
Canad. Math. Bull. Vol. 38 (3), 1995 pp. 271-277 

WEIGHTED LACUNARY MAXIMAL FUNCTIONS ON CURVES 

JONG-GUKBAK 

ABSTRACT. Let 7(0 = (/, f2,..., f) + a be a curve in R", where n > 2 and a G R". 
We prove LP-Lq estimates for the weighted lacunary maximal function, related to this 
curve, defined by 

% MX) = s u p b ^ - " / ^ [lf(x - 2*7(0) diV fe CS°(Rn). 
keZ\ Jo I 

If n = 2 or 3 our results are (nearly) sharp. 

Let n > 2 and fix a vector a G Rw. Let 7(0 = (t, t2,..., f) + a, for t G R. Consider 

the curve T = {7(0 : 0 < K 1} C R", and the measure /i supported on T given by 

dfi(l(t)) = dt. That is, /z acts on functions/by (/x,/) = Jo/(7(0) *• For r > 0 a dilate 

[ir of/x is defined by 

or equivalently, [ir may be defined by the equation /ir(£) = A^O- H e r e " denotes the 
Fourier transform in Rw. A dilate of a distribution v is defined similarly. 

In analogy with the spherical maximal function introduced by E. M. Stein (see [S3]), 
one may define the maximal function fA£ associated to the curve T, with a = (0 , . . . , 0,1) 
say, by 

9{f{x) = sup |/xr */-(x)| = supl jj(x - rr(0) dtV f G C?(Rn). 

If n = 2 this is a variant of the spherical (circular) maximal function and it is known that 
9i is bounded on LP if and only if/? > 2 (see [B], [MSS], [So]). On the other hand if 
n > 3 it is at present unknown whether there is some/? < oo for which 5\£ is bounded 
on LP(Rn). 

Let us now abbreviate the lacunary dilate /i2* as /i£ (k G Z). The corresponding lacu­
nary maximal function may then be defined by 

Mf(x) = sup K */(x)| = supl fj{x - 2*7(0) dl f G C?(Rn). 

In contrast to fA£ it is well known that f̂ f is bounded on If(Rn) for/? G ( 1, oo] (see [DR], 
[S3]; also see [C]). 
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The purpose of this note is to study the LP—Lq mapping properties of a weighted ver­
sion of the lacunary maximal function: 

%,J{x) = Ml/p_l/qflx) = sup |2*<"/'-"/«V* *f(x% f e cg°(R"). 
kGZ 

(A weighted maximal function (for the sphere) was first considered by Oberlin [02]. As 
was noted there, homogeneity implies that 94pyq can only be bounded from U to U when 
l/r-l/s=l/p-l/q.) 

It appears that the mapping properties of !Mp,q are closely related to those of the con­
volution operator Tf = [i *f. Let 

A = Al.= {(l/pJ/,)€lP,l]xIp,l]:0<I-i<^,i>^, 

i>-I L_). 
q (n-l)p n - 1 J 

Thus A is the closed trapezoid (triangle when n = 2) with vertices (0,0), (1,1), D = 
((n2 -n + 2)/{n2 + n),(n - l)/(n + 1)), and D' = (2/(n + l),(2/i - 2)/(n2 + n)). 
For T to be bounded from If(Rn) to Lq(Rn) it is necessary that (1//?, l/q) G A (see 
e.g. [M]). When « = 2 or 3 the complete mapping properties of T are known: T is 
bounded from Lf(Rn) to L*(RW) if and only if (\/p, l/q) G A (see [Ol]). But when 
n > 4 the only known sufficient condition is that T is bounded from LP(Rn) to Z^(R") if 
(I//?, 1/^belongs to the closed triangle with vertices (0,0),(1, l),andE = ((«2+«+2)/ 
(2«2 + 2«), («2 +« — 2)/(2n2 +2«)), where £ is the midpoint of the line segment DZ)' (see 
[M]). Thus when n > 4 there is a large gap between the known necessary and sufficient 
conditions. 

Note that tMp,q may not be bounded unless (1 /p, l/q) G A, since \i *f is pointwise 
dominated by ftC,qf. We obtain the following positive result for ftC^ in R3. It affirms a 
conjecture of Oberlin. The letter C will denote a constant which may not be the same at 
each occurrence, but always independent of l G Z and/ (or £). Let A° denote the interior 
of A 

THEOREM. Let n = 3. Then 

(i) II*W1U'(R-) < ^ril^(R-) 

i / ( i , i ) e A ° , o n / j p = ^G( l ,oo] . 

When/? = # G (1, oo] this is the known result about M mentioned above. Let us give 
a brief outline of its proof. The I? estimate follows from the decay of/i and a Littlewood-
Paley decomposition off (as in Lemma 1 below). The LP estimates for 1 < p < 2 (the 
other values of p being trivial) are then deduced by applying a "bootstrap" argument (an 
iterated interpolation argument) similar to the one appearing in [NSW] (see also [DR], 
[S3]). The proof of the estimates (1) for the points in A° is similar: it may be based on a 
Littlewood-Paley decomposition off, and certain uniform oscillatory integral estimates 

https://doi.org/10.4153/CMB-1995-040-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-040-3


MAXIMAL FUNCTIONS ON CURVES 273 

due to Oberlin [03] and McMichael [M] (see Lemma 2 below), and the convolution 
properties of/x in R3 ([01]; see above), combined with complex interpolation and a 
bootstrap argument. A similar argument also shows that ( 1 ) holds in Rn (n > 2) whenever 
(l/p,l/q) belongs to the open triangle with vertices (0,0), (1,1) and E, where E is as 
above. 

