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Universidade Federal Fluminense, Niterói, Brazil
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Abstract In this article we study physical measures for C1+α partially hyperbolic diffeomorphisms
with a mostly expanding center. We show that every diffeomorphism with a mostly expanding center
direction exhibits a geometrical-combinatorial structure, which we call skeleton, that determines the
number, basins and supports of the physical measures. Furthermore, the skeleton allows us to describe
how physical measures bifurcate as the diffeomorphism changes under C1 topology.

Moreover, for each diffeomorphism with a mostly expanding center, there exists a C1 neighbourhood,
such that diffeomorphism among a C1 residual subset of this neighbourhood admits finitely many physical
measures, whose basins have full volume.

We also show that the physical measures for diffeomorphisms with a mostly expanding center satisfy
exponential decay of correlation for any Hölder observes. In particular, we prove that every C2, partially
hyperbolic, accessible diffeomorphism with 1-dimensional center and nonvanishing center exponent has
exponential decay of correlations for Hölder functions.

Keywords and Phrases: partial hyperbolicity; diffeomorphisms with a mostly expanding center; physical

measure; decay of correlations

2020 Mathematics subject classification: Primary 37C40

Secondary 37D30; 37A25; 37A35

Contents

1 Introduction and statement of results 920

2 Preliminary 927

3 Examples of partially hyperbolic diffeomorphisms with a mostly

expanding center 931

4 Properties of skeletons 933

5 Diffeomorphisms with a mostly expanding center revisited 936

6 Proof of Theorem B and Corollary C 944

https://doi.org/10.1017/S1474748021000335 Published online by Cambridge University Press

https://orcid.org/0000-0003-4382-8433
mailto:yangjg@impa.br
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1474748021000335&domain=pdf
https://doi.org/10.1017/S1474748021000335


920 J. Yang

7 Proof of Theorem E 949

8 Proof of Theorem F 951

9 Gibbs-Markov-Young structure 954

References 956

1. Introduction and statement of results

Physical measures were introduced in the 1970s by Bowen, Ruelle and Sinai to study
the large time behavior of Lebesgue typical points for Axiom A attractors. Such systems

do not preserve volume (or any measure that is equivalent to the volume) due to the

contraction near the attractor. For this reason, those measures are often supported on a
zero-volume subset of the manifold but capture the behavior of points in a large set with

positive Lebesgue measure. More precisely, an invariant measure μ is called a physical

measure if the set

B(μ) :=
{
x ∈M :

1

n

n−1∑
i=0

δfi(x)
weak∗−→ μ

}

has positive volume. This set is known as the basin of μ. For Axiom A attractors, many
properties of physical measures were studied by many different authors. We refer the

readers to the review paper [55] and the book [10] for more details.

It is also known that the physical measures of Axiom A attractors have strong statistical

properties, one of the most important of which is the decay of correlations. It can be seen
as the speed at which the system loses dependence and starts to behave like a random

system. To be more precise, we have the following definition.

Definition 1.1. Given observables φ,ψ :M →R, we define the correlation function with

respect to a measure μ as

Cμ(φ,ψ ◦fn) =

∣∣∣∣
∫

φ(ψ ◦fn)dμ−
∫

φdμ

∫
ψdμ

∣∣∣∣ for n≥ 1.

We say that the system has decay of correlations if for all φ and ψ in some families of

functions, Cμ(φ,ψ ◦fn) converges to zero as n goes to infinity.

With that we are ready to introduce the main application of the results in this
article.

Theorem A. Let f be a C2 partially hyperbolic, volume-preserving diffeomorphism with

1-dimensional center. Assume that f is accessible and that the center Lyapunov exponent

of the volume is nonvanishing. Then f has exponential decay of correlations: there is d> 0
such that

Cvol(φ,ψ ◦fn) =O(e−dn)

for all Hölder continuous φ :M → R, and ψ ∈ L∞(vol).
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This theorem generalises [18, Corollary 0.2], where it is shown that every C2

accessible, partially hyperbolic diffeomorphism with 1-dimensional center is ergodic and
has K-property. We remark that such systems are abundant; see the discussion in

Subsection 3.2. Also note that the hyperbolicity assumption in the previous theorem

(nonvanishing center exponent) is rather weak, yet we obtain a strong statistical property

in the form of fast decay of correlations, central limit theorem and exponential large
deviation control (the latter two results are the natural consequences of the decay of

correlations; see [2] and [28]).

By [52, Section 8], if f is a C2 partially hyperbolic, volume-preserving diffeomorphism
with 1-dimensional center and λc(vol) �= 0, then either f or f−1 has a mostly expanding

center. The rest of this article is devoted to a general theory on such diffeomorphisms. In

particular, Theorem A is a direct consequence of Theorem G.

1.1. Diffeomorphisms with a mostly expanding center

Shortly after the physical measures were introduced for Axiom A attractors, a program

for investigating the physical measures of diffeomorphisms beyond uniform hyperbolicity
was initiated by Alves, Bonatti and Viana in a sequence of papers, such as [1, 11], to

name but a few. They introduced several classes of systems for which physical measures

exist, and the number of physical measures is finite. Among them are diffeomorphisms

with a mostly contracting center and diffeomorphisms with a mostly expanding center. In
this article, we are particularly interested in the latter class.

Diffeomorphisms with a mostly expanding center are, roughly speaking, partially

hyperbolic diffeomorphisms whose center Lyapunov exponents are positive. This class of
systems was introduced by Alves, Bonatti and Viana ([1]) using a different, more technical

definition. Later, another definition was given by Dolgopyat [25] and more recently by

Andersson and Vásquez [3]. In [3], they also proposed the latter, somewhat stronger,
definition as the official definition of having a mostly expanding center, which we will

follow in this article.

We call a diffeomorphism f partially hyperbolic if there exists a decomposition TM =

Es⊕Ec⊕Eu of the tangent bundle TM into three continuous invariant subbundles Es
x

and Ec
x and Eu

x such thatDf |Es is a uniform contraction,Df |Eu is a uniform expansion

and Df | Ec lies in between them:

‖Df(x)vs‖
‖Df(x)vc‖ ≤ 1

2
and

‖Df(x)vc‖
‖Df(x)vu‖ ≤ 1

2

for any unit vectors vs ∈Es
x, v

c ∈Ec
x, v

u ∈Eu
x and any x∈M . This notation was proposed

by Brin and Pesin [14] and Pugh and Shub [44] independently as early as the 1970s. In
this article, we will assume that both Es and Eu bundles are nontrivial. In this case, it

is well known (see, for example, [31]) that E∗, ∗ = s,u can be integrated into foliations

F∗, ∗= s,u, whose leaves are as smooth as the diffeomorphism f. A partially hyperbolic
diffeomorphism f is called accessible if any point x ∈M can be reached from any other

point y ∈M by an su-path, a concatenation of finitely many subpaths, each of which lies

entirely in a single leaf of Fs or a single leaf of Fu.
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As shown by Bonatti, Dı́az and Viana [10] and Dolgopyat [24], physical measures of

any C1+α partially hyperbolic diffeomorphism should be a Gibbs u-state, meaning that

the conditional measures of μ with respect to the partition into local strongly unstable
manifolds are absolutely continuous with respect to the Lebesgue measure along the

unstable leaves.

Definition 1.2. A partially hyperbolic diffeomorphism f :M →M is mostly expanding

along the central direction if f has positive central Lyapunov exponents almost everywhere

with respect to every Gibbs u-state for f.

This definition is comparable to diffeomorphisms with a mostly contracting center

(see, for example, [26]) and share similar properties with the latter. In particular, C1

openness of the partially hyperbolic diffeomorphisms with a mostly expanding center

was recently proved in [52]. Note, however, that the inverse of a diffeomorphism with a

mostly expanding center may not be mostly contracting. This is because the space of
Gibbs u-states of f could be very different from that of f−1.

A list of examples for partially hyperbolic diffeomorphisms with a mostly expanding

center will be provided in Section 3.

1.2. Index-dim(Ecu) skeleton

In this article, we will introduce a topological structure of f, known as the skeleton, and
use it to study the structure of physical measures of f. To this end, for a C1 partially

hyperbolic diffeomorphism f with partially hyperbolic splitting Es⊕Ec⊕Eu, we denote

by icu = dim(Ecu) and is = dim(Es), where Ecu = Ec⊕Eu.

Definition 1.3. 1We say that S is an index is skeleton of f if S = {p1, · · · ,pk} consists

of finitely many hyperbolic saddles with stable index is such that

(a)
⋃

i=1,···kFs(Orb(pi)) is dense in M ;

(b) S does not have a proper subset that satisfies property (a).

A set S consisting of finitely many hyperbolic saddles with stable index is and satisfying

(a) above is called a pre-skeleton .

Let us observe that, in general, a partially hyperbolic diffeomorphism may not have any

skeleton, because it may not have any hyperbolic periodic orbit at all. Even if it admits

a set of periodic points such that the union of their stable manifolds is dense, such a
set may have infinite cardinality. However, we will see in Section 4 that if f does have a

skeleton, then all skeletons of f (with the same index) must have the same cardinality

(Lemma 4.4). Furthermore, every pre-skeleton of f contains a skeleton (Lemma 4.5).

1In [26], a different type of skeleton was defined for diffeomorphisms with a mostly contracting
center, where the index of saddles in S equals ics = dim(Es ⊕Ec). Instead of condition (a),
there the union of a stable manifold of periodic orbits of the skeleton is a u-section. The
existence of an index ics skeleton is a C1 open property, but it is not necessarily true any more
for an index is skeleton. For more discussion, see Section 4.
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Finally, in Proposition 6.8 we will show that if f is C1+α with a mostly expanding

center (or if f is C1 and close to a C1+α diffeomorphism with a mostly contracting
center), then f has an index is skeleton. Furthermore, in Section 7 we will see that the

skeletons are robust under C1 topology, in the sense that the continuation of a skeleton

of f is a pre-skeleton for nearby C1 maps. Note, however, that this property requires f to

have a mostly expanding center, unlike the skeletons in [26].
The main result of this article shows that for such diffeomorphisms, skeletons provide

rich geometrical information on the physical measures of f.

For simplicity, we will frequently suppress the dependence on the Hölder index α and
write C1+, because the Hölder index α does not play any particular role.

Theorem B. Let f be a C1+ diffeomorphism with a mostly expanding center. Then f

admits an index is skeleton. Moreover, let S = {p1, · · · ,pk} be any index is skeleton of f;

then for each pi ∈ S there exists a distinct physical measure μi such that

(1) both the closure of Wu(Orb(pi)) and the homoclinic class of the orbit Orb(pi)

coincide with supp(μi);

(2) the closure of Fs(Orb(pi)) coincides with the closure of the basin of the measure μi.

In particular, the number of physical measures of f is precisely k =#S. Moreover,

Int(Cl(B(μi)))∩ Int(Cl(B(μj))) = ∅

for 1≤ i �= j ≤ k, where B(μi) is the basin of μi.

It is worth noting that the finiteness of the physical measures was known since the work

of Alves, Bonatti and Viana [1]. However, Theorem B above provides a more detailed
description on the geometric structure of the physical measures, which allows us to keep

track of those measures as we perturb the system.

Remark 1.4. From the proof of Theorem B, we have more detailed description on the

basins of μi: for every pi ∈ S, we write

Oi =
⋃

x∈Wu(Orb(pi))

Fs(x);

then Oi contains an open neighbourhood of Orb(pi). We are going to show that Oi is

open and dense in Cl(Fs(Orb(pi))) = Cl(B(μi))). Moreover, B(μi) is a full-volume subset

of Oi, and Oi∩Oj = ∅ for 1 ≤ i �= j ≤ k. This shows that the basin of different physical
measures is topologically separated.

We would like to mention that the idea of using homoclinic classes to study measures

was initiated by [30]; see also [26] and [19] for recent similar results.

As a corollary of the previous theorem, we are going to show that any iteration of f
still has a mostly expanding center; furthermore, the number of physical measures of fk

is determined by the skeleton of f.

Corollary C. Let f be a C1+ partially diffeomorphism with a mostly expanding center

and S = {p1, · · · ,pk} be any index is skeleton of f. Then for any n > 0, fn has a mostly
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expanding center and has finitely many physical measures with number bounded by

P =

k∏
i=1

π(pi), where π(pi) denotes the period of pi. (1)

Moreover, every physical measure of fP is Bernoulli.

Recall that for C2 diffeomorphisms, every hyperbolic measure that is mixing has the

Bernoulli property [42, 22]. Here we will provide a direct proof using the general work

of Ornstein and Weiss [41] and later show that the physical measures of fP are indeed
exponentially mixing.

1.3. Perturbation of physical measures

It was shown in [52] that partially hyperbolic diffeomorphisms with a mostly expanding

center are C1 open; that is, if a C1+ diffeomorphism f has a mostly expanding center, then

any C1+ diffeomorphism g that is sufficiently C1 close to f also has a mostly expanding
center. In the following we will analyse how the physical measures vary with respect to the

C1+ diffeomorphisms in C1 topology, which generalises a similar result of Andersson and

Vásquez ([4]) under C1+α topology. The key observation here is that physical measures

of f are associated with skeletons, which behaves well under C1 topology.

