ν([u, v], y)α(x)ν([y, x], u)α(v) + ν([y, u], x)α(v)

+ ν([v, x], u)α(y) + ν([v, u], x)α(y) = 0.

(4.18)

Then, by Theorem 3.4, we have ν([y, x], u) + ν([y, u], x) = 0 for all x, y, u ∈ A

and so ν([y, x], x) = 0 for all x, y ∈ A. We infer from (4.14) that α([xyx, x]) =
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α(x[y, x]x) = ν(x, [y, x])α(x) = ν([y, x], x)α(x) = 0 for all x, y ∈ A, contradicting
our hypothesis (1).

Suppose λ 6= 0. Then, with [4, Theorem 1.2], we conclude from the linearized
form of (4.17) that α([x, y]) is a bi-additive quasi-polynomial in α, that is,

α([x, y]) = γ1α(x)α(y) + γ2α(y)α(x) + η1(x)α(y) + η2(y)α(x) + τ (x, y)

for some elements γ1, γ2 ∈ C , additive maps η1, η2 : A → C and bi-additive map

τ : A2 → C . Using Theorem 3.4 and the fact α([x, y]) + α([y, x]) = 0, we conclude
that γ2 = −γ1, η2 = −η1 and τ (x, y) = −τ (y, x) for all x, y ∈ A. Therefore,

(4.19) α([x, y]) = γ1[α(x), α(y)] + η1(x)α(y) − η1(y)α(x) + τ (x, y).

Substituting this expression into the linearized form of (4.17), we have, by Theo-
rem 3.4 again, η1 = 0. Note that

α([xyz + zyx, u]) = α([x, u]yz + zy[x, u])

+ α(x[y, u]z + z[y, u]x) + α(xy[z, u] + [z, u]yx).

Using (4.15) and (4.19), we can derive from this identity that τ = 0, and so
α([x, y]) = γ1[α(x), α(y)] for all x, y ∈ A where γ1 6= 0. By setting ϕ = γ1α,
which is certainly a Lie homomorphism, we have α = γϕ where γ = γ−1

1
, complet-

ing the proof.

Corollary 4.6 Let Q be an associative ring with center C a field of characteristic not 2,

R a prime ring with involution that does not satisfy the standard identity s8(x1, . . . , x8)

of degree 8, and A the Lie ring of all skew elements of R. Suppose that α : A → Q

is an injective additive map with α(x)α(y) = α(u)α(v) for all x, y, u, v ∈ A with

xy = uv. If α(A) is a 4-free subset of Q, then α = ζϕ for some nonzero ζ ∈ C and Lie

homomorphism ϕ : A → Q.

Proof In view of Theorem 4.5, it suffices to show that [aba, a] 6= 0 for some a, b ∈ A

since α is injective. Assume on the contrary that [xyx, x] = xyx2 − x2 yx = 0 for
all x, y ∈ A. Then the set A of all skew elements in R satisfies a polynomial identity,

namely p(x, y) = xyx2 − x2 yx, of degree 4 and so R satisfies the standard identity
s8(x1, . . . , x8) of degree 8 by [17, Theorem 6.5.2], contradicting our hypothesis. This
completes the proof.

5 Local Automorphisms on Division Algebras

Let A be an algebra over a field F. Following Larson and Sourour [22] we say that
a linear map f : A → A is a local automorphism if for every a ∈ A, there is an

F-automorphism θa : A → A, depending on a, such that f (a) = θa(a). Local au-
tomorphisms were studied by many authors [9, 10, 12, 18, 21, 22, 25, 26, 31, 32] for
different classes of operator algebras.

It would be interesting to consider the following problem.
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Problem 5.1 Let K be a central division algebra and f : K → K a local automor-
phism. Is it true that f is either an automorphism or an antiautomorphism?

Note that if we could prove that f (k−1) = f (k)−1 for all nonzero k ∈ K, then
the result would follow from Theorem 2.1. Another approach could be to prove that

[ f (k2), f (k)] = 0 for all k ∈ K, and then the result would follow from a theorem due
to Brešar [7].

On the other hand, it is true that in the case of quaternions, all local automor-
phisms are automorphisms or antiautomorphisms.

Proposition 5.2 Let H be the quaternion algebra over the field R of real numbers.

Then any local automorphism of H is either an automorphism or an antiautomorphism.

Proof Let f : H → H be a local automorphism. It is easy to see that f is injective
and hence is bijective by its linearity since H is finite-dimensional over R. In view of
a classical theorem due to Ancochea [1], we need to show that f (x2) = f (x)2 for all

x ∈ H. First f (1) = θ1(1) = 1 for some automorphism θ1 on H. Hence f (α) = α
for all α ∈ R by the linearity of f . Let x ∈ H. Then x2

= a + bx for some a and b

in R, and so f (x2) = a + b f (x). On the other hand, we have f (x) = θx(x) for some

automorphism θx on H. By the Noether-Skolem theorem [16, Theorem 4.3.1] there
exists a nonzero element y ∈ H such that θx(x) = yxy−1. Thus f (x)2

= θx(x)2
=

(yxy−1)2
= yx2 y−1

= y(a + bx)y−1
= a + byxy−1

= a + b f (x) = f (x2) as required.

