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WEIGHTED LACUNARY MAXIMAL FUNCTIONS ON CURVES

JONG-GUK BAK

ABSTRACT. LetY(f) = (1,£,...,") +abe acurve in R”, wheren > 2 and a € R".
We prove LP—L9 estimates for the weighted lacunary maximal function, related to this
curve, defined by

M, of (x) = supiz"("/!’*"/ﬂ / e — 2v() dt|, f € CPRM.
kez 0

If n = 2 or 3 our results are (nearly) shérp.

Let n > 2 and fix a vectora € R". LetY(t) = (¢,7,...,¢") +a, for t € R. Consider
the curve ' = {Y(r) : 0 <¢ < 1} C R”, and the measure u supported on I" given by
dp((t)) = dt. That is, 1 acts on functions f by (u.f) = J3 f(¥(¢)) dt. For r > 0 a dilate
ur of p is defined by

) = [ £(P@)

or equivalently, u, may be defined by the equation ;7,(5) = fu(rf). Here ~ denotes the
Fourier transform in R”. A dilate of a distribution v is defined similarly.

In analogy with the spherical maximal function introduced by E. M. Stein (see [S3]),
one may define the maximal function /A associated to the curve I', witha = (0, ...,0, 1)
say, by

1
Nf(x) = sup | * f ()| = ggi /0 fx=r@)at

» S e PR

If n = 2 this is a variant of the spherical (circular) maximal function and it is known that
A is bounded on L7 if and only if p > 2 (see [B], [MSS], [So]). On the other hand if
n > 3 it is at present unknown whether there is some p < oo for which A/ is bounded
on I7(R").

Let us now abbreviate the lacunary dilate pux as py (k € Z). The corresponding lacu-
nary maximal function may then be defined by

M) = supue = 16| = sup [ £(x — 290) . 1 € PR
k€L k

In contrast to A it is well known that M is bounded on LP(R") for p € (1,00] (see [DR],
[S3]; also see [C]).
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The purpose of this note is to study the L’—L7 mapping properties of a weighted ver-
sion of the lacunary maximal function:

M ) = M, 173/ () = sup AP D9, ] € PR

(A weighted maximal function (for the sphere) was first considered by Oberlin [02]. As
was noted there, homogeneity implies that M, , can only be bounded from L" to L* when
1/r—=1/s=1/p—1/q.)

It appears that the mapping properties of M, , are closely related to those of the con-
volution operator 7Tf = p x f. Let

2
nn+1)

n—1

np

A== {(/p1/@) €O X 0105~ — < >

I
p

Q|-
Q|-

by L)
q (m—1p n-—1

Thus A is the closed trapezoid (triangle when n = 2) with vertices (0,0), (1,1), D =
(* = n+2)/(® +n),(n — 1)/(n + 1)), and D' = (2/(n +1),2n — 2)/(n* + n)).
For T to be bounded from IP(R") to LY(R") it is necessary that (1/p,1/q) € A (see
e.g. [M]). When n = 2 or 3 the complete mapping properties of T are known: T is
bounded from LP(R") to LI(R") if and only if (1/p,1/g) € A (see [O1]). But when
n > 4 the only known sufficient condition is that 7 is bounded from LP(R") to L(R") if
(1/p, 1/q) belongs to the closed triangle with vertices (0, 0), (1, 1),and E = ((n2 +n+2)/
(2n*+2n), (n* +n—2)/(2n* +2n)), where E is the midpoint of the line segment DD’ (see
[M]). Thus when n > 4 there is a large gap between the known necessary and sufficient
conditions.

Note that M, ; may not be bounded unless (1/p,1/q) € A, since p * f is pointwise
dominated by M, ,f. We obtain the following positive result for M, ; in R®. It affirms a
conjecture of Oberlin. The letter C will denote a constant which may not be the same at

each occurrence, but always independent of £ € Z and f (or £). Let A° denote the interior
of A.

THEOREM. Letn = 3. Then

¢)) | Mp.of ll2orry < Cllf | o)
if(},, 5) €N orifp=gq € (1,].