Theorem D. Let f : M → M be a C1+ partially hyperbolic diffeomorphism with a

mostly expanding center. Then there exists a C1 neighbourhood U of f such that the

number of physical measures depends upper semi-continuously in C1 topology among
diffeomorphisms in Diff1+(M)∩U . Moreover, the number of physical measures is locally

constant and the physical measures vary continuously in the weak* topology on a C1 open

and dense subset U◦ ⊂ U .

Indeed, the skeletons of f provide even more information on the physical measures for

C1 perturbed C1+ diffeomorphisms. In particular, the skeletons allow us to describe how

the physical measures bifurcate as the diffeomorphism changes. To this end, we write pi(g)
the continuation of the hyperbolic saddle pi for g in a C1 neighbourhood of f. Theorem D

is a direct consequence of the following, more technical, result.

Theorem E. Let f be a C1+ partially hyperbolic diffeomorphism with a mostly expanding
center and S = {p1, · · · ,pk} be a skeleton of f. There exists a C1 neighbourhood U of f such

that, for any C1 diffeomorphism g ∈ U , there is a subset of S(g) = {p1(g), · · · ,pk(g)} that

is a skeleton. Consequently, for g ∈ Diff1+(M)∩U , the number of physical measures of
g is no larger than the number of physical measures of f. Moreover, these two numbers

coincide if and only if there is no heteroclinic intersection within {pi(g)}. In this case,

each physical measure of g is close to some physical measure of f in the weak-* topology.
In addition, restricted to any subset of V ⊂ U where the number of physical measures is

constant, the supports of the physical measures and the closures of their basins vary in a

lower semi-continuous fashion, in the sense of the Hausdorff topology.
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1.4. Existence of physical measures for C1 generic diffeomorphisms

Previously, the study of physical measures mainly focused on maps that are sufficiently
smooth; that is, with C1+ regularity. Recently, the new technique developed in [32, 23]

enables us to shows the existence of physical measure for a large family of C1

diffeomorphisms, such as those with a mostly contacting center.

In this article, we will further show the existence of physical measures for C1 generic
diffeomorphisms close to a partially hyperbolic diffeomorphism f that has a mostly

expanding center.

Before stating the main theorem of this section, we need the following definition.

Definition 1.5. A set Λ of a homeomorphism f is Lyapunov stable if there is a sequence

of open neighbourhoods U1 ⊃ U2 ⊃ ·· · such that

(a)
⋂
Ui = Λ;

(b) fn(Ui+1)⊂ Ui for any n,i≥ 1.

A set being Lyapunov stable means that points starting near Λ will not travel too far

away from this set under forward iterations of f. However, this does not mean that Λ is
an attractor.

We have the following C1 locally generic result, which generalises Theorem E. We

state it as a standalone result because the techniques involved are quite different from

Theorem E.
Recall that a set R is called residual if it is a countable intersection of open and dense

sets.

Theorem F. Let f : M → M be a C1+ partially hyperbolic diffeomorphism with a
mostly expanding center and S = {p1, · · · ,pk} be a skeleton of f. Then there exists a C1

neighbourhood U of f and a C1 residual subset R⊂U such that every C1 diffeomorphism

g ∈R admits finitely many physical measures whose basins have full volume. The number

of physical measures of g coincides with the cardinality of its skeleton, which is no
more than the number of physical measures of f. Moreover, the physical measures of g

are supported on disjoint Lyapunov stable chain recurrent classes, each of which is the

homoclinic class of some saddle in its skeleton.

1.5. Statistical properties

To study the speed of decay of correlations for systems beyond uniformly hyperbolic,
in [53] Young used a type of Markov partition with infinitely many symbols to build

towers for systems with nonuniform hyperbolic behavior. These structures are commonly

referred to as Gibbs-Markov-Young (GMY) structures (see, for instance, [2].) It is well
known that such maps have exponential speed of decay of correlations whenever the GMY

structure has exponentially small tails. By Alves and Li in [2], which is built on the work

of Gouëzel [28], the latter case happens if the center bundle has certain expansion and,
moreover, the tail of hyperbolic times is exponentially small.

We are going to show that Alves and Li’s criterion can be applied to partially hyperbolic

diffeomorphisms with a mostly expanding center and, in particular, we prove exponential
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decay of correlations and exponential large deviations for the physical measures of f,
provided that f has a mostly expanding center.

Theorem G. Let f :M →M be a C1+ partially hyperbolic diffeomorphism with a mostly

expanding center, S = {p1, · · · ,pk} be a skeleton of f and P =
∏k

i=1π(pi). Then for every

physical measure μ of fP , there is d > 0 such that

Cμ(φ,ψ ◦fPn) =O(e−dn)

for Hölder continuous φ :M → R, and ψ ∈ L∞(μ).

Corollary H. Under the assumptions of Theorem G, for every physical measure μ of fP

and any Hölder continuous function φ, the following limit exists:

σ2 = lim
n→∞

1

n

∫ ⎛
⎝n−1∑

j=0

φ◦f jP −n

∫
φdμ

⎞
⎠

2

dμ.

Moreover, if σ2 > 0, then there is a rate function c(ε)> 0 such that

lim
n→∞

1

n
logμ

⎛
⎝
∣∣∣∣∣∣
n−1∑
j=0

φ◦f jP −n

∫
φdμ

∣∣∣∣∣∣≥ ε

⎞
⎠=−c(ε).

1.6. Robustly transitive partially hyperbolic diffeomorphisms

The diffeomorphisms with a mostly expanding center also provide a new mechanism to

describe the topological transitivity property. To make this article more complete, we
collect two results from two other papers without giving their proof. For more details, see

the related papers and the references therein.

Theorem I ([52]). Let f be a C1+ volume-preserving, partially hyperbolic diffeomorphism

with a 1-dimensional center. Suppose that f is accessible and the center exponent is not
vanishing; then f is C1 robustly transitive; that is, every diffeomorphism g is transitive

for g in a C1 neighbourhood f, which is not necessarily volume preserving.

Theorem J ([49]). Let f be a C1+ partially hyperbolic diffeomorphism with a mostly

expanding center such that the stable foliation Fs is minimal. Then there is a C1

neighbourhood U of f such that the stable foliation of any g ∈ U is minimal.

1.7. Structure of the article

This article is organised as follows: In Section 2 we introduce the main tool of this article:
a special space of probability measures, denoted by G(f), which is defined using the

partial entropy along unstable leaves. This space will serve as the candidate space of

physical measures.
Section 3 contains all the existing examples of diffeomorphisms with a mostly expanding

center, as far as the author is aware. In particular, we collect some very recent examples

from [52].
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In Section 4, we provide some geometrical properties of skeletons, assuming that such
structure exists (which will not be proven until Section 6). In particular, we will show

that every skeleton of f must have the same cardinality and provide a useful criterion for

the existence of a skeleton to be used in later sections.
Section 5 consists of a direct proof on the existence of physical measures for C1+

diffeomorphisms with a mostly expanding center. More important, we show that the space

G(f) is a finite-dimensional simplex that varies upper semi-continuously with respect to

the diffeomorphism in C1 topology; moreover, every extreme point of G(f) is an ergodic
physical measure of f.

The proof of Theorems B and E occupies the next two sections. We will carefully

analyse the nonuniform expanding of f along Ec using hyperbolic times and use the
shadowing lemma of Liao to show the existence of skeletons. We then build a one-to-

one correspondence between elements of a skeleton and the physical measures of f, and

show that physical measures bifurcate as heteroclinic intersections are created between
different elements of a skeleton. Then in Section 7, we generalise the result of Theorem E

to generic C1 diffeomorphisms near f.

1.8. On the regularity assumption

Throughout this article, the regularity assumption on f is changed several times

between C1 and C1+. For the convenience of the readers, we summarise those changes
below:

(1) Having a mostly contracting center requires the diffeomorphism to be C1+; as a

result, the initial diffeomorphism f is always assumed to be C1+.

(2) The topology is always C1. Throughout this article, U is a neighbourhood of f under
C1 topology;

(3) The geometrical properties of skeletons only require the diffeomorphism to be C1;

this involves Section 4, Subsection 6.2 and certain parts of Section 7.

(4) The physical measure having absolutely continuous conditional measure on the
unstable leaves and the stable holonomy being absolutely continuous requires C1+

regularity, as shown in the classical theory of physical measures. This affects

Section 5, Subsection 6.3, certain parts of Section 7 and Section 9.

(5) Section 8 deals with C1 generic diffeomorphisms in U and thus only requires C1

smoothness.

2. Preliminary

In this section, we introduce some necessary notations and results that will be used later.

Throughout this section, we assume f to be a partially hyperbolic diffeomorphism on the
manifold M and μ an invariant probability measure of f. In Subsection 2.1 we will assume

f to be C1+ for the discussion on the Gibbs u-states. In Subsections 2.2 and 2.3, f is

assumed to be C1 only.
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2.1. Gibbs u-states

Following Pesin and Sinai [43] and Bonatti and Viana [11] (see also [10, Chapter 11]),

we call Gibbs u-state any invariant probability measure whose conditional probabilities

(Rokhlin [45]) along strongly unstable leaves are absolutely continuous with respect to

the Lebesgue measure on the leaves. In fact, assuming that the derivative Df is Hölder
continuous, the Gibbs-u state always exists, and the densities with respect to Lebesgue

measures along unstable plaques are continuous. Moreover, the densities vary continuously

with respect to the strongly unstable leaves. As a consequence, the space of Gibbs u-states
of f, denoted by Gibbsu(·), is compact relative to the weak-* topology in the probability

space.

The set of Gibbs u-states plays important roles in the study of physical measures for
partially hyperbolic diffeomorphisms. The proofs for the following basic properties of

Gibbs u-states can be found in the book of Bonatti, Dı́az and Viana [10, Subsection 11.2]

(see also Dolgopyat [24]):

Proposition 2.1. Suppose that f is a C1+ partially hyperbolic diffeomorphism; then

(1) Gibbsu(f) is nonempty, weak* compact and convex. Ergodic components of Gibbs

u-states are Gibbs u-states.

(2) The support of every Gibbs u-state is Fu-saturated; that is, it consists of entire

strongly unstable leaves.

(3) For Lebesgue almost every point x in any disk inside some strongly unstable leaf,

every accumulation point of 1
n

∑n−1
j=0 δfj(x) is a Gibbs u-state.

(4) Every physical measure of f is a Gibbs u-state; conversely, every ergodic Gibbs u-
state whose center Lyapunov exponents are negative is a physical measure.

The semi-continuity of Gibbs u-states with respect to C1+ diffeomorphisms under C1

topology was recently proved by the author of this article in [52].

Proposition 2.2. Suppose that fn (n = 1, · · · ,∞) and f are C1+ partially hyperbolic

diffeomorphisms such that fn
C1

→ f . Then

limsupGibbsu(fn)⊂Gibbsu(f),

where the convergence is in the Hausdorff topology of the probability space.

The following lemma shows the relation between the Gibbs u-states of a diffeomorphism

and its iterations.

Lemma 2.3. For any n > 0, Gibbsu(f) ⊂ Gibbsu(fn). Conversely, let ν be any Gibbs

u-state of fn; then 1
n

∑n−1
i=0 f i(ν) is a Gibbs u-state of f.

Proof. Let μ be a Gibbs u-state of f ; then it is also an invariant probability of fn.
Because f and fn share the same unstable foliation, μ must have the same disintegration

along the unstable plaques. Then it follows from the definition that μ is also a Gibbs

u-state of fn.
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On the other hand, it is clear that 1
n

∑n−1
i=0 f i(ν) is an invariant probability of f. By a

similar argument as above, 1
n

∑n−1
i=0 f i(ν) is a Gibbs u-state of f.

2.2. Partial entropy along unstable foliation

In this section, we give the precise definition of the partial metric entropy of μ along the
unstable foliation Fu of f, which depends on a special class of measurable partitions. The

partial entropy has been proven to be a powerful tool in the study of partially hyperbolic

diffeomorphisms, thanks to its semi-continuity in the C1 topology.

Definition 2.4. We say that a measurable partition ξ of M is μ-subordinate to the

F-foliation if for μ-a.e. x, we have

(1) ξ(x)⊂F(x) and ξ(x) has uniformly small diameter inside F(x);

(2) ξ(x) contains an open neighbourhood of x inside the leaf F(x);

(3) ξ is an increasing partition, meaning that ξ ≺ fξ.

Ledrappier and Strelcyn [34] proved that the Pesin unstable lamination admits some

μ-subordinate measurable partition. The following result is contained in Lemma 3.1.2 of

Ledrappier and Young [35].

Lemma 2.5. For any measurable partitions ξ1 and ξ2 that are μ-subordinate to F , we

have hμ(f,ξ1) = hμ(f,ξ2).

This allows us to define the partial entropy of μ using any μ-subordinate partition.

