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Abstract

Motivated by the p-adic approach in two of Mahler’s problems, we obtain some results on p-adic analytic
interpolation of sequences of integers (u,),>0. We show that if (u,),>o is a sequence of integers with
u, = O(n) which can be p-adically interpolated by an analytic function f:Z, — Q,, then f(x) is a
polynomial function of degree at most one. The case u, = O(n?) with d > 1 is also considered with
additional conditions. Moreover, if X and Y are subsets of Z dense in Z,, we prove that there are
uncountably many p-adic analytic injective functions f : Z, — Q,, with rational coefficients, such that

fXx =Y.
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1. Introduction

In what follows, p is a prime number, Q,, is the field of p-adic numbers and Z, is
the ring of p-adic integers. Let (u,),>0 be a sequence of integers. If there exists a
continuous function f : Z, — Q,, such that f(n) = u, for all nonnegative integers n,
we say that f is a p-adic interpolation of (u,),>0. In addition, if f is analytic, we say
that it is a p-adic analytic interpolation of this sequence. Since the set of nonnegative
integers is a dense subset of Z,,, any given sequence of integers admits at most one such
interpolation, which will only exist under certain strong conditions on the sequence
(for more details, see [17]).

Many authors have studied the problem of p-adic interpolation. Bihani et al. [2]
considered the problem of p-adic interpolation of the Fibonacci sequence, they proved
that the sequence (2"F,),»o can be interpolated by a p-adic hypergeometric function
on Zs. Rowland and Yassawi in [16] studied p-adic properties of sequences of integers
(or p-adic integers) that satisfy a linear recurrence with constant coefficients. For
such a sequence, they obtained an explicit approximate twisted interpolation to Z,. In
particular, they proved that for any prime p # 2, there is a twisted interpolation of the
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Fibonacci sequence by a finite family of p-adic analytic functions with coefficients in
some finite extension of Q,. Inspired by the Skolem—Mahler-Lech theorem on linear
recurrent sequences, Bell [1] proved that for a suitable choice of a p-adic analytic
function f and a starting point X, the iterate-computing map »n — f"(x) extends to a
p-adic analytic function g defined for all x € Z,,. That is, the sequence f"(x) can be
interpolated by the p-adic analytic function g.

Mahler [7] states that the polynomial functions

(x) _xx=D--(x—n+1)

n n!

il

with n > 0 integer, form an orthonormal basis, called the Mahler basis, for the space
of p-adic continuous functions C(Z, — Q). More precisely, he showed that every
continuous function f : Z, — Q, has a unique uniformly convergent expansion

- X
f) = Zan(n), (L)

n=0

where a, — 0 and || fllsyp = Max,»o |la,l|,. Conversely, every such expansion defines a
continuous function. Furthermore, if f € C(Z, — Q) has a Mahler expansion given
by (1.1), then the Mahler coefficients a, can be reconstructed from f by the inversion
formula

n » n .
ap = Z(—l)” ’( .)f(]) (n=0,12,...). (1.2)
— J
j
Using the Mahler expansion (1.1) and the inversion formula (1.2), we conclude that
the sequence (u,),>( of integers can be p-adically interpolated if and only if

; _ln—jn).
FZ()( ) (ju,

We became interested in studying the p-adic analytic interpolation of sequences
of integers with polynomial growth while studying a problem about p-adic Liouville
numbers. Based on the classic definition of complex Liouville numbers, Clark [3]
called a p-adic integer A a p-adic Liouville number if

-0 asn—o oo.
p

liminf \/[ln — All, = 0.

It is easily seen that all p-adic Liouville numbers are transcendental p-adic numbers.
Moreover, if A is a p-adic Liouville number and a, b are integers, with a > 0, then
ad + b is also a p-adic Liouville number.

In his book, Maillet [10, Ch. III] discusses some arithmetic properties of complex
Liouville numbers. One of them states that given a nonconstant rational function f
with rational coefficients, if £ is a Liouville number, then so is f(£). Motivated by this
fact, Mahler [9] posed the following question.
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QUESTION 1.1 (Mabhler [9]). Are there transcendental entire functions f : C — C such
that if £ is any Liouville number, then f(¢) is also a Liouville number?

He pointed out: ‘The difficulty of this problem lies of course in the fact that the
set of all Liouville numbers is nonenumerable.” We are interested in studying the
analogous question for p-adic Liouville numbers.

