
J. Fluid Mech. (2024), vol. 1000, A44, doi:10.1017/jfm.2024.1043
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We study the effect of geometrical confinement on thermal convection by laboratory
experiments and direct numerical simulations using Hele-Shaw geometries (typically the
gap-to-height aspect ratio 0.12) for the Prandtl number Pr ≥ 40 and the Rayleigh number
Ra ≤ 6 × 107. Under such strong unidirectional confinement, the convective flows are
forced to squeeze within the narrow gap and exhibit unique spatiotemporal signatures,
which contrast those in unconfined systems. With the increase of Ra, we identify that
the system experiences five convective regimes that can be classified from two aspects,
time dependency and flow dimensionality: (I) quasi-two-dimensional (quasi-2-D) steady
flow; (II) quasi-2-D flow with oscillatory corner rolls; (III) three-dimensional (3-D) flow
with oscillatory corner rolls; (IV) 3-D steady flow; and (V) 3-D time-dependent motion of
plumes around sidewalls. Notably, unsteadiness does not emerge globally, but is localised
near the sidewalls as oscillatory corner rolls, resulting in the regime transitions happening
in a quasi-steady manner. We confirm that these regime transitions show less dependence
on both Pr and the other (wider) horizontal scale of the geometry. Moreover, we find
that a recently proposed criterion ‘degree of confinement’ (Noto et al., Proc. Natl Acad.
Sci. USA, vol. 121, issue 28, 2024, e2403699121) successfully explains the emergence
of 3-D structures, expanding its applicable range to smaller Ra. This study deepens the
comprehension of the thermal convection emerging in tight geometries, impacting across
disciplines, such as Earth and planetary science, and thermal engineering.
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1. Introduction

Thermal convection emerges across diverse geometrical environments in both natural
and industrial systems. For convection in barely confined domains, such as atmospheres
(Atkinson & Wu Zhang 1996), oceans (Marshall & Schott 1999), lakes (Bouffard &
Wüest 2019), planetary mantles (Schubert 1992) and outer cores (Cheng et al. 2015), the
lateral constraints are insignificant, regulating their large-scale structures only. However,
in most cases, fluids are in contact with no-slip solid matrices enclosing fluid domains
laterally. An example of extremely confined convection can be found in porous media
(Hewitt, Neufeld & Lister 2012; De Paoli 2023). Since the fluids percolate through
pores of solid matrices, the inertial effect is irrelevant and the Darcy law is applicable,
simplifying the systems significantly. Between these extremes, we often encounter systems
that are compressed only in one lateral direction, namely vertical slots, e.g. geological
fractures/faults (Patterson et al. 2018), hydrothermal vents (Cherkaoui & Wilcock 2001),
ice crevasses (Benn et al. 2009), magma ascent in fissures/dykes (Jones & Llewellin
2021), and small engineering devices like heat exchangers (Vera & Linan 2010) and
microfluidics (Stone, Stroock & Ajdari 2004; Kuo & Chiu 2011). When the confinement
is severe, it dramatically influences the convective dynamics, heat and mass transport,
and mixing as the need to squeeze three-dimensional (3-D) flow structures within the
quasi-two-dimensional (quasi-2-D) gap. It is worth noting that the systems are inherently
3-D, and are not as simple as fully 2-D systems, whereas the domains appear to be 2-D.
The extensive knowledge of thermal convection such as heat transport scaling (Ahlers,
Grossmann & Lohse 2009) is no longer applicable (Huang et al. 2013; Chong & Xia 2016;
Letelier, Mujica & Ortega 2019). Deepening the comprehension of thermal convection
in confined systems is also relevant in understanding mass transport in confined solutal
convection for some analogies (Backhaus, Turitsyn & Ecke 2011; Jha, Cueto-Felgueroso
& Juanes 2011; Liang et al. 2018; Letelier et al. 2023), impacting across disciplines, e.g.
Earth and planetary science, and thermal/reservoir engineering. Yet it is still far from
comprehension, as how the confinement influences convective flows is hardly predictable
only from prescribed parameters.

At which condition do the lateral boundaries appear to be ‘confinement’? We
can hypothesise that ‘unconfined’ and ‘confined’ convection can be differentiated by
considering the dynamical aspect ratio comparing the primordial convective length scale
λ in unconfined scenarios and the minimum lateral length scale D. In the paradigmatic
problem of Rayleigh–Bénard (RB) convection – natural convection induced by an
unstable temperature gradient imposed between two parallel plates normal to gravity –
λ (the horizontal scale of convective cells or plumes) is naturally chosen for a given
combination of fluid properties denoted by the Prandtl number Pr = ν/κ and thermal
forcing represented by the Rayleigh number Ra = gα �T H3/(κν) (Ahlers et al. 2009),
i.e. λ = f (Pr, Ra), where ν is the kinematic viscosity, κ is the thermal diffusivity, g is the
gravitational acceleration, α is the thermal expansion coefficient, �T is the temperature
difference across the fluid, and H is the height of the domain. In addition to these essential
parameters, the domain geometry has been parametrised as the aspect ratio Γ , i.e. how
wide the domain is relative to its height. Although the definition of Γ is natural, it does
not provide a physical meaning from the standpoint of convective flow structures, and
takes us to a brute-force excursion of convective regimes in the Pr–Ra domain for a
given Γ (Chong & Xia 2016; Doering 2020; Shishkina 2021). Recently, Noto, Letelier
& Ulloa (2024) proposed the ‘degree of confinement Λ = λp/D’ – a ratio of the thermal
plume thickness λp possibly formed in an unconfined domain to the minimum horizontal
extent D of the confined domain – as a metric characterising the convective regimes
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Quasi-steady transitions in confined convection

under the influence of strong geometrical confinement. This metric, representing how tight
the confinement is from the plume’s standpoint, integrates all the governing parameters,
i.e. Λ = f (Pr, Ra, Γ ), and successfully explains all the regime transitions in confined
convection explored earlier in Huang et al. (2013), Chong et al. (2015) and Chong & Xia
(2016).

