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Abstract

Motivated by the p-adic approach in two of Mahler’s problems, we obtain some results on p-adic analytic
interpolation of sequences of integers (un)n≥0. We show that if (un)n≥0 is a sequence of integers with
un = O(n) which can be p-adically interpolated by an analytic function f : Zp → Qp, then f (x) is a
polynomial function of degree at most one. The case un = O(nd) with d > 1 is also considered with
additional conditions. Moreover, if X and Y are subsets of Z dense in Zp, we prove that there are
uncountably many p-adic analytic injective functions f : Zp → Qp, with rational coefficients, such that
f (X) = Y .
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1. Introduction

In what follows, p is a prime number, Qp is the field of p-adic numbers and Zp is
the ring of p-adic integers. Let (un)n≥0 be a sequence of integers. If there exists a
continuous function f : Zp → Qp such that f (n) = un for all nonnegative integers n,
we say that f is a p-adic interpolation of (un)n≥0. In addition, if f is analytic, we say
that it is a p-adic analytic interpolation of this sequence. Since the set of nonnegative
integers is a dense subset of Zp, any given sequence of integers admits at most one such
interpolation, which will only exist under certain strong conditions on the sequence
(for more details, see [17]).

Many authors have studied the problem of p-adic interpolation. Bihani et al. [2]
considered the problem of p-adic interpolation of the Fibonacci sequence, they proved
that the sequence (2nFn)n≥0 can be interpolated by a p-adic hypergeometric function
on Z5. Rowland and Yassawi in [16] studied p-adic properties of sequences of integers
(or p-adic integers) that satisfy a linear recurrence with constant coefficients. For
such a sequence, they obtained an explicit approximate twisted interpolation to Zp. In
particular, they proved that for any prime p � 2, there is a twisted interpolation of the
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70 B. De Paula Miranda and J. Lelis [2]

Fibonacci sequence by a finite family of p-adic analytic functions with coefficients in
some finite extension of Qp. Inspired by the Skolem–Mahler–Lech theorem on linear
recurrent sequences, Bell [1] proved that for a suitable choice of a p-adic analytic
function f and a starting point x, the iterate-computing map n �→ f n(x) extends to a
p-adic analytic function g defined for all x ∈ Zp. That is, the sequence f n(x) can be
interpolated by the p-adic analytic function g.

Mahler [7] states that the polynomial functions(
x
n

)
:=

x(x − 1) · · · (x − n + 1)
n!

,

with n ≥ 0 integer, form an orthonormal basis, called the Mahler basis, for the space
of p-adic continuous functions C(Zp → Qp). More precisely, he showed that every
continuous function f : Zp → Qp has a unique uniformly convergent expansion

f (x) =
∞∑

n=0

an

(
x
n

)
, (1.1)

where an → 0 and ‖ f ‖sup = maxn≥0 ‖an‖p. Conversely, every such expansion defines a
continuous function. Furthermore, if f ∈ C(Zp → Qp) has a Mahler expansion given
by (1.1), then the Mahler coefficients an can be reconstructed from f by the inversion
formula

an =

n∑
j=0

(−1)n−j
(
n
j

)
f ( j) (n = 0, 1, 2, . . .). (1.2)

Using the Mahler expansion (1.1) and the inversion formula (1.2), we conclude that
the sequence (un)n≥0 of integers can be p-adically interpolated if and only if

∥∥∥∥∥
n∑

j=0

(−1)n−j
(
n
j

)
uj

∥∥∥∥∥
p
→ 0 as n→ ∞.

We became interested in studying the p-adic analytic interpolation of sequences
of integers with polynomial growth while studying a problem about p-adic Liouville
numbers. Based on the classic definition of complex Liouville numbers, Clark [3]
called a p-adic integer λ a p-adic Liouville number if

lim inf
n→∞

n
√
‖n − λ‖p = 0.

It is easily seen that all p-adic Liouville numbers are transcendental p-adic numbers.
Moreover, if λ is a p-adic Liouville number and a, b are integers, with a > 0, then
aλ + b is also a p-adic Liouville number.

