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We propose a test for anticipated changes in spot volatility, either due to continuous
or discontinuous price moves, at the times of realization of event risk in the form of
pre-scheduled releases of economic information such as earnings announcements
by firms and macroeconomic news announcements. These events can generate
nontrivial volatility in asset returns, which does not scale even locally in time. Our
test is based on short-dated options written on an underlying asset subject to event
risk, which takes place after the options’ observation time and prior to or after their
expiration. We use options with different tenors to estimate the conditional (risk-
neutral) characteristic functions of the underlying asset log-returns over the horizons
of the options. Using these estimates and a relationship between the conditional
characteristic functions with three different tenors, which holds true if and only if
continuous and discontinuous spot volatility does not change at the event time, we
design a test for this hypothesis. In an empirical application, we study anticipated
individual stocks’ volatility changes following earnings announcements for a set of
stocks with good option coverage.

1. INTRODUCTION

Inference for time-varying volatility has a long history in financial econometrics.
Early work has considered estimation of volatility dynamics using low-frequency
asset return data. In this case, one cannot estimate consistently the realized volatil-
ity path in general, but nevertheless studying the dynamics of the latent volatility
process is possible using various analytic and simulation-based techniques.

When asset prices can be sampled at high frequencies, then one can estimate
consistently either spot or integrated volatility. Following the studies of Andersen
et al. (2003) and Barndorff-Nielsen and Shephard (2004a, 2004b, 2006), there is a
large body of work that deals with the problem of nonparametric high-frequency
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volatility estimation in various settings (see, e.g., Aït-Sahalia and Jacod, 2014,
and the references therein). With high-frequency data, volatility can be treated
as observable, and this facilitates inference for the volatility dynamics (see, e.g.,
Barndorff-Nielsen and Shephard, 2002; Bollerslev and Zhou, 2002; Bandi and
Phillips, 2003; Corradi and Distaso, 2006; Todorov (2009), among others).

An alternative source of information for volatility is options written on the
underlying asset. Indeed, in the classical Black and Scholes (1973) model, there is
a one-to-one map between the option price and the volatility parameter (volatility
is constant in this model). In more general settings with stochastic volatility, one
cannot estimate consistently volatility using a limited number of noisy option
observations at any given point in time. This asymptotic setup is thus akin to the
low-frequency sampling of asset prices. The fixed cross section of options can
be used, nevertheless, to study the volatility dynamics (see, e.g., Pan, 2002; Bates,
2003; Eraker, 2004, among others). On the other hand, if the cross section of option
observations is large in an asymptotic sense, then one can estimate consistently
volatility from options in a parametric setting as shown in Andersen, Fusari, and
Todorov (2015).

For nonparametric identification of spot volatility from options, one needs their
time-to-maturity (tenor) to be short. This asymptotic setting can be viewed as the
natural analog of the high-frequency sampling of the asset price. In this setting,
one can pretend that the semimartingale characteristics (diffusive volatility and
jump compensator) are constant over the short interval, i.e., that the process is
conditionally Lévy (a process with i.i.d. increments). In the conditional Lévy
setting, the conditional return distribution, which can be uniquely identified from
options (see, e.g., Breeden and Litzenberger, 1978), can be used to estimate
the spot diffusive volatility in a nonparametric way. One such way is to use
the characteristic function as proposed by Todorov (2019).1 More specifically,
utilizing the dominant role of the diffusion for high values of the characteristic
exponent (see, e.g., Sato, 1999), we have for the conditional characteristic function
Lt,T(u) = Et(eiu(xt+T −xt)) of a log-asset price xt:

− 2

u2T
log |Lt−,T(u)| → σ 2

t−, as u → ∞, a.s., (1)

for some small T > 0 and where σt is the spot diffusive volatility of the asset. This is
illustrated in Figure 1, which plots − 2

u2T
log |Lt−,T(u)| for a parametric model that

we will use in our Monte Carlo study. For u approaching zero, − 2
u2T

log |Lt−,T(u)|
is an estimate of total spot variance (including the one due to the jumps in x). As
u increases, the positive bias of the estimator due to the price jumps gradually
disappears. The empirical analysis in Todorov and Zhang (2022) shows that an
option-based estimator of volatility based on (1) plays a nontrivial role in optimal
measurement of spot volatility that combines options and returns data.

1An alternative is to use the Black–Scholes implied volatility (see, e.g., Medvedev and Scaillet, 2007; Durrleman,
2008). As shown in Todorov (2019), Black–Scholes implied volatility has a much larger bias in general than a spot
volatility estimate based on the characteristic function that we consider here.
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Figure 1. Characteristic function estimation of diffusive variance in the absence of event risk. The
dashed line corresponds to the true variance, and the solid line corresponds to − 2

u2T
log |Lt−,T (u)|. The

parametric model for computing the characteristic function is given in (33)–(36), with σ 2
t∗ = σ 2

t∗− =
0.01, �xt∗ = 0, and T = 5/252.