However, Λ exerts only when the system is strongly turbulent, Ra � 107, as it assumes
the presence of thermal plumes. In such conditions for Pr > 1, the boundary layers
control all the dynamics, and it is relatively straightforward to predict plume thickness
λp from the well-known heat transport scaling Nu ∼ Ra2/7 (Ra � 1010) or Nu ∼ Ra1/3

(Ra � 1010), where Nu is the dimensionless convective heat transport (Grossmann &
Lohse 2000) granted experimentally (Xia, Lam & Zhou 2002; Plumley & Julien 2019),
as λp is well linked with Nu by λp ≈ H/(2 Nu) (Zocchi, Moses & Libchaber 1990;
Ahlers et al. 2009). Unlike turbulent RB convection, in laminar to weakly turbulent RB
convection for Ra � 107, it is rather challenging to predict the convective length scale λ.
Here, λ is not necessarily equal to the plume thickness λp, as plumes do not or barely
form, and various composite heat transport scalings have been suggested since multiple
mechanisms dominate the system (Grossmann & Lohse 2000). Accordingly, we expect
unique convective regime transitions that are different from those in high Ra ranges,
requiring laboratory experiments and numerical simulations.

To unveil convective regimes of confined convection, expected to be laminar to weakly
turbulent in unconfined scenarios, we performed laboratory experiments and 3-D direct
numerical simulations (DNS) of RB convection utilising Hele-Shaw geometries. This
paper is organised as follows. In § 2, we explain the laboratory experiment and the
DNS set-ups. Results are reported in § 3, and we focus on describing the flow features
illustrating convective regime transitions. In § 4, we discuss the transition mechanisms
and heat/momentum transport in confined convection. Finally, we sum up our findings
in § 5.

2. Methods

2.1. Laboratory experiment
The apparatus for the laboratory experiments, utilised earlier in Noto, Tasaka & Murai
(2023b), is made of acrylic resin with dimensions of an interior domain that is 200 mm in
width, 60 mm in thickness, and H = 50 mm in height (see schematic diagram in figure 1).
The lateral size of the fluid layer can be configured arbitrarily by inserting multiple acrylic
plates with different thicknesses to achieve target aspect ratios. This also reduces heat loss
through the front and back walls, while keeping transparency. The resulting dimensions
are W = 50, 100 and 200 mm in width, and D = 6, 9 and 12 mm in thickness. The
corresponding aspect ratios are Γx = W/H = 1, 2 and 4, and Γy = D/H = 0.12, 0.18 and
0.24, respectively. Accordingly, the fluid layer is a thin vertical gap, namely, the Hele-Shaw
geometry. The fluid layer is sandwiched by top and bottom copper plates embedding a
meandering channel for circulating water from a thermostatic bath. The surfaces of the
plates are regarded as quasi-isothermal conditions thanks to the high thermal conductivity
of the copper plates and the meandering arrangement of the channels. Top and bottom
temperatures, monitored by thermocouples embedded in the copper plates, are set so that
their mean is equal to a room temperature controlled at 20 ◦C to reduce the influence of
the heat loss across the side boundaries.

Dilute xanthan gum aqueous solution is chosen as the test fluid. Xanthan gum is
a typical polysaccharide thickener and can modify the viscosity of the solution even
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Figure 1. Schematic diagram and dimensions of experimental apparatus, where the embedded image is a
typical particle pathline (pseudo-coloured) compiled using particle images for PIV.

with a small amount of O(10−2) %, with small temperature dependence of viscosity,
unlike glycerol (Horn, Shishkina & Wagner 2013; Weiss et al. 2018). The solution is
usually recognised as a non-Newtonian fluid with shear-thinning viscosity (Whitcomb &
Macosko 1978; Nsengiyumva & Alexandridis 2022). But in a low and narrow range of
the shear rate, O(0.1) s−1, the non-Newtonian effect does not exhibit (Noto et al. 2023a),
therefore we consider the fluids as Newtonian. In this study, 0.02, 0.04 and 0.06 wt % of
the solution are used; their corresponding representative kinematic viscosities evaluated
by a rheometer at the reference temperature (20 ◦C) are ν = 5.7 × 10−6, 21.4 × 10−6

and 108.2 × 10−6 m2 s−1, respectively. Most of the experiments are done with the
intermediate viscosity fluid, and its Pr is estimated at Pr ≈ 150, whereas the others are
40 and 750, respectively.

For velocity field measurement using particle image velocimetry (PIV), resin-made
quasi-neutrally buoyant particles with diameter approximately 100 μm are dispersed in
the degassed solution. A central vertical cross-section of the fluid layer (at y = D/2) along
the x axis is illuminated by a 1 mm thick green laser sheet expanded by a cylindrical
lens. Particle images are acquired by a digital camera with resolution approximately
0.1 mm pixel−1. A pseudo-coloured particle pathline image compiled using particle
images for PIV is shown in figure 1. The PIV with direct cross-correlation algorithm is
performed with 40 × 40 pixels in interrogation window size and 1.5 mm in grid resolution
for most cases.

Each experimental run is conducted independently, initiated from stable temperature
stratification, u ≈ 0, by imposing �T < 0 between the top and bottom boundaries to
avoid any history effects. The top and bottom temperatures are then varied to achieve
�T corresponding to the target Ra, typically achieved in a sufficiently short time for the
time scale of the convection development in the fluid layer. All the experiments cover the
thermal diffusion time τκ ≈ H2/κ ≈ 5 h to ensure thermal equilibrium where we focus in
this study.