In his book, Maillet [10, Ch. III] discusses some arithmetic properties of complex
Liouville numbers. One of them states that given a nonconstant rational function f
with rational coefficients, if ξ is a Liouville number, then so is f (ξ). Motivated by this
fact, Mahler [9] posed the following question.
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[3] p-adic analytic interpolation 71

QUESTION 1.1 (Mahler [9]). Are there transcendental entire functions f : C→ C such
that if ξ is any Liouville number, then f (ξ) is also a Liouville number?

He pointed out: ‘The difficulty of this problem lies of course in the fact that the
set of all Liouville numbers is nonenumerable.’ We are interested in studying the
analogous question for p-adic Liouville numbers.

QUESTION 1.2. Are there p-adic transcendental analytic functions f : Zp → Qp such
that if λ is a p-adic Liouville number, then so is f (λ)?

It is important to note that the analogue of Maillet’s result is not true for p-adic
Liouville numbers. In fact, Lelis and Marques [5] proved that the analogue of Maillet’s
result is true for a class of p-adic numbers called weak p-adic Liouville numbers, but
not for all p-adic Liouville numbers.

Inspired by an argument presented by Marques and Moreira in [11] and discussed
by Lelis and Marques in [6], we approached Question 1.2 as follows. If there were
a positive integer sequence (un)n≥0 satisfying un → ∞ and un = O(n) that could be
interpolated by a p-adic transcendental analytic function f : Zp → Qp, then f would
answer Question 1.2 affirmatively. Indeed, assuming all that is true, if we get any p-adic
Liouville number λ ∈ Zp, by definition there would be a sequence of integers (nk)k≥0
such that

lim
k→∞

nk

√
‖nk − λ‖p = 0.

The function f being analytic would satisfy a Lipschitz condition (see [15, Ch. 5,
Section 3]). Thus, there would be a constant c > 0 such that

‖unk − f (λ)‖p = ‖ f (nk) − f (λ)‖p ≤ c‖nk − λ‖p,

and so

(‖unk − f (λ)‖p)1/unk ≤ (c‖nk − λ‖p)1/unk ,

where unk → ∞ and unk = O(nk). So f (λ) would also be a p-adic Liouville number.
In light of this, it is natural to try to characterise the p-adic analytic functions which

interpolate sequences of integers (un)n≥0 of linear growth. There are other reasons
for seeking such characterisations. Indeed, one may ask whether there exists a p-adic
interpolation of some arithmetic function (many of which have linear growth) or, more
generally, if polynomials with integer coefficients are the only p-adic analytic functions
that take positive integers into positive integers with polynomial order.

THEOREM 1.3. Let (un)n≥0 be a sequence of positive integers such that un = O(nd) for
some fixed d ≥ 0 (d ∈ R). Assume there exists a p-adic analytic function f : Zp → Qp

which interpolates the sequence (un)n≥0.

(i) If d ≤ 1, then f is a polynomial function of degree at most one.
(ii) If d > 1 and the Mahler expansion of f converges for all x ∈ Qp, then f is a

polynomial function of degree at most 	d
.
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72 B. De Paula Miranda and J. Lelis [4]

We remark that the condition ‘f is a p-adic analytic function on Zp’ is fundamental
in the result above. Indeed, if we write n =

∑k
i=0 ai pi in base p, then the function f :

{0} ∪ N→ Qp given by

f (n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

k−1∑
i=0

ai p
i if n ≥ p,

n if 0 ≤ n ≤ p − 1,

clearly can be extended in a unique way to a continuous function f : Zp → Qp such
that f (n) = O(n). However, f is nonanalytic and it is clearly not a polynomial function.

Moreover, consider the p-adic function fd : Zp → Qp defined by

fd(z) =
∞∑

k=0

ak pdk,

where z =
∑∞

k=0 ak pk is the p-adic expansion of z ∈ Zp. Then it is well known that fd is
a continuous function for all integers d ≥ 2. In fact, if d ≥ 2 is an integer, then

‖ fd(x) − fd(y)‖p ≤ ‖x − y‖dp.

In particular, we have f ′d(x) = 0 for all x ∈ Qp and fd ∈ C1(Zp → Qp) ⊂ C(Zp → Qp).
Note that fd(n) = O(nd), but fd is not a polynomial function. However, since fd is not
a p-adic analytic function, its Mahler expansion does not converge for all x ∈ Qp.

