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The main purpose of this paper is to discuss the categories of the minimal
topological spaces investigated in [1], [2], [7], and [8]. After these results
are given, an application will be made to answer the following question:
If 2 is the lattice of topologies on a set X and % is a Hausdorff (or regular,
or completely regular, or normal, or locally compact) topology does there
always exist a minimal Hausdorff (or minimal regular, or minimal com-
pletely regular, or minimal normal, or minimal locally compact) topology
weaker than %1

The terminology used in this paper, in general, will be that found in
Bourbaki: [3], [4], and [5]. Specifically, Tx and Fre"chet spaces are the
same; T2 and Hausdorff spaces are the same; regular spaces, completely
regular spaces, normal spaces, locally compact spaces, and compact spaces
all satisfy the Hausdorff separation axiom. An open (closed) filter-base
is one composed exclusively of open (closed) sets. A regular filter-base is
an open filter-base which is equivalent to a closed filter-base. Finally in
the lattice of topologies on a given set X, a topology is said to be minimal
with respect to some property P (or is said to be a minimal P-topology)
if there exists no other weaker (= smaller, coarser) topology on X with
property P.

The following theorems which characterize minimal Hausdorff topo-
logies and minimal regular topologies are proved in [1], [2], and [5].

THEOREM 1. A Hausdorff space is minimal Hausdorff if, and only if,
(i) every open filter-base has an adherent point; (ii) if such an adherent point
is unique, then the filter-base converges to it.

THEOREM 2. A regular space is minimal regular if, and only if, (i) every
regular filter-base has an adherent point; (ii) if such an adherent point is
unique, then the filter-base converges to it.

Since a compact space satisfies the conditions of both theorems 1
and 2, then a compact space is both minimal Hausdorff and minimal
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regular. Now it is well-known that a compact space is of second category.
In fact if the space is denumerably infinite, then it contains infinitely many
isolated points. In this paper, it will be shown that the latter result can be
extended to all minimal Hausdorff topologies and all minimal regular
topologies defined on denumerable spaces. Also, it will be shown that the
former result can be extended to all minimal regular spaces.

THEOREM 3. (i) Every countably infinite minimal Frichet space is of
first category; (ii) every uncountably infinite minimal Frichet space is of
second category.

PROOF. Let X be any infinite set. From [1] and [6], the minimal
Frechet topology % defined on X is given by the family

% = {A C X\X-A is finite} u {<£}.

(i) For each x e X, {x} is nowhere dense. Since X is countable and
X = (Jzex (x}> *nen (X, £) is of first category.

(ii) Let X = U^j Bt. Since X is uncountable, then at least one B,
is infinite and hence dense in X. Thus X is of second category.

Remark 1. (i) The example of the space of rational numbers with the
natural topology will demonstrate that on denumerable Frechet spaces
minimal Frechet and first category are not equivalent properties. For this
space is of first category but many open sets have infinite complement.

(ii) The example of any uncountably infinite discrete space will
demonstrate that on uncountably infinite Fre'chet spaces minimal Frechet
and second category are not equivalent properties.

THEOREM 4. Any minimal Hausdorff topology defined on a denumerable
infinite set has an isolated point.

PROOF. Let 2; be a minimal Hausdorff topology defined on X, a de-
numerably infinite set. Assume (X, %) has no isolated point. We will now
construct an open filter-base on X without any adherent points, thus
contradicting a necessary condition for X to be minimal Hausdorff. List
the points of X: X = {xy, x2, • • •}. Since X has no isolated points and
since X is Hausdorff, then every open set is infinite. Hence any neigh-
borhood at any point is infinite. Take and fix a point at e X such that
<*! =£ xt. Now there exist disjoint open neighborhoods Gt and Vt of at and
xt respectively. Since Gx is infinite, then there exist a point a2 e Gx, a2 ^ x2,
and disjoint open neighborhoods G2 and F2 of a2 and xa respectively such
that Gx D G%. Repeating this argument for any element xn, we can find
an element aneGn_lt an^xn, and disjoint open neighborhoods Gn and
Vn of an and xn respectively such that
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Thus we obtain a descending chain of non-empty open sets of X which
of course forms an open filter-base; call it Q. Now for any element xkeX,
we have by construction Vk n Gk = </>. Thus D has no adherent point.
Hence X is not minimal Hausdorff which contradicts our hypothesis.

COROLLARY 1. A minimal Hausdorff space X, where X is denumerably
infinite is of second category.

Remark 2. The example of any denumerably infinite space with the
discrete topology will demonstrate that on denumerable Hausdorff spaces
minimal Hausdorff and second category are not equivalent properties.

In [1], it is shown that any open and closed subspace of a minimal
Hausdorff space is minimal Hausdorff. Using theorem 4, we can easily
establish the following result.

COROLLARY 2. A minimal Hausdorff space (X, %), where X is denumerably
infinite, contains infinitely many isolated points.

PROOF. Let A be the set of all isolated points of X. Assume A is finite.
Then A is both open and closed. Thus X—A is both open and closed. Since
X—A is minimal Hausdorff, then X—A contains an isolated point which
is also isolated in X. Thus A does not contain all the isolated points of X
which contradicts our definition of A.

