ASYMPTOTIC BEHAVIOUR OF IDEALS RELATIVE TO INJECTIVE MODULES OVER COMMUTATIVE NOETHERIAN RINGS

by H. ANSARI TOROGHY and R. Y. SHARP

(Received 11th July 1989)

Let E be an injective module over the commutative Noetherian ring A, and let a be an ideal of A. The A-module $(0:_E a)$ has a secondary representation, and the finite set $Att_A(0:_E a)$ of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets $(Att_A(0:_E a^n))_{n \in \mathbb{N}}$ is ultimately constant. This result is analogous to a theorem of M. Brodmann that, if M is a finitely generated A-module, then the sequence of sets $(Ass_A(M/a^nM))_{n \in \mathbb{N}}$ is ultimately constant.

1980 Mathematics subject classification (1985 Revision): 13C11, 13E05

1. Introduction

It is a well-known result of M. Brodmann [1] that, if M is a finitely generated module over the commutative Noetherian ring A (with identity) and α is an ideal of A, then the sequence of sets $(\operatorname{Ass}_A(M/\alpha^n M))_{n\in\mathbb{N}}$ is ultimately constant, that is $\operatorname{Ass}_A(M/\alpha^n M)$ is, for all sufficiently large n, independent of n. (We use \mathbb{N} (respectively \mathbb{N}_0) to denote the set of positive (respectively non-negative) integers.) It is a very easy consequence of this result of Brodmann that the same conclusion holds of we relax the hypotheses and assume only that A is a commutative ring (with identity) and M is a Noetherian A-module.

In [8], the present second author established a dual result for an Artinian module N over a commutative ring R (with identity). This dual result was phrased in terms of the notions of secondary representations and attached prime ideals of Artinian R-modules (see [3, 2 or 6]), and showed that, if I is an ideal of R, then the sequence of sets $(Att_R(0:_N I^n))_{n\in\mathbb{N}}$ is ultimately constant.

Every Artinian R-module possesses a secondary representation. (It is convenient to take the view that the zero R-module is the sum of the empty family of its secondary submodules.) Now it was shown in [7] that the class of all R-modules which possess secondary representations can be more extensive than the class of all Artinian R-modules: indeed, when we take the commutative Noetherian ring A for R, every injective A-module possesses a secondary representation [7, Theorem 2.3]. We shall see below that the arguments of that paper can easily be modified to show that, when A is Noetherian, E is an injective A-module and a is an ideal of A, the submodule $(0:_E a)$ of E has a secondary representation, and so we can form the finite set $Att_A(0:_E a)$ of its attached prime ideals. One of the main results of this note is that, in these

circumstances, the sequence of sets $(Att_A(0:_E a^n))_{n \in N}$ is ultimately constant; in addition, we shall obtain other results which are reminiscent of facts concerning the asymptotic behaviour of an ideal I of R relative to an Artinian module N over R.

Throughout the remainder of this paper, A will denote a (non-trivial) commutative Noetherian ring with identity; the symbol R will denote a commutative ring (with identity) which is not necessarily Noetherian. We shall use the notation and terminology of [7] and [8] concerning secondary representations and attached prime ideals. We shall also use the notation Occ(E) of [7, Section 2] in connection with an injective A-module E: this is explained as follows. By well-known work of Matlis and Gabriel, there is a family $(\mathfrak{p}_{\alpha})_{\alpha \in \Lambda}$ of prime ideals of A for which $E \cong \bigoplus_{\alpha \in \Lambda} E(A/\mathfrak{p}_{\alpha})$ (we use E(L) to denote the injective envelope of an A-module L), and the set $\{\mathfrak{p}_{\alpha}: \alpha \in \Lambda\}$ is uniquely determined by E: we denote it by Occ(E).

2. Secondary representations for certain modules over a commutative Noetherian ring

The purpose of this section is to show that, if E is an injective A-module and M is a finitely generated A-module, then $\operatorname{Hom}_A(M,E)$ always has a secondary representation; we shall also give a precise description of the set $\operatorname{Att}_A(\operatorname{Hom}_A(M,E))$ in terms of $\operatorname{Ass}_A(M)$ and $\operatorname{Occ}(E)$. The results of this section follow easily from work in [7].

