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For millennia, the advance of human civilization has been closely linked to materials
available from the Stone Age through the Bronze and Iron Ages and into the current
Information Age. The Information Age is associated with a revolution of technology
resulting from significant advances in Si-based semiconductors and other materials. In
particular, since 2018 the world has been significantly influenced and changed by the
fifth-generation technology standard for cellular networks (5G). Such a network
enables users to connect virtually with almost everyone and everything, delivering
data among users and machines with much higher speed, lower latency, more reliabil-
ity, and better availability compared to 4G networks. 5G networks have been utilizing
a wide variety of materials, including metals, ceramics, plastics, composites, and
materials with low dielectric, high thermal conductivity, and high electromagnetism.
In consequence, the continuing technological advancement in current society is
strongly dependent on advanced engineering materials that satisfy the ambitious
requirements of new products.

The earliest documented materials were the Cu–Sn alloys in ancient China during
the Bronze Age (Chang, 1958). The compositions of the “six alloys” (Cu–Sn alloys
with the compositions of 17, 20, 25, 33, 40, and 50 wt.% Sn) were determined purely
via trial-and-error experiments to guide the casting of various civil and military tools.
It is unbelievable that such an empirical approach has persisted for more than three
millennia. With the development of computers as well as software and various
databases (such as thermodynamic and diffusion databases), computational design
of engineering alloys has demonstrated its significant role in efficient developments of
new alloys since Kaufman and Bernstein published the book entitled Computer
Calculations of Phase Diagrams in 1970 (Kaufman and Bernstein, 1970). The
interested reader could refer to the following selection of recent (mainly edited) books
for more details in the field of computational design (Ashby et al., 2019; Bozzolo
et al., 2007; Da Silva, 2019; Horstemeyer, 2012; LeSar, 2013; Raabe et al., 2004;
Saito, 1999; Shin and Saal, 2018).
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1.1 Definition of a Few Terms Used in Computational Design of Materials

The goal of this book is to introduce the basic methods used in computational design
of engineering alloys and to demonstrate several step-by-step case studies for compu-
tational design of these alloys. To facilitate reading, a few most frequently used terms
are defined in a more precise way before we proceed to discuss computational design
of engineering alloys.

A model is an idealization of an actual phenomenon, i.e., an approximate descrip-
tion of a phenomenon based on some empirical and/or physically sound reasoning.
A model often begins with a set of concepts, and then it is usually transcribed into
mathematical equations from which one can calculate some quantities with a desire to
describe some phenomena. For example, a thermodynamic model is usually estab-
lished according to the crystal structure of one phase in order to calculate its Gibbs
energy. Thermodynamic models expressed in different mathematical forms contain
adjustable parameters that can be optimized to reproduce many kinds of experimental
phase diagrams and thermodynamic properties (activity, heat capacity, enthalpy of
mixing, and so on) as well as theoretical data such as first-principles computed
enthalpy of formation. The main focus of a model is to create an idealization of an
actual phenomenon within an accepted accuracy instead of a strictly true fundamental
description of the phenomenon. One may argue that any model is only a picture of
reality – not reality itself.

Simulation is a numerical calculation for a modeled system with respect to external
and/or internal fields as well as applied constraints. It requires algorithms based on the
models and numerical solution strategies that are the backbone of simulation software.
Consequently, the simulations are performed by subjecting models to inputs and
constraints for the sake of describing an actual phenomenon, such as the solidification
of an alloy. The accuracy of a simulation for an actual phenomenon depends on
several factors, such as the adequacy of the model, the accuracy in solving sets of
equations numerically, and the reliability of input parameters in the equations.