2.2. Direct numerical simulations
We perform 3-D DNS for the same geometries as those in the laboratory experiment to
enrich the parameter studies and mostly to capture the information of 3-D flow structure
and heat transport precisely, which is difficult to achieve by experiment. We consider a
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Boussinesq fluid in rectangular vessels by the Cartesian coordinates (x, y, z) with the z axis
in the upward direction. The governing equations on non-dimensional velocity u(u, v, w),
temperature T , and pressure p are as follows:

1
Pr

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + Ra T kz + ∇2u, (2.1)

∇ · u = 0, (2.2)

∂T
∂t

+ (u · ∇) T = ∇2T, (2.3)

where kz is a unit vector in the z direction. The length and time are respectively
non-dimensionalised by the layer height H and the thermal diffusion time H2/κ .
Accordingly, the velocity is normalised by κ/H. The isothermal boundary conditions
are imposed on the top T(z = 1) = 0 and bottom T(z = 0) = 1, while the sidewalls are
adiabatic. No-slip boundary conditions for the velocity are used to simulate the laboratory
experiment unless specified.

We assume that the fluid is so viscous that Pr is regarded as infinite. This assumption
is reasonable as convective flows in such geometries ultimately approach the Darcy-like
flows where Pr is irrelevant due to the strong viscous drag on the lateral walls (Letelier
et al. 2019; Ulloa & Letelier 2022; De Paoli 2023). It is also validated experimentally
in § 3.2, i.e. Pr is insignificant in the present system. Thus the left-hand side of (2.1) is
exactly 0, indicating the balance of the terms on the right-hand side. These equations are
discretised by the finite-difference method in each direction and solved using the ACuTE
algorithm (Kameyama 2005; Kameyama, Kageyama & Sato 2005, 2008). This algorithm
was originally developed for treating mantle convection of rocky planets like the Earth,
where the Stokes flow of highly viscous incompressible fluid is solved in a similar manner
as the artificial compressibility method (Chorin 1967). The validity of this numerical code
has been successfully benchmarked (Kameyama et al. 2005). Here, we treat the viscosity as
constant. We employ uniform grid points in each direction, while the grid interval in the y
direction is set finer than that of x and z to fully resolve flow structure in a narrow space. In
the following results of DNS, Pr is infinite and Γy is fixed as 0.12 in every case. In addition,
for the study of Ra dependence, Ra ranges from 3 × 104 to 6 × 107, while Γx is fixed as 4.
For the study of width dependence, Γx ranges from 0.12 to 8, while Ra is fixed as 1 × 106.
The number of grid points for the case Γx = 4 and Γy = 0.12 is typically 512 × 32 × 128.
In preliminary tests, we increased the number to 1024 × 64 × 256 for higher Ra cases,
and did not recognise any statistical difference. The initial condition for each run is a
linear conduction profile with no motion, and we superposed a small amplitude of random
temperature perturbation on it.

3. Results

3.1. Development of flow structures
We first examine the development of convective flow structures for Γx = 4, Γy = 0.12
and Pr ≈ 150. The development is represented by variations of the time-averaged field of
2-D velocity vectors (u, w) and vorticity ωy = ∂u/∂z − ∂w/∂x measured experimentally
(figure 2). Note that the number of vectors displayed is reduced for better visibility.
For small Ra (Ra = 1.6 × 105), fully steady convection rolls emerge (figure 2a), even
though Ra is sufficiently large to induce unsteady motions in unconfined systems.
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Figure 2. Time-averaged distributions of velocity vectors and vorticity representing a development of
convective flow structures with respect to Ra values (a) 1.6 × 105, (b) 4.8 × 105, (c) 6.7 × 105, (d) 1.3 × 106,
and (e) 2.4 × 106.

Increasing Ra to 4.8 × 105, the convection rolls reduce horizontal size (or increase the
horizontal wavenumber) while keeping the steadiness (figure 2b). Recall that these Ra
conditions are expected to induce strong unsteadiness for RB convection without tight
lateral confinement (Krishnamurti 1970a,b), suggesting that the confinement suppresses
the convective motions to evolve as expected Shishkina (2021). Small rolls emerge at
the corners of the fluid layer at Ra = 6.7 × 105 (figure 2c). The corner rolls accompany
periodic oscillations in both time and space as a result of competition between upward
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Figure 3. A spatiotemporal distribution of velocity component u extracted along the horizontal line at
z/H = 0.75 from figure 2(d).

and downward flows detached from the bottom and top boundaries along both sidewalls.
Notably, the rolls in the interior remain steady, and the unsteadiness appears locally as
the oscillatory corner rolls (OCRs). We remark that the OCRs sometimes form without
entailing unsteadiness, but start oscillating after a sufficiently long time, at least 30 min for
all conditions explored in the experiments. The emergence of corner rolls always involves
unsteadiness, and neither steady corner rolls nor unsteady vertically elongated rolls were
observed. The OCRs widen their horizontal size with the increase of Ra, and so do the
inner steady rolls (figure 2d). The latter is counterintuitive as a wavelength of convective
structures usually decreases with the increase of Ra irrespective of confinement (Ahlers
et al. 2009; Hewitt et al. 2012; Ulloa & Letelier 2022; Noto, Ulloa & Letelier 2023c).
With further increase of Ra, at Ra = 2.4 × 106 (figure 2e), the OCRs maintain, and the
steady rolls in the interior reduce their horizontal size similar to the development at lower
Ra shown in figures 2(a,b). This widening and shrinking at higher Ra is related to the 3-D
flow development and will be discussed further in § 4.2.

To examine the time variation of the OCRs, a spatiotemporal distribution of horizontal
velocity component u(x) at z = 0.75H (figure 3), which is extracted from the time series
of the 2-D velocity vector field, is shown in figure 2(d). This representation clarifies the
coexistence of OCRs at the sidewalls and steady rolls in the interior as mentioned above.
The diagram also indicates that the oscillations of both corner rolls do not synchronise and
have individual oscillation frequencies. The frequency takes values from 0.005 to 0.01 Hz,
and increases with Ra. The frequency is of the same order as the inverse of the circulation
time of the laterally elongated rolls adjoining the corner rolls, and is consistent with values
observed in Koster, Ehrhard & Müller (1986) and Noto et al. (2024). Summarising the
results mentioned above, the regime of OCRs is qualitatively the same as that reported by
Koster et al. (1986).