Theorem 2.1. Let E be an injective module over our commutative Noetherian ring A, and let M be a finitely generated A-module. Then $\operatorname{Hom}_{A}(M, E)$ has a secondary representation, and, furthermore,

$$\operatorname{Att}_{A}(\operatorname{Hom}_{A}(M, E)) = \{ \mathfrak{p}' \in \operatorname{Ass}_{A}(M) : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \operatorname{Occ}(E) \}.$$

Proof. In view of our conventions, the claims are clear when M=0, and so we shall assume that $M \neq 0$. Let $0 = \bigcap_{i=1}^n Q_i$ be a minimal (that is normal) primary decomposition for the zero submodule of M, and, for each $i=1,\ldots,n$, let $\pi_i: M \to M/Q_i$ denote the natural epimorphism. Denote $\sqrt{(Q_i:M)}$ by \mathfrak{p}_i (for $i=1,\ldots,n$), so that $\mathrm{Ass}_A(M) = \{\mathfrak{p}_1,\ldots,\mathfrak{p}_n\}$.

Let T denote the exact, additive, contravariant, A-linear functor $Hom_A(\cdot, E)$ from the category of all A-modules and A-homomorphisms to itself. For each $i=1,\ldots,n$, set

$$S_i = T(\pi_i) T(M/Q_i) = \operatorname{Hom}_A(\pi_i, E) \operatorname{Hom}_A(M/Q_i, E),$$

a submodule of $T(M) = \text{Hom}_A(M, E)$. It follows from [7, 3.2] that S_i is either zero or p_i -secondary (for $1 \le i \le n$), and that

$$T(M) = \text{Hom}_A(M, E) = S_1 + S_2 + \dots + S_n$$

Thus $\operatorname{Hom}_A(M, E)$ has a secondary representation, and, if it is non-zero, we can arrive at a reduced secondary representation for it by first deleting any zero terms from the right

hand side of the above equation, and then deleting redundant terms one at a time. Thus our proof will be complete once we have shown, for an integer j between 1 and n, that (i) if, for every $p \in Occ(E)$, we have $p_j \not\subseteq p$, then $Hom_A(M/Q_j, E) = 0$, and (ii) if $p_j \subseteq p'$ for some $p' \in Occ(E)$, then

$$\sum_{\substack{i=1\\i\neq j}}^n S_i \neq \operatorname{Hom}_A(M, E).$$

We now prove these two claims in turn. We let $(\mathfrak{p}_a)_{a\in\Lambda}$ be a family of prime ideals of A for which $E\cong\bigoplus_{\alpha\in\Lambda}E(A/\mathfrak{p}_\alpha)$.

(i) Since M/Q_i is finitely generated,

$$\operatorname{Hom}_{A}(M/Q_{j}, E) \cong \bigoplus_{\alpha \in \Lambda} \operatorname{Hom}_{A}(M/Q_{j}, E(A/\mathfrak{p}_{\alpha})).$$

We therefore show that $\operatorname{Hom}_A(M/Q_j, E(A/\mathfrak{p}_\alpha)) = 0$ for each $\alpha \in \Lambda$. Now, for such an α , we have $\mathfrak{p}_j \not\subseteq \mathfrak{p}_\alpha$: choose $a \in \mathfrak{p}_j \setminus \mathfrak{p}_\alpha$. Then there exists $h \in \mathbb{N}$ such that $a^h \in (0:M/Q_j)$. But multiplication by a^h provides an automorphism of $E(A/\mathfrak{p}_\alpha)$, by [4, Lemma 3.2(2)]. It therefore follows from the A-linearity of $\operatorname{Hom}_A(M/Q_j, E(A/\mathfrak{p}_\alpha)) = 0$. Thus point (i) has been established.

(ii) Set $K_j = \bigcap_{i \in J} Q_i$, where $J = \{1, \dots, j-1, j+1, \dots, n\}$. It follows from [7, 3.4] that $\operatorname{Hom}_A(M, E) = \sum_{i \in J} S_i$ if and only if $\operatorname{Hom}_A(K_j, E) = 0$, and so it is enough for us to show that, if $\mathfrak{p}_j \subseteq \mathfrak{p}_a$ for some $\alpha \in \Lambda$, then $\operatorname{Hom}_A(K_j, E(A/\mathfrak{p}_a)) \neq 0$.