Very strict conditions must be satisfied for a sequence (un)n≥0 to be interpolated by
a p-adic analytic function. However, if the set A = {u0, u1, . . .} ⊆ Z is a dense subset
of Zp, one may ask whether there is some re-enumeration σ : {0} ∪ N→ {0} ∪ N such
that (uσ(n))n≥0 can be interpolated by a p-adic analytic function.

In the complex case, Georg [4] established that for each countable subset X ⊂ C
and each dense subset Y ⊆ C, there exists a transcendental entire function f such
that f (X) ⊂ Y . In 1902, Stäckel [18] used another construction to show that there is
a function f (z), analytic in a neighbourhood of the origin and with the property that
both f (z) and its inverse function assume, in this neighbourhood, algebraic values at all
algebraic points. Based on these results, Mahler [8] suggested the following question
about the set of algebraic numbers Q.

QUESTION 1.4 (Mahler, [8]). Are there transcendental entire functions f (z) =
∑

cnzn

with rational coefficients cn and such that f (Q) ⊂ Q and f −1(Q) ⊂ Q?

This question was answered positively by Marques and Moreira [12]. Moreover,
in a more recent paper [13], they proved that if X and Y are countable subsets of
C satisfying some conditions necessary for analyticity, then there are uncountably
many transcendental entire functions f (z) =

∑
anzn with rational coefficients such

that f (X) ⊂ Y and f −1(Y) ⊂ X. Keeping these results in mind, we prove the following
theorem.
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THEOREM 1.5. Let X and Y be subsets of Z dense in Zp. Then there are uncountably
many p-adic analytic injective functions f : Zp → Qp with

f (x) =
∞∑

n=0

cnxn ∈ Q[[x]]

such that f (X) = Y.

Note that by Theorem 1.5, if Y = {y0, y1, y2, . . .} ⊂ Z is a dense subset of Zp, that
is, if Y contains a complete system of residues modulo any power of p, then there is a
p-adic analytic function

f (x) =
∞∑

n=0

cnxn, cn ∈ Q for all n ≥ 0,

and a bijection σ : {0} ∪ N→ {0} ∪ N such that f (n) = uσ(n), where we take
X = {0} ∪ N. Moreover, the series above converges for all x ∈ Zp. Thus, if we consider
the Mahler expansion, then we immediately obtain the following result.

COROLLARY 1.6. Let Y = {y0, y1, y2, . . .} be a subset of Z dense in Zp. Then there are
a0, a1, a2, . . . ∈ Z and a bijection σ : {0} ∪ N→ {0} ∪ N such that

n∑
i=0

ai

(
i
n

)
= yσ(n),

for all integers n ≥ 0, where vp(an/n! )→ ∞ as n→ ∞.

We end this section by presenting some questions which we are still unable to
answer. One may ask whether Theorem 1.5 is still true if X and Y are free to contain
elements outside Z. What could one do to guarantee rational coefficients in f in a
situation like that? Moreover, if we consider the algebraic closure of Qp, denoted by
Qp, and its completion Cp, we may ask a probably more difficult question.

QUESTION 1.7. Are there p-adic transcendental entire functions f : Cp → Cp

given by

f (z) =
∞∑

n=0

cnzn, cn ∈ Q for all n ≥ 0,

such that f (Qp) ⊂ Qp and f −1(Qp) ⊂ Qp?

Naturally, the main difficulty of this problem lies again in the fact that the set Qp is
uncountable.

2. Proof of Theorem 1.3

We start by introducing the classic Strassmann’s theorem about zeros of p-adic
power series. This result says that a p-adic analytic function with coefficients in Qp

has finitely many zeros in Zp and provides a bound for the number of zeros.
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74 B. De Paula Miranda and J. Lelis [6]

THEOREM 2.1 (Strassmann, [14]). Let f (x) =
∑∞

n=0 cnxn be a nonzero power series
with coefficients in Qp and suppose that limn→∞ cn = 0 so that f (x) converges for all x
in Zp. Let N be the integer defined by conditions

‖cN‖p = max ‖cn‖p and ‖cn‖p < ‖cN‖p for all n > N.

Then the function f : Zp → Qp defined by x �→ f (x) has at most N zeros.