In [30] Šemrl introduced the concept of 2-local automorphisms. These are the
(not necessarily additive) mappings f : A → A such that for every a, b ∈ A there is
an F-automorphism θa,b : A → A, depending on a and b, such that f (a) = θa,b(a)
and f (b) = θa,b(b). These 2-local automorphisms were studied for different operator

algebras [25, 26, 27]. Using ideas from Molnar’s paper [26], we shall describe 2-local
automorphisms of finite-dimensional division algebras.

Theorem 5.3 Let K be a finite-dimensional division algebra over its center Z. Suppose

that the characteristic of K is zero. Then every 2-local automorphism is an automor-

phism or an antiautomorphism.

Proof Let f : K → K be a 2-local automorphism and tr : K → Z a reduced trace of

K. We first assert that

(5.1) tr( f (x) f (y)) = tr(xy) for all x, y ∈ K.

For any x, y ∈ K there exists a Z-automorphism θx,y on K such that f (x) = θx,y(x)
and f (y) = θx,y(y). By [16, Theorem 4.3.1], there exists a nonzero c ∈ K such that

θx,y(x) = cxc−1 and θx,y(y) = cyc−1. Thus

tr( f (x) f (y)) = tr(θx,y(x)θx,y(y)) = tr(cxc−1cyc−1) = tr(cxyc−1) = tr(xy).

https://doi.org/10.4153/CMB-2005-033-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2005-033-8


On Maps Preserving Products 367

Let {k1, k2, . . . , kn2} be a basis of K over Z. We claim that f (k1), f (k2), . . . , f (kn2 )
are linearly independent over Z. Assume otherwise that there exist λ1, λ2, . . . λn2 ∈

Z, not all zero, such that
∑n2

i=1
λi f (ki) = 0. Let

∑n2

j=1
µ jk j be the inverse of

n2

∑

i=1

λiki 6= 0.

It follows from (5.1) that

0 = tr
([

n2

∑

i=1

λi f (ki)
][

n2

∑

j=1

µ j f (k j)
])

=

n2

∑

i=1

n2

∑

j=1

λiµ j tr
(

f (ki) f (k j)
)

=

n2

∑

i=1

n2

∑

j=1

λiµ j tr(ki · k j) = tr
([

n2

∑

i=1

λiki

][

n2

∑

j=1

µ jk j

])

= tr(1),

a contradiction. Therefore f (k1), f (k2), . . . , f (kn2 ) are linearly independent over Z

and hence span K over Z.
Now we can prove the linearity of f over Z. For any u, v ∈ K and for each i ∈

{1, 2, . . . , n2}, we have from (5.1) that

tr
(

f (u + v) f (ki)
)

= tr
(

(u + v)ki

)

= tr(uki) + tr(vki) =

tr
(

f (u) f (ki)
)

+ tr( f (v) f (ki)) = tr
(

f (u) f (ki) + f (v) f (ki)
)

.

Since the f (ki)’s span K over Z, by the linearity of the reduced trace, we have

tr
(

f (u + v)x
)

= tr
(

f (u)x + f (v)x
)

for all x, u, v ∈ K.

Equivalently, we have

(5.2) tr
((

f (u + v) − f (u) − f (v)
)

x
)

= 0 for all x, u, v ∈ K.

Assume that f (u + v) − f (u) − f (v) = y 6= 0 for some u, v ∈ K. Setting x =

y−1, we obtain from (5.2) that 0 = tr(yx) = tr(1), a contradiction. Therefore,
f (u + v) = f (u) + f (v) for all u, v ∈ K. In a similar way, we can show that

tr
((

f (αu) − α f (u)
)

x
)

= 0 for all α ∈ Z and u, x ∈ K and accordingly f (αu) =

α f (u) for all α ∈ Z and u ∈ K. Thus f is a linear map on K over Z. Being a 2-local
automorphism, f is injective and hence is surjective since K is finite-dimensional
over Z.

Finally, for each u ∈ K there exists an automorphism θu,u2 such that f (u) =

θu,u2 (u) and f (u2) = θu,u2 (u2). Then f (u2) = θu,u2 (u2) = θu,u2 (u)2
= f (u)2 for all

u ∈ K, and so f is indeed an automorphism or an antiautomorphism by Ancochea’s
theorem [1].
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For all cases considered in [25, 26, 27, 30], 2-local automorphisms are just auto-
morphisms. This is not true in general since for finite-dimensional division algebras

some antiautomorphisms can also be 2-local automorphisms.

Example 5.4 Let H = R1⊕Ri⊕Rj ⊕Rk be the quaternion algebra over the field
R of real numbers. Then the conjugation α : a + bi + cj + dk 7→ a − bi− cj − dk is
a 2-local automorphism of H.

Proof Let x = a1 + b1i + c1j + d1k and y = a2 + b2i + c2j + d2k be two arbitrary
elements of the algebra H. We shall find a nonzero element c = ui+vj+wk ∈ H such

that cxc−1
= α(x) and cyc−1

= α(y), or equivalently, cx = α(x)c and cy = α(y)c.
From the two equations

(ui + vj + wk)(a1 + b1i + c1j + d1k) = (a1 − b1i − c1j − d1k)(ui + vj + wk),

(ui + vj + wk)(a2 + b2i + c2j + d2k) = (a2 − b2i − c2j − d2k)(ui + vj + wk),

comparing the coefficients, we obtain

{

b1u + c1v + d1w = 0,

b2u + c2v + d2w = 0.

This system always has a nonzero solution (u, v, w), and so α is indeed a 2-local au-

tomorphism.
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