Definition 2.6. For a C1 partially hyperbolic diffeomorphism f and an invariant measure

μ, the partial μ-entropy along unstable foliation Fu, which we denote by hμ(f,Fu), is

defined to be hμ(f,ξ) for any μ-subordinate partition ξ.

Proposition 2.7 ([52]). The partial entropy hμ(f,Fu) varies upper semi-continuously

with respect to the measures and maps in C1 topology.

Although partially entropies are well defined for C1 diffeomorphisms and behave well

under C1 topology, one still need higher regularity such as C2 or at least C1+ in order

to relate it with other quantities such as Lyapunov exponents or Gibbs u-states. The
following upper bound for the partial entropy along the unstable foliation Fu follows

[35, 36].

Proposition 2.8. Let f be C1+ and μ be an invariant probability measure of f; then

hμ(f,Fu)≤
∫

logJacu(x)dμ(x).

Moreover,

hμ(f,Fu) =

∫
logJacu(x)dμ(x) (2)

if and only if μ is a Gibbs u-state of f.
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Proof. The inequality follows by [36, Theorem C ′] when f is C2. It was pointed out by

[15] that the same inequality goes well for C1+ diffeomorphism.
The second part was stated in [33, Theorem 3.4].

The following equality was built in [36, Proposition 5.1] when f is C2. As explained

above, it also holds under the general situation assuming only C1+.

Proposition 2.9. Let μ be a probability measure of f such that all of the center exponents
of μ are nonpositive. Then

hμ(f,Fu) = hμ(f).

2.3. Other invariant measure subspaces

Proposition 2.1 (4) states that when f is C1+, Gibbs u-states are the natural candidates

of the physical measures of f. However, this statement falls apart when f is only C1. Here
let us recall that the main result of [32] (see also [23]) shows that for C1 diffeomorphisms,

every limit point of the empirical measures at Lebesgue almost every point must satisfy

((2), Proposition 2.8). However, such measures may not be Gibbs u-states due to the

lack of Pesin’s formula for C1 diffeomorphisms. To this end, we introduce two candidate
spaces of physical measures for such f. See [32], [23] and [21] for their properties.

Definition 2.10. We define

(A1)

Gu(f) = {μ ∈Minv(f) : hμ(f,Fu)≥
∫

log(det(Df |Eu(x)))dμ(x)};

(A2)

Gcu(f) = {μ ∈Minv(f) : hμ(f)≥
∫

log(det(Df |Ecu(x)))dμ(x)}

where Ecu = Ec⊕Eu.

We write

G(f) = Gu(f)∩Gcu(f).

Remark 2.11.

(a) When f is C1+, by Ledrappier [33], Gu(f) = Gibbsu(f).

(b) By the Ruelle’s inequality for partial entropy (see, for instance, [51]), one can replace

the inequality in the definition of Gu by the equality

Gu(f) = {μ ∈Minv(f) : hμ(f,Fu) =

∫
log(det(Df |Eu(x)))dμ(x)}.

However, the definition of Gcu remains unchanged due to the possibility of having

negative Lyapunov exponents in Ec.

We first observe that the spaces above are nonempty; moreover, the space G(f) contains

all of the candidates of physical measures.
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Proposition 2.12. For every C1 partially hyperbolic diffeomorphism f, there is a full-

volume subset Γ such that for any x ∈ Γ, any limit point of the sequence 1
n

∑n−1
i=0 δfi(x)

belongs to G(f).

Proof. By [21], for x belonging to a full-volume subset, any limit of the sequence
1
n

∑n−1
i=0 δfi(x) belongs to Gcu. Moreover, by [23, 32], for x belonging to a full-volume

subset, any limit of the sequence 1
n

∑n−1
i=0 δfi(x) belongs to Gu. We conclude the proof by

taking the intersection of the two full-volume subsets.

The following property shows that Gu(·) shares similar properties with Gibbsu(·)
(Proposition 2.1).

Proposition 2.13 ([32] [Propositions 3.1, 3.5]). The space Gu(f) is convex, compact

and varies in a upper semi-continuous way with respect to the partially hyperbolic
diffeomorphisms under C1 topology. Moreover, for any invariant measure μ ∈ Gu(f),

every ergodic component of its ergodic decomposition still belongs to Gu(f).

We need to observe that, in general, the space G(f) may not have such properties
(especially when it comes to the ergodic components). Indeed, in Proposition 5.17, we

will show that the above properties hold for G(g) when g is C1 close to f which is C1+

with a mostly expanding center.

3. Examples of partially hyperbolic diffeomorphisms with a mostly

expanding center

For a long time (before [52]), there were only two known examples of diffeomorphisms

with a mostly expanding center (under the definition that is used in this article, which is
stronger than that in [1]). These examples are due to Mañé [39] (see [1] and [3, Section 6])

and Dolgopyat [25]. We list these examples below, as well as some new examples provided

in [52]. Let us recall that the set of partially hyperbolic diffeomorphisms with a mostly
expanding center is C1 open among Diff1+(M).

3.1. Derived from Anosov diffeomorphisms

We assume A to be a linear Anosov diffeomorphism over T
3 with three positive simple

real eigenvalues 0< k1 < 1< k2 < k3.

3.1.1. Local derived from Anosov diffeomorphisms. Let us begin by recalling the

construction of Mañé’s example, which is a local C0 perturbation of A. The statement

below is a little different from the original construction in history.

Example 3.1. Let p be a fixed point of A and U a small neighbourhood of p. There is a

partially hyperbolic diffeomorphism f0 that coincides with A on T
3 \U . f0 is topological

Anosov, and

|Df0 |Ec(x)|≥ 1, (3)

where the equality holds if and only if x= p.
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Because Df0 |Ec(·) is expanding everywhere except at the point p, it is clear that f0
has a mostly expanding center. Thus, by [52], f0 admits a C1 neighbourhood U such that

every C1+ diffeomorphism belonging to U has a mostly expanding center.

3.1.2. Generalised derived from Anosov diffeomorphisms. By the topological
classification of partially hyperbolic diffeomorphisms that are isotopic to A ([13, 29, 48]),

we call such diffeomorphisms derived from Anosov A and denote this set of diffeomor-

phisms by DA(A). The following example by Shi, Viana and the author of this article
[47] revises the fact that C1+ volume preserving derived from Anosov diffeomorphisms

have a mostly expanding center whenever the volume has large metric entropy.

Example 3.2. Let f ∈ DA(A) be a C1+ volume-preserving partially hyperbolic diffeo-

morphism and hvol(f)> logk3; then f has a mostly expanding center.

3.2. Perturbation of volume-preserving partially hyperbolic diffeomorphisms

In [25], Dolgopyat showed the following.

Example 3.3. Let X1 be the time 1 map of a hyperbolic geodesic flow on a surface

M ; then for generic C∞ perturbation f of X1, either f or its inverse f−1 has a mostly
expanding center.

The following result in [52] allows us to obtain more examples using C1 perturbation.

Proposition 3.4. Let f be a C1+ volume-preserving partially hyperbolic diffeomorphism
with a 1-dimensional center. Suppose that the center exponent of the volume measure is

positive and f is accessible. Then f admits an C1 open neighbourhood, such that every C1+

diffeomorphism in this neighbourhood (not necessarily volume preserving) has a mostly
expanding center.

Proposition 3.4 contains an abundance of systems: by Avila [5], C∞ volume-preserving
diffeomorphisms are C1 dense. And by Baraviera and Bonatti [6], the volume-preserving

partially hyperbolic diffeomorphisms with a 1-dimensional center and nonvanishing center

exponent are C1 open and dense. Moreover, the subset of accessible systems is C1 open
and Ck dense for any k ≥ 1 among all partially hyperbolic diffeomorphisms with a 1-

dimensional center direction, due to the work of Burns et al. [17]; see also Theorem 1.5

in Niţică and Török [40].
Indeed, the accessibility assumption in the above proposition can be replaced by another

hypothesis.

Example 3.5 (see [49]). Let f be a C1+ volume-preserving partially hyperbolic

diffeomorphism with a 1-dimensional center. Suppose that the center exponent of the

volume measure is positive and f−1 has a mostly contracting center. Then f admits an
C1 open neighbourhood such that every C1+ diffeomorphism in this neighbourhood has

a mostly expanding center.

Remark 3.6. The hypothesis that f−1 has a mostly contracting center is equivalent to

the assumption that Fs is minimal.
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The diffeomorphisms with minimal strongly stable and unstable foliations are also quite
common; they fill an open and dense subset of volume-preserving partially hyperbolic

diffeomorphisms with a 1-dimensional center and have compact center leaves. This follows

from a conservative version of the results in [9].

3.3. Product of diffeomorphisms with a mostly expanding center

The following was shown by Ures, Viana and the author of this article in [49].

Proposition 3.7. Suppose that f1 and f2 are C1+ partially hyperbolic diffeomorphisms

over manifolds M1 and M2. Assume that both f1 and f2 have a mostly expanding
center. Then f1×f2 is a partially hyperbolic diffeomorphism over M1×M2 with a mostly

expanding center. As a result, nearby C1+ diffeomorphisms (which may not be products

anymore) also have a mostly expanding center.

4. Properties of skeletons

In this section, we introduce several basic properties for skeletons, although the existence
of skeletons will be postponed to Section 6. The main tool in this section is the inclination

lemma, also known as the λ-lemma.

To state the properties of skeletons under general situations, throughout this section
we assume f to be a C1 partially hyperbolic diffeomorphism with dominated splitting

Es⊕Ec⊕Eu, and S = {p1, · · · ,pk} is an index is skeleton of f. In particular, we will not

assume f to have a mostly expanding center. It is also worth noting that, unlike in [26], we
will not discuss the robustness of skeletons under perturbation of f in this section. Such

discussion requires f to have a mostly expanding center and is postponed to Section 7

(see Lemma 7.1).

The first three technical lemmas provide geometrical information on the structure of
skeletons. The main result in this section is Lemma 4.4, which states that every skeleton

of f must have the same cardinality. The last two lemmas provide useful criteria for

skeletons, which will be used multiple times in later sections.

Lemma 4.1.

(1) For any 1≤ i≤ k, Cl(Fs(Orb(pi))) has a nonempty interior.

(2) For 1≤ i �= j ≤ k, there is no heteroclinic intersection between Orb(pi) and Orb(pj);
that is, Fs( Orb(pi))∩Wu(Orb(pj)) = ∅.

(3) Int(Cl(Fs(Orb(pi))))∩ Int(Cl(Fs(Orb(pj)))) = ∅.

Proof. Because S is a skeleton, from (a) of the definition of a skeleton is

k⋃
i=1

Cl(Fs( Orb(pi))) =M.

Suppose by contradiction that Cl(Fs(Orb(pi))) has empty interior for some 1 ≤ i ≤ k;

then
⋃

j �=iCl(Fs(Orb(pj))) =M . Thus, S \{pi} also satisfies (a) of Definition 1.3, which

contradicts with (b) of Definition 1.3 and the fact that S is a skeleton. This finishes the
proof of (1).
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We are ready to prove (2). First, by the unstable manifold theorem, Wu(Orb(pj))

is tangent to the bundle Ecu. Thus, if the intersection Fs(Orb(pi)) ∩Wu(Orb(pj))

is not empty, it must be transversal. By the inclination lemma, Cl(Fs(Orb(pj))) ⊂
Cl(Fs(Orb(pi))), and thus S \{pj} is a pre-skeleton, a contradiction.

To prove (3), we assume by contradiction that there are 1 ≤ i �= j ≤ k such that

U = Int(Cl(Fs(Orb(pi))))∩ Int(Cl(Fs(Orb(pj)))) �= ∅. Take x∈Fs
R(Orb(pi))∩U for some

R > 0 where Fs
R(·) is the disk in Fs(·) with radius R under leaf metric; then there is

xn ∈ Fs(Orb(pj))∩U such that xn → x. By the continuity of stable foliation, we have

Fs
2R(xn)→Fs

2R(x) and thus for n sufficiently large, Fs
2R(xn)∩Wu(Orb(pi)) �= ∅. Because

xn ∈ Fs( Orb(pj)), we have Fs(Orb(pj)) ∩Wu(Orb(pi)) �= ∅, which is a heteroclinic

intersection between pj and pi, a contradiction with item (2).

In the following, instead of using the open set Int(Cl(Fs(Orb(pi)))), we are going to
consider the set Oi =

⋃
x∈Wu(Orb(pi))

Fs(x). By the transversality between Ecu and Es

and continuity of stable foliation, the set Oi is open. In the following we will reveal the

relation between these two open sets.
For a hyperbolic saddle p, we denote by H(p,f) the homoclinic class of p with respect

to the map f ; that is, the closure of homoclinic intersections between W s(Orb(p)) and

Wu(Orb(p)).

Proposition 4.2. For every pi ∈ S,
(i) Cl(Wu(Orb(pi))) =H(pi,f).

(ii)

Cl(Fs(Orb(pi))) = Cl(∪x∈Wu( Orb(pi))
Fs(x)); (4)

thus, Oi is open and dense in Int(Cl(Fs(Orb(pi)))).