It may be an interesting problem to determine what happens on the boundary of À (see 
e.g. [Chi, Theorem 4]). It might also be worth pointing out that (1) holds independent 
of the vector a, in particular when a = 0, although there are related maximal functions 
whose properties when a = (0 , . . . , 0,1) and when a = 0, say, are very different. 

To prove the theorem we first need to state two lemmas. Fix a nonnegative function 
(j> e ÇQ°(R) such that </> is supported in the interval (1/2,2) and E / e z ^ O = 1 for 
/ > 0. Fory <E Z the Littlewood-Paley operator Pj is defined by Pjf(Q = <t>j(\Ç\)f(Q = 
<K2!\t\)t(0, for/ e q°(R"), say. Thus/ = T.J&tPjf. 

The following lemma is standard (see [DR]). It follows by Plancherel's theorem from 
the hypotheses on the decay of the Fourier transform of v and the support properties of 

LEMMA 1. Suppose that v is a distribution on R" such that for some number 6 > 0 
KOI < C\Z\-8, and KOI < C\tffori e R" Then 

|(EI"**JWI2) I <cr*"'i||/i|2. 
II \keZ / 112 

It follows from the last inequality that 

1 /2 

I(EK*/l2)I/2I2 = I (E | " t* (E^ | 2 ) <cE2- '̂|[/1l2<q|/ll2. 
K II V Ac t ' H Z L 

Certain special cases of the next lemma were proved by Oberlin [03]. The general 
version stated below is due to McMichael [M]. Let (PN be the space of real-valued poly­
nomials on R of degree at most N. 

LEMMA 2. Given a positive integer N, there exists a constant CM such that if 
a\,..., a# are nonnegative real numbers with HjLiJocj = 1, then 

r / N x \+is I 

^ ( n b ^ o r ) dt\<cN(i + \s\y 
7=1 

ifp E (PN, a < b, and s G R, where a = EJLi <*/• 

PROOF OF THEOREM. Following Oberlin and McMichael [M] we define an analytic 
family of operators by 

w)=-;—-—^2 e r r Ax - 7 « - «""w - ^"\i))\u\*\vuudvdt 
r((z+i)/2) Jo J-°°J-°° ' 
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(initially by this equation for Re z > — 1, then for all complex z by analytic continuation). 
Then TJix) = \iz */(x), where 

?(0 = cz[ ^<>%"(0 • i\-x~z • \i"{t) • i\-^dt 

(see [GS, p. 359]). If Rez = - 6 / 5 , it follows from Lemma 2 withp(t) = 7(0 • £, N = 3, 
a\ — 0, and oti = a^ = 1 / 5 , that 

| / ? ( O l < C z V £ G R 3 , 

where the constant Cz has at most exponential growth in | Imz|. 
Now let G a be the Bessel kernel of (complex) order a, i.e., 

^ ( o = (i + i£i2ra/2, 

and take v = Ga* / / , with Re a = e G (0,2/5). Then !/(£) = 5^(0/?(0- So |J/(£)| < 
Cz(l+|£|)"£ if Rez = - 6 / 5 . Notice also that |P(0| < C|£|2/5 if Rez = - 6 / 5 . Therefore 
by Lemma 1 

(2) flsup \(G£+is * iiz\ * Pk+(f\ ||2 < Cz2-£l"||/1|2, if Rez = - 6 / 5 . 
k 

We have \\G£+iS ||! < C|r((e + îs)/2)| (see [SI, p. 132]). And we can see that [ilT 

is bounded (as a function of £) if r G R, by making the change of variables (/, u, v) —> 
y = (yuyi.yï) given by>> = 7(0 + w7"(0 + v7'"(0 = (U t2 + 2w, 1 + P + 6ut + 6v) in the 
integral for TiTf(x) = filT */(x), and noting that the Jacobian is a constant. Thus 

||(G£+/5*///r)*/||oo < llG^^^Hooll/ll! < HG^IMIM^IIOOII/III <c£,cT\\f\\u 

where the constant Ct^CT has at most exponential growth in s and r. Hence by homo­
geneity we have 

(3) |sup |23*(G£+* * / / )* * / W | J < C^Crll/lli, if Rez = 0. 