Now

$$K_{j} = K_{j}/0 = K_{j}/(K_{j} \cap Q_{j}) \cong (K_{j} + Q_{j})/Q_{j}$$

so that $\operatorname{Ass}(K_j) = \{\mathfrak{p}_j\}$. Hence K_j has a submodule isomorphic to A/\mathfrak{p}_j , and it is easy to use the injective property of $E(A/\mathfrak{p}_\alpha)$ in conjunction with the natural, non-zero, epimorphism $A/\mathfrak{p}_j \to A/\mathfrak{p}_\alpha$ to deduce that $\operatorname{Hom}_A(K_j, E(A/\mathfrak{p}_\alpha)) \neq 0$. This completes the proof of point (ii).

The result is now proved.

Corollary 2.2. Let E be an injective module over our commutative Noetherian ring A, and let α be a proper ideal of A. Then $(0:_E \alpha)$ has a secondary representation, and

$$\operatorname{Att}_{A}(0:_{E}\mathfrak{a}) = \{\mathfrak{p}' \in \operatorname{ass}\mathfrak{a} : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \operatorname{Occ}(E)\}.$$

Proof. This is an immediate consequence of 2.1 because $\operatorname{Hom}_A(A/\mathfrak{a}, E) \cong (0:_E \mathfrak{a})$ and $\operatorname{Ass}_A(A/\mathfrak{a}) = \operatorname{ass} \mathfrak{a}$.

3. The results

To provide some motivation for our results, let us first consider an Artinian module N over the commutative ring R, and let I be an ideal of R. Every Artinian R-module possesses a secondary representation. In [8, Theorem 3.1], it was shown that both the sequences of sets

$$(Att_R(0:_N I^n))_{n\in\mathbb{N}}$$
 and $(Att_R((0:_N I^{n+1})/(0:_N I^n)))_{n\in\mathbb{N}}$

are ultimately constant; let $At^*(I, N)$ and $Bt^*(I, N)$ (respectively) denote their ultimate constant values. Those results are, in a sense, dual to results which follow quickly from the work of Brodmann which was mentioned in the Introduction. It is easy to see (by, for example, [3, (2.4)]) that $Bt^*(I, N) \subseteq At^*(I, N)$. The second author proved in [9, Theorem (4.3)] that

$$At^*(I, N) \setminus Bt^*(I, N) \subseteq Att_R(N)$$

and this result can be viewed as dual to a (natural generalization of a) result of McAdam and Eakin [5, Corollary 13]: see [9, Theorem (4.2)].

Now consider an injective module E over our commutative Noetherian ring A, and let a be an ideal of A. It follows from 2.2 that $(0:_E a^n)$ has a secondary representation (for every $n \in \mathbb{N}$), and so, by [3, (2.4)], the A-module

$$(0:_E \mathfrak{a}^{n+1})/(0:_E \mathfrak{a}^n)$$

has a secondary representation (for every $n \in \mathbb{N}$); we show below that the obvious analogues of the above-mentioned results for N and I hold for E and a.

We shall use the following additional notation. For a finitely generated A-module M, we shall use $As^*(a, M)$ and $Bs^*(a, M)$ to denote the ultimate constant values of the sequences

$$(\operatorname{Ass}_A(M/\mathfrak{a}^n M))_{n \in \mathbb{N}}$$
 and $(\operatorname{Ass}_A(\mathfrak{a}^n M/\mathfrak{a}^{n+1} M))_{n \in \mathbb{N}}$

respectively: see [1].

Theorem 3.1. Let E be an injective module over our commutative Noetherian ring A, and let \mathfrak{a} be an ideal of A. Then the sequence of sets $(\operatorname{Att}_A(0:_E\mathfrak{a}^n))_{n\in\mathbb{N}}$ is ultimately constant. We denote its ultimate constant value by $\operatorname{At}^*(\mathfrak{a}, E)$. In fact,

$$\mathsf{At}^*(\mathfrak{a},E) = \{ \mathfrak{p}' \in \mathsf{As}^*(\mathfrak{a},A) : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \mathsf{Occ}(E) \}.$$

Proof. By 2.2,

$$\operatorname{Att}_{\mathcal{A}}(0:_{E} \mathfrak{a}^{n}) = \{ \mathfrak{p}' \in \operatorname{ass} \mathfrak{a}^{n} : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \operatorname{Occ}(E) \}.$$

However, by Brodmann's work in [1], we have ass $a^n = As^*(a, A)$ for all sufficiently large integers n, and the result follows immediately.