Proof. We first prove (i). From the definition of homoclinic class, we have

Cl(Wu(Orb(pi)))⊃H(pi,g).

Now let us prove the other direction of the inclusion.
By the definition of skeleton,

⋃
j=1,···,k(Fs(Orb(pj))) is dense in the manifold M. Thus,

for any x∈Wu(Orb(pi)), there is pj ∈S such that x∈Cl(Fs(Orb(pj)))). According to (2)

of Lemma 4.1, there is no heteroclinic intersection between Fs(Orb(pj)) andWu(Orb(pi))

when i �= j; thus, i= j. It then follows that Fs(Orb(pi)) and Wu(Orb(pi)) have nontrivial
intersections arbitrarily close x, meaning that x ∈H(pi,f). This completes the proof of

(i).

By the discussion above, we have shown that Fs(Orb(pi))∩Wu(Orb(pi)) is dense inside
Wu(Orb(pi)); thus,

Cl(Fs(Orb(pi)))⊃ Cl(∪
x∈Wu(Orb(pi))

Fs(x)).

Meanwhile, because Orb(pi)⊂Wu(Orb(pi)), the inclusion

Cl(Fs(Orb(pi)))⊂ Cl(∪
x∈Wu(Orb(pi))

Fs(x))

is trivially satisfied, and the equality (4) follows immediately.
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The next two lemmas show that if one replaces pi ∈ S by another hyperbolic periodic
point q ∈ Oi with index is, the new set S ′ = S ∪{q} \ {pi} is still an index is skeleton;

moreover, any skeleton of f can be obtained in this way.

Lemma 4.3. Let q be an index is hyperbolic periodic point; then q ∈ Oi if and only if
q and pi are homoclinic related to each other. Moreover, S ′ = {q}

⋃
S \{pi} remains an

index is skeleton.

Proof. If q and pi are homoclinic related with each other, take a ∈Fs(q) �Wu(Orb(pi))

and U a neighbourhood of a in Wu(Orb(pi)). By the continuity of stable foli-
ation,

⋃
x∈U Fs(x) contains a neighbourhood of q. Then by Proposition 4.2, q ∈⋃

x∈Wu(Orb(pi))
Fs(x) =Oi.

On the other hand, suppose that q ∈
⋃

x∈Wu(Orb(pi))
Fs(x); then there exists an

intersection point a∈Fs(q)�Wu(Orb(pi)). By Proposition 4.2[(i)], a∈H(pi,f) and thus

can be approached by Fs(Orb(pi)). By the continuity of stable foliation, Fs(Orb(pi))∩
Wu(q) �= ∅. We conclude that q and pi are homoclinic related.

Now suppose that q and pi are homoclinic related. Then by the inclination lemma, we

have Cl(Fs(Orb(q))) = Cl(Fs( Orb(pi))), which means that⋃
p∈S′

Cl(Fs( Orb(p))) =M.

It remains to show that S ′ does not have a proper subset S ′′ that satisfies the above

equality.
Assume by contradiction that S ′′ is such a proper subset of S ′. Because S is a skeleton,

S ′′ has to contain q ; otherwise, S ′′ will be a proper subset of S, which contradicts the

fact that S is a skeleton. By the discussion above, S̃ = {pi}
⋃
S ′′ \{q} is a pre-skeleton.

However, this is impossible because S̃ is a proper subset of S.

Lemma 4.4. Suppose that S ′ = {q1, · · · ,ql} is a skeleton of f; then l = k, and after

reordering, qi and pi are homoclinic related for i= 1, · · · ,k.

Proof. By Definition 1.3 (a), for each qj ∈ S ′ there is some pi ∈ S such that Fs(Orb(pi))

approaches pi; thus, W
u(qj) intersects Fs(pi) transversally.

Choose any such pi (we will see in a moment that the choice is unique). The same

argument applied on pi shows that there exists some qk ∈ S ′ such that Wu(pi) intersects
Fs(Orb(qk)) transversally. By the inclination lemma, there is transverse intersection

between Wu(Orb(qj)) and Fs( Orb(qk)). By Lemma 4.1[(2)], this can only happen if

j = k. In particular, pi and qj are homoclinically related to one another.
Because being homoclinically related is an equivalent relation and different elements

in a skeleton do not have heteroclinic intersections, it follows that the choice of pi is

unique, and the map qj �→ pi is injective. Reversing the roles of S ′ and S, we also get an
injective map pi �→ qj , which, by construction, is the inverse of the previous one. Thus,

both maps are bijective and, in particular, #S =#S ′. Moreover, after reordering, qi and

pi are homoclinic related for i= 1, · · · ,k.
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The following lemma provides a useful criterion on the existence of skeletons, which
will be used in Section 6.

Lemma 4.5. Any pre-skeleton contains a subset that forms a skeleton.

Proof. Let S ′ = {p1, · · · ,pl} be a pre-skeleton. We first define a relation between the

elements of S ′: we say pi ≺ pj if Wu(Orb(pi)) � Fs(pj) �= ∅. By the inclination lemma, it
is easy to see that ≺ is reflexive and transitive: if pi ≺ pj , then

Cl(Fs(Orb(pj)))⊃ Cl(Fs( Orb(pi))). (5)

Moreover, if we have pi ≺ pj and pj ≺ pi, then we say that they belong to the same

equivalent class. Two elements belong to the same equivalent class if and only if they are
homoclinic related.

Now in the set of equivalent classes, ≺ induces a partial order. For every maximal

equivalent class under this partial order, we pick up a representative element and

then obtain a subset S ⊂ S ′. By (5), S is clearly a pre-skeleton. Moreover, from the
construction, the elements of S have no heteroclinic intersection. Then this lemma is a

corollary of the following result.

Lemma 4.6. Let S = {p1, · · · ,pk} be a pre-skeleton of f such that there is no heteroclinic

intersection between Orb(pi) and Orb(pj) for 1≤ i �= j ≤ k; then S is a skeleton.

Proof.We prove by contradiction. Suppose that S is not a skeleton; then by Definition 1.3

(b), it contains a proper subset S ′′ that forms a pre-skeleton. After reordering, we may

assume S ′′ = {p1, · · · ,pl}, where l < k.
Then by the definition of skeleton,

⋃
1≤i≤lFs( Orb(pi)) is dense in the manifold M. As a

result, there is 1≤ i0 ≤ l such that Fs(Orb(pi0)) approaches pk, and thus Fs(Orb(pi0)) �
Wu(pk) �= ∅, which contradicts the assumption that there is no heteroclinic intersection
between elements of S. The proof is complete.

5. Diffeomorphisms with a mostly expanding center revisited

Throughout this section, we assume f to be a C1+ partially hyperbolic diffeomorphism

with a mostly expanding center. To make this article as self-contained as possible, we will

provide a direct proof on the existence of physical measures for diffeomorphisms with a
mostly expanding center. The proof is different from the original argument in [1] and is

useful for the discussion in later sections.

One of the main difficulties in the study of diffeomorphisms with a mostly expanding
center lies in the fact that the space Gibbsu(f) (or Gu(g) for nearby C1 map g ; see

Definition 2.10) is ‘too large’, in the sense that it contains plenty of measures that are

not physical.2

2In comparison, if f has a mostly contracting center, then every measure in Gibbsu(f) is a
physical measure, and finiteness follows easily. See [26] and [32] for the discussion there.
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We start solving this issue by introducing the following description for diffeomorphisms
with a mostly expanding center, which turns out to be equivalent to Definition 1.2. The

main advantage is that it gives a uniform estimate on the center Lyapunov exponents for

measures in Gibbsu(f).

Proposition 5.1 ([52] [Proposition 6.1]). Suppose that f has a mostly expanding center;

then there is N0 ∈ N and b0 > 0 such that, for any μ̃ ∈Gibbsu(fN0),∫
log‖Df−N0 |Ecu(x)‖dμ̃(x)<−b0. (6)

Remark 5.2. From now on, we assume N0 = 1.

By the upper semi-continuity of the space Gu(f) with respect to diffeomorphisms in

C1 topology (Proposition 2.13), we can extend this estimate to nearby C1 maps.

Lemma 5.3. There is a C1 open neighbourhood U of f such that for any C1 diffeomor-

phism g ∈ U and any μ ∈Gu(g), we have∫
log‖Dg−1|Ecu

g (x)‖dμ(x)<−b0. (7)

This is used in Subsection 5.1, where we show that for any C1 diffeomorphism g in a

small C1 neighbourhood U of f, and for any μ ∈Gu(g), μ typical points x have infinitely
many hyperbolic times for the bundle Ecu in its orbit (see Lemma 5.8).

On the other hand, the space Gcu(f) is also ‘too large’ because it may contain measures

with negative center exponents. Such measures need not be a Gibbs u-state and thus not
physical due to Proposition 2.1 (4). One way to solve this issue is to take the space

of intersection, G(f), which is a much smaller space to work with. However, this creates

another problem: unlike the partial entropy, which is upper semi-continuous (which makes
the space Gu(f) upper semi-continuous in f ), the metric entropy hμ may not have such a

property. This is dealt with in Subsection 5.2, as we introduce fake foliations for partially

hyperbolic diffeomorphisms and show in Lemma 5.12 that the measures in Gu(g) for

g ∈ U are uniformly entropy expansive. As a consequence, in Subsection 5.3 it is shown
(Corollary 5.16) that metric entropy, when restricted to measures in Gu(g), varies in a

upper semi-continuous fashion in weak-* topology and with respect the diffeomorphism

g ∈ U in C1 topology.
Finally, Subsection 5.4 contains the main result of this section: for any C1+ diffeomor-

phism g ∈ U , every extreme element of G(g) is an ergodic physical measure of g.

5.1. Hyperbolic times

Definition 5.4. Given b > 0, we say that n is a b- hyperbolic time for a point x if

1

k

n∑
j=n−k+1

log‖Df−1 |Ecu(fj(x)) ‖ ≤ −b for any 0< k ≤ n.
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Let D be any C1 disk; we use dD(·,·) to denote the distance between two points in the

disk. Recall that for the dominated splitting Es⊕Ecu, one can define the center unstable
cone field, which is invariant under forward iteration.

The next lemma states that if n is a hyperbolic time for x, then on the disk fn(D), one

picks up a contraction by e−b for each backward iteration.

Lemma 5.5 ([1] Lemma 2.7). For any b > 0, there is r > 0 such that, given any C1 disk

D tangent to the center-unstable cone field, x ∈D and n≥ 1 a b/2-hyperbolic time for x,

we have

dfn−k(D)(f
n−k(y),fn−k(x))≤ e−kb/2dfn(D)(f

n(x),fn(y)),

for any point y ∈D with dfn(D)(f
n(x),fn(y))≤ r and any 1≤ k ≤ n.

Remark 5.6. For fixed b0/2 > 0, we can take r = r1 to be constant for the diffeomor-

phisms in a C1 neighbourhood of f.

By Lemma 5.3 and Proposition 2.12, for any g ∈ U , there is a full-volume subset Γg

such that for any x ∈ Γg, any limit of the sequence 1
n

∑n−1
i=0 δgi(x) belongs to G(g). Thus,

for any x ∈ Γg,

limsup
n→∞

1

n

n−1∑
i=0

log‖Dg−1 |Ecu
g (gi(x)) ‖= limsup

∫
log‖Dg−1 |Ecu

g (x) ‖d
1

n

n−1∑
i=0

δgi(x)

<−b0 < 0.

(8)

Define H(b0/2,x,g) to be the set of b0/2-hyperbolic times for x ∈ Γg; that is, the set of

times m≥ 1 such that

1

k

m∑
i=m−k+1

log‖Dg−1 |Ecu
g (gi(x)) ‖ ≤ −b0/2 for all 1≤ k ≤m. (9)

By the Pliss lemma (see [1]), such hyperbolic times have positive density on the orbit

segment from 0 to n: there exists nx ≥ 1 and δ1 > 0 such that

#(H(b0/2,x,g)∩ [1,n))≥ nδ1 for all n≥ nx. (10)

By Lemma 5.5 and Remark 5.6, there is r1 > 0 that only depends on U and b0/2, such

that for any x ∈ Γg and any disk D tangent to the center-unstable cone field, x ∈ D,

n ∈H(b0/2,x,g), we have

dD(x,y)≤ e−nb0/2dgn(D)(g
n(x),fn(y)), (11)

for any y ∈ D with dgn(D)(g
n(x),gn(y)) ≤ r1. (We also assume that r1 satisfies the

condition (15) below, which depends only on the neighbourhood U .) In particular, for
x∈Γg and disk D tangent to the center-unstable cone field containing x, gn(D) contains a

smaller disk Dn with diameter r1 for n∈H(b0/2,x,g) sufficiently large. Then ∪z∈Dn
Fs(z)

contains an open ball with radius r1.
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Definition 5.7. Denote by H(b0/2,g) the set of points x such that for any k ≥ 1,

1

k

k−1∑
i=0

log‖Dg−1 |Ecu
g (g−i(x)) ‖ ≤ −b0/2 for all k ≥ 0. (12)

In other words, for every n > 0, n is a hyperbolic time for the point f−n(x).