A database is an organized set of data that is stored in a computer and can be
accessed, managed, updated, and used in many ways. Various types of databases are
reported for the systems of interest, resulting in different definitions for the databases.
According to a recent analysis for engineering alloys (Li et al., 2018), three kinds of
databases are defined for these alloys: the original technological database, the evalu-
ated technological database, and the scientific database. The first type of database is
usually a compilation of one or several typical quantities, such as hardness and
toughness during one or several processes, such as homogenization and age
hardening. The second type of database is the critically evaluated technological
database, eliminating inaccurate values. The last type of database (i.e., the scientific
database) is the most important database for engineering alloys. This scientific data-
base is based on physically sound models, and the parameters in the database are
obtained by fitting accurate experimental and/or theoretical data for targeted systems.
Thermodynamic and thermophysical databases (for example, diffusion coefficient,
interfacial energy, and thermal conductivity) are the typical scientific databases.
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Armed with powerful materials design software, these databases can be utilized to
design alloy composition, optimize the heat treatment schedule, simulate microstruc-
tural evolution, and predict mechanical and other properties.

The term materials design may have different meanings for different readers.
Olson presented a very deep and wide definition for this term (Olson, 1997; 2000).
In view of the four cornerstones (i.e., processing, structure, property, and perform-
ance) in materials science and engineering, our definition for materials design is to
establish relationships among these four cornerstones through computationally based
approaches implemented with experimental and/or empirical approaches for the sake
of yielding materials with the desired sets of properties and performances to meet the
needs of users. Materials design will be more powerful when modeling and simulation
tools are integrated with experiments, as highly stressed in integrated computational
materials engineering (ICME) (ICME, 2008) and the Materials Genome Initiative
(MGI) (MGI, 2011), which will be briefly described in the next subsection.

1.2 The Past and Present Development of Computational Design
of Engineering Materials

The computational design of engineering materials dates back to 1970, when the
calculation of phase diagrams (CALPHAD) approach was developed by Kaufman and
Bernstein (Kaufman and Bernstein, 1970), who advanced the pioneering work on
phase diagram calculations by Van Laar (1908) and Meijering (1950). The major
justification for such a statement is that almost all engineering materials are multi-
component and multiphase systems, and the CALPHAD approach is the only one that
can deal with such complex systems.

However, it should be mentioned that before the birth of the CALPHAD
approach, there were a few important milestones for alloy design, such as the
Hume-Rothery rule (Hume-Rothery, 1967). This rule utilizes information about
atomic size, valence, electronegativity, and crystal structure to predict phase forma-
tion, being applicable to both solid substitutional and interstitial solutions. Due to its
empirical feature, this rule can only be used as component selection criteria instead
of alloy composition optimization, which is usually the first step for computational
design of engineering alloys.

Another approach for alloy design is the phase computation (PHACOMP)
method, which was developed by Boesch and Slaney (1964). This method utilizes
the average number of electron vacancies in the metal d band above the Fermi level
to predict phase stability of the harmful topologically close-packed (TCP) phases.
One modification for the original PHACOMP method is the so-called d orbital
method (Matsugi et al., 1993), in which the d orbital energy level of alloying
transition metal and the bond order are used as indicators for the occurrence of
TCP phases. Although the electron vacancies in the d orbital method can be obtained
through quantum mechanical electronic structure calculations, the average number of
electron vacancies and the bond order are only approximate, affecting the validity of
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the method. One more obvious shortcoming for the PHACOMP method and its other
revised form (Morinaga et al., 2003) is that the criterion for judging phase stability is
independent of temperature. Due to the preceding drawbacks, the PHACOMP
method and its modified form cannot be used for design of multicomponent and
multiphase engineering alloys in which temperature dependence of phase stability
should be considered.