Theorem 3.2. Let E be an injective module over our commutative Noetherian ring A, and let a be an ideal of A. Then the sequence of sets

$$(Att_A((0:_E a^{n+1})/(0:_E a^n)))_{n \in \mathbb{N}}$$

is ultimately constant. We denote its ultimate constant value by Bt*(a, E). In fact,

Bt*(
$$a, E$$
) = { $p' \in Bs*(a, A) : p' \subseteq p \text{ for some } p \in Occ(E)$ }.

Proof. We use a similar method to that employed above for 3.1. This time, we use, for $n \in \mathbb{N}$, the canonical short exact sequence

$$0 \rightarrow \alpha^n/\alpha^{n+1} \rightarrow A/\alpha^{n+1} \rightarrow A/\alpha^n \rightarrow 0$$

the injective property of E, and the natural isomorphisms

$$\operatorname{Hom}_{A}(A/\alpha^{j}, E) \stackrel{\cong}{\to} (0:_{E} \alpha^{j}) \quad (j = n, n+1)$$

to deduce that $(0:_E a^{n+1})/(0:_E a^n) \cong \operatorname{Hom}_A(a^n/a^{n+1}, E)$. It therefore follows from [1] and 2.1 that, for all sufficiently large integers n,

$$\operatorname{Att}_{A}((0:_{E} a^{n+1})/(0:_{E} a^{n})) = \{\mathfrak{p}' \in \operatorname{Bs}^{*}(a, A) : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \operatorname{Occ}(E)\}.$$

The claims of the theorem now follow immediately.

Corollary 3.3. Let E be an injective module over our commutative Noetherian ring A, and let α be an ideal of A. Then, with the notation of 3.1 and 3.2,

$$Bt^*(a, E) \subseteq At^*(a, E)$$
 and $At^*(a, E) \setminus Bt^*(a, E) \subseteq Att_A(E)$.

Proof. It follows from [3, (2.4)] that $Bt^*(a, E) \subseteq At^*(a, E)$. It is immediate from 3.1 and 3.2 that $At^*(a, E) \setminus Bt^*(a, E)$ is equal to the set

$$\{\mathfrak{p}' \in As^*(\mathfrak{a}, A) \setminus Bs^*(\mathfrak{a}, A) : \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in Occ(E)\}.$$

But, by [5, Corollary 13], $As^*(a, A) \setminus Bs^*(a, A) \subseteq Ass_A(A)$. Hence

$$At^*(a, E)\backslash Bt^*(a, E) \subseteq \{p' \in Ass_A(A) : p' \subseteq p \text{ for some } p \in Occ(E)\}.$$

However, the right hand set in the above display is, by [7, Theorem 2.6], just $Att_A(E)$, and so the proof is complete.

REFERENCES

- 1. M. Brodmann, Asymptotic stability of Ass(M/IⁿM), Proc. Amer. Math. Soc. 74 (1979), 16-18.
- 2. D. Kirby, Coprimary decomposition of Artinian modules, J. London Math. Soc (2) 6 (1973), 571-576.
- 3. I. G. Macdonald, Secondary representation of modules over a commutative ring, Symposia Matematica 11 (Istituto Nazionale di alta Matematica, Roma, 1973), 23-43.
 - 4. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511-528.
 - 5. S. McAdam and P. Eakin, The asymptotic Ass, J. Algebra 61 (1979), 71-81.
- 6. D. G. Northcott, Generalized Koszul complexes and Artinian modules, Quart. J. Math. Oxford (2) 23 (1972), 289-297.
- 7. R. Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, *Proc. Edinburgh Math. Soc.* (2) 20 (1976), 143–151.
- 8. R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc. (2) 34 (1986), 212-218.
- 9. R. Y. Sharp, A method for the study of Artinian modules, with an application to asymptotic behavior, in *Commutative algebra—proceedings of a microprogram held June 15-July 2, 1987* (Mathematical Sciences Research Institute Publications 15, Springer, New York, 1989), 443–465.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF SHEFFIELD HICKS BUILDING SHEFFIELD S3 7RH