COROLLARY 3. A compact space X where X is denumerably infinite,
contains infinitely many isolated points and hence is of second category.

THEOREM 5. Any minimal regular topology defined on a countably in-
finite set has an isolated point.

PROOF. Let % be a minimal regular topology defined on a countably
infinite set X. Assume (X, %) has no isolated point. By theorem 2, a neces-
sary condition for a regular space to be minimal regular is that every regular
filter-base, i.e., an open filter-base equivalent to a closed filter-base, have
an adherent point. We will now construct a regular filter-base which has
no adherent point. List the points of X: X = {xlt x2, • • •}. Since X has
no isolated points and since X is Hausdorff, then every open set is infinite.
Hence any neighborhood of any point is infinite. Take and fix a point
ate X such that at=/= xx. Since X is regular, there exist disjoint open neigh-
borhoods Gx and Vx of ax and xx respectively and a closed neighborhood
Fx of ax such that Gx D F1. Since Fx is infinite, then there exist a point
«2 e JP"1( a% ^ x2, and disjoint open neigborhoods G% and V2 of a2 and x2

respectively and a closed neighborhood i^of a2 such that GXD FXD G2D F2.
Repeating this argument for any element xn, we can find an element
s . e G , . , , an^xn, and disjoint open neighborhoods Gn and Vn of an

and xn respectively and a closed neighborhood Fn of an such that
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G1DF1DGaDFaD---DGnDFn.

Let D = {G,| t = 1, 2, • • •} and 8 = {F,| * = 1, 2, • • •}. Thus D is an
open filter-base, 3f is a closed filter-base, and D and Of are equivalent. Since
D has no adherent point, then X is not minimal regular which contradicts
our hypothesis.

From theorem 5, one may conclude that any minimal regular space
X, where X is denumerable, is of second category. We shall now prove
that all minimal regular spaces possess this property.

THEOREM 6. / / (X, %) is a minimal regular space, then (X, %) is of
second category.

PROOF. Let {0B}^.1 be a denumerable family of open, dense sets in X.
We shall now show that f)nziOn ^ j>. Let Vx = 0x r\ 02. Now V1 is open
and dense on X. Take and t\x.axeV1. Since X is regular, there exist neigh-
borhoods Gx and Fx of % such that Gx is open, Fx is closed and Vx D Fx D Gx.
Now let V2 = Gx n 0s. Since Gx is non-empty and O3 is dense, then Va

is open and non-empty. Take and fix. azeV2. Since X is regular, there
exist neighborhoods G2 and Ft of a2, such that G2 is open, F2 is closed
and V2D F^DG^. Thus VXD ^ D ^ D F g D G g . Now for n ^ 2, we may
repeat this last argument. Let Vn = GB_X n 0n+1. Both Gn_x and 0B+1
are open. Since Gn_,x is non-empty and On+1 is dense, then Vn is open and
non-empty. Take and fix an e Vn. Since T̂ is regular, there exist neighbor-
hoods GB and Fn of an. Thus VXD FXD Gx D FaD FtD GtD ••• D FBD FnD GB.
Let D = {GB| « ^ 1} and 3 = {FB| « ^ 1}. From the above remarks, we
see that D is a regular filter-base equivalent to the closed filter-base Qf. By
theorem 2, D has an adherent point. Let p be such a point. Since p e Hnai-^n»
then ^ n , i . G , . But n n a i ^ C n ^ i O . . . Hence r U x O - ^ f Thus
(X, 2) is of second category.

Remark 3. (i) On regular spaces, minimal regularity and second category
are not equivalent conditions. As an example, let X be any uncountable
space with the discrete topology.

(ii) For an example of a non-compact minimal Hausdorff space, the
reader is referred to [1], [7], [8] and [9].

(iii) For an example of a non-compact minimal regular space, the reader
is referred to [2],

From [1] and [8], it is proved that all minimal completely regular
spaces, minimal normal spaces, and minimal locally compact spaces are
compact. Hence we have the following result.

THEOREM 7. AU minimal completely regular spaces, minimal normal
spaces, minimal locally compact spaces are of second category.

COROLLARY 4. Let (X, X) be a topological space such that X is denumerably
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infinite and % is minimal completely regular {minimal normal, minimal locally
covipact). Then (X, %) contains isolated points.

As an application of theorems 4 and 5 and corollary 3, we shall now
answer (in part) the following general question concerning the lattice of
topologies on a set X. Given a P-topology %on X. Does there exist a minimal
P-topology %' such that %' is weaker than %? We shall answer this question
for the different type of P-topologies discussed in this paper. If P = Fre"chet
or locally compact, from [1] and [6] the answer to the question is always
affirmative. If P = Hausdorff, or regular, or completely regular, or normal,
the answer is negative. Consider the following example. Let (X, %) be the
set of all rational numbers with the natural topology. Then X is Hausdorff,
regular, completely regular, and normal. But X has no isolated points.
Hence by theorems 4 and 5 and corollary 3, there exist no corresponding
minimal P-topologies on X weaker than %.

Question: Are all minimal Hausdorff spaces of second category?
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