To characterise the flow structures experiencing the aforementioned transitions further,
we also perform PIV measurements on a cross-section along the y direction. Assuming that
the confinement is tight enough, Poiseuille flow is expected to form within the Hele-Shaw
geometries; otherwise, such a parabolic profile will distort for loose confinement.
Instantaneous velocity vector fields shown in figure 4 display the velocity field measured
at x/H = 0.08, with Ra = 6.7 × 105 (figure 4a), the same condition as in figure 2(c), i.e.
right after the onset of OCR formation, and Ra = 1.7 × 106 (figure 4b), corresponding
to the condition between figures 2(d,e). Note that this cross-section was chosen since the
gapwise flow structures are expected to exhibit noticeable differences at the positions of
the OCRs as the interior remains steady. The colour contour behind the vectors represents
the magnitude of the velocity vectors, (v2 + w2)1/2, normalised by its maximum value in
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Figure 4. Instantaneous velocity vector fields on a y–z cross-section at x/H = 0.08: (a) at Ra = 6.7 × 105,
(b) at Ra = 1.7 × 106, where the colour contour represents the absolute value of 2-D velocity vectors (v, w)

normalised by their maximum value in each field.

the field. The velocity distribution in figure 4(a) illustrates a symmetric, quasi-parabolic
distribution, |v| ≈ 0, across the y axis at any height, representing the Poiseuille flow
though small imperfections due to measurement error recognisable at the bottom wall.
Meanwhile, the Poiseuille flow is perturbed at the higher Ra as shown in figure 4(b).
The velocity distribution seems symmetric in the y direction near the top and bottom
boundaries. The profile is, however, not entirely parabolic, unlike figure 4(a), exhibiting a
skewed 3-D flow structure at the centre. In summary, these results suggest that the OCRs
are characteristic features observed in convection in Hele-Shaw geometries, and they can
be either quasi-2-D (Poiseuille flow) or 3-D (non-Poiseuille flow), depending on Ra. This
will be discussed further with the results of DNS in § 3.3.

The transition from the fully steady roll regime to the OCR regime is also observed in
the experiments with different Γy. All experimental conditions are summarised on a Ra–Γy
parameter space to construct a regime diagram (figure 5). The black solid line indicates
the critical condition of RB convection with lateral wall confinement,

Rac,Γ ≈ (2π)4
(

1 + 1
Γ 2

x

)(
1 + 1

4Γ 2
x

+ 1
4Γ 2

y

)
, (3.1)

presented by Shishkina (2021) with Γx = 4. Beneath the line, convection does not occur,
and thermal conduction state is maintained. The blue squares indicate the fully steady
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Γy

Ra

Shishkina (2021), Γx  = 4

Conduction

(a) (b)

(d ) (e)

(c)

Fully 3-D

Hele-Shaw
Darcy

100

10–1

10–2

104 105 106 107

Figure 5. Regime diagram and plots of the present conditions examined on the Ra–Γy plane. Blue squares
correspond to the steady rolls, and the orange symbols, both diamonds and triangles, are the OCRs. The
diamonds and triangles indicate the regimes without and with widening the inner rolls along the increase
of Ra. The black line indicates critical Rayleigh number Rac,Γ depending on Γy in confined RB convection
given by Shishkina (2021) with Γx = 4. Labels (a) to (e) indicate the conditions corresponding to the velocity
distributions shown in figure 2. The red line indicates the boundary between quasi-2-D and 3-D flows for
turbulent convection proposed by Noto et al. (2024), i.e. (3.2) with the degree of confinement Λ = 1/2. The
star indicates the condition at which Koster et al. (1986) observed the OCRs.

roll regime, and orange symbols (diamonds and triangles) represent the OCR regime. The
labels from (a) to (e) correspond to the conditions shown in figure 2. In the series of plots
for the OCR regime, we change the symbols from diamonds to triangles, corresponding
to before and after the widening of inner rolls shown respectively in figures 2(c,d). The
meaning of this counterintuitive transition will be explained later. The red line in figure 5
is drawn along the criteria of partially 3-D convection proposed by Noto et al. (2024),

Γy = (2cΛ Prβ Raγ )−1, (3.2)

with the coefficients c = 0.14, β = −0.03 and γ = 0.297 originated from Nu scaling (Xia
et al. 2002) and Λ = 1/2. Leaving from the line towards the bottom left (smaller Γy and
Ra) approaches quasi-2-D convection, where Poiseuille flow is observed across the gap,
transitioning from the Hele-Shaw regime to the fully conduction regime through the Darcy
regime. On the other end towards the top right (larger Γy and Ra), the system becomes fully
3-D convection through a partially 3-D regime where the 3-D structures are localised at
the horizontal boundaries (Noto et al. 2024). The star indicates the condition at which
Koster et al. (1986) observed the OCRs, close to the OCR regime in the present study.

3.2. Influence of width aspect ratio and Prandtl number
The OCRs formed in the fluid layer with Γx = 4 (figures 2c–e) appear to span up to
≈ 0.5H in the x direction, suggesting that Γx plays a significant role in the formation
of the OCRs. We thus examine the influence of width aspect ratio Γx. Furthermore, the
dynamics may change depending on the strength of the inertial effect in the system. Here,
we also investigate Pr dependence by changing the test fluid.

Time-averaged distributions of 2-D velocity vectors and vorticity are obtained by
the PIV measurements under the common conditions Ra = 1.3 × 106, Γy = 0.12 and
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Figure 6. Examples of time-averaged velocity vector fields corresponding to the OCR regime at (a) Γx = 2
and (b) Γx = 1 under the common Rayleigh number Ra = 1.3 × 106. Regime diagrams on (c) Γx–Ra and
(d) Pr–Ra parameter spaces.