PROOF OF THEOREM 1.3. Let (un)n≥0 be a sequence of integers of linear or sublinear
growth, that is, un = O(n). Suppose that (un)n≥0 can be interpolated by some p-adic
analytic function

f (x) =
∞∑

n=0

cnxn ∈ Qp[[x]].

Since f (x) is a p-adic analytic function, limn→∞ ‖cn‖p = 0. Thus, there exists an
integer N defined by the conditions

‖cN‖p = max ‖cn‖p and ‖cn‖p < ‖cN‖p for all n > N,

and Strassman’s theorem guarantees that the function f : Zp → Qp has at most N
zeros.

By hypothesis, un = O(n), so there is a C > 0 such that 0 < un ≤ Cn for all n ≥ 0.
Taking the subsequence (upk )k≥0,

0 < upk ≤ Cpk. (2.1)

Since f is an analytic function, it is easily seen that it satisfies the Lipschitz
condition

‖ f (x) − f (y)‖p ≤ ‖x − y‖p
for all x, y ∈ Zp. In particular,

‖upk − u0‖p = ‖ f (pk) − f (0)‖p ≤ ‖pk‖p,

and it follows that

upk = u0 + tk pk (2.2)

with tk ∈ Z+, because upk is a positive integer. By (2.1) and (2.2), we conclude that
0 ≤ tk ≤ C. Hence, by the pigeonhole principle, there exists an integer t with 0 ≤ t ≤ C
such that

up j = u0 + tp j

for infinitely many j ≥ 0. Thus, the function

f (x) − u0 − tx = (c1 − t)x +
∞∑

n=2

cnxn

has infinitely many roots and by Strassman’s theorem, we conclude that f (x) = u0 + tx.
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Now suppose that un = O(nd) for some fixed positive real number d > 1. Let

f (x) =
∞∑

n=0

an

(
x
n

)

be the Mahler expansion of f. By hypothesis, the Mahler expansion of f converges for
all x ∈ Qp, so the function x �→ ∑∞

n=0 an

(
x
n

)
is analytic on Cp and

lim
n→∞

rn‖an‖p = 0

for all real numbers r > 0 (see [17, Ch. 3]). Taking r = p2, we find vp(an) ≥ 2n for
all n sufficiently large. Moreover, an is an integer for all n ≥ 0. In fact, by the Mahler
expansion,

an =

n∑
j=0

(−1)n−j
(
n
j

)
f ( j) =

n∑
j=0

(−1)n−j
(
n
j

)
uj (n = 0, 1, 2, . . .),

where uj ∈ Z+ for all j ≥ 0. Hence, either an = 0 or

‖an‖∞ ≥ p2n. (2.3)

However,

‖an‖∞ =
∥∥∥∥∥

n∑
j=0

(−1)n−j
(
n
j

)
uj

∥∥∥∥∥∞ (n = 0, 1, 2, . . .).

Since ‖uj‖∞ ≤ jd ≤ nd for all j ≤ n, it follows that

‖an‖∞ ≤ Dnd2n, (2.4)

where D > 0 is a fixed constant. It is easily seen that (2.3) and (2.4) cannot both be
true for n sufficiently large. Hence, there exists an N > 0 such that an = 0 for all n > N.
Consequently, f is a polynomial function. Furthermore, f (n) = O(nd), so its degree
must be at most 	d
. �

3. Proof of Theorem 1.5

Suppose that X = {x0, x1, x2, . . .} and Y = {y0, y1, y2, . . .} are subsets of Z dense in
Zp. Our proof consists in determining a sequence of polynomial functions f0, f1, . . .
such that fn → f as n→ ∞, where f is a p-adic analytic injective function on Zp

with rational coefficients satisfying f (X) = Y . In addition, we will show that there
are uncountably many such functions.

To be more precise, we will construct a sequence of polynomial functions
f0, f1, f2, . . . ∈ Q[x] of degrees t0, t1, t2, . . . ∈ Z, respectively, such that for all m ≥ 0,

fm(x) =
tm∑

i=0

cixi, (3.1)
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where c0 = y0 − x0, c1 = 1 and ‖ci‖p ≤ p−1 for all 2 ≤ i ≤ tm. Furthermore, our
sequence will obey the recurrence relation

fm+1(x) = fm(x) + xtm+1Pm(x)(δm + εm(x − xm+1)), (3.2)

where the polynomial functions Pm ∈ Z[x] are given by

Pm(x) =
∏

k∈Xm∪Y−1
m

(x − k), (3.3)

with Xm = {x0, . . . , xm} and Y−1
m = f −1

m ({y0, . . . , ym}), and δm and εm are rational numbers
such that

max{‖δm‖p, ‖εm‖p} ≤ p−m.