The above approach of identifying spot volatility from options breaks down,
however, in the presence of event risk. That is, in a situation where prior to
the options’ expiration, there is a pre-announced event at a fixed and known in
advance time in the future that can trigger a jump in the asset price with a positive
probability. In this case, as the length of the time window shrinks, then the event
risk starts to dominate the price increment. More specifically, suppose that at
t∗ ∈ (t,t + ε), for some ε > 0, the stock price is exposed to event risk, i.e., that
�xt∗ �= 0 with positive probability.2 If this is the case, then it is easy to see that
Et−(xt+ε − xt)

2/Et−(�xt∗)2 → 1 as t ↑ t∗ and ε → 0. In other words, the price
increment is dominated by the event risk �xt∗ when the length of the increment
shrinks. In this case, the signal about the nonevent risk in xt+ε − xt becomes small
in relative terms.

We illustrate this in Figure 2 by plotting the time series of risk-neutral return
variance backed out from short-dated options written on the Facebook stock, i.e.,
we plot in the top panel of Figure 2 the end-of-day estimates from options of
1
T Et−(xt+T − xt)

2, where expectation is under the risk-neutral probability measure
and T is the shortest available tenor on that day exceeding 2 business days. The
volatility time series exhibits big spikes that occur periodically. They are due

2We note that for the common way of modeling asset prices via Itô semimartingales, the probability of a jump at a
fixed point in time is zero (see, e.g., Jacod and Shiryaev, 2003, Cor. II.1.19).

https://doi.org/10.1017/S0266466623000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000178


4 VIKTOR TODOROV AND YANG ZHANG

2014 2015 2016 2017 2018 2019 2020 2021 2022
0

20

40

60

80

100

120

V
ol

at
ili

ty
 (

%
)

2014 2015 2016 2017 2018 2019 2020 2021 2022
0

50

100

150

200

250

300

V
ol

at
ili

ty
 (

%
)

Figure 2. Risk-neutral return variance and daily realized volatility for Facebook. Both quantities are
reported in annualized percentage units.

to the risk associated with prescheduled earnings announcements that happen
once every quarter.3 When the interval [t,t + T] includes such event risk, the
continuously compounded return xt+T −xt is dominated by it, and since this risk is
not proportional to time, the annualized variance 1

T Et−(xt+T −xt)
2 explodes when T

approaches zero. We can compare the risk-neutral variance estimates with the daily
realized volatility, which is displayed in the bottom panel of Figure 2. This series
exhibits occasionally very big spikes during the earnings announcement periods,
but the periodicity pattern in it is much weaker.4

How can we measure nonparametrically volatility from options in the case of
event risk? Suppose that the occurrence of the event risk does not trigger a jump in
the diffusive volatility and/or the jump compensator. In this case, we can recover
the characteristic function of the nonevent part of the asset return by using the ratio
of the characteristic functions of returns over two horizons. More specifically, one
can show under some conditions that

− 2

u2(T2 −T1)
log

∣∣∣∣Lt−,T2(u)

Lt−,T1(u)

∣∣∣∣→ σ 2
t−, as u → ∞, a.s., (2)

3We refer to Dubinsky et al. (2019) for a parametric analysis of earnings announcement risk. Da and Warachka (2009)
and Savor and Wilson (2016) show that earnings announcement risk has a systematic component and is therefore
important for the aggregate pricing of risk.
4Hence, predicting realized volatility using option-implied volatility (as often done in the volatility forecasting
literature) without adjustment for the earnings announcement effect on both series will typically lead to poor
forecasting results.
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for some 0 < T1 < T2 ≤ ε. This strategy will work, however, only if the semi-
martingale characteristics do not jump at the event time. Indeed, if say the diffusive
volatility can jump at time t∗ to a level σt∗ , then the diffusive component of the
price increment, even after conditioning on Ft− , has a mixed Gaussian law, and
hence it can be fat-tailed. Therefore, one can no longer disentangle this piece in
a nonparametric way from the jump part of the asset price like in the standard
no-event case.

In this paper, we propose a nonparametric test based on options with short tenor
observed shortly before the occurrence of an event risk, which allows us to decide
whether the semimartingale characteristics (diffusive volatility and jump intensity)
are anticipated to jump at the event time (known to the econometrician) with
positive probability. As argued above, the test can be used to decide on whether
spot volatility can be extracted in a nonparametric way from short-dated options
prior to event times. More generally, the developed techniques in the paper can be
used to study anticipated changes in volatility at event times. As discussed later
in the paper, short-dated options are a unique source of information about this and
contain information about volatility jumps at event times which cannot be extracted
from return data in general.

The proposed test is based on option-based estimates of the characteristic
functions of returns over three different periods recorded prior to the time of
the event risk. The first period does not cover the event time, whereas the other
two time periods do. The test utilizes the fact that, under the null hypothesis,
the characteristic exponent of the nonevent risk component of the asset price is
proportional to time. This implies a simple functional relationship between the
three characteristic functions under the null hypothesis, which does not hold under
the alternative hypothesis.