Pr ≈ 150, for Γx = 2 in figure 6(a) and Γx = 1 in figure 6(b). At Γx = 2, both the OCRs
at the sidewalls and the steady rolls in the interior emerge analogously with Γx = 4. In
comparison with figure 2(c), no essential difference is observed at Γx = 2 besides the
difference in the size of the rolls. The flow field shown in figure 6(b) for Γx = 1 does
not exhibit the inner steady rolls, but the OCRs take place in the entire domain. The
latter is consistent with the previous experimental and numerical works (Ozawa et al.
1992; Babushkin et al. 2009; Chong et al. 2018). Positions of the corner rolls vary in each
experiment, either at the top or bottom corner, but tend to be the top corner in most of the
experiments for Γx = 4. Experimental parameters examined for different Γx are organised
in the regime diagram shown in figure 6(c). The diagram indicates that the OCRs emerge
at the same range of Ra, i.e. Ra ≈ 6.5 × 105, without strong dependence of Γx. These
results suggest that the existence of the no-slip sidewalls (more strictly, say, the existence
of the corner) is more essential than Γx for the emergence of the OCRs.

The influence of Pr is examined by varying the concentrations of xanthan gum solutions
as described in § 2.1 (Pr = 40, 150 and 750) for Γy = 0.12 and Γx = 1. Results based
on the PIV measurement are summarised in a regime diagram shown in figure 6(d). For
sufficiently large Pr (Pr ≥ O(101)), although the flow structures are dependent on Pr,
the heat transport characteristics are regardless of Pr in unconfined systems (Schmalzl,
Breuer & Hansen 2002; Pandey, Verma & Mishra 2014). In confined systems, the diagram
shown in figure 6(d) clarifies the negligible contribution of Pr even in the flow structures,
i.e. the emergence of the OCRs. Such an insensitivity to Pr unique in confined systems
suggests adequacy for adopting the infinite Pr assumption for the DNS described in the
next subsection.

3.3. Flow fields represented by numerical simulations
Numerical simulations are performed to support interpretations obtained through the
laboratory experiments. Figure 7 shows time-averaged flow fields from the DNS
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Figure 7. (Simulation.) Time-averaged distributions of velocity vectors and vorticity assuming infinite Prandtl
number for Γy = 0.12 at different Rayleigh numbers: (a) 1.0 × 105, (b) 4.0 × 105, (c) 6.0 × 105, (d) 2.0 × 106,
and (e) 4.0 × 106.

represented in the same manner as in figure 2; in-plane velocity vectors (u, w) and
out-of-plane vorticity ωy at the middle vertical plane in the y direction are superposed.
For reference, ωy of 2000 in the DNS approximately corresponds to 0.08 s−1 in the
experiments. As mentioned in § 2.2 and discussion of its adequacy in § 3.2, infinite Pr
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Figure 8. (Simulation.) Time-averaged distributions of velocity vectors and vorticity assuming infinite
Prandtl number for Γy = 0.12 at different Rayleigh numbers: (a) 1.0 × 107, (b) 2.0 × 107, and (c) 6.0 × 107.

is assumed. Figures 7(a,b) illustrate the steady roll regime where the number of rolls
increases with Ra. Figure 7(c) is the case with OCRs. Figure 7(d) is also the case with
OCRs, while the number of inner rolls is reduced as observed in the experiments. In
figure 7(e), there still exist OCRs, but the horizontal size of inner rolls decreases again.
All of these features observed in the DNS successfully reproduce the flow patterns in the
experiments (figures 2a–e).

We investigate higher Ra conditions that are difficult to attain in the experiments due
to the limitation of the imposed temperature difference. The Ra = 1.0 × 107 shown in
figure 8(a) is fully steady again even at the corner rolls, and the number of inner rolls
is reduced compared to figure 7(e). The latter reappeared steady states are found for
Ra ≥ 6.0 × 106, beyond the present experimental limit. For Ra = 2.0 × 107 (figure 8b),
the number of inner rolls increases again, yet the flow remains steady. Figure 8(c) uses
the highest Ra in our simulation, showing unsteady motions of plumes near the sidewalls
with slight movement of inner rolls. This type of time-dependent behaviour is found for
Ra ≥ 4.0 × 107.

All the conditions illustrated in figures 7 and 8 are now shown altogether as 3-D
perspective views in figure 9 to grasp the flow dimensionality. Each plot displays
instantaneous non-dimensional temperature isosurfaces T = 0.45 and 0.55, together with
the temperature distribution at the back wall. To the right of the 3-D views, velocity vectors
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Figure 9. (Simulation.) Perspective views of instantaneous temperature isosurfaces of T = 0.45, 0.55 for Γx =
0.12 at different Ra: (a) 1.0 × 105, (b) 4.0 × 105, (c) 6.0 × 105, (d) 2.0 × 106, (e) 4.0 × 106, ( f ) 1.0 × 107,
(g) 2.0 × 107, and (h) 6.0 × 107. Extracted y–z cross-sections of temperature at x/H = 0.25, 2.0 are also
presented, with velocity vectors on them.

and temperature distributions are shown for the y–z cross-sections at x/H = 0.25 and 2.0,
indicated by ticks on the 3-D views. The flow structures are quasi-2-D for figures 9(a–d);
the isosurfaces of temperature are flat in the y direction, i.e. ∂T/∂y ≈ 0, and the velocities
in the y–z planes are parabolic, |v| ≈ 0. Figures 9(a,b) show fully steady rolls, whereas
figures 9(c,d) are cases with OCRs.