QUESTION 1.2. Are there p-adic transcendental analytic functions f : Z, — Q,, such
that if A is a p-adic Liouville number, then so is f(1)?

It is important to note that the analogue of Maillet’s result is not true for p-adic
Liouville numbers. In fact, Lelis and Marques [5] proved that the analogue of Maillet’s
result is true for a class of p-adic numbers called weak p-adic Liouville numbers, but
not for all p-adic Liouville numbers.

Inspired by an argument presented by Marques and Moreira in [11] and discussed
by Lelis and Marques in [6], we approached Question 1.2 as follows. If there were
a positive integer sequence (u,),»o satisfying u, — oo and u, = O(n) that could be
interpolated by a p-adic transcendental analytic function f : Z, — Q,, then f would
answer Question 1.2 affirmatively. Indeed, assuming all that is true, if we get any p-adic
Liouville number A € Z,,, by definition there would be a sequence of integers (1;)i=0

such that
klim %k = All, = 0.

The function f being analytic would satisfy a Lipschitz condition (see [15, Ch. 5,
Section 3]). Thus, there would be a constant ¢ > 0 such that

”unk - f(/l)“p = ||f(l’lk) — f(ﬂ)”p < Can _ /1”17’
and so
(et = FCOI)" < Cellrg = Alp) ",

where u,, — oo and u,, = O(n). So f(2) would also be a p-adic Liouville number.

In light of this, it is natural to try to characterise the p-adic analytic functions which
interpolate sequences of integers (u,),>o of linear growth. There are other reasons
for seeking such characterisations. Indeed, one may ask whether there exists a p-adic
interpolation of some arithmetic function (many of which have linear growth) or, more
generally, if polynomials with integer coefficients are the only p-adic analytic functions
that take positive integers into positive integers with polynomial order.

THEOREM 1.3. Let (uy)ns0 be a sequence of positive integers such that u, = O(n?) for
some fixed d > 0 (d € R). Assume there exists a p-adic analytic function f : Z, — Q,
which interpolates the sequence (iy,),>0-

(1) Ifd < 1, then fis a polynomial function of degree at most one.
(i1) If d > 1 and the Mahler expansion of f converges for all x € Q,, then fis a
polynomial function of degree at most |d].
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We remark that the condition ‘f is a p-adic analytic function on Z,’ is fundamental
in the result above. Indeed, if we write n = Zf:o a;p' in base p, then the function f :
{0}UN — Q, given by

k=1
3 a;pt ifn>p,
fny = ZO:
n if0<n<p-1,

clearly can be extended in a unique way to a continuous function f :Z, = Q, such
that 7(11) = O(n). However, f is nonanalytic and it is clearly not a polynomial function.
Moreover, consider the p-adic function f; : Z, — Q,, defined by

(e8]

fa@) = ap™,

k=0

where z = Y7, aip* is the p-adic expansion of z € Z,. Then it is well known that f is
a continuous function for all integers d > 2. In fact, if d > 2 is an integer, then

1) = faO)ll < lhx = YL,

In particular, we have f(x) = 0 for all x € Q, and f; € Cl(Z,7 - Q) CCZ, = Q).
Note that f;(n) = O(n“), but f; is not a polynomial function. However, since f; is not
a p-adic analytic function, its Mahler expansion does not converge for all x € Q,,.

Very strict conditions must be satisfied for a sequence (u,),>0 to be interpolated by
a p-adic analytic function. However, if the set A = {ug,u;,...} € Z is a dense subset
of Z,,, one may ask whether there is some re-enumeration o : {0} UN — {0} U N such
that (#,(,))n>0 can be interpolated by a p-adic analytic function.

In the complex case, Georg [4] established that for each countable subset X ¢ C
and each dense subset Y C C, there exists a transcendental entire function f such
that f(X) c Y. In 1902, Stéckel [18] used another construction to show that there is
a function f(z), analytic in a neighbourhood of the origin and with the property that
both f(z) and its inverse function assume, in this neighbourhood, algebraic values at all
algebraic points. Based on these results, Mahler [8] suggested the following question
about the set of algebraic numbers Q.

QUESTION 1.4 (Mahler, [8]). Are there transcendental entire functions f(z) = 3’ ¢,z"
with rational coefficients ¢, and such that f(Q) c Q and f~(Q) c Q?