The next lemma shows that there are plenty of hyperbolic times on the forward orbit

of x, every μ ∈Gu(g) and μ almost every x.

Lemma 5.8. For any g ∈ U and any μ ∈Gu(g), we have

μ(H(b0/2,g))≥ δ1, (13)

where δ1 is given in (10).

Proof. By Proposition 2.13, we may assume μ to be ergodic. By Birkhoff’s theorem, we
only need to show that for μ almost every x, liminf 1

n#{1≤ k≤n;fk(x)∈H(b0/2,g)}≥ δ1.

It is equivalent to show that for some fixed mx,

liminf
1

n
#{1≤ k ≤ n;fk+mx(x) ∈H(b0/2,g)} ≥ δ1. (14)

By Lemma 5.3, take x be a typical point of μ, such that

lim
1

n

n−1∑
i=0

log‖Dg−1 |Ecu
g (g−i(x)) ‖ ≤ −b0.

We claim that there is m> 0 such that g−m(x) ∈H(b0/2,g). Otherwise, for any g−n(x),

there is in > 0 such that 1
in

∑in−1
i=0 log‖Dg−1 |Ecu

g (g−i−n(x)) ‖ ≥ −b0/2. Recursively, we

obtain a sequence of points: n1 = i0, n2 = n1+ in1
, · · · ; by induction, we have

1

nk

nk−1∑
i=0

log‖Dg−1 |Ecu
g (g−i(x)) ‖ ≥ −b0/2.

This contradicts the choice of x.

Moreover, it is easy to see that for any k ∈ H(b0/2,g
−m(x),g), gk−m(x) ∈ H(b0/2,g).

Then by (10) and taking mx =m in (14), we conclude the proof.

5.2. Fake foliations

In order to avoid assuming dynamical coherence of f, we use locally invariant (fake)
foliations, a construction that follows Burns and Wilkinson [18] and goes back to Hirsch,

Pugh and Shub [31]. We fix U a small C1 neighbourhood of f provided by Lemma 5.3.

Lemma 5.9. There are real numbers ρ > r0 > 0 only depending on U with the following
properties. For any x∈M , the neighbourhood B(x,ρ) admits foliations F̂s

g,x and F̂cu
g,x such

that for every y ∈B(x,r0) and ∗= {s,cu}:
(1) the leaf F̂∗

g,x(y) is C1, and its tangent bundle Ty(F̂∗
g,x(y)) lies in a cone of E∗(x);

(2) g(F̂s
g,x(y,r0))⊂ F̂s

g,g(x)(g(y)) and g−1(F̂cu
g,x(y,r0))⊂ F̂cu

g,f−1(x)(g
−1(y));
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(3) we have product structures inside B(x,r0); that is, for any y,z ∈B(x,r0), there is a

unique intersection between F̂s
g,x(y) with F̂cu

g,x(z), which we denote by [y,z].

For g ∈ U and any x ∈M , we consider the following three types of Bowen balls:

• finite Bowen ball : Bn(g,x,ε) = {y ∈M : d(gi(x),gi(y))< ε,|i|< n},
• negative Bowen ball : B−

∞(g,x,ε) = {y ∈M : d(gi(x),gi(y))< ε,i < 0},
• (two sided) infinite Bowen ball :

B∞(g,x,ε) = {y ∈M : d(gi(x),gi(y))< ε,i ∈ Z}.

The following was shown in the proof of [37], [Theorem 3.1].

Lemma 5.10. For ε < r0/2 and any x ∈M , B−
∞(g,x,ε)⊂ F̂cu

g,x(y,2ε).

We may take r1 in the previous section to satisfy that

r1 < r0/2. (15)

Then as a consequence of Lemma 5.5, we show that for every point in H(b0/2,g), the

unstable manifold has uniform size.

Lemma 5.11. For any x ∈ H(b0/2,g), F̂cu
g,x(x,r1) ⊂ Wu

loc(x). More precisely, for any

y ∈ F̂cu
g,x(x,r1),

dF̂cu
g,g−n(x)

(g−n(x))(g
−n(x),g−n(y))≤ e−nb0/2dF̂cu

g,x(x)
(x,y).

The goal of this subsection is to show that the measures in Gu(g) for g ∈U are uniformly

entropy expansiveness.

Lemma 5.12. For any g ∈ U and any measure μ ∈Gu(g), for μ almost every point x,

B∞(g,x,r1) = x.

Proof. By Lemma 5.10 and the choice of r1 ≤ r0/2, we have

B∞(g,x,r1)⊂B−
∞(g,x,r1)⊂ F̂cu

g,x(x,r1).

Let x be a μ typical point; by Lemma 5.8, we may assume that the forward orbit

of x enters H(b0/2,g) infinitely many times. Suppose that there is a distinct point y ∈
B∞(g,x,r1/2)⊂ F̂cu

g,x(x,r1), we are going to prove by contradiction that x and y coincide

with each other. Suppose that fn(x) ∈ H(b0/2,g), then fn(y) ∈ B∞(g,gn(x),r1/2) ∈
F̂cu

g,x(x,r1). By Lemma 5.11,

dF̂cu
g,x(x)

(x,y)≤ e−nb0/2dF̂cu
g,gn(x)

(gn(x))(g
n(x),gn(y))≤ e−nb0/2r1.

Taking n → ∞, we have dF̂cu
g,x(x)

(x,y) = 0. Hence, x = y, a contradiction with the

hypothesis that x and y are distinct. The proof is complete.

Remark 5.13. The classical definition of entropy expansive by Bowen requires the

topological entropy of B∞(g,x,r1) to be vanishing for every x ∈M . However, as observed

in [37, Proposition 2.4], this is equivalent to having zero topological entropy for the infinite
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Bowen ball for every invariant measure μ and μ almost every x. The statement of the
previous lemma follows this approach.

Also note that this lemma does not immediately lead to the upper semi-continuity

of hμ as in the classical case, because we only have entropy expansive on a subspace of
invariant measure. However, we will see in a moment that the upper semi-continuity holds

for measures in Gu.

5.3. Upper semi-continuity of metric entropy

In this section, we are going to show that the metric entropy for measures in Gu(·) is

upper semi-continuous, which is a consequence of the uniform entropy expansiveness for
measures among Gu(·).
Define the ε-tail entropy at x by

h∗(g,x,ε) = htop(g,B∞(g,x,ε)),

where we use Bowen’s definition of the topological entropy [12]:

htop(g,K) = lim
ε→0

limsup
n→∞

1

n
logrn(ε,K);

here rn(ε,K) is the minimum cardinality of (n,ε)-spanning sets of K. For any probability

measure μ of g, let h∗(g,μ,ε) =
∫
h∗(g,x,ε)dμ(x).

As a direct consequence of Lemma 5.12, we get the following.

Lemma 5.14. For any g ∈ U and any μ ∈Gu(g), h∗(g,μ,r1) = 0.

We also need the following lemma of [20], [Theorem 1.2].

Lemma 5.15. hμ(g)−hμ(g,P) ≤ h∗(g,μ,ρ) for any finite measurable partition P with
diam(P)≤ ρ.

By Lemma 5.14 and Lemma 5.15, we conclude that hμ(g) = hμ(g,P) for any finite
measurable partition P with diam(P)≤ r1. In particular, by a standard argument for the

upper semi-continuity of metric entropy (see, for instance, [37], [Lemma 2.3]), we have

the following.

Corollary 5.16. Let gn (n≥ 0) be a sequence of C1 partially hyperbolic diffeomorphisms

inside U and μn ∈ Gu(gn). Suppose yjsy gn → g0 in C1 topology and μn → μ0 ∈ Gu(g0)
in weak-* topology; then

limsup
n→∞

hμn
(gn)≤ hμ0

(g0).

5.4. Physical measures

In this section, we will provide a uniform treatment on the existence of physical measures
for all C1+ diffeomorphisms in U . For this purpose, let r1 > 0 be given by Lemma 5.5 and

(15).

Proposition 5.17. Let g be any C1 diffeomorphism of U . Then G(g) is compact

and convex, and every extreme element of G(g) is an ergodic measure. The map
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G : g ∈ U �→G(g) is upper semi-continuous with respect to diffeomorphisms in U under

C1 topology. Moreover, if g is C1+, then G(g) has finitely many extreme points, each of

which is a physical measure of g and vice versa. The basin of each physical measure of g
contains Lebesgue almost every point of some ball with radius r1.

Proof. Recall that

Gcu(g) =

{
μ ∈Minv(f) : hμ(g)≥

∫
log(det(Dg |Ecu(x)))dμ(x)

}
.

Because the metric entropy function is affine, it follows that Gcu(f) is convex. By

Proposition 2.13, Gu(g) is convex, and so is G(g) = Gu(g)
⋂
Gcu(g).

The compactness of G(g) follows from Corollary 5.16. More precisely, suppose that
there is a sequence of invariant probabilities {μn}∞n=0 of g such that μn ∈ G(g) and

assume limn→∞μn = μ. Because μn ∈Gcu(g), we have

hμn
(g)≥

∫
log(det(Dg |Ecu(x)))dμn(x).

Note that μn ∈Gu(g), and by Proposition 2.13, Gu(g) is compact; thus, we have μ∈Gu(g).
It then follows from Corollary 5.16 that limsupn→∞hμn

(g)≤ hμ(g), which implies

hμ(g)≥
∫

log(det(Dg |Ecu(x)))dμ(x).

This means that μ ∈Gcu(g); thus, μ ∈Gu(g)∩Gcu(g) = G(g).

Indeed, by Corollary 5.16 and a similar proof as above, for a sequence of C1 maps
gn ∈ U,gn → g ∈ U in C1 topology and μn ∈ G(gn) converging to μ in weak-* topology,

we have μ ∈G(g). Then the map G(·) is upper semi-continuous, as claimed.

Suppose that μ is any extreme element of G(g); then it is contained in Gu(g). We claim
the following.

Lemma 5.18. μ is ergodic.

Proof. Let μ̃ be a typical ergodic component in the ergodic decomposition of μ. We are
going to show that μ̃ ∈G(g); this implies that μ̃ is also an extreme element of G(g) and

thus it coincides with μ.

By Proposition 2.13, μ̃ ∈Gu(g). Thus, it suffices to show that μ̃ ∈Gcu(g).
Because g ∈ U , by Lemma 5.3, any measure ν ∈Gu(g) has positive center exponent. By

Ruelle’s inequality,

hμ̃(g)≤
∫

log(det(Dg |Ecu(x)))dμ̃(x).

Because μ ∈Gcu(g),

hμ(g)≥
∫

log(det(Dg |Ecu(x)))dμ(x).

Because entropy function is an affine functional with respect to invariant measures, we

must have hμ̃(g) =
∫
log(det(Dg |Ecu(x)))dμ̃(x) for typical ergodic components μ̃ of μ.

Thus, μ̃ ∈Gcu(g). The proof is complete.
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We continue the proof of Proposition 5.17. Assume that g ∈ U is a C1+ partially

hyperbolic diffeomorphism. First we suppose that μ is an extreme element of G(g). Then
by the discussion above, μ is ergodic with positive center exponents. Moreover, by Ruelle’s

inequality, we get

hμ(g) =

∫
log(det(Dg |Ecu(x)))dμ(x).

By the entropy formula of Ledrappier-Young [35], the disintegration of μ along the
Pesin unstable manifold is equivalent to the Lebesgue measure on the leaves. This means,

for μ almost every x, Lebesgue almost every point on the Pesin unstable manifold of x

is a typical point of μ. Because the basin of μ is saturated by stable leaves (we use the
fact that Es is uniformly contracting) and the stable foliation is absolutely continuous,

the union of the stable leaves of the previous full Lebesgue measure subset of Wu(x)

is contained in the basin of μ and has full volume inside a ball with center at x. Note,

however, that such a ball may not have uniform radius r1.
To obtain a ball with radius r1 in the basin of μ, we apply Lemma 5.8 to obtain an

n > 0 such that gn(x) ∈ H(b0/2,g). Then by Lemma 5.11, Wu(gn(x),g) contains a disk

with radius r1, where Lebesgue typical points in this disk are typical points of μ. By the
uniform transversality between the bundles Es and Ecu, the basin of μ contains Lebesgue

almost every point of a ball at gn(x) with radius r1, which we denote by Bgn(x)(r1). It

then follows that

μ(Bgn(x)(r1))> 0. (16)

To simplify notation, we write any ball obtained in the above way by Bμ.

Because the basins of different physical measures are disjoint, G(g) has only finitely
many extreme elements. We denote them by μ1, · · · ,μk.

Now we prove that every physical measure μ of g is an extreme element of G(g). Because

the basin of μ, B(μ), has positive volume, by Proposition 2.12, Lebesgue almost every
point x ∈ B(μ) must satisfy μ= lim 1

n

∑n−1
i=0 δgi(x) ∈G(g). Thus, it only remains to show

that μ is ergodic.