Finally, our sequence will also satisfy fm(xk) ∈ Y and f −1
m ({yk}) ∩ X � ∅ for all

0 ≤ k ≤ m.
We make some remarks regarding such a sequence of polynomials. First, since fm

is a polynomial, Y−1
m must be a finite subset of Zp for each m, so the polynomials Pm

are well defined. Second, by (3.1), ‖c1‖p > ‖ci‖p for all i ≥ 2, so each fm is necessarily
injective on Zp by Strassmann’s theorem. Lastly, since fm is injective, there is only one
xs ∈ X ∩ f −1

m ({yk}). The existence of such a sequence is guaranteed by the following
lemma.

LEMMA 3.1. Suppose that fm(x) = c0 + c1x + · · · + ctm xtm ∈ Q[x] is a polynomial
with

‖ci‖p < ‖c1‖p for 2 ≤ i ≤ tm ∈ Z,

such that fm(Xm) ⊂ Y and Y−1
m ⊂ X. Then there exist rational numbers δm and εm with

max{‖δm‖p, ‖εm‖p} ≤ p−m

such that the function

fm+1(x) = fm(x) + xtm+1Pm(x)(δm + εm(x − xm+1))

is a polynomial given by

fm+1(x) = c0 + c1x + · · · + ctm+1 xtm+1 ∈ Q[x]

satisfying fm+1(Xm+1) ⊂ X and Y−1
m+1 ⊂ X and, moreover, ‖ci‖p < ‖c1‖p for all integers i

with 2 ≤ i ≤ tm+1.

PROOF. Suppose that for some m ≥ 0, there is a function fm satisfying the hypotheses
of the lemma. We will show that we can choose rational numbers δm and εm such
that

max{‖δm‖p, ‖εm‖p} ≤ p−m

in such a way that the polynomial fm+1 in (3.2) has the desired properties.
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First, we will determine δm ∈ Q such that fm+1(xm+1) ∈ Y . Suppose that fm(xm+1) ∈
{y0, y1, . . . , ym}. Since Pm(xm+1) = 0, we have fm+1(xm+1) = fm(xm+1) ∈ Y . Note that
here we did not make direct use of δm to get fm+1(xm+1) ∈ Y . So we are free to
choose any δm ∈ Q and we do so by setting δm = pm. Now, suppose that fm(xm+1) �
{y0, y1, . . . , ym}, which implies that Pm(xm+1) � 0. Since Y is a dense subset of Zp, there
exists ŷ ∈ Y such that

0 <
∥∥∥∥∥ ŷ − fm(xm+1)

(xm+1)tm+1Pm(xm+1)

∥∥∥∥∥
p
≤ p−m.

Then, taking

δm =
ŷ − fm(xm+1)

(xm+1)tm+1Pm(xm+1)
,

we obtain fm+1(xm+1) = ŷ ∈ Y independently of εm. Observe that in both cases just
analysed, ‖δm‖p ≤ p−m.

Now we will choose εm ∈ Q to get fm+1(x̂) = ym+1 for some x̂ ∈ X. Since fm is
injective on Zp, there is at most one x̂ ∈ X such that fm(x̂) = ym+1. If there exists x̂ ∈ Xm
such that fm(x̂) = ym+1, then Pm(x̂) = 0 and we obtain fm+1(x̂) = ym+1. In this case, εm
does not play a role and we are free to set εm = pm. It remains to consider the case
where there is no x̂ ∈ Xm with fm(x̂) = ym+1. Note that if we choose

δm =
ym+1 − fm(xm+1)

(xm+1)tm+1Pm(xm+1)
,

then fm+1(xm+1) = ym+1 and we have x̂ = xm+1. Since we again did not use εm to ensure
that fm+1(xm+1) = ym+1, we are free to take εm = pm. However, if

δm �
ym+1 − fm(xm+1)

(xm+1)tm+1Pm(xm+1)
,

we consider the polynomial equation

fm(x) + δmxtm+1Pm(x) = ym+1.