Figures 9(e–h) exhibit 3-D flow structures. The OCRs are still present in figure 9(e),
showing counter-currents within the gap that reflect a deviation from the Poiseuille flow.
Unlike the asymmetric velocity profile in the corner roll, the inner roll shows a nearly
symmetric profile in the y direction. Figure 9( f ) is the reappeared steady state at higher Ra
where the corner rolls do not oscillate. The 3-D features appear as alternate alignments of
cold downward and hot upward flows on the front and back walls, respectively. That is, the
quasi-2-D rolls formed at lower Ra orient diagonally. As a result, a considerable amount of
the flow component in y direction is visible in the y–z cross-sections, together with winding
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(a) (b) (c) (d )

(e)

( f ) (g)

0–2 2 4–4

ωy
(×103)

Figure 10. (Simulation.) Time-averaged vorticity fields for Ra = 1.0 × 106 and Γy = 0.12 at different width
aspect ratios Γx: (a) 0.5, (b) 1, (c) 2, (d) 4 and (e) 8. Fields ( f ) and (g) are also for Γx = 4, but with a free-slip
boundary at the right-hand side and both sides as indicated by broken lines.

temperature distribution. The reappeared steadiness results from the avoidance of collision
between upward and downward flows at sidewalls as counter-currents within the gap. If
we observe this situation on the middle x–z plane as in figures 2, 7 and 8, then the pattern
seems to be compatible with quasi-2-D steady corner rolls, but the substance is the 3-D
flow structure in the y direction. Figure 9(g) is also the 3-D steady state, while the number
of inner rolls increases. The structures formed in these conditions can be understood as
3-D convective cells, rather than quasi-2-D rolls. When Ra is increased to 4.0 × 107, the
time dependency appears again; figure 9(h) shows the time-dependent 3-D pattern with
winding isosurfaces of temperature near sidewalls due to unsteady plumes and slightly
swinging inner rolls. The latter is not spontaneous, but a result of lateral propagation of
unsteady plumes. Concerning the development of OCRs with respect to Ra, Koster et al.
(1986) mentioned that it does not exhibit nonlinear development of the oscillation, unlike
usual flow transition along the bifurcation scenario, but restores a steady state. While they
did not mention the 3-D development of the pattern, the key mechanism for the transition
is the deviation from the Poiseuille flow at higher Ra, as we elucidated here.

As tested in the experiments (figure 6), Γx dependence is examined also in the numerical
simulation, with more variations in Γx for Γy = 0.12 and Ra = 1.0 × 106. In figure 10, the
flows are expressed by ωy in the middle x–z cross-section (blue indicates anticlockwise
circulation, red indicates clockwise circulation). In figure 10(a), corner rolls having the
same intensity exist at each corner while keeping a steady state. Figure 10(b) is the case
composed of just pairs of OCRs, while figure 10(c) has the inner region with slender rolls,
analogous to those observed in the experiment (figure 6). Common in figures 10(c–e), the
horizontal scale of the area under the influence of sidewalls is ∼H/2, and the horizontal
scale of each inner roll ∼H/4.

To investigate the influence of the sidewall, we conduct simulations with free-slip
boundary condition at the right side (figure 10f ), and both left and right sides (figure 10g)
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Quasi-steady transitions in confined convection

as expressed by vertical broken lines. Corner rolls emerge only on the left sidewall in
figure 10( f ), and do not emerge on both sidewalls in figure 10(g). These results prove that
corner rolls are maintained by no-slip sidewalls.

4. Discussions

4.1. Emergence of OCRs
The first regime transition observed in both the experiments and the simulations is from
the fully steady roll regime to the OCR regime. We discuss the mechanism of emergence
of the OCRs in this subsection. There are two important facts for the discussion: (1) the
OCRs appear as quasi-2-D flows; and (2) the channel Reynolds number estimated from the
maximum vertical velocity Re = wmaxD/ν is less than unity at the maximum. The former
suggests that the emergence of corner rolls is important in causing the unsteadiness in
quasi-2-D flows, and the latter indicates that the unsteadiness is not from the inertia effect.
The existence of the sidewalls causes a larger velocity gradient near there, and the resulting
pressure gradient forms corner rolls even without the inertia effect. Such corner rolls are
also observed in other confined RB systems even though these have not been discussed as
main issues.

Here, we call governing equations of quasi-2-D confined convection – derived in Letelier
et al. (2019) by the perturbation method considering Hele-Shaw approximation – the
Poiseuille-like velocity profile in the gap with no-slip and adiabatic boundary conditions.
The equations below are the vertical components of the equation of motion and heat
transport equation:

ε2 RaD

Pr
Dw
Dt

= ∂p
∂z

+ T + ∂2w
∂y2 + ε2

(
∂2w
∂x2 + ∂2w

∂z2

)
, (4.1)

ε2 RaD
DT
Dt

= ε2
(

∂2T
∂x2 + ∂2T

∂z2

)
+ ∂2T

∂y2 , (4.2)

where D/Dt = ∂/∂t + u∂/∂x + v∂/∂y + w∂/∂z denotes material derivative, and
RaD = gα �T KH/(κν) = Ra Γ 2

y /12 is the Rayleigh–Darcy number with permeability
K = D2/12. Terms with ε2 (where ε is the anisotropy ratio defined by ε = √

K/H)
represent perturbation from quasi-2-D convection. Neglecting these terms from the
equations above and integrating them in the y direction, we recover Darcy equations
(Hewitt et al. 2012). In the parameter regions that we examined, the inertia term in
(4.1) contains ε2 RaD ≈ 1 and Pr 	 1, so the order of the inertia term is O(Pr−1). This
evaluation is consistent with the small Reynolds number estimated as Re < 1. This is
the reason why the nonlinear development of the oscillatory flow is not exhibited in
the present system, unlike the usual flow transitions for RB convection (Krishnamurti
1970a,b). Meanwhile, in the heat transport equation (4.2), the order of the unsteady term
is evaluated as ε2 RaD ≈ 1 and is not affected by Pr. A sufficiently large temperature
gradient in the corner rolls may induce unsteadiness via the heat transport equation, like
mantle convection that assumes infinite Pr.