Because G(g) is convex with finitely many extreme elements, μ can be written as a
combination:

μ= a1μ1+ · · ·+akμk,

where 0 ≤ a1, · · · ,ak ≤ 1 and
∑k

i=1 ak = 1. There is 1 ≤ j ≤ k such that aj > 0. Then by

(16), μ(Bμj
) = ajμj(Bμj

)> 0.

Thus, for every point x ∈ B(μ) and n sufficiently large, 1
n

∑n−1
i=0 δgi(x)(Bμj

) > 0. In

particular, there is nj > 0 such that gnj (x) ∈Bμj
.

Because vol(B(μ)) > 0, take x ∈ B(μ) a Lebesgue density point of B(μ); that is, it

satisfies

lim
r→0+

vol(Bx(r)∩B(μ))
vol(Bx(r))

→ 1.
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Then the above argument shows that B(μ)
⋂
Bμj

= gnj (B(μ))
⋂
Bμj

has positive Lebesgue

measure.

Recall that Bμj
is in the basin of μj . Therefore, the basin of μ and μj has nontrivial

intersection. This implies μ = μj , and μ is ergodic. The proof of Proposition 5.17 is

complete.

Remark 5.19. The C1+ regularity is used to

• show that the conditional measures of μ along unstable leaves are absolutely
continuous; we need the work of Ledrappier and Young, which requires C1+.

• show that the basin of μ contains Lebesgue almost every point in a ball; there we
need the stable foliation to be absolutely continuous.

We will see in Section 7 that such regularity condition can be bypassed for generic C1

diffeomorphisms in U .

6. Proof of Theorem B and Corollary C

In this section, we provide the proof of Theorem B and Corollary C.
Throughout this section, we assume f to be a C1+ diffeomorphism with a mostly

expanding center and U a sufficiently small C1 neighbourhood of f. By Proposition 5.1,

there is b0 > 0 such that for any C1 diffeomorphism g ∈ U and any μ ∈Gu(g),∫
log‖Dg−1 |Ecu(x) ‖dμ(x)<−b0. (17)

The structure of this section is as follows: In Subsection 6.1 we introduce Liao’s shadowing

lemma, which will be used in Subsection 6.2 to construct skeletons. For the discussion in
Section 8, we will make the construction for every C1 diffeomorphism g ∈ U .
Then in Subsection 6.3, we will show that each element in S(g) is associated to a physical

measure, assuming that f is C1+. This concludes the proof of Theorem B. Finally, in

Subsection 6.4 we provide the proof of Corollary C.

6.1. Liao’s shadowing lemma

Definition 6.1. An orbit segment (x,f(x), · · · ,fn(x)) is called λ-quasi hyperbolic if there

exists 0< λ < 1 such that for 1≤ k ≤ n,

k−1∏
i=0

‖Df−1 |Ecu(fn−i(x)) ‖< λk, (18)

k−1∏
i=0

‖Df |Es(fi(x))‖ ≤ λk (19)

and

‖Df |Es(fi(x))‖
m(Df |Ecu(fi(x)))

≤ λ2, (20)

where m(·) is the minimum norm.
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Note that (19) and (20) are automatically satisfied due to the uniform contraction of

Df on Es and the domination between Es and Ecu. In other words, (x,f(x), · · · ,fn(x)) is

λ-quasi-hyperbolic if n is a (− logλ)-hyperbolic time for x. In this subsection we need the
following shadowing lemma by Liao, which allows a quasi-hyperbolic, periodic pseudo-

orbit to be shadowed by a periodic orbit with large unstable manifold.

Lemma 6.2 ([38, 27]). For any λ > 0, there exist ρ > 0 and L > 0 such that for any λ-

quasi-hyperbolic orbit (x,f(x), · · · ,fn(x)) of f with d(x,fn(x))≤ ρ, there exists a hyperbolic

periodic point p ∈M such that

(a) p is a hyperbolic periodic point with period n and with stable index is;

(b) d(f i(x),f i(p))≤ Ld(x,fn(x)) for any 0≤ i≤ n−1;

(c) p has a uniformly sized unstable manifold: there is a constant r > 0 depending on λ

such that the local unstable manifold of p contains a disk with radius r.

Remark 6.3. The parameters in the previous lemma can be made uniform for

diffeomorphisms in a C1 neighbourhood U of f. Moreover, one can take δ sufficiently
small; then d(f i(x),f i(p)) ≤ Ld(x,fn(x)) is sufficiently small for any 0 ≤ i ≤ n− 1, and

then

k−1∏
i=0

‖Df−1 |Ecu(fn−i(p)) ‖ ≤ λk

for any 1 ≤ k ≤ n. In particular, if one takes λ = e−b0/2, then the size of the unstable

manifold of p can be chosen to be r1 > 0, which is the constant given by Lemma 5.11.

Definition 6.4. A periodic point p of g ∈ U is called a λ-hyperbolic periodic point if it

satisfies

k−1∏
i=0

‖Df−1 |Ecu(fn−i(p)) ‖ ≤ λk (21)

for any 1≤ k ≤ π(p).

By the previous discussion and Remark 5.6, we have shown the following.

Lemma 6.5. For any e−b0/2-quasi-hyperbolic periodic point, its unstable manifold

contains an r1-ball inside the cu-fake leaf F̂cu
g,p(p,r1)

6.2. Existence of skeleton

In this section, we will show that any C1 diffeomorphism g ∈ U admits a skeleton. The
main result of this section is Proposition 6.8.

In order to apply Liao’s shadowing lemma, we need to establish the existence of orbit

segments that are quasi-hyperbolic. This follows from Proposition 2.12 and (17).
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Proposition 6.6. Suppose g ∈U . There is a full-volume subset Γg such that for Lebesgue
almost every point x ∈ Γg,

limsup
n→∞

1

n

n−1∑
i=0

log‖Dg−1 |Ecu(gn−i(x)) ‖ ≤ −b0.

By the Pliss lemma (see [1]), there exists nx ≥ 1 and δ1 > 0 such that

#(H(b03/4,x,g)∩ [1,n))≥ nδ1 for all n≥ nx, (22)

where H(b03/4,x,g) is the collection of b03/4-hyperbolic times along the forward

orbit of x.

Taking a sequence of integers nx ≤ n1 < n2 < · · · such that ni ∈H(b03/4,x,g)), we may

assume that xni
= fni(x) converges to a point x0. For λ= e−

3b0
4 , ρ and L are obtained by

Lemma 6.2. We may further assume that supi,j{d(xni
,xnj

)} ≤ ρ0 ≤ ρ, where ρ0 satisfies

that for any two points y,z ∈M with d(y,z)≤ Lρ0, we have

| log‖Dg−1 |Ecu(y) ‖− log‖Dg−1 |Ecu(z) ‖ |≤ b0/4. (23)

Because for any i < j, the pseudo-orbit {xni
,xni+1, · · · ,xnj−1} is b03/4-quasi-hyperbolic,

by Lemma 6.2, this pseudo-orbit is Ld(xni
,xnj

)≤Lρ0 shadowed by a periodic orbit px,i,j .

Because xni
→ x0 as i→∞, all of the periodic points px,i,i+1 converge to x0.

Moreover, by the choice of ρ0 in (23), px,i,j is a e−b0/2-quasi-hyperbolic periodic point.
By Lemma 6.5, each periodic point px,i,j has unstable manifold with size at least r1.

Their stable manifolds already have uniform size due to Es being uniformly contracting

(note that all px,i,js have stable index is). Thus, there is mx such that for any i,j > mx,
px,i,i+1 and px,j,j+1 are homoclinic related to each other and

Fs
loc(xi) � Wu

r1(pj,j+1) �= ∅.

Furthermore, Fs
loc(pi) will intersect transversally with any disk center at xj , tangent to

the cu cone with radius at least r1.
To simplify notation, we will write px,i,i+1 = px,i.

Lemma 6.7. For any i > mx, x ∈ Cl(Fs(Orb(px,i))).

Proof. Let U be any small neighbourhood of x. Because for any i > mx, all of the

hyperbolic periodic points pi are homoclinic related to each other, we only need to show
that there is i > mx such that Fs(Orb(pi))∩U �= ∅; then the lemma will follow from the

inclination lemma.

We take ε > 0 small enough such that F̂cu
g,x(x,ε) ⊂ U . By Lemma 5.5, for i > mx

sufficiently large, gi(F̂cu
g,x(x,ε))⊃ F̂cu

g,xni
(xni

,r1), where the latter is a disk tangent to

a cu cone with uniform diameter. This means that when i is sufficiently large,

gni(F̂u
g,x(x,ε)) � Fs

loc(pi) �= ∅.

By the invariance of the stable manifold under the iteration of g, we have U ∩
Fs(Orb(pi)) �= ∅.
The proof is complete.
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Now we are ready to construct the skeleton for g ∈ U . By Proposition 6.6, for each
x ∈ Γg, we fix any one of px,i for i > mx and denote it by px. Then by the previous

lemma, the union
⋃

x∈ΓFs(Orb(px)) is dense in the manifold M.

Moreover, because each periodic point px has stable and unstable manifold with size at
least r1, there are only finitely many of them that are not homoclinically related to each

other, with number uniformly bounded from above. Take {p1, · · · ,pk} a subset of {px}x∈Γ

that are not homoclinic related and have maximal cardinality.

We claim that
⋃

i=1,···,kFs(Orb(pi)) is dense in the manifold M. Assume that this is
not the case; then we can take px for x ∈ M \

⋃
i=1,···,kCl(Fs(Orb(pi))). By the choice

of {p1, · · · ,pk}, px must be homoclinically related to some pi. However, this means that

Cl(Fs(Orb(pi))) = Cl(Fs(Orb(px))) by the inclination lemma. Lemma 6.7 then shows
that x ∈ Cl(Fs(Orb(pi))), which is a contradiction.

Thus, {p1, · · · ,pk} forms a pre-skeleton. By Lemma 4.5, we have shown the following.

Proposition 6.8. Every C1 diffeomorphism g ∈ U admits a skeleton S(g) = {p1, · · · ,pk},
such that for any 1 ≤ i ≤ k, Wu(pi) contains a ball in the fake cu leaf with center at pi
and radius r1.

From now on, we fix S(g) = {p1, · · · ,pk} a skeleton obtained as above.

6.3. Skeleton and measures

In this section we assume g ∈ U to be C1+; then by Lemma 5.3, g has a mostly expanding
center. We will establish a one-to-one correspondence between elements of S(g) and the

physical measures of g.

By Proposition 5.17, g has only finitely many physical measures {μ1, · · · ,μl}. Moreover,
from Lemma 5.8 and Proposition 5.17, there is r1 > 0 only depending on U and b0 such

that, for any physical measure μj of g, there is a μj regular point xj such that

(a) xj ∈H(b0/2,g) and thus has Pesin unstable manifold with size larger than r1;

(b) μ regular points consist of Lebesgue almost every point on the Pesin unstable
manifold of xj .

The main result of this section is the following.

Proposition 6.9. The number of physical measures and the number of elements of the

skeleton of g are the same; that is, k = l. Indeed, there is a bijective map j → i(j)

such that for any physical measure μj of g, there is pi(j) ∈ S(g) such that supp(μj) =
Cl(Wu(Orb(pi),g)) and Lebesgue almost every point on Wu(Orb(pi),g) belongs to the

basin of μj. Moreover, the closure of Fs(Orb(pi)) coincides with the closure of B(μj).

Proof. Fix any physical measure μj of g. By (a) above, there is pi ∈ S(g)
such that Fs(Orb(pi)) � Wu

r1(xj,g) �= ∅. By the inclination lemma, gn(Wu
r1(xj,g))

converges to Wu(Orb(pi),g). Because Wu
r1(xj,g) ⊂ supp(μj) by (b) above, we have

Cl(Wu(Orb(pi),g))⊂ supp(μj).

To show the reversed inclusion, note that for n large enough, by the inclination lemma,

gn(Wu
r1(x,g)) approaches W

u
loc(p) in the following sense: there is a stable holonomy map
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from Wu
loc(p) to gn(Wu

r1(x,g)) induced by the stable foliation. Because the set of μj typical

points is invariant under iteration, Lebesgue almost every point of gn(Wu
r1(x,g)) is also

typical for μj . Because stable foliation is absolutely continuous and the basin of μj is
s-saturated, it follows that Lebesgue almost every point of Wu(Orb(pi),g) belongs to the

basin of μj .

Take any point y ∈Wu(pi)∩B(μj). Because gn(y) ∈Wu( Orb(pi)) for any n≥ 0, μj =
lim 1

n

∑
δgi(y) is supported on Cl(Wu(Orb(pi),g)). As a conclusion,

supp(μj) = Cl(Wu(Orb(pi),g)). (24)

Because Lebesgue almost every point on Wu(Orb(pi),g) belongs to the basin of μj , the

map j → i(j) is injective; in particular, we have k≥ l. After reordering the periodic points

of S(g), we may assume that i(j) = j for j = 1, · · · ,l.
In order to prove k = l, we only need to show that {p1, · · · ,pl} is a pre-skeleton; that is,⋃l
i=1Fs(Orb(pi)) is dense in the manifold M. By Proposition 5.17, the union of basins

of physical measures has full volume; thus, it suffices to prove that for each 1≤ i≤ l, the
closure of Fs(Orb(pi)) coincides with the closure of B(μi).