This is why we consider the aforementioned book entitled Computer Calculation of
Phase Diagrams by Kaufman and Bernstein (1970) as the outstanding milestone for
computational design of engineering alloys. This book leads to the birth and develop-
ment of the CALPHAD approach. According to Lukas et al. (2007), a comprehensive
definition for CALPHAD is that the “CALPHAD method” means the simultaneous
use of all available experimental and theoretical data to assess the parameters in Gibbs
energy models selected for individual phases. Armed with powerful software tools,
such as Pandat (www.computherm.com) and Thermo-Calc (www.thermocalc.com),
which are based on the principles and concepts of thermodynamics, this method can
be used to calculate phase diagrams and various thermodynamic properties in multi-
component systems within all the composition and temperature ranges. The successful
use of CALPHAD for materials design relies on reliable thermodynamic databases.
Reliability means that the properly selected thermodynamic models and optimized
parameters can reproduce both thermodynamic and phase stability experimental data
as well as first-principles or other theoretically calculated data. Recently, the
CALPHAD method has been broadened to include a range of fundamental phase-
level thermophysical properties. In conjunction with other computational methods,
such as the phase-field method and the finite element method, the CALPHAD method
has shown its importance for process and phase transformation simulations. Due to
these unique features, thermodynamics, which is the theoretical basis for CALPHAD,
was regarded as the fundamental building block for simulation-supported materials
design (McDowell et al., 2010).

For the past two decades, the computational design of engineering materials has
focused on the following three aspects: multiscale/multilevel modeling methodologies
for more quantitative materials design, more user-friendly simulation software, and
high-quality scientific databases (i.e., thermodynamic and thermophysical databases).
In order to demonstrate the major aspects for materials design in detail, a flow chart for
through-process simulation and experimentation with aluminum alloys during the
whole heat treatment schedule is presented in Figure 1.1 (Du et al., 2017). The first-
principles method, phase-field method, and finite element method are typical nano-,
meso-, and macro-level simulation methods, respectively. The Kampmann–Wagner
numerical (KWN) model (Kampmann and Wagner, 1984), which is the basis of the
one-dimensional precipitation simulation package, is included in this figure due to its
high computational efficiency for design of engineering alloys. The CALPHAD
method can cover the micro to meso levels of phase transformation in engineering
alloys. As shown in Figure 1.1, these multiscale numerical simulations from nano
(10–10–10–8 m), micro (10–8–10–4 m), meso (10–4–10–2 m), to macro (10–2–10 m) were
utilized to describe multiscale structures and their response to mechanical properties
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during the whole research and development (R&D) process of aluminum alloys.
Similarly, time scales can range from femtoseconds of atomic vibrations to decades
for the use of products. As a strong tie to multiscale simulations, various materials
characterizations are needed to serve as validation for the accuracy of simulations or to
perform decisive experiments based on the simulation results. Transmission electron
microscope (TEM) / three-dimensional atom probe (3DAP), scanning electron micro-
scope (SEM) / electron probe microanalyzer (EPMA) / electron backscatter diffraction
(EBSD), and optical microscope (OM) are typically the nano-, micro-, and meso-level
structure characterization methods. Consequently, computational design of engineering
materials is often considered the most powerful approach when it is integrated with
experiments. In Figure 1.1, thermodynamic and thermophysical databases are also
indicated. These scientific databases are key inputs for various simulations based on
the CALPHAD, phase-field, and finite element methods, just to mention a few.

Recently, the concurrent design of materials and product was described (McDowell
et al., 2010). To reflect this idea, a simple but comprehensive diagram is presented in

Figure 1.1 Flow chart for through-process simulation and experiment of Al alloys during
solidification, homogenization, rolling, and age strengthening.

51.2 Past and Present Development

https://doi.org/10.1017/9781108643764.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108643764.003


Figure 1.2, where three stages (user demand, alloy design and preparation, and
industrial production) for development of engineering alloys are shown and linked
to each other.

Following the strategies similar to those described in Figures 1.1 and 1.2, many
new engineering alloys have been developed recently. By establishing the relation-
ships among processing, structure, properties, and performance by means of the
integrated computational materials design (ICMD) technique enhanced with
experiment, Olson and his colleagues developed the ultrahigh-strength steel
Ferrium S53 in only 8.5 years (McDowell et al., 2010). The development of this
steel would need more than 15 years by the traditional and costly experimental
approach. Gottstein (2007) introduced the scientific concept Integral Materials
Modeling (IMM) to guide the development for a variety of materials, including
Al alloys and steels. According to IMM, the properties of terminal materials can be
predicted from the information about materials chemistry and various processing
conditions. The unique feature for IMM is that the microstructural evolution
through the whole processing chain is traced to manipulate the final microstructure
needed at the end of the processing chain for the sake of predicting the corres-
ponding properties. Most recently, using a through-process simulation (the
CALPHAD and finite element methods) and calculation-guided key experiments,
Qiu et al. (2019) developed a high-performance chemical vapor deposition (CVD)
hard coating in two years. In their work, the CALPHAD calculations predict the
phases and their compositions accurately by means of the computed CVD phase
diagrams, where the phase regions are shown for the given temperature and gas
mixtures. Finite element simulations predict temperature field, gas distribution
field, and the deposition rate of hard coating. The costly experimental work was
significantly reduced with these simulations.