This question was answered positively by Marques and Moreira [12]. Moreover,
in a more recent paper [13], they proved that if X and Y are countable subsets of
C satisfying some conditions necessary for analyticity, then there are uncountably
many transcendental entire functions f(z) = ) a,z" with rational coefficients such
that £(X) c Y and f~'(Y) c X. Keeping these results in mind, we prove the following
theorem.
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THEOREM L.5. Let X and Y be subsets of Z dense in Z,. Then there are uncountably
many p-adic analytic injective functions f : Z,, — Q, with
f) =) e € Qllx]
n=0
such that f(X) =Y.

Note that by Theorem 1.5, if ¥ = {yo,y1,¥2,...} CZ is a dense subset of Z,, that
is, if Y contains a complete system of residues modulo any power of p, then there is a
p-adic analytic function

)

fx) = Z X, ¢y €Qforalln >0,

n=0
and a bijection o :{0JUN — {0}UN such that f(n)= uy), where we take
X = {0} UN. Moreover, the series above converges for all x € Z,,. Thus, if we consider
the Mahler expansion, then we immediately obtain the following result.

COROLLARY 1.6. Let Y = {y,¥1,¥2, ...} be a subset of Z dense in Z,. Then there are
ap,ai,as, ... € Z and a bijection o : {0} UN — {0} U N such that

o (i
Z ai(n) = Yo(n)»

i=0
for all integers n > 0, where v,(a,/n!) — oo asn — oo.

We end this section by presenting some questions which we are still unable to
answer. One may ask whether Theorem 1.5 is still true if X and Y are free to contain

elements outside Z. What could one do to guarantee rational coefficients in f in a
situation like that? Moreover, if we consider the algebraic closure of Q,, denoted by

@p, and its completion C,,, we may ask a probably more difficult question.
QUESTION 1.7. Are there p-adic transcendental entire functions f:C, — C,
given by

(o)

f(z) = Z e, cn€Qforalln>0,

n=0
such that f(@p) C @p and f‘l(@p) C @p?
Naturally, the main difficulty of this problem lies again in the fact that the set @p is
uncountable.
2. Proof of Theorem 1.3

We start by introducing the classic Strassmann’s theorem about zeros of p-adic
power series. This result says that a p-adic analytic function with coefficients in Q,
has finitely many zeros in Z, and provides a bound for the number of zeros.
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THEOREM 2.1 (Strassmann, [14]). Let f(x) = .7, cax" be a nonzero power series
with coefficients in Q, and suppose that lim,_,« ¢, = 0 so that f(x) converges for all x
inZ,. Let N be the integer defined by conditions

llenll, = max|ic,ll, and lleall, <llenll,  foralln > N.
Then the function [ : Z, — Q, defined by x — f(x) has at most N zeros.

PROOF OF THEOREM 1.3. Let (1,),>0 be a sequence of integers of linear or sublinear
growth, that is, u, = O(n). Suppose that (u,),>0 can be interpolated by some p-adic
analytic function

)

f@) =) e € Q.

n=0

Since f(x) is a p-adic analytic function, lim,_,e |lc,ll, = 0. Thus, there exists an
integer N defined by the conditions

llewllp = max lcall, and  icall, <llenll,  foralln > N,

and Strassman’s theorem guarantees that the function f:Z, — Q, has at most N
Zeros.

By hypothesis, u, = O(n), so there is a C > 0 such that 0 < &, < Cn for all n > 0.
Taking the subsequence (u,:)i>0,

0<uy <Cph. @2.1)

Since f is an analytic function, it is easily seen that it satisfies the Lipschitz
condition

lf @) = fDIlp < llx =yl
for all x,y € Z,. In particular,
ety = wollp = IF D) = FOl < 1P Il
and it follows that
Uy = o + tip* (2.2)

with 1, € Z,, because u, is a positive integer. By (2.1) and (2.2), we conclude that
0 < # < C. Hence, by the pigeonhole principle, there exists an integer t with0 <7 < C
such that

Upi = Uy + tpj
for infinitely many j > 0. Thus, the function

fx)—ug—tx=(c; —Hx + chx"

n=2

has infinitely many roots and by Strassman’s theorem, we conclude that f(x) = ug + tx.

https://doi.org/10.1017/50004972722000946 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972722000946