Whenp = g € (1, 00] this is the known result about M mentioned above. Let us give
a brief outline of its proof. The L? estimate follows from the decay of i and a Littlewood-
Paley decomposition of f (as in Lemma 1 below). The L” estimates for 1 < p < 2 (the
other values of p being trivial) are then deduced by applying a “bootstrap” argument (an
iterated interpolation argument) similar to the one appearing in [NSW] (see also [DR],
[S3]). The proof of the estimates (1) for the points in A is similar: it may be based on a
Littlewood-Paley decomposition of f, and certain uniform oscillatory integral estimates
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due to Oberlin [03] and McMichael [M] (see Lemma 2 below), and the convolution
properties of p in R? ([O1]; see above), combined with complex interpolation and a
bootstrap argument. A similar argument also shows that (1) holds in R” (» > 2) whenever
(1/p, 1/q) belongs to the open triangle with vertices (0,0), (1,1) and E, where E is as
above.

It may be an interesting problem to determine what happens on the boundary of A (see
e.g. [Chl, Theorem 4]). It might also be worth pointing out that (1) holds independent
of the vector a, in particular when a = 0, although there are related maximal functions
whose properties when a = (0,...,0, 1) and when a = 0, say, are very different.

To prove the theorem we first need to state two lemmas. Fix a nonnegative function
¢ € CP(R) such that ¢ is supported in the interval (1/2,2) and Sz ¢(21) = 1 for
t > 0. Forj € Z the Littlewood-Paley operator P; is defined by 1317 (©) = o€ () =
$Q|ENF(E), for f € CP(R?), say. Thus £ = Tjez Pyf-

The following lemma is standard (see [DR]). It follows by Plancherel’s theorem from
the hypotheses on the decay of the Fourier transform of v and the support properties of

d;.
LEMMA 1. Suppose that v is a distribution on R" such that for some number 6 > 0
[P(©)] < Cle| ™, and |[7(§)| < CIEI for & € R". Then

[P «PutP) |, < M1

It follows from the last inequality that

1/2 0 1/2
|(Ses) ], = | (5= ()]

Certain special cases of the next lemma were proved by Oberlin [O3]. The general
version stated below is due to McMichael [M]. Let Py be the space of real-valued poly-
nomials on R of degree at most N.

S0 27011112 < Cliflla-

LEMMA 2. Given a positive integer N, there exists a constant Cy such that if
ay,..., ay are nonnegative real numbers with Zj’i, joj =1, then

. N 1+is
[ e (I P0r) ~ af < e+ sty
i

ifp € By, a<b,ands € R whereo = TN | a.

PROOF OF THEOREM. Following Oberlin and McMichael [M] we define an analytic
family of operators by
1

1
T — _ _ " _ " z Zd d d
= T b 1= 1@ =@ = ") ul v dudv de
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(initially by this equation for Rez > —1, then for all complex z by analytic continuation).
Then T,f(x) = p?® * f(x), where

;Z(ﬁ) =G, /01 en(t)fhl/(t) . gl——lfz X h///(t) . gl,l_z d

(see [GS, p. 359]). If Rez = —6/5, it follows from Lemma 2 with p(t) = ¥(¢)- £, N = 3,
o =0,and o, = a3 = 1/5, that

lZ(€) < C. VEER,

where the constant C, has at most exponential growth in | Imz|.
Now let G, be the Bessel kernel of (complex) order ¢, i.e.,

Gal€) = (1 + €[} /2,

and take v = G * p*, with Rea = € € (0,2/5). Then 9(§) = Go(E)2(£). So (&) <
C.(1+|¢])¢ if Rez = —6/5. Notice also that |7(€)| < C|¢[*/° ifRez = —6/5. Therefore
by Lemma 1

6) [sup (Gevis * 1) * Pisef1 |, < G2, if Rez = —6/5.
k

We have ||Geis])1 < C[F((s + is)/2)l_l (see [S1, p. 132]). And we can see that "
is bounded (as a function of £) if 7 € R, by making the change of variables (¢, u,v) —
¥ = (1,y2,y3) given by y = Y(t) + wY"(t) + W"'(¢) = (¢, £ +2u, 1 + £ + 6ut + 6v) in the
integral for T;,f(x) = u™™ * f(x), and noting that the Jacobian is a constant. Thus

I(Gesis 17 % flloo < NGesis * oot < N Gesisli I lloollf 111 < CesCrlIf1

where the constant C, ;C, has at most exponential growth in s and 7. Hence by homo-
geneity we have '

A3) "stzp 12%(Gevis % 2 * Prtf1 || < CesCrflh,  if Rez = 0.