Figure 1.2 Three stages (user demand, alloy design and preparation, and industrial production)
for the development of engineering materials.
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In 2008, the promising engineering approach ICME was announced by the
National Research Council in the USA. Its goal is to optimize materials, processes,
and component design, prior to the fabrication of components, by linking models
at multiple length and time scales into a holistic system. The successful application
of ICME (ICME, 2013; Schmid-Fetzer, 2015) in industry supports the MGI
announced in June 2011 by US President Barack Obama. The goal of MGI is to
discover, develop, and manufacture advanced materials at least twice as fast as was
possible at the time through the integration of three platforms: high-throughput
calculations, high-throughput experiments, and databases. Kaufman and Ågren
(2014) mentioned that “a materials genome is a set of information encoded in
the language of thermodynamics that serves as a blueprint for a material’s
structure.”

Recently, materials informatics (Rajan, 2008) has shown its role to speed up the
discovery of new materials. By using data mining and visual analysis of databases,
materials informatics could extract and/or establish quantitative relationships among
the four cornerstones of materials science and engineering much faster than the current
materials design methods. Future prospects for ICME, MGI, and materials informatics
will be addressed in Chapter 13 of the book.

1.3 The Structure of the Book

This book is intended to be an introductory as well as a reference book for computa-
tional design of various engineering materials. The text of the book is divided into two
parts, and each chapter in these two parts has its special focus. The first part,
comprising Chapters 1–6, presents broad but not deep introductions to basic computa-
tional methods used in materials design. For more detail about these methods, the
interested reader could refer to the references recommended in each chapter. Our
intent is to provide a concise but sufficient background in the theory of these methods
so that the readers of this book can understand case studies of the representative
engineering materials. One very short case study is integrated in each chapter of
Chapters 2–6, while detailed case studies for selected engineering materials are
described in the second part (Chapters 7–12) via a step-by-step strategy.

The balance of this book is well realized by the interplay between theory described
in part one and practice demonstrated in part two. It is our hope that this book will (1)
help to attract and prepare the next generation of materials design modelers, whether
modeling is their principal focus or not; and (2) encourage readers, in particular
undergraduates, graduates, and engineers, to apply these methods for materials design.

This first chapter briefly introduces the past and present development of computa-
tional design of engineering materials. The scope and structure of the book are
also described.

Chapter 2 gives a short introduction to density functional theory (DFT) and
molecular dynamics (MD). These methods are typically atomistic simulation methods.
The chapter demonstrates how to calculate some basic materials properties through the
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first-principles method. One case example of material design through atomistic
methods is included.

In Chapter 3, firstly a brief introduction to the phase-field method and cellular
automaton is presented. These methods are typical mesoscale methods for materials
design. Secondly, the integration of phase-field method and/or cellular automaton with
CALPHAD, MD, crystal plasticity computations, and machine learning is stressed.
One case study for material design mainly based on phase-field simulation and
machine learning is addressed.

Chapter 4 presents fundamental concepts in the crystal plasticity and finite
element method. Crystal plasticity can be integrated with finite element method to
describe the mechanical response of crystalline materials, from single crystals to
engineering components. The finite element method is widely used as a macroscale
method in engineering. One case study of plastic deformation-induced surface
roughening in Al polycrystals will be described by means of the crystal plasticity
finite element method.

