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Ultrafast Electron Microscopy (UEM) has emerged as a novel characterization technique to study the 

time-resolved dynamics of nanoscale phenomena [1]. The temporal resolution obtained in this 

technique, ~600 fs, enables the real-space imaging of phenomena such as coherent acoustic phonons [2] 

and plasmons [1]. A typical image dataset generated during a UEM experiment includes a series of time-

indexed images, along with metadata regarding the pixel resolution and the time of impact of the 

stimulating beam. This series of images together describe the dynamic behavior of the nanoscale 

feature(s) relevant to the study. During post-processing, one of the predominant motivations for analysis 

pertains to the quantification of this dynamic behavior. In previous studies, such analyses have been 

conducted using manual methods, such as the space-time contour plots in [3]. The emergence of 

machine learning (ML) techniques as a supplementary toolbox presents an opportunity to automate the 

post-processing of UEM images, reduce human-induced bias in the processing steps, and decrease the 

turnaround time for analysis.  

 

                                (a)                                                                                        (b) 

    
 

Figure 1. (a) A major motivation for post-processing analysis pertains to the quantification of the 

dynamics of nanoscale features. The direction of motion of 3 selected phonon wavefronts during this 

time-period is shown using red arrows. (b) An overview of the neural network architecture used in this 

work. The input and the output are of the same dimensions. The number of trainable filters in each layer 

of the network is denoted on top of the layer. 

 

In this study, we have implemented a ML based workflow to extract quantitative information regarding 

the motion of coherent acoustic phonons that propagating through a characteristic two-dimensional 

material. The specific details regarding the material and the experiment setup will be discussed 

elsewhere, but this workflow is generalizable to other typical UEM datasets. Given an image dataset, the 

dynamic behavior of features in the dataset is quantified in this workflow by computing pixel-level 
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optical flow vectors [4] between image pairs, which maps a pixel in the first image to a displacement 

vector corresponding to its position in the second image. Two types of image pairs are constructed: 

using successive images and using a base image (taken before stimulation) and an image taken after the 

time of stimulation. The use of machine learning for optical flow computation [5] has gained popularity 

in the last few years owing to the development of advanced machine learning models and access to 

better computing resources. In the current work, a neural network modeled after U-net [6] is trained 

under a semi-supervised learning algorithm to compute pixel-level optical flow between image pairs. 

The model architecture is presented in Figure 1. The model takes as input a pair of grayscale images. 

The input images are fed forward through an encoder block, during which a lower-dimensional feature 

representation of the image pair is learnt by the model. In the decoder part of the model, the encoded 

representation is progressively upsampled back to the input dimensions. The target output of the model 

is the pixel-level optical flow vectors corresponding to the input image pair. A major challenge to the 

workflow is the lack of manually annotated ground truth data. To overcome this, pseudo-ground truth 

labels are generated using the optical flow computation provided as part of the OpenCV library [7]. The 

‘relevant’ pixels are isolated in a pre-processing step by analyzing the distribution of peaks in the Fast 

Fourier Transform (FFT) of the time-profiles of pixel intensities. This unique pre-processing step 

improves the accuracy of optical flow computation. The model is pre-trained in a supervised manner 

using this pseudo ground truth. Following this, the model is fine-tuned in an unsupervised manner. The 

loss function that is implemented during the fine-tuning step measures the ability of the model to 

reconstruct the target image using the source image and the computed optical flow vector. 

 

 
Figure 2. A characteristic example of how the workflow is used to extract meaningful inference from 

any given image pair in the dataset. The optical flow vector is transformed to pixel-level speed and angle 

of motion. Furthermore, a feature vector can be constructed for any given region of interest (ROI) using 

the raw output and the transformed output. Work is in progress currently to explore the utility of such 

feature vectors for downstream classification tasks. 

 

A characteristic way to interpret an output from the trained neural network is shown in figure 2. The 

optical flow vector that is obtained at every pixel is transformed to more intuitive measurements such as 

speed and direction. This body of work presents an opportunity for deeper analysis by leveraging the 

optical flow computations performed for individual image pairs. For example, as shown in the right-half 

of figure 2, a feature vector for a selected region of interest (ROI) can be constructed by concatenating 
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the average speed within the ROI from successive image pairs. This feature vector can be used for 

further downstream analysis. Currently, work is in progress to explore the utility of such a feature vector 

towards training a classification model to identify the different modes of dynamic behaviors exhibited 

by the acoustic phonons. This workflow is generalizable to a real-space image dataset obtained from 

UEM, and is a step towards automated analysis of motion quantification of nanoscale features [8]. 
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