To interpolate (2) and (3) we consider an analytic family of vector-valued linear op-
erators defined by

S(f) = {25C*2/D(Guis * 1N * Prtf hrex

(with £ +is and £ fixed). Observe that (2) may be restated as boundedness of S, from L?
to L2(£*°) (a mixed-norm space):

[IS:OMlew@ 2oy < €2, if Rez = —6/5;

and (3) as
I ||Sz(f)|lew(z)“Lm(R3) <Cl|fll, if Rez=0.
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Therefore by complex interpolation in the mixed-norm setting (see [BP], [02]) we obtain
@ ||Sl]:p |22 (Gevis * )k * it ||12/5 < 26/ If]) 5,

since p~! = p.

Now fix a number § € (0,1/3). By Theorem 2 in [S2, p. 324] we have |i(§)| <
C(1+ (€172, S0 [(Gswis * mY'E)] = [(G—ss1)(©)] - |i(€)] < C. Hence by Plancherel’s
theorem

) [suplGoses i x Prsdl], < | (S21G-s1s x 3e ¢ Pif ) . |, < it
We now apply complex interpolation again to the analytic family

() = {24 2D G x )i * P Jrez.
Since Gy * p = p, (4) and (5) thus yield
© [sup 2%/ x Prvafl |, < CZ T
for some e(po) > 0if 2 > pg > 12/7 and g9 = pj, (the conjugate exponent of py).
(By choosing ¢ > 0 small enough in (4) we may get (6) for points (1/po,1/pp) €

A° arbitrarily close to the point (7/12,5/12).) Since f = ez Pi+of, an immediate
consequence of (6) is that

(61) ”%mqof“llo S C“f”Po'

This proves (1) for points (1/p, 1/g) in A° lying on the line of duality 1/p+1/q = 1.

We now extend (1) to points that lie off the line of duality. Fix 8 = 1/pp — 1/qo €
(0,1/6) and let L denote the (open) line segment L = Lg = {(1/p,1/q) € A° :
1/p — 1/q = B}. Since p is a positive measure, if {f;} is a sequence of functions,
(6") implies that

©)  Jsup 2P S il < | Moosn(suplfl)],, < Clsuplfl

(See [NSW] and [Ch2] for related positivity arguments.) Let (1/a, 1 /b) denote the right
endpoint of L. (At the left endpoint the argument is simpler and a bootstrap argument is
not necessary, since a > 2.) It is known from [O1] that

[l fllo < Cllflas

which implies by homogeneity that for £ € Z and the same constant C
124G/ 511y < Cllf -

Since 1 < a < bit is easy to see that

%) ” (;lzk(3/a~3/b)uk *ﬁ‘|b)l/b“b < C“(szlfkla)l/a

LSSl

a
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By interpolating (6”) and (7) in the mixed-norm setting we get

1/2

®) : ”(;]23&#,( *ﬂ|2b>1/2b’Iql < CH(;I}HZ) ‘

b

D1

with 1/py —1/q1 = Band 1/p; = (1/po+1/a)/2. (Thus (1/p1,1/q)) is the midpoint
of the line segment joining (1/po, 1/qo) and (1/a, 1/b).) Taking f = P+¢f in (8) we
obtain

®) Jsup 2% e+ Pes |, < ] (S1PwarP) | < il
k k D1

where the last inequality follows from a Littlewood-Paley inequality (see e.g. [So, p. 21]).
Interpolating (6) and (8') yields

©) l‘sgp|23ﬁkuk * Pisof | "q < c2- <Gl

for all (1/p, 1/q) on L lying strictly between (1/po, 1/qo) and (1/p1,1/41). Hence we
have for the same values of p and ¢

@) M4/ lg < ClIA1lps

and by the positivity of u (as before)

©" ||s1]:p 2% e+ il |, < C||Sl;p 151,

We interpolate again with (9”) (in place of (6”) in the interpolation step above) and (7)
to get (1) on the entire open line segment with endpoints (1/po, 1 /o) and (1/p2,1/42),
where the latter is the midpoint of the line segment joining (1/p1,1/q;) and (1/a, 1/b).
By repeating this process we obtain (1) for any point (1/p,1/g) on L. n

It should also be clear from this proof that in the statement of the theorem (1) may be
replaced by the following slightly stronger estimate:

a’y ” (§ |2k(3/P—3/q)#k *f|q)l/qu < C|flp-

To see this observe that, for instance, the sup, on the left hand side of (2) may be replaced
by an £2 norm, so that (4) actually holds with the sup, replaced by an ¢'%/% norm.

We would like to thank David McMichael, Daniel Oberlin and James Wright for sev-
eral helpful conversations on the subject matters of this note. We also wish to thank the
referee for several suggestions that greatly improved the exposition.
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