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TAUBERIAN THEOREMS FOR BOREL-TYPE METHODS 
OF SUMMABILITY 

BY 

D. BORWEIN AND E. SMET 

1. Introduction. Suppose throughout that s, an (n=0,1, 2 , . . . ) are arbitrary 

complex numbers, that a > 0 and p is real and that Nis a non-negative integer such 

that xN+p^l. Let 

n oo <xn+0—1 oo an+fi—1 

Sn=2<*v, SatP(z) = cx.e-z2,sn— — , Aa>p(z) = (ie-Z2^n— — 
v=o n=N l ( a n + p ) n=N 1 ( a n + p ) 

where z=x+iy is a complex variable and the power zy is assumed to have its 

principal value. 

We shall be concerned with the Borel-type method of summability (B, a, p) 

defined as follows (see [1]): we write sn-+s(B, a, (3), or 2 ? an:==s(^^ a> /0> if 

SXtp(x) exists for all x>0 and tends to s as #->oo. Further, we write 

sn=0(l)(B, a, /?) if Saifi(x) exists and is bounded on [0, oo). 

The actual choice of the integer N in the above definitions is clearly immaterial. 

We shall therefore tacitly assume whenever a finite number of methods (B, a, pr) 

( r = l , 2 , . . . , & ) are under consideration that N is such that a7V+/9 r>l ( r = 

1 , 2 , . . . , * ) . 

The following result is known (see [2]) : 

(A) IfP>\i and^o an=s(B9 a, p), then %o an=s (B, a, P). 

This result is "abelian" in character. Our object is to establish the "tauberian" 

results listed in the next section. 

One of our tauberian conditions involves the notion of "slow decrease" defined 

as follows: a real-valued function f(x), with domain [0, oo), is slowly decreasing 

if for every e > 0 there exist positive numbers X, ô such that f(x) —f(y)> — s 

whenever x>y>X and x— y<ô. 

2. Statements of the main results 

THEOREM 1. If 2 ? an=
s(B> a> ft) and an-+0(B, a, /?), then 2 ? ^ ^ ( ^ <*, ft). 

THEOREM 2. If sn-^-s(B9 OL, p+e) for some e > 0 and sn=0(l)(B, oc, /?), then 

sn->s(B, a, P+d)for any <5>0. 

THEOREM 2*. If J^ an=s(B, a, p+s) for some £ > 0 and an=0(l)(B, a, /?), 

*/*£« 2 ? an=s(B> a> P+$)for any <5>0. 

THEOREM 3. Ifsn—>s(B, a, p+s)for some e > 0 a«<i ^ ^ ( x ) zs slowly decreasing, 

then sn->s(B, a, /?). 
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THEOREM 3*. If ^ an==s(B,a, j3+e) for some e>0 and AaiP(x) is slowly 

decreasing, then 2 ? an~
s(B> a> /?)• 

THEOREM 4. Ifsn=0(l)(B, a, pi) and sn> --Kfor all n>0 where K is a positive 
constant, then sn=0(l)(B, a, /?). 

THEOREM 5. If sn->s(B, a, /i) and sn>—Kfor all n>0 where K is a positive 
constant, then sn->s(B, a, ^). 

THEOREM 5*. If ^ an=s(B, OL, ft) and an>—K for all n>0 where K is a 

positive constant, then 2 ? an==s(^> a> /0-

The following theorems are extensions of a result due to Gaier [3]. 

THEOREM 6. If sn-+s(B, a, fj) and if there are positive real numbers A, a, ô 
such that \Sa>fl(z)\<A exp(a \z\) whenever Re z>ô, then sn->s(B, a, /?). 

THEOREM 6*. If^j? an=s(B, a, p) and if there are positive real numbers A, a, à 

such that \Aatfl(z)\<A exp(a \z\) whenever Re z>ô, then 2<T an=zS(^y a> /?). 

THEOREM 7. If^ an=s(B, a, //) and \an\<Kn for alln>0 where K is a positive 
constant, then 2 ? an=s(B, a, /?). 

3. Preliminary results. It is known that the (B, a, /?) method is regular (see 
[2]). Also, using the root test and a known result [1, Lemma 4], it can readily be 
shown that if either SXtfl(x) or Aattl(x) exists for all x>0 then both Sa>p(x) and 
Aa,p(x) exist for all x>0. 