4.2. The 3-D development
The second regime transition is distinguished by the formation of 3-D structures, and
here we discuss its details. Summing up the results of the experiments and the numerical
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simulations describes the transition process of the convection from the quasi-2-D flow.
Typical changes observed in the flow field along the flow transition with respect to Ra
are the width variation of the inner convection rolls and the emergence of the OCRs. The
width variation with respect to Ra is not monotonic; the size tends to decrease, but once
increases (figures 2 and 7), unlike the usual RB convection at which the width increases
monotonically with respect to Ra as a characteristic of supercritical convections in finite
fluid layers (e.g. Koschmieder 1993; Hartlep, Tilgner & Busse 2003). The variation
seems to be irrespective of the emergence of the OCRs. Flow field observations in the
y–z cross-section (figures 4 and 9) indicate that restoring ‘fat’ inner rolls is followed
by 3-D development of the flow deviating from Hele-Shaw approximation. Distinct
3-D development is observed with the second thinning of the inner rolls, as shown in
figure 9(e): the flow takes a velocity component in the y direction and is no longer the
simple Poiseuille flow, thus motions of fluid particles are allowed to take 3-D trajectories.

We revisit the regime diagram shown in figure 5, where the different shape of symbols
for the OCR regime, diamonds and triangles, indicate without or with the experience of
widening of inner rolls with the increase of Ra. According to the discussion above, the
boundaries between the different symbols on the diagram correspond to the deviation
from quasi-2-D flow towards 3-D flows. In the figure, the red line indicates the boundary
between 2-D and 3-D flows drawn along a criterion Λ = 1/2 proposed by Noto et al.
(2024). This means that the thickness of plumes formed in ‘unconfined’ RB convection
for a given Ra and Pr condition is half of the layer thickness, resulting in counter-currents
within the gap. The predicted line places around the regime borders distinguished from
the experiment. This suggests that the applicable range of the criterion is widely spread for
relatively smaller Ra, where no strongly turbulent convection occurs under an unconfined
scenario.

In the further development of the 3-D flows with respect to Ra, the convection recovers
the steady flow state as explained in § 3.3. This phenomenon was also reported in Koster
et al. (1986) for Ra ∼ 7 × 106 in the geometry of Γy = 0.102. The 3-D development
modifies the assumptions of quasi-2-D flow mentioned above, and the upward and
downward flows along the side boundaries have sufficient space in the y direction to pass
each other. Similar OCRs were also found in Noto et al. (2024) for higher Ra with smaller
Γy and Pr, but they did not report recovering steady state. This difference may be due
to the difference in Pr, which is approximately 7–80 in Noto et al. (2024), while Koster
et al. (1986) employed 235 in their experiments, and we assume infinite in the numerical
simulation. The lateral confinement effectively augments Pr, weakening the inertial effect.
The other potential reason may be the range of Ra. Noto et al. (2024) considered Ra values
higher than those in the present study, and their systems become entirely unsteady, unlike
the localised unsteadiness in the present study. Since the localisation does not happen
for higher Ra, the steady 3-D regime does not appear. In other words, the localisation of
unsteadiness is the key to the re-emergence of steady 3-D structures.

In summary, the flow transitions observed in the present study are within a
‘quasi-steady’ condition, i.e. unsteadiness appears locally accompanied by corner rolls,
but the interior remains steady. The oscillatory motion of the corner rolls can propagate
the inner region; however, the inner rolls do not exhibit spontaneous unsteady motions.
In addition, the lateral confinement effectively reinforces Pr, suppressing the inertial term
yielding global unsteady motions.
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Figure 11. Dependence of Nusselt number calculated from numerical simulation on (a) Ra (Γx = 4), and
(b) Γx (Ra = 1.0 × 106) for Γy = 0.12. The dotted line in (a) shows the slope of Nu ∝ Ra0.35, obtained by the
empirical formula (Letelier et al. 2019).

4.3. Heat and momentum transport characteristics
Finally, we discuss heat and momentum transport characteristics by investigating
variations of the Nusselt number Nu, and the root mean square (r.m.s.) velocities for the
entire volume. Time-averaged values of the Nusselt number are calculated both at the top
boundary Nutop and at the bottom boundary Nubot:

Nutop = −
〈(

∂T
∂z

)
z=1

〉
S,t

, Nubot = −
〈(

∂T
∂z

)
z=0

〉
S,t

, (4.3a,b)

where 〈·〉S,t stands for the time–surface average on the top or bottom boundary. When
thermally balanced states are achieved after adequate time integration, Nutop ≈ Nubot.
Hence we use Nutop as Nu. The dependence of Nu on Ra is shown in figure 11(a) from
our numerical simulations for Γx = 4.0 and Γy = 0.12. First, the plot at the smallest Ra =
3.00 × 104, which is less than the critical Rac,Γ = 3.04 × 104 predicted by (3.1), takes
value unity (conduction state). At the second smallest value Ra = 4.00 × 104, convection
occurs as indicated by Nu > 1. The Nu value increases with respect to Ra by enhancement
of the flow and the thinning of convection rolls. The variation changes abruptly, and
its slope becomes large at Ra = 3.0 × 106. This condition corresponds to the boundary
between the quasi-2-D flow and the 3-D flow, which can be distinguished by the flow
fields in the y–z cross-section (figure 9). The heat transport is therefore reinforced by the
3-D development of the convection. Note that the relationship between Ra and Nu cannot
be expressed by a simple scaling law Nu ∝ Raγ due to these transitions. However, it has
been shown that the scaling depends on Γy, i.e. γ = f (Γy), in confined convection (Chong
& Xia 2016; Letelier et al. 2019; Noto et al. 2024). For reference, we illustrate with a dotted
line the slope of Nu ∝ Raγ with γ = 0.35 predicted by the empirical formula obtained in
Letelier et al. (2019), γ (Γy) = 0.66 − 0.34 tanh[1.56 log10(Γy) + 2.98]. Overall, the slope
accords with the obtained Nu–Ra trend, except for the Ra range with the OCRs, where the
obtained Nu drops from the slope. The empirical scaling exponent was originally acquired
for periodic boundary domains in Letelier et al. (2019), i.e. no OCR is formed. The drop
from the slope is thus explained by inefficient vertical heat transport by the OCRs, as
those structures do not carry heat directly from one horizontal boundary to another, but
circulate within them. In other words, the vertical heat transport is largely carried by the
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inner rolls, and the formation of the OCRs effectively shrinks the region with efficient
vertical convective heat transport. Such an inefficiency in heat transport diminishes with
the increase of Ra.