[7] p-adic analytic interpolation 75

Now suppose that u, = O(n?) for some fixed positive real number d > 1. Let

=y a(z )

n=0
be the Mahler expansion of f. By hypothesis, the Mahler expansion of f converges for
all x € Qp, so the functionx = 3, an(z) is analytic on C,, and

lim 7"||a,ll, =0
n—o00

for all real numbers r > 0 (see [17, Ch. 3]). Taking r = p?, we find vp(a,) = 2n for
all n sufficiently large. Moreover, a, is an integer for all n > 0. In fact, by the Mahler
expansion,

a = Z(—l)”‘f(’7)f<j) = Z(—l)“‘f(’7)u,- (n=0.1,2...),
720 J =0 J

where u; € Z, for all j > 0. Hence, either a, = 0 or

llanlleo > p*". 2.3)
However,
n
laallo = || (=17 (’7)%- (n=0,1,2,...).
=0 JJ Moo
Since |1l < j? < nf for all j < n, it follows that
llalleo < Dn2", (2.4)

where D > 0 is a fixed constant. It is easily seen that (2.3) and (2.4) cannot both be
true for n sufficiently large. Hence, there exists an N > 0 such thata,, = O foralln > N.
Consequently, f is a polynomial function. Furthermore, f(n) = O(n?), so its degree
must be at most |d]. O

3. Proof of Theorem 1.5

Suppose that X = {xg, x1,x2,...} and Y = {yg, y1,¥2,...} are subsets of Z dense in
Z,. Our proof consists in determining a sequence of polynomial functions fy, fi,...
such that f, — f as n — oo, where f is a p-adic analytic injective function on Z,
with rational coefficients satisfying f(X) = Y. In addition, we will show that there
are uncountably many such functions.

To be more precise, we will construct a sequence of polynomial functions
Jos f1, f2. ... € Q[x] of degrees #y, 11, 12, . .. € Z, respectively, such that for all m > 0,

Im

ful0) = ) e, 3.1)

i=0
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where ¢y =yo—xo, ¢i =1 and |l¢ill, < p~! for all 2 <i<t,. Furthermore, our
sequence will obey the recurrence relation

St () = fn) + X7 P0G + (X = X)), (3.2)
where the polynomial functions P,, € Z[x] are given by
P,w= [] «-n, (3.3)
keX,,UY;!
with X,, = {x0,...,x,}and ¥,,' = £,'({y0, - - ., Ym}), and 6,, and €, are rational numbers

such that
max{|[6,lly, ll€nll,} < p~".

Finally, our sequence will also satisfy f,(xx) €Y and f,'(lmHNX #0 for all
0<k<m.

We make some remarks regarding such a sequence of polynomials. First, since f;,
is a polynomial, ¥;,'! must be a finite subset of Z,, for each m, so the polynomials P,
are well defined. Second, by (3.1), llc(ll, > llcill, for all i > 2, so each f;, is necessarily
injective on Z, by Strassmann’s theorem. Lastly, since f,, is injective, there is only one
x; € X N £ 1({yi}). The existence of such a sequence is guaranteed by the following
lemma.

LEMMA 3.1. Suppose that f,(x) =co+cix+---+c, x € Q[x] is a polynomial
with

llcill, < lleill,  for2 <i <ty €Z,
such that f,(X,,) C Y andY, ,;' C X. Then there exist rational numbers 0,, and €, with
max{|[6,llp. ll€nll,} < p™
such that the function
Firs1@) = fu@) + X PG + €n(x = X))
is a polynomial given by
fur1(xX) =co+cx+---+¢, X" € Qlx]

satisfying fin+1(Xme1) € X and Yr;il C X and, moreover, ||ci|l, < llc1ll, for all integers i
with2 <i < ty41-

PROOF. Suppose that for some m > 0, there is a function f,, satisfying the hypotheses
of the lemma. We will show that we can choose rational numbers 6,, and ¢, such
that

max{||omllp, llmllp} < p™

in such a way that the polynomial f,,; in (3.2) has the desired properties.
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First, we will determine §,, € Q such that f,,+1(x,+1) € Y. Suppose that f,(x;+1) €
{y0,¥15- > ym}. Since Py (xpu11) =0, we have fii1(Xn+1) = fu(xms1) € Y. Note that
here we did not make direct use of d,, to get f+1(Xm+1) € Y. So we are free to
choose any ¢,, € Q and we do so by setting 6,, = p”. Now, suppose that f,(x,+1) ¢
{y0, Y1, - - . » Ym}, which implies that P,,(x,,+1) # 0. Since Y is a dense subset of Z,, there
exists § € Y such that

V= fnXms1)
(xm+1)tm+1Pm(xm+1)

—m

0<

S
Then, taking

_ V= fmXim+1)
" (-xm+l)t’"+1Pm(-xm+l)’

we obtain f,,,1(x,+1) =y € Y independently of €,. Observe that in both cases just
analysed, [|0,n]], < p™.