LEMMA 1. Let SXtP(x) exist for x>0. Then, for x>0, 

(i) SatP+ô(x)=jx
0h(x-t)S0CiP(t)dt where <5>0 and /z(tf)=^V-w/r(<5), 

(ii) A!XtP(x)=S<XtP(x)-S0CfP+(X(x)+o(l) as x->oo. 

LEMMA 2. If^ an=s(B, a, /?), then an->0(B, a, /?). 

The proof of Lemma 1 is straightforward, and Lemma 2 follows immediately 
from Lemma l(ii) and result (A). 

THEOREM 8. Let f(t) be Lebesgue integrable on every finite subinterval of [0, oo) 
and let F(x)=JQ c^^fit) dt. If F(x)->s as x->oo andf(t) is slowly decreasing, 
thenf(x)-+s as x->oo. 

Proof. Since 

1 fw 

F(x) = - g(u) du 
w Jo 

where w = ex and 
, . (0 0 < u < 1, 

l/(ln u) u > 1, 
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Theorem 8 follows from a known result [4, p. 126]. (Observe that g(u) is "slowly 
decreasing" in the sense given on p. 124 of [4]). 

LEMMA 3. Iff(t) is bounded on every finite subinterval of [0, oo) and is slowly 
decreasing, then there exist positive numbers Mx and M2 such that 

f(x)—f(y) > —M1(x—y)—M2 whenever x > y > 0. 

Proof. Since f(t) is slowly decreasing, there exist positive numbers X, ô such 
that/(x)—f(y)> — 1 if x>y>X and x— y<d. Hence, if x>y>X and m is the 
smallest positive integer such that (x—y)jm<à, then 

/(*)-/GO=ï\f(y+j t=A-f(y+(j-i) t=A\ 
i=iI \ ml \ ml) 

> —m 

= - ( m - l ) - l 

x—y 
> - — - - 1 . 

Ô 

Thus, if M=sup0<a .<x | / (x) | , then 

f{x)—f(y) > — _(x—y)—2M—1 whenever x > y > 0. 
ô 

THEOREM 9. Let h(u) be a real-valued, non-negative, Lebesgue measurable 
function such that 

foo Too 

0 < h(u) du < oo and uh(u) du < oo. 
Jo Jo 

Let JXO ie # real-valued function such that, for some positive numbers Mx and M2, 

f(x)—f(y) > —M1(x—y)—M2 whenever x > y > 0, 

and such that, for all x>0, 

F{x) = \Xh(x-t)f(i)dt 
Jo 

exists as a Lebesgue integral. Then, f(x) is bounded on [0, oo) whenever F(x) is 
bounded on [0, oo). 

Proof. Suppose that M3=supa.>0 \F(x)\<co. 

Choose X such that 

L = h(u) du > 0. 
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Now 

f(x) \h(x-t) dt = I Vx-0{/(*)-/(0} dt+F(x) 
Jo Jo 

^\h(x-t){--M1(x-t)-M2}dt+F(x) 
Jo 

/*oo /•<» 

> — MA uh(u)du—M2\ h(u)du—M3 
Jo Jo 

= -Mt 

say, and hencef (x^-MJL if x>X. But/(x)^-M1JT-JI/s+/(0) for 0<x<X. 
Hence there exists a positive number Ms such that/(x)>—M5 for all x>0. 

Ifx>X, then 

M, > F(x) 
Cx—X fx 

h(x-t)f(t) dt+ h(x-t)f(t) dt 
Jo Jx-X 

Çx-X Çx 
> - M 5 h{x-t) dt+ h(x-t){f(x-X)-M1(t-x+X)-M2} dt 

Jo Jx-X 
^ M e + / ( x - X ) " ft(u) du 

Jo 
where 

M6 = —M5 /z(w) J M + M X uh(u) du—(M1X+M2) h(n) du. 

It follows that (Ms-M6)lL>f(x) for x > 0 . 
Thusf(x) is bounded on [0, oo). 

THEOREM 10. Letf(t) be a real-valued non-decreasing fumction defined on [0, oo) 
and, for ô>0, let 

FW = ™ *~* f%-0w/(0 dt, x > 0. 
1 (o) Jo 

77ze/i erxf{x) is bounded on [0, oo) whenever F(x) is bounded on [0, oo). 