By (24) we have pi ∈ supp(μi). Take r > 0 sufficiently small such that μi(Br(pi)) >

0 and Br(pi) ⊂ Oi =
⋃

y∈Wu(Orb(pi),g)
Fs(y). For any x ∈ B(μi), because we have

1
n

∑n−1
i=0 δfi(x) → μi, there is n sufficiently large such that 1

n

∑n−1
i=0 δfi(x)(Br(pi))> 0. This

shows that there is m> 0 such that fm(x)∈Br(pi)⊂Oi. By (ii) of Proposition 4.2, fm(x)

is accumulated by Fs( Orb(pi)) and so is x. Thus, we have shown that the basin of μi is

contained in the closure of Fs(Orb(pi)), and the reversed inclusion follows immediately
from the u-saturation of supp(μi). We now conclude that k = l.

The proof is complete.

Proof of Theorem B. By Proposition 6.8, f admits an index is skeleton. Let S =
{p1, · · · ,pk} be any index is skeleton of f. By Proposition 6.9, the number of physical

measures is precisely k =#S, and for each pi ∈ S there exists a distinct physical measure

μi such that

(1) the closure of Wu(Orb(pi)) coincides with supp(μi) and by (ii) of Proposition 4.2,

they also coincide with the homoclinic class of the orbit Orb(pi).

(2) the closure of Fs(Orb(pi)) coincides with the closure of the basin of the measure
μi.

Moreover, by (ii) of Proposition 4.2,

Int(Cl(B(μi)))∩ Int(Cl(B(μj))) = ∅

for 1≤ i �= j ≤ k. The proof is finished.

6.4. Proof of Corollary C

We finish this section with the proof of Corollary C.

Proof of Corollary C. Let f be C1+. For any n > 0 and ν an ergodic Gibbs u-state

of fn, by Lemma 2.3, μn = 1
n

∑n−1
i=0 f i

∗(ν) is an invariant Gibbs u-state of f. It is easy to
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see that for ν typical point x, its center exponents with respect to fn are n times of the
corresponding exponents with respect to f. In particular, the center exponents of every

Gibbs u-state of fn are positive. Thus, fn has a mostly expanding center as well.

Because {p1, · · · ,pk} is an index is skeleton of f,
⋃

i

⋃
q∈Orb(pi)

Fs(q) is dense in the

manifold M, which means that S = {q ∈ Orb(pi),i = 1, . . . ,k} is a pre-skeleton of fn

for every n ≥ 0. By Lemma 4.5, it has a subset that is a skeleton of fn. It follows
from Theorem B that fn has finitely many physical measures with number bounded

by P =
∏k

i=1π(pi) = #S.

Moreover, because elements of S are all distinct fixed points of fnP for any n > 0, it is
a skeleton for fnP , n > 0. Then by Theorem B, fnP have the same number of physical

measures for every n > 0. Let μ be a physical measure of fP . By Proposition 5.17, μ is

ergodic, and its conditional measures along the Pesin unstable manifolds are equivalent
to the Lebesgue measure on the leaves. Below we will show that μ is ergodic for fnP for

all n > 0.

To this end, let μ̃ be any ergodic component of μ with respect to fnP ; then the

conditional measures of μ̃ along the Pesin unstable manifolds are still equivalent to the
Lebesgue measure on the leaves. It then follows from the argument of Proposition 5.17

that μ̃ is a physical measure of fnP . Because the number of physical measures of fnP is

constant, μ̃ must be the only ergodic component of μ with respect to fnP . It then follows
that μ= μ̃, which is ergodic for fnP .

Then, by the classical work of Ornstein and Weiss [41], every physical measure of fP

is a Bernoulli measure.

7. Proof of Theorem E

In this section, we study the robustness of the skeleton and physical measures under C1

topology among C1+ diffeomorphisms and prove Theorem E.
For this purpose, we assume that f : M → M is a C1+ partially hyperbolic diffeo-

morphism with a mostly expanding center and U a C1 neighbourhood of f satisfying

Lemma 5.3 and Proposition 5.17. Let b0 be given in Lemma 5.3 and r1 be given by Propo-
sition 5.17. We take S(f) = {p1, · · · ,pk} a skeleton of f. Because

⋃k
i=1Fs(Orb(pi(f)),f)

is dense in the manifold M, by the continuity of stable foliation with respect to

diffeomorphisms in C1 topology, we may assume that U is sufficiently small such that
for any C1 diffeomorphism g ∈ U , the continuation of S(f) given by the continuation

of hyperbolic saddles S(g) = {pi(g), · · · ,pk(g)} satisfies that
⋃k

i=1Fs(Orb(pi(g)),g) is r1
dense; that is, for any x ∈H(b0/2,g),

k⋃
i=1

Fs(Orb(pi(g)),g) � Wu
r1(x,g) �= ∅,

where Wu
r1(x,g) is given by Lemma 5.11.

Note that S(g) may not be a skeleton. In the following, we will show the relation

between skeletons of diffeomorphisms in U . For the discussion in the next section, we will

state the following lemma for C1 diffeomorphisms in U .
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Lemma 7.1. For C1 diffeomorphisms in U , the number of elements of a skeleton varies

upper semi-continuously. More precisely, for g ∈ U :

(1) S(g) = {p1(g), · · · ,pk(g)} is a pre-skeleton of g; thus, it contains a subset that is a

skeleton of g;

(2) suppose that {q1(g), · · · ,ql(g)} is a skeleton of g; then there is a C1 neighbourhood
V of g such that for any h ∈ V, {q1(h), · · · ,ql(h)} is a pre-skeleton of h.

Proof. By Proposition 6.8, g admits a skeleton {q1(g), · · · ,ql(g)} such that each qj(g)

(j = 1, · · · ,l) has unstable manifold with size r1. Then by the previous assumption on U ,
for every 1 ≤ j ≤ l, there is a 1 ≤ i ≤ k such that Fs(Orb(pi(g)),g) � Wu

r1(qj(g),g) �= ∅.
Thus, by the inclination lemma, Fs(Orb(qj(g)),g) is accumulated by Fs(Orb(pi(g)),g),

which implies that ∪k
i=1Fs(Orb(pi(g))) is dense in the manifold M. This finishes the proof

of (1).
The proof of (2) is quite similar. Take V sufficiently small such that for any C1

diffeomorphism h ∈ V, the continuation {q1(h), · · · ,ql(h)} satisfies the condition that

∪k
i=1Fs(Orb(qi(h)),h) is r1 dense. By Proposition 6.8, every h ∈ V ⊂ U admits a skeleton

{q′1(h), · · · ,q′t(h)}, such that each q′i(h) has unstable manifold with size r1. Then for every
1≤ j ≤ t, there is a 1≤ i≤ l such that Fs(Orb(qi(h)),h) �Wu

r1(q
′
j(h),h) �= ∅. Thus, by the

inclination lemma, Fs(Orb(q′j(h)),h) is accumulated by Fs(Orb(qi(h)),h), which implies

that ∪k
i=1Fs(Orb(qi(h)),h) is dense in M. This finishes the proof of (2).

Thus, by Lemma 4.4, the number of elements of the skeleton of g is bounded from

above by k = #S(f). It follows that, restricted to a C1 open and dense subset U◦ ⊂ U ,
the number of elements of a skeleton for diffeomorphisms of U◦ is locally constant. More
precisely, for any 1≤ i≤ k, we write

Ui = {g ∈ U ; skeleton of g has less than i number of elements.}

Then Ui is an open set, and U◦ = U1

⋃
2≤i≤k(Ui \Cl(Ui−1)) satisfies our requirement.

By Theorem B, the number of physical measures for C1+ diffeomorphisms in U◦ is

locally constant.
Suppose that fn ∈ U◦ is a sequence of C1+ diffeomorphisms such that fn → f0 ∈ U◦.

We assume that all fn have m ≤ k physical measures. By the previous argument, all

diffeomorphisms fn and f0 have the same number of elements in their skeletons. In
particular, by Lemma 7.1, we may take a skeleton S(f0) = {p1(f0), · · · ,pm(f0)} of f0 such

that its continuation S(fn) = {p1(fn), · · · ,pm(fn)} is a skeleton of fn. For fn (n ≥ 0),

denote by μn,1, · · · ,μn,m the physical measures of fn associated with the periodic point
pj(fn) as explained in Theorem B. Next we are going to show the following.

Lemma 7.2. μn,i
weak∗−→ μ0,i.

Proof. For simplicity, we will only prove it for i = 1. We prove by contradiction and

assume (after taking subsequence if necessary) that μn,1
weak∗−→ μ �= μ0,1.

By Proposition 5.17, the space G(·) is compact and convex; extreme elements of G(·) are
precisely those physical measures, and it varies in a upper semi-continuous fashion with
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respect to diffeomorphisms in U under C1 topology. Thus, μn,1 ∈ G(fn) and μ ∈ G(f0).

Moreover, μ can be written as a combination of the physical measures of f0:

μ= a1μ0,1+ · · ·amμ0,m.

By our assumption, a1 �= 1; thus, there is 1< i≤m such that ai > 0. We will show that

this implies heteroclinic intersection between p1(fn) and pi(fn), which is a contradiction.
Take r > 0 sufficiently small, such that Br(pi(f0)) ⊂ ∪x∈Wu(pi(f0),f0)Fs(x,f0). Then

by the continuity of unstable manifolds of pi(·) and the continuity of stable foliation

with respect to diffeomorphisms, there is n0 such that for any n > n0, any point x ∈
Br(pi(fn)),

Fs
loc(x,fn) � Wu(pi(fn),fn) �= ∅. (25)

By Theorem B, pi(f0) ∈ supp(μ0,i) and μ0,i(Br(pi(f0))) > 0. Because μn,1 → μ, which
also assigns positive measure to Br(pi(f0)), there is n>n0 such that μn,1(Br(pi(f0)))> 0.

In particular, we have supp(μn,1)∩Br(pi(f0)) �= ∅. Again by Theorem B, supp(μn,1) =

H(p1(fn),fn); thus, Fs( Orb(p1(fn)),fn)∩Br(pi(f0)) �= ∅. By (25),

Fs(Orb(p1(fn))) � Wu(pi(fn),fn) �= ∅,

which contradicts the fact that {p1(fn), · · · ,pk(fn)} is a skeleton of fn and thus by

Lemma 4.1[(1)] there is no heteroclinic intersection between pi(fn) and pj(fn) for
1≤ i �= j ≤ k.

To prove Theorem E, it remains to show that for diffeomorphisms in Diff1+(M)∩U◦,
the supports of corresponding physical measures and the closures of their basins vary in
a lower semi-continuous fashion, both in the sense of the Hausdorff topology.

Indeed, by the unstable manifold theorem of fixed saddle, for each R > 0, the local

invariant manifolds Wu
R(Orb(pi(g),g)) vary continuously with g ∈ U ; moreover, the stable

foliation varies continuously with respect to g. Thus, the closures of Wu(Orb(pi(g),g))

and
⋃

x∈Wu( Orb(pi(g)),g)
Fs(x,g) both vary in a lower semi-continuous fashion with g,

relative to the Hausdorff topology. By Theorem B, this means that the supports and
the closures of the basins of the physical measures vary lower semi-continuously with the

dynamics. The proof of Theorem E is now complete.

8. Proof of Theorem F

In this section we will generalise the result of Theorem E to C1 generic diffeomorphisms

in U . The proof is similar to [32, Theorem B]. The key observations are as follows:

• C1+ diffeomorphisms are dense in C1 topology.
• Skeletons are upper semi-continuous in U .
• The support of physical measures for C1+g ∈ U are homoclinic classes, which are

(generically) Lyapunov stable and lower semi-continuous with the dynamics.
• The candidate space of physical measures, G(·), is upper semi-continuous.

These properties will allow us to find a residual subset of U , consisting of continuity points

of H(pi(·),·) and G(·). We will prove Theorem F on this residual subset of U .
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Throughout this section, let f :M →M be a C1+ partially hyperbolic diffeomorphism

with a mostly expanding center, S(f) = {p1, · · · ,pk} be a skeleton of f and U be the C1

neighbourhood of f provided by Theorem E. Recall that by Lemma 7.1, the cardinality

of skeleton varies in an upper semi-continuous way; we may choose a C1 open and

dense subset U◦ ⊂ U such that the cardinality of skeleton is C1 locally constant for

diffeomorphisms in U◦.
Take any C1+ diffeomorphism g ∈ U◦; then g has l ≤ k physical measures due to

Theorem E. Furthermore, there is a subset of the continuation S(g) = {p1(g), · · · ,pk(g)}
that forms a skeleton of g. After reordering, we may assume {p1(g), · · · ,pl(g)} to be a
skeleton of g. Then by Lemma 7.1[(2)], there is a C1 neighbourhood V ⊂ U◦ of g such

that for any C1 diffeomorphism h ∈ V, {p1(h), · · · ,pl(h)} forms a skeleton of h.