Since ‖δm‖p ≤ p−m and ‖ci‖p < p−1 for i ≥ 2,

fm(x) + δmxtm+1Pm(x) − ym+1 ≡ y0 + x − ym+1 (mod pZp)

for all m ≥ 2. Thus, the congruence

fm(x) + δmxtm+1Pm(x) − ym+1 ≡ 0 (mod pZp)

has a solution x ≡ ym+1 − y0 (mod pZp). Moreover, taking the formal derivative,

[ fm(x) + δmxtm+1Pm(x) − ym+1]′ ≡ [y0 + x − ym+1]′ ≡ 1 (mod pZp).
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Hence, by Hensel’s lemma [14], there exists b ∈ Zp such that

fm(b) + δmbtm+1Pm(b) = ym+1.

Let vp(x) be the p-adic valuation of x ∈ Zp and take

s = vp(btm+1Pm(b)(b − xm+1)).

Note that s < +∞, since Pm(b)(b − xm+1) � 0. Thus, we have a Lipschitz condition on
Zp, namely

‖ fm(x) + δmxtm+1Pm(x) − fm(y) + δmytm+1Pm(y)‖p ≤ ‖x − y‖p
for all x, y ∈ Zp. Since X is a dense subset of Zp, there is an integer x̂ ∈ X such that

‖x̂ − b‖p ≤
1

ps+m

and vp(x̂tm+1Pm(x̂)(x̂ − xm+1)) = s. So,

‖ fm(x̂) + δmx̂tm+1Pm(x̂) − ym+1‖p ≤
1

ps+m .

Taking

εm =
ym+1 − fm(x̂) − δmx̂tm+1Pm(x̂)

x̂tm+1Pm(x̂)(x̂ − xm+1)
,

we get εm ∈ Q, ‖εm‖p < p−m and fm+1(x̂) = ym+1. This completes the proof of the
lemma. �

PROOF OF THEOREM 1.5. If in Lemma 3.1 we start with f0(x) = (x − x0) + y0, we get
a sequence of polynomials as described in the beginning of this section. Furthermore,
in each step, we have at least two options for the choice of δm and εm so we get
uncountably many sequences. We will fix one of these sequences and prove that
f (x) = limm→∞ fm(x) solves Theorem 1.5. Indeed,

fm(x) = y0 + (x − x0) +
m−1∑
j=1

xtj+1Pj(x)[δj + εj(x − xj+1)] =
tm∑

j=0

cjxj,

where ‖ci‖p ≤ p−j for tj−1 < i ≤ tj and 1 ≤ j ≤ m (since max{‖δj‖p, ‖εj‖p} ≤ p−j). There-
fore, limi→∞ ‖ci‖p = 0 and

f (x) = lim
m→∞

fm(x)

is a p-adic analytic function on Zp.
Moreover, f (X) = Y . Indeed, we are assuming that fk(xk) ∈ Y . By (3.3), Pm(xk) = 0

for all m ≥ k ≥ 0 and, consequently, fm(xk) = fm−1(xk) = · · · = fk(xk). Thus, we con-
clude that

f (xk) = lim
m→∞

fm(xk) = fk(xk) ∈ Y .
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However, by hypothesis, given an integer j ≥ 0, there exists an integer s ≥ 0 such that
fj(xs) = yj. Similarly,

f (xs) = lim
m→∞

fm(xs) = fj(xs) = yj ∈ Y

and we conclude f (X) = Y .
It remains to prove that f is injective. For this, suppose that there are a1 and a2 in

Zp such that f (a1) = f (a2) = b ∈ Zp and note that by (3.1), c1 = 1 satisfies

‖c1‖p = max ‖cj‖p and ‖cj‖p < ‖c1‖p for all j > 1. (3.4)

Now, consider the function

f (x) − b = (y0 − x0 − b) + x +
∞∑

n=2

cnxn.

Note that in the equation above, c1 = 1 still satisfies the conditions in (3.4). Hence,
f (x) − b has at most one zero (by Strassman’s theorem), so we have a1 = a2. �
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