Proof. Suppose Af=supa.>0 |i*Xx)|<oo. Since f(t) is non-decreasing, we have, 
for all x>0, 

ôT(ô)eM> ÔT(ô)eF(x+l) 

J
mx C'ic+l 

(x+i-o*~y(o dt+ôe~x (x+i-o'-yco A 
o «/a? 

> <3ÉT" ( x + l - 0 5 " Y ( 0 ) dt+de-* ( x + l - 0 M / ( x ) A 
•/O Jic 

= /(0){(x+l)'-l}e-+e-/(x). 

It follows that e~xf(x) is bounded on [0, oo). 
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In what follows, suppose that Hb={z | Re z>b}. 
Gaier [3, Theorem 1] has proved the following result: Iff{z) is analytic in HQ 

and if there are positive numbers A, a such that \f(z)\<A exp(<z \z\)for all z in H0, 
then lima.-^ÛO//(x)=0 whenever limx^o0f(x)=0. 

However, by first making the transformation w=z—b and then using Cauchy's 
integral formula for/ ( n )(x) in Gaier's proof, we can easily prove: 

THEOREM 11. Iff(z) is analytic in Hh and if there are positive numbers A, a such 
that \f(z)\<A exp(tf \z\) for all z in Hb, then lima5_oo/(n)(x)=0 ( « = 1 , 2 , . . . ) 
whenever limx^aof(x)=s. 

4. Proof of the main results. We shall first prove Theorems 1, 2, 3, 4, 5, 6. 

Proof of Theorem 1. Let k be a positive integer. Then, by result (A), we have 
that Aaifi+ik_1)a(x)->0 as x->oo. Moreover, by Lemma l(ii), 

SM+(fc_1)a(>c) = A^+{JC_1)a(x)+SaiP+ka(x)+o(l) as x-^co. 

Hence, we have that if Saifi+ka(x)->s as x->oo, then 5ai^+(fc_1)a(x)->j as x->oo. 
Since Sa>p+ka(x)->s as x->oo when j3+ka>{Â by result (A), it follows that Safi(x)->s 
as x->oo. 

Proof of Theorem 2. Suppose without loss of generality that the sequence 
{sn} is real. Let <5>0 and let Af=supa;>o \Sa>fi(x)\. Let k be a positive integer and 
let h(u)=u(k~*)+ôe-ulT(k-\+ô). Then, by Lemma l(i), we have, for x>y>0, 
that 

I Sa. p+(k-D+s(x)—Satp+{k_1)+ô( y) I 

J
mx fv I 

Kx-t)Sa.fi(fi dt+ {h(x-t)-h(y-t)}Smtfi(t) dt 
y Jo I 

< M *h(x-t) dt+M V\h(x-t)-h(y-t)\ dt 
Jy Jo 
Çx—y /*oo 

<i M h(u)du+M\ \h(x—y+u)—h(u)\du-+0 as x-y->0 
Jo Jo 

since h(u) is Lebesgue integrable on [0, oo). Further, by Lemma l(i), 

S*.p+k+ô(x) ==: e~ x~t ^«,^+(fc-i)+d(0 at. 
Jo 

Hence, by Theorem 8 (with F(x)=SatP+k+ô(x),f(x)==SÛCtP+{k^1)+ô(x)), we have that 
if SatP+k+ô(x)-+s as x->oo, then Safj}+{k_1)+ô(x)-+s as x->oo. Since Saifi+k+ô(x)-+s 
as x->oo when k+d>e by result (A), it follows that SaiP+ô(x)->s as *->oo. 

Proof of Theorem 3. In view of Lemma l(i) and Lemma 3, we have, by Theorem 
9 (mthF(x)=SaiP+e(x),f(x)=Satfi(x), h(u)=ta-1e-uir(e))9 that SatP(x) is bounded 
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on [0, oo). Hence, by Theorem 2, Satfi+1(x)-+s as x->oo. Thus, in view of Lemma 
l(i), it follows, by Theorem 8 (with F(x)=S(XtP+1(x)if(x)=:S(Xtfi(x)), that Saifi(x)-+s 
as x->oo. 