Now we will choose €, € Q to get f,+1(X) = y+1 for some X € X. Since f, is
injective on Z,, there is at most one X € X such that f,,(%X) = y,,+1. If there exists X € X,,,
such that f,,(X) = y,,+1, then P,,(%) = 0 and we obtain f,+1(X) = y,+1. In this case, €,
does not play a role and we are free to set €, = p™. It remains to consider the case
where there is no X € X,, with f,,,(X) = y,;+1. Note that if we choose

_ ym+l - fm(-xm+l)
6m - 1 B
X 1) P (Xmg1)

then f,+1(Xm+1) = Ym+1 and we have X = x,,,1. Since we again did not use ¢, to ensure
that f,,,11(Xm+1) = Ym+1, We are free to take ¢, = p™. However, if

m — Jm\Xm
S % y +1t+{( +1) ’
(Xm+1)’” Pm(xm+1)

we consider the polynomial equation
Fn0) + 62" Poy(x) = Y.
Since [|6,ll, < p™ and |lcill, < p~! fori > 2,
S @) + X Py(X) = Y1 = Yo + X = Y1 (mod pZ,)
for all m > 2. Thus, the congruence
Fn®) + 8 Pyy(x) = Yue1 = 0 (mod pZ,,)
has a solution X = y,,+1 — yo (mod pZ,). Moreover, taking the formal derivative,

[fm(x) + 6mx[m+]Pm(x) _ym+1], = [yO +x _ym+1], =1 (mOd pr)
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Hence, by Hensel’s lemma [14], there exists b € Z, such that
Sin(D) + Sub™ ' Pyy(b) = Y1
Let v,(x) be the p-adic valuation of x € Z, and take
s = vp(b"* Pru(B)(b = Xni1)).

Note that s < +00, since P, (b)(b — x,,+1) # 0. Thus, we have a Lipschitz condition on
Z,, namely

1fin) + 8ux P (6) = fuu@) + 5y POl < I = ¥l
for all x,y € Z,. Since X is a dense subset of Z,, there is an integer X € X such that
1
pS+m

X - bll, <

and v,(X*1 Py (D)(& — X11)) = 5. So,
1
ps+m '

”fm(j\c) + 5mjctm+lpm(5€) - ym+1||p <

Taking
— Ym+1 — fm(je) - 51n5€t"’+lpm(j\c)
" Xt P (R)(E = Xna1)

we get €, €Q, lleull, < p™ and f,41(X) = Ym+1. This completes the proof of the
lemma. O

PROOF OF THEOREM 1.5. If in Lemma 3.1 we start with fy(x) = (x — x¢) + yo, we get
a sequence of polynomials as described in the beginning of this section. Furthermore,
in each step, we have at least two options for the choice of ¢,, and €, so we get
uncountably many sequences. We will fix one of these sequences and prove that
f(x) = lim,,_, fin(x) solves Theorem 1.5. Indeed,

m—1 Im

) =30 + (x = x0) + Y PG + G = xj)] = Y e,

j=1 j=0

where |cill, < p7 forti; < i <t;and 1 <j < m (since max{||5;l, ll&ll,} < p™). There-
fore, lim;_, |Icill, = 0 and

fG) = lim £ (0)

is a p-adic analytic function on Z,,.

Moreover, f(X) = Y. Indeed, we are assuming that fi(x;) € Y. By (3.3), P,,(xx) =0
for all m > k > 0 and, consequently, f,,(xx) = fu-1(xx) = -+ = fi(xx). Thus, we con-
clude that

fla) = nlll_r& Fnxp) = filr) €Y.
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However, by hypothesis, given an integer j > 0, there exists an integer s > 0 such that
fi(xs) = y;. Similarly,

f) = lim fiu(xs) = fi(x) =y, €Y

and we conclude f(X) =Y.
It remains to prove that f is injective. For this, suppose that there are a; and a, in
Z,, such that f(a;) = f(a2) = b € Z, and note that by (3.1), ¢; = 1 satisfies

llcill, = max|lcjll, and Jlcjll, < llcill, forallj> 1. (3.4)

Now, consider the function
f)-b=0o—x0—b)+x+ chx".
n=2

Note that in the equation above, ¢; = 1 still satisfies the conditions in (3.4). Hence,
f(x) — b has at most one zero (by Strassman’s theorem), so we have a; = a,. O
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