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The response of micron-scale inhomogeneities dictates the overall dynamic, structural and chemical 
response of many materials. Of particular interest is the response of micron scale voids.  It is believed 
that such micron scale voids are responsible for the nucleation of damage leading to structural failure in 
metals and to initiation of detonation in explosive material under high strain-rates.  A critical step 
towards developing safer, stronger, and longer lasting materials in a range of applications from energy to 
defense requires understanding the dynamic response of these inhomogeneties on the micron-scale. 
 
X-rays are particularly well suited for micron-scale materials studies due to their short wavelength and 
ability to penetrate bulk materials.  Combining this ability with the intense ultrafast pulses from X-ray 
free electron lasers such as SLAC’s Linac Coherent Light Source (LCLS) provides an ideal system for 
studying material response under extreme conditions such as impact, high load, or other non-equilibrium 
processes.  Here we demonstrate this groundbreaking ability by showing sub-micron single-shot X-ray 
imaging of laser-shocked materials performed at the Materials in Extreme Conditions (MEC) hutch at 
the LCLS in January 2014.  We imaged shock wave interactions with 10-micron voids in two single 
crystal materials: lithium floride (LiF) and the explosive pentaerythritol tetranitrate (PETN) with near 
100 nm resolution.  Shock wave interactions with voids in explosive are of particular interest due to the 
prevailing theory that detonation initiation is caused by void collapse. 
 
Fig. 1a shows the experimental setup at the MEC hutch for these studies.  The LCLS beam was tuned to 
6 keV and focused through a set of beryllium compound refractive lenses (CRLs)[1] to focus the beam 
down to near 100 nm as verified through ptychographic imaging of the focused beam as demonstrated 
previously [2,3]. The ~150 micron thick single crystal samples (either LiF or PETN) were placed at a 
variable distance (about 5 cm) behind the focus which allowed for an adjustable spot size on the sample 
(2-100 microns) depending on the focus to sample distance.  Several detectors were used in these 
experiments to capture either the low angle coherent scattering (coherent diffractive imaging or Gabor 
holography) or the higher angle Bragg X-ray diffraction (XRD).  For the low angle scatter, several 
detectors were available in order to optimize dynamic range, sensitivity, and pixel size including an 
Andor direct detection CCD, an FLI phosphor coupled CCD, and a 1x2 CS-PAD.  These detectors were 
placed 4.1 m behind the samples. For the higher angle XRD a 4x4 array of CS-PAD detectors were 
used.  Due to the brilliant (1012 photons) coherent pulses with 50 fs pulse duration, the laser shock 
dynamics were captured with no blur in a single pulse.  The shock was driven perpendicular to the 
XFEL beam by focusing down the two arms of the 10 Hz glass drive laser (up to 35 J per pulse at 532 
nm) into a thin ablation layer consisting of a polyimide (25 microns) covered with ~100 nm of 
aluminum.  Shock pressures ranged from a few GPA up to 10 GPA as measured with line resolved laser 
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velocity interferometer system for any reflector (VISAR).  A silicon channel cut monochromator was 
also used on some shots to narrow the XFEL bandwidth.  Fig1 b and c show respectively a Gabor 
hologram of a collapsing void in PETN and the simultaneous dynamic XRD.  These images show the 
two-wave structure of the shock (plastic and elastic wave) and Bragg shifting and broadening due to 
lattice distortion.  Fig. 2 shows a series of four voids before and during the shock loading with 
increasing time delay between the drive laser and XFEL image.   
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Figure 1.  a) Schematic of the experimental setup showing the focused 6keV LCLS beam illuminating 
the laser-machined voids in the single crystal sample with the 20 ns glass laser (532 nm) beam driving a 
shock wave perpendicular to the XFEL beam; b) single-shot X-ray image of a the two-wave shock 
structure interacting with the 10 micron void in a PETN single crystal; c) Dynamic X-ray diffraction 
pattern taken simultaneously with the image showing Bragg peak shifting and broadening due to lattice 
compression. 

 
Figure 2.  A montage of preliminary images comparing the static (top) and dynamic (bottom) single 
pulse images of four 10 micron diameter voids in 150 nm thick PETN at different delays with respect to 
the laser drive.  The shock drive surface is at the top with the shock wave propagating towards the 
bottom.  These images were taken on the FLI detector with the detector placed 4.1 m behind the 
samples. 
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