Chapter 5 presents a fundamental introduction to computational thermodynamics
and the CALPHAD method, followed by a strategy to establish a consistent thermo-
dynamic database. Such a database is highly needed for efficient material design of
engineering material. A few case studies for Al and Mg alloys design are described
using solely thermodynamic databases or extended CALPHAD-type databases. The
aspects in these case studies include calculations of both stable and metastable phase
diagrams, property diagram calculation, and Scheil solidification simulations, as
well as extended simulations of solidification and heat treatment in Al and
Mg alloys.

In Chapter 6, a few important thermophysical properties (diffusion coefficient,
interfacial energy, viscosity, volume, and thermal conductivity) are very briefly
described. The procedure to establish thermophysical databases is also described from
a material design point of view. One case study for material design mainly using
thermophysical properties is demonstrated.

Part two begins with Chapter 7, demonstrating a step-by-step material design for
two representative steels, the S53 ultrahigh-strength and high-corrosion resistance
steel as well as the AISI H13 hot-work tool steel. The materials design for these
steels based on a hybrid approach of thermodynamic calculations, precipitation
simulations, first-principles calculations, and the finite element method will cover
the selection of alloy composition, optimal combination of the heat treatment sched-
ule, control of the microstructure, and the correlation of structure properties.

Chapter 8 describes a few case studies for material design of Al and Mg alloys.
Two case studies for Al alloy design were described through computations using the
thermodynamic database and extended CALPHAD-type databases (atomic mobility
and kinetic databases). In the first case study on cast alloy A356, the solidification
simulation involving microsegregation modeling is presented. The second case study
on wrought alloy 7xxx presents heat treatment simulations based on precipitation
kinetics. In the case of Mg alloys, the first two case studies present the simulations of
solidification path and T6 heat treatment of AZ series Mg alloys using solely
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thermodynamic databases. The third case study describes the computational design
and development of Mg–Al–Sn and AT72 alloys by means of both thermodynamic
database and extended CALPHAD-type databases. The last case study is on biomed-
ical Mg alloy implants, presenting the state-of-the-art bioresorbable Mg alloy
stent to cure coronary artery disease, the development of which utilized the
CALPHAD method.

In Chapter 9, two case studies for the design of single crystal Ni-based superalloy
and Ni–Fe-based superalloy for A-USC are demonstrated. The computational
methods used in the case studies are thermodynamic calculations, the property
prediction model, the multistart optimization algorithm, and machine learning.

In Chapter 10, three types of cemented carbides (gradient cemented carbide,
ultrafine cemented carbide, and WC–Co–NiAl cemented carbide) are designed
according to thermodynamic calculations, diffusion modeling, phase-field simula-
tions, and the finite element method. The calculations cover the selection of alloy
composition, optimal combination of the heat treatment schedule (such as tempera-
ture, time, and atmosphere), control of the microstructure, and the correlation of
structure properties. In comparison with the time-consuming and costly experimental
approach, these simulation-driven materials designs led to the development of these
industrial products in three years.

Chapter 11 demonstrates a step-by-step material design for TiAlN-based CVD and
PVD hard coatings. The utilized methods include thermodynamic calculations, diffu-
sion modeling, first-principles calculations, phase-field simulations, computational
fluid dynamics, and the physically sound structure-property model. The designed
materials have found their industrial applications.

In Chapter 12, two case studies for energy materials (hydrogen storage material and
lithium battery) are demonstrated. The dominant methods employed in the two case
studies are first-principles calculations and thermodynamic calculations.

In Chapter 13, the main contents of the book are summarized, followed by
highlighting computational designs of four other engineering materials not covered
in the preceding chapters and discussing future directions and key challenges for
materials design.

Appendix A provides a summary of ancillary materials available online at
Cambridge University Press. These are pertinent data files and step-by-step instruc-
tions for hands-on experience of the reader with the simulation tools and examples
discussed in the book.

Appendix B compiles the notation in three tables of symbols for the entire book.
For the reader’s benefit, the equation numbers where these symbols are defined are
given as well as the SI-units.
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