Figure 11(b) presents the dependence of Nu on Γx for Γy = 0.12 and Ra = 1.0 × 106.
Some of the points correspond to the flow patterns shown in figure 10; solid diamonds
indicate the values for no-slip sidewalls, while an open diamond indicates the free-slip
sidewalls as in figure 10(g). The case with the smallest Γx has a square horizontal
cross-section (Γx = Γy = 0.12); then Ra is lower than critical for the onset of convection,
which is consistent with former studies (see (3.1); Zhang & Xia 2023). The flow pattern
for Γx = 0.25 is a steady single circulation. For the no-slip conditions (solid diamonds)
of Γx ≥ 0.5, the Nu values approximately monotonically increase with Γx. As discussed
above, the OCRs effectively shrink the region of efficient convective heat transport by the
inner rolls, and the increase of Γx diminishes the latter effect as the horizontal size of the
OCRs does not change with Γx (see figure 10). Accordingly, Nu increases approximately
in a monotonic manner, ultimately approaching that of free-slip sidewalls (open diamond)
where no OCR forms (figure 10g). Since the total heat flux is simply expressed as a
summation of the heat fluxes at the regions of the inner rolls and the OCRs, the laterally
averaged Nu(Γx) influenced by the OCRs can be decomposed into that in each region,
Nuinner and Nucorner. That is, Nu(Γx) = (1 − 2cΓ −1

x ) Nuinner + 2cΓ −1
x Nucorner, where

c is the ratio of the horizontal size of the OCR region WOCR on each sidewall to H,
WOCR = cH. The least squares fitting for Γx ≥ 2 provides c = 0.496, Nuinner = 6.180 and
Nucorner = 4.689. The former two coefficients agree with the qualitative observation of
the horizontal size of the OCRs, WOCR ≈ H/2 (see figure 10), and the Nu value obtained
for the free-slip boundary, Nu = 6.1985 (open diamond). Therefore, Nucorner is estimated
as ≈75 % compared to Nuinner. The latter supports our discussion on the decrease in Nu
due to the OCR formation.

In the statistics of the flow velocity, we calculate the r.m.s. of the total magnitude Urms,
and that of each direction urms, vrms, wrms as follows:

Urms =
√

〈u2 + v2 + w2〉V,t, (4.4)

urms =
√

〈u2〉V,t, vrms =
√

〈v2〉V,t, wrms =
√

〈w2〉V,t, (4.5a–c)

where 〈·〉V,t stands for the time–volume average. As the velocity is normalised by κ/H, the
value 100 approximately corresponds to 0.2 mm s−1 when scaled to the experiment. The
Ra dependence of these values is presented in figure 12(a). All of these values increase
with Ra; on the other hand, vrms is much smaller than wrms and urms, especially for Ra ≤
2.0 × 106. It is more marked by the ratio of vrms to Urms as in figure 12(b). An abrupt
increase of the value is observed at Ra = 3.0 × 106, hence we can distinguish 3-D flow
from quasi-2-D flow by using this ratio. In the 3-D regime, the kinetic energy in the y
direction takes up to 1 % of the total kinetic energy as vrms/Urms ≈ 10−1. The latter is too
small to consider the system isotropic 3-D, but is large enough to impact the heat transport
characteristic (figure 11a).

5. Concluding remarks

In this work, we investigated the effect of unidirectional confinement on thermal
convection by laboratory experiments and direct numerical simulations (DNS) using
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Figure 12. The Ra dependence of r.m.s. values of (a) velocity components calculated from numerical
simulation, and (b) fraction of r.m.s. values, for Γx = 4 and Γy = 0.12.

Hele-Shaw geometries. The target parameter space of Pr and Ra is relatively high Pr
(≥ 40), and from the onset of convection to moderate Ra, Ra ≤ 3 × 106 in the experiments
and Ra ≤ 6 × 107 in the DNS. In the experiments, we quantified the velocity field by
particle image velocimetry, and the flow structures are reproduced well by our DNS
assuming infinite Pr. Combining the results of the experiments and DNS, the convective
transitions along with the increase of Ra can be summarised as follows: (I) quasi-2-D,
steady rolls with similar size; (II) quasi-2-D, oscillatory corner rolls (OCRs) at both
sidewalls and steady inner rolls; (III) 3-D, OCRs and inner rolls accompanied by weak flow
in the y (narrow) direction; (IV) 3-D, re-emergence of steady flow by avoiding collision
between upward and downward flows at sidewalls; and (V) 3-D, time-dependent flow
caused by rise and fall of plumes around sidewalls. In these transitions, unsteadiness is
not seen in the entire volume but is limited around the sidewalls characterised by the
OCRs. The essence of understanding these transitions is the development of 3-D flow, that
is, deviation from Poiseuille flow in the y direction. We considered the criterion Λ ∼ 1/2
that explains the boundary between quasi-2-D and 3-D flow by Noto et al. (2024), and
confirmed its validity in the present conditions with higher Pr and lower Ra where the
convective flow is not strongly turbulent. In addition, the re-emergence of the steady flow
(IV) can be understood as a phenomenon that features in high-Pr situations. Regarding
(II), the OCRs around both sidewalls and the slender inner rolls always coexist for wide
domains, Γx ≥ 2. The horizontal scale of the region under the influence of sidewalls is less
than the layer height H, and the number of inner rolls increases with Γx. We also found
that the OCRs not only are relevant in the regime transitions but also weaken the total heat
transport, resulting in a decrease of Nu, as these structures do not directly carry heat from
one horizontal surface to another. This study has explored the complex convective regime
transitions of severely confined, but laterally elongated convection of highly viscous fluids
as above, deepening the fundamental fluid physics of thermal convection as well as Earth
science and thermal engineering.
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