Proof of Theorem 4. In view of Lemma l(i), we can assume without loss of 
generality that //=/?+ô where <5>0. The result then follows by Theorem 10 with 

F(x) = SXtP+ô(x)+*e-x 2 K 
x an+ /5+5- l 

n=N T(am+P+Ô) 

e-f(x) = Satfi(x)+aer* 2 K 
x<xn+0-l 

Proof of Theorem 5. Let k be a positive number such that p—k<(}. Then, by 
Theorem 4, sn=0(l)(B, a, /*—fc) and hence, by Theorem 2, sn->s(B, a, /?). 

Proof of Theorem 6. Let fc be a positive integer such that ii—k<$. Since 
^a,fi-i(z)—^oi,n(z)+dSXifl(z)ldz, it is readily seen that 

Sa^(z) = Sa,„(z)+ 2 c , T ^ Sa>/i(z) 
j=i a z y 

where cl9 c2,. . . , ck are integers. Since djS0Ctfi(x)/dxj^^0 as x—*oo (/"=1, 2, . . . , k) 
by Theorem 11, we have that Satfl_k(x)-+s as x->oo. Hence Satfi(x}->-s as x->oo by 
result (A). 

The proofs of Theorems 2*, 3*, 5*, 6* follow the same basic pattern which we 
illustrate by one example. 

Proof of Theorem 2*. By Lemma 2, an-+0 (B, a, /3+e) and hence, by Theorem 2, 
an-+0(B9 a, /?+<5) for any <5>0. The desired conclusion follows by Theorem 1. 

Proof of Theorem 7. Since \an\<Kn for all n>0, we have that 

14^(2)1 < ii exp(X1/a |z|) 

for some positive constant A. The desired result follows by Theorem 6*. 

5. Final remarks 

1. Theorem 2 is false for <5=0. This is shown by the following example 
[cf. 4, p. 183]. Let {sn} be the sequence such that S1}1(x)=smex. Then 
S12(x)=e~x{cos 1-cose*}. Hence sn-+0(B9 1,2) and ,sn=0(l)(£, l, 1) but sn 

does not tend to a limit (B, 1, 1). 
2. There exists a sequence {sn} which tends to a limit (B, oc, /?) but does not 

tend to a limit (B, a, /?— 1). Choose an integer m such that am>l. Let P be the 
smallest integer such that mP>N. Let xp sin ^=^«=0 bnx

n and let 

». = {, r(an+/?)bfc if n = mk, 
0 otherwise. 
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Then 

Sa,p(x) = <x.e~V" V m P sin e*"™ -+0 as x -> oo 
and 

Sa.P-i(x) = Sai„(x)+S;.,(x) 

= ae-V-1x a m P(am)x a m-1^ a m cos ^ + 0 ( 1 ) as x -> oo. 

Thus Jn->0(J?, a, 0) but ^ 0 ( 1 ) ( # , a, /S- l ) . 
Hence the tauberian theorems proved in this paper are not "empty". 
3. Corresponding to the Borel-type "exponential" method (B, a, /?) is an 

"integral" method (B',OL,P) defined as follows (see [1]): 2£an=s(B', a, /?) if 
ia>/l(x) exists for all x>0 and lim^o, a"1 JS 4x^(0 dt=s—sN_1 (where 5,_1=0). 

The following result is due to Borwein [1, Theorem 2]: Jo* an=s(B, a, /?+l) z/ 
awrf only Ï / 2 ? an=s(B', a, /?). 

The tauberian theorems proved in this paper suggest that analogous results hold 
for the method (B\ a, /?). 

4. Let p(z)=^n=oPnzn be an integral function such that pn>0, ^Lnpr>® 
for all n. Associated with p(z) is an integral function method of summability P 

1 
defined as follows: sn->s(P) if —— y^n=oPnsnxn->s a s *—•oo. 

The following result is due to Borwein (see [2]): Ifh(z) is analytic in Hb, h{x) is 
real for x>b and, when x>b and \z\ is large, h(z)=zaz+peyz{C+0(1 l\z\)} where C, a 
are positive and /?, y are real, then the method associated with the integral function 

zn 

P(z)=Hn=M ^7~j is equivalent to (B, a, jff+1/2). 

There should therefore be tauberian theorems of the sort proved in this paper for 
a wide class of integral function methods. 
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