To interpolate (2) and (3) we consider an analytic family of vector-valued linear op­
erators defined by 

Sz(f) = {2kV+5z/2\G£+is * / / )* * / W } * e z 

(with e + w and £ fixed). Observe that (2) may be restated as boundedness of Sz from L2 

to L2(l°°) (a mixed-norm space): 

I l|5z(Oll^(Z)||i2(R3) < C2-°W\\f\\2, if Rez = - 6 / 5 ; 

and (3) as 
\\\\SMU-(Z)\\L^Ri)<C\\f\\u if Rez = 0. 
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Therefore by complex interpolation in the mixed-norm setting (see [BP], [02]) we obtain 

(4) llsup \2k'2(G£+is * p)h * / W l I L < C2-(5/6)^l| 
! l l 2 / 5 - ^ "/ 1112/7' 

since \i l = \i. 
Now fix a number 6 G (0,1/3). By Theorem 2 in [S2, p. 324] we have |/2(0| < 

C(l + ICI)"1/3. So \(G.ô+is * /i)A(Ol = |(G-^&)A(Ol • l/HOl < C Hence by Plancherel's 
theorem 

(5) llsup |(G_6+/5 * p)k * / W l II < I fe |(G_^, * //)* * / W i 2 ) V 2 I < C||/1|2. 
11 * "^ II V u J Il2 

We now apply complex interpolation again to the analytic family 

S*{f) = {2*«*+*>/2^>(Ga * ii)k * Pk+lf}kez. 

Since Go * /i = /x, (4) and (5) thus yield 

(6) ||sup |2^3/PO-3/?O)W * pk+ef] I < ^ - ^ K l 1 1 ^ 
"tfO 

for some £(po) > 0 if 2 > p0 > 12/7 and go = PQ (the conjugate exponent of/?o)-
(By choosing e > 0 small enough in (4) we may get (6) for points (l//?o, l/Po) € 
A° arbitrarily close to the point (7/12,5/12).) Since/ = T,tezPk+tf, an immediate 
consequence of (6) is that 

(6') ll*W1l»<c||/1U-
This proves (1) for points (1 /p, 1 jq) in A° lying on the line of duality \/p+\/q= 1. 

We now extend (1) to points that lie off the line of duality. Fix /? = l//?0 — l/#o G 
(0,1/6) and let L denote the (open) line segment L = Lp = {(1//?, l /#) E A° : 
\jp — \/q = (3}. Since /i is a positive measure, if {fk} is a sequence of functions, 
(67) implies that 

(6") flsupl^/"-3/»)^*/^ < Jfl^,^(supliÇ|)| <C|suplj$|I 
* y y 

(See [NSW] and [Ch2] for related positivity arguments.) Let (l/a9\/b) denote the right 
endpoint of L. (At the left endpoint the argument is simpler and a bootstrap argument is 
not necessary, since a > 2.) It is known from [01] that 

HM*/II*<C||/1U 

which implies by homogeneity that for k G Z and the same constant C 

\\2kVl°-Wnk*f\\b<C\\f\\a. 

Since 1 < a < b it is easy to see that 

(7) | (E l2* ( 3 / a - 3 / 6 ) W*/ i |
f c ) 1 / 1 | ^ t e l / I l " ) ' 7 ] < d £ l / i l 

II V k J \\b IIV k I lia il t 
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(8) 

By interpolating (6") and (7) in the mixed-norm setting we get 

M2b\\ _ l l / ^ , „ „ \ ' / 2 (£i23/v*/*r) II ^clteO lPi 

with l/p\ — \/q\ = (3 and \/p\ = (l//?o + \jd)j2. (Thus (l/pi, l/q\) is the midpoint 
of the line segment joining (l/po, l/#o) and (I/a, \/b).) Taking^ = Pk+zf in (8) we 
obtain 

(80 
1/2 

suP |23^*iWI| <c | (£ | /w | 2 ) I <c|i/iu, 

where the last inequality follows from a Littlewood-Paley inequality (see e.g. [So, p. 21 ]). 
Interpolating (6) and (8') yields 

(9) |sup|23^*^+/l|L<C2- -e(Ml*l|l 
IIP» 

for all (1//?, l /#) onZ, lying strictly between (l//?o, l/#o) and (l//?i, l /^ i ) . Hence we 
have for the same values of p and # 

(9') liaWII* < c\\f\\P, 

and by the positivity of// (as before) 

(9") | sup |2^V**/* l | < C | s u p ^ | | L 
k M j »P 

We interpolate again with (9") (in place of (6") in the interpolation step above) and (7) 
to get (1) on the entire open line segment with endpoints (l/po, 1 /qo) and (1 /p2,1 jqi), 
where the latter is the midpoint of the line segment joining (l/p\, 1 jq\) and (1 /a , 1 jb). 
By repeating this process we obtain (1) for any point (l/p9\/q)onL. m 

It should also be clear from this proof that in the statement of the theorem (1) may be 
replaced by the following slightly stronger estimate: 

(10 ( E | 2 * ( 3 / P - 3 / , W / | ? ) Ui 
< c\\f\\P-

To see this observe that, for instance, the sup^ on the left hand side of (2) may be replaced 
by an I2 norm, so that (4) actually holds with the sup^ replaced by an £12/5 norm. 

We would like to thank David McMichael, Daniel Oberlin and James Wright for sev­
eral helpful conversations on the subject matters of this note. We also wish to thank the 
referee for several suggestions that greatly improved the exposition. 
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