Then by Lemma 4.1[(2)], for any C1 diffeomorphism h ∈ V and any 1 ≤ i �= j ≤ l,
Wu(Orb(pi(h)),h) ∩ Fs( Orb(pj(h)),h) = ∅. Using Bonatti and Crovisier’s connecting

lemma ([8]), we see that for any diffeomorphism h′ ∈ V and any 1≤ i �= j ≤ l,

Cl(Wu(Orb(pi(h
′)),h′))∩Cl(W s(Orb(pj(h

′)),h′)) = ∅,

because otherwise one can create a nontrivial intersection between Wu( Orb(pi(·)),·) and
Fs(Orb(pj(·)),·).
By Proposition 4.2,

Cl(Wu( Orb(pi(h
′)),h′)) =H(pi(h

′),h′)⊂ Cl(W s( Orb(pj(h
′)),h′)).

Thus, we have

H(pi(h
′),h′)∩H(pj(h

′),h′) = ∅, and (26)

Cl(Wu(Orb(pi(h
′),h′)))∩Cl(Wu( Orb(pj(h

′)),h′)) = ∅. (27)

We need the following generic property proved by Morales and Pacifico [17].

Proposition 8.1. For every h that belongs to a C1 residual subset of diffeomorphisms
R0 and every periodic point p of h, the set Cl(Wu( Orb(p),h)) is Lyapunov stable.

Recall that the map G that maps a diffeomorphism h ∈ V to G(h) is upper semi-

continuous by Proposition 5.17. Let R1 ⊂ V be the residual subset of diffeomorphisms
that are continuity points of the map G. For each 1≤ i≤ l, also consider the map Ii from
V to compact subsets of M :

Ii(h) =H(pi(h),h).

Because homoclinic classes vary lower semi-continuously with respect to diffeomorphisms

(because they contain hyperbolic horseshoes), there is a residual subset of diffeomorphisms
R2 ⊂ V that consists of the continuity points of Ii for every 1 ≤ i ≤ l. Now let us take

R=R0∩R1∩R2 ⊂V. We are going to show that the residual setR satisfies the conditions

we need.

Proposition 8.2. Every C1 diffeomorphism h ∈R has exactly l physical measures, each

of which is supported on Cl(Wu(Orb(pi(h)),h)) for some i = 1, · · · ,k. Furthermore, the
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basin of each physical measure covers a full-volume subset within a neighbourhood of its
support.

Proof. For any C1+ diffeomorphism h′ ∈ V, denote by μh′,1, · · · ,μh′,l the ergodic

physical measures of h′. Then by Proposition 5.17, G(h′) is the simplex generated by

{μh′,1, · · · ,μh′,l}. For any h ∈ R, by the continuity of the map G at h, we see that

G(h) = G(h) is a simplex of dimension mh ≤ l. In particular, the number of extreme
elements of G(h) is at most l. Below we will show that it is in fact l.

Denote the extreme points of G(h) by μh,1, · · · ,μh,mh
. Let hn be a sequence of C1+

diffeomorphisms converging to h in C1 topology. By continuity of G(·) and relabelling
if necessary, we may assume that limμhn,i = μh,i for i = 1, · · · ,mh. Note that μh,i is

supported on Cl(Wu(Orb(pi(h)),h)). This is because by Theorem B, μhn,i is supported

on Cl(Wu(Orb(pi(hn)),hn)) =H(pi(hn),hn), and h is a continuity point of the map Γi(·),
so we must have limnH(pi(hn),hn) =H(pi(h),h).

Next, we claim that mh = l. Assume that this is not the case. Then we take mh <

j ≤ l and take a weak-∗ limit μh = limnμhn,j . Note that μh ∈ G(h) is supported on

Cl(Wu(Orb(pj(h)),h)) by the discussion above. Take any ergodic component μ̃h of μh;
then μ̃h ∈ G(h) by Lemma 5.18 and is still supported on Cl(Wu( Orb(pj(h))),h). Thus,

by (26), μ̃h �= μh,i for every i = 1, · · · ,mh. We have thus created a new extreme point of

G(h), which is a contradiction.
To finish the proof, we have to show that each μh,i is a physical measure. Because

Cl(Wu(Orb(pi(h)),h)) is Lyapunov stable, we can take Ui ⊃ Vi open neighbourhoods for

each Cl(Wu(Orb(pi(h)),h)), such that {Ui}i=1,···,l are disjoint and for each i and any
n > 0, hn(Vi) ⊂ Ui. By Proposition 2.12, there is a full-volume subset Γi ⊂ Vi such that

for any x ∈ Γi, any limit μ of the sequence 1
n

∑n−1
i=0 δhi(x) belongs to G(h). Note that

because x∈ Vi, we have h
n(x)∈Ui for all n≥ 1. As a result, μ is supported on Ui. On the

other hand, μh,i is the only ergodic measure in G(h) that is supported on Ui. It follows
that μ = μh,i. This implies that Lebesgue almost every point of x ∈ Vi belongs to the

basin of μh,i. The proof is complete.

We conclude the proof of Theorem F with the following lemma.

Lemma 8.3. The basin of μh,i for i= 1, · · · ,l covers a full-volume set.

Proof. Let Γ be the full-volume subset given by Proposition 2.12. We are going to show
that vol(Γ\

⋃l
i=1B(μh,i)) = 0.

We prove by contradiction. Write Λ = Γ \
⋃l

i=1B(μh,i) and suppose that vol(Λ) > 0.

Let x ∈ Λ be a Lebesgue density point of Λ, which means that for any r > 0, we have
vol(Br(x)∩Λ) > 0. Let μ be any limit point of the sequence 1

n

∑n−1
i=0 δhi(x). Because

μ ∈G(h), μ can be written as a combination of μh,i:

μ= a1μh,1+ · · ·+alμh,l,

where a1+ · · ·+ak = 1.
Suppose without loss of generality that a1 > 0; then μ(V1) > 0, where V1 is the

neighbourhood of Cl(Wu(Orb(pi(h)),h)) in the proof of the previous proposition. Thus,

there is n > 0 such that 1
n

∑n−1
i=0 δhi(x)(V1) > 0. In particular, there is 0 ≤ m ≤ n− 1
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such that hm(x) ∈ V1. Take ε > 0 sufficiently small; then we have hm(Bε(x)) ⊂ V1. By

Proposition 8.2, fm(Bε(x)∩Λ) intersects with the basin of μh,1 on a positive volume

set. Because the basin of a measure is invariant under iteration of h and h−1, we have
vol(Λ∩B(μh,1))> 0, which contradicts the choice of Λ.

9. Gibbs-Markov-Young structure

To study statistical properties of some nonuniformly hyperbolic systems, in [53] Young
constructed Markov towers, which are Markov partitions with infinitely many symbols and

certain recurrence property. In particular, she used towers to study statistical properties

of these nonuniformly hyperbolic systems, including the existence of physical measures,

exponential decay of correlations and the validity of the central limit theorem for the
physical measure. These structures have some properties which address to Gibbs states

and they are nowadays commonly called as GMY structures.

In [2], Alves and Li obtained GMY structures for partially hyperbolic attractors and
they managed to prove the exponential decay of correlations: if the lack of expansion

of the system at time n in the center-unstable direction is exponentially small, then

the system has some GMY structure for physical measures with exponential decay of
recurrence times. In this section we will show that their criterion is satisfied for any

physical measures of any C1+ diffeomorphisms with a mostly expanding center.

As before, we assume f to be a C1+ partially hyperbolic diffeomorphism with a mostly

expanding center, {p1, · · · ,pk} is a skeleton of f and μ1, · · · ,μk are the corresponding
physical measures of f in the sense of Theorem B. Recall that P =

∏k
i=1π(pi).

By Corollary C, {fnP }n>0 also have a mostly expanding center, and they share the

same physical measures and skeletons. Therefore, to simply notation, we may assume
that {pi}ki=1 are all fixed points and P = 1. Moreover, by Proposition 5.1, we may assume

that there is b0 > 0 such that for any μ ∈Gu(f),∫
log‖Df−1 |Ecu(x) ‖dμ(x)<−b0. (28)

The notation below was used by Alves and Li [2] and clearly resembles our definition

of hyperbolic times.

Definition 9.1. Given b > 0, we say that f is b nonuniformly expanding (b-NUE ) at a
point x in the central-unstable direction if

limsup
n→∞

1

n

n∑
j=1

log‖Df−1 |Ecu(fj(x)) ‖<−b. (29)

If f satisfies (b-NUE) at some point x, then the expansion time function at x,

Eb(x) = min

{
N ≥ 1 :

1

n

n∑
i=1

log‖Df−1 |Ecu(fi(x)) ‖<−b/2 for any n≥N

}
, (30)

is defined and finite. We call {x : Eb(x) > n} the tail of b/2-hyperbolic times (at

time n).
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We need the following two propositions from [2], which play a key role in the proof of

decay of correlations and the central limit theorem.

Proposition 9.2 ([2]). Assume for b > 0 that there is a local unstable disk D of f and

constants 0< τ ≤ 1, c > 0 such that

volD(Eb > n) =O(e−cnτ

).

Then some power f l has an physical measure μ and there is d > 0 such that

Cμ(φ,ψ ◦f ln) =O(e−dnτ

)

for Holder continuous φ :M → R and ψ ∈ L∞(μ).

Proposition 9.3 ([2]). Assume for b > 0 that there is a local unstable disk D of f and
constants 0< τ ≤ 1, c > 0 such that

volD(Eb > n) =O(e−cnτ

).

Then some power f l has an physical measure μ; moreover, given any Hölder continuous

function φ, the following limit exists:

σ2 = lim
n→∞

1

n

∫ ⎛
⎝n−1∑

j=0

φ◦f jl−n

∫
φdμ

⎞
⎠

2

dμ.

Furthermore, if σ2 > 0, then there is a rate function c(ε)> 0 such that

lim
n→∞

1

n
logμ

⎛
⎝
∣∣∣∣∣∣
n−1∑
j=0

φ◦f jl−n

∫
φdμ

∣∣∣∣∣∣≥ ε

⎞
⎠=−c(ε).

Remark 9.4. From the proof, the physical measure coincides with the limit of

lim
n→∞

1

n

n−1∑
i=0

volfi(Λ) ,

where Λ⊂D is some subset with positive volume.

With this notation, we are ready to prove Theorem G and Corollary H. It suffices for

us prove only for physical measures μ1: Take D = Wu
r (p1). We will show in the end of

this section that D satisfies the following property.

Lemma 9.5. There are constants 0< τ ≤ 1 and c > 0 such that

volD(Eb0 > n) =O(e−cnτ

).

Then we may apply Proposition 9.2 and Proposition 9.3 on some physical measure μ for

some power f l of f. Moreover, by Proposition 6.9, Lebesgue almost every point belongs
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to the basin of μ1, and thus by Remark 9.4, for any subset Λ⊂D with positive volume,
we have

lim
n→∞

n−1∑
i=0

volfi(Λ) = μ1.

Thus, we conclude the proof of Theorem G and Corollary H.

It remains to show the proof of Lemma 9.5.

Proof. We need the following result, which generalises [24, Theorem 1].

Proposition 9.6 ([23, Theorem D’]). Let B be any foliation box for the unstable foliation

Fu of f, A be any Hölder function and IA = {
∫
Adμ}μ∈ Gibbsu(g). Then ∀ε > 0, ∃δ > 0,

C > 0 such that for any plaque L of Fu | B,

volL

({
x : d

(
1

n
Sn(A)(x),IA

)
≥ ε

})
≤ Ce−δn,

where Sn(A) =
∑n

i=1A(f
i(x)).

Fix B to be any foliation box for the unstable foliation Fu such that D⊂B. By (28), for
A= log‖Df−1 |Ecu(x) ‖, IA ⊂ (∞,−b0). Applying the previous proposition with ε= b0/2,

we obtain C > 0,δ > 0 such that for any plaque L of Fu | B,

volL

({
x :

1

n

n∑
i=1

log‖Df−1 |Ecu(fi(x)) ‖ ≥ −b0/2

})
≤ Ce−δn. (31)

Note that

{x : Eb0 > n} ⊂
⋃

m≥n

{
x :

1

n

n∑
i=1

log‖Df−1 |Ecu(fi(x)) ‖ ≥ −b0/2

}
.

Thus, by (31), there are C ′ and δ′ such that for any unstable plaque L⊂ B,

volL(Eb0 > n)≤ C ′e−δ′n.

Because D is the local unstable manifold at p1, Fu also induces a subfoliation of D

(note that dimD = dimEcu). It is well known that Fu is absolutely continuous, and so
is the subfoliation of D. Then the previous inequality implies that there is C0 > 0 such

that

volD(Eb0 > n)≤ C0e
−δ′n. (32)

Then Lemma 9.5 follows with τ = 1.
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