For characterizing the asymptotic behavior of the test statistic under the null
hypothesis, we derive a functional central limit theorem (CLT) for certain trans-
forms of the three characteristic functions used in the test. The convergence takes
place in a weighted L2 Hilbert space of complex-valued functions. The limit is a
mixed Gaussian process with conditional volatility depending on the risks in the
underlying asset price as well as on the variance of the option observation error.
The limit distribution of the test statistic is nonstandard. To determine the critical
values of the test, we develop an easy-to-implement wild bootstrap approach.
Using noisy estimates of the option observation error and a sequence of standard
normal random variables defined on an extension of the original probability space,
we generate new option prices by perturbing by the right amount the observed
ones. We then recompute the characteristic functions. The deviation of the newly
generated statistic from the one computed from the observed data has the same
limit distribution as the one of our test statistic, and its quantiles can be easily
evaluated via simulation.

We find good finite-sample performance of the developed test procedure on
simulated data in a Monte Carlo study. In an empirical application, we study the
behavior of stocks’ volatility around quarterly earnings announcements for a cross
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section of stocks with liquid option markets over the period of 2016 to 2021. We
find evidence for jumps in volatility and/or jump intensity at the announcement
times for more than half of the stock and announcement pairs. We document that
this shock to volatility is a source of priced risk by investors. More specifically,
the expected return variation after the announcement backed out from the options
is on average higher than its realization.

The test developed in this paper complements the one in Todorov (2020).
Todorov (2020) proposes a test based on short-dated options for deciding whether
the underlying asset price is exposed to event risk (which in technical terms means
fixed times of discontinuity in the price process). By contrast, in the current
paper, we assume that the econometrician knows that the stock price is exposed
to event risk and we are interested in the spot volatility behavior at the event time.
Knowledge of the arrival of the event risk by the econometrician seems proper
for certain events such as earnings announcements by firms and macroeconomic
news announcements which are pre-scheduled and information for which is easily
accessible both to market participants and the econometrician. The test developed
here and the one in Todorov (2020) are both based on measuring distances between
certain transforms of characteristic functions of asset returns over several short
intervals. The different testing goals, however, manifest in very different properties
of the test statistics. Mainly, Todorov (2020) derives a CLT for the test statistics
of that paper when there is no event risk, whereas here we derive a CLT for our
test statistic when event risk is present in the asset price. With no event risk, short-
dated out-of-the-money options are asymptotically shrinking, which is not the case
in the presence of event risk. This means faster rate of convergence and in general
different asymptotic behavior of the option-based estimate of the characteristic
function with and without event risk. This leads to different behavior of the test
statistic of this paper and the one in Todorov (2020).

The rest of the paper is organized as follows. We start in Section 2 with
introducing our formal setup and assumptions. Section 3 contains the theoretical
results of the paper. In Section 4, we present a Monte Carlo study of the finite-
sample behavior of the test. In Section 5, we implement our specification test
to study firms’ volatility behavior following earnings announcements. Section 6
concludes. Proofs are given in the Appendix.

2. SETTING AND ASSUMPTIONS

2.1. Asset Price Dynamics

The asset price process is denoted by X and the logarithm of it by x. The price
process is defined on the sample space �, with the associated σ -algebra F , and
(Ft)t∈R+ being the filtration. We will consider two probability measures: one being
the true (statistical) one, denoted by P, and the other one being the risk-neutral
one, denoted by Q. The latter, under the weak condition of arbitrage-free asset
prices, is locally equivalent to the true one (see, e.g., Duffie, 2001; Jacod and
Shiryaev, 2003, Def. III.3.2). The significance of Q stems from the fact that the
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discounted at the risk-free rate payoff process of any asset is a local martingale
under Q. We introduce the measure Q here because our inference will be based on
option prices whose theoretical values equal conditional risk-neutral expectations
of certain functions of the underlying stock price. Naturally, inference will be
conducted under the statistical probability measure.

We proceed with our assumption for the dynamics of the underlying stock price.
Our interest in this paper is the behavior of the asset price around a fixed time
denoted by t∗. At time t∗, there is an event, such as a pre-scheduled release of
economic news, that generates price and potentially volatility jump risk in the asset
price. The dynamics of x in a local small window around t∗ is given in the following
assumption.

A. For s ∈ [t∗ − ε,t∗ + ε], where ε > 0 is an arbitrary small number, we have,
under Q,

xs = xt∗−ε +
∫ s

t∗−ε

audu+
∫ s

t∗−ε

σu−dWu +
∫ s

t∗−ε

∫
R

zμ(du,dz)+�xt∗1{s≥t∗}, (3)

where W is a Brownian motion, μ is a integer-valued random measure on R×R

with predictable compensator φu−du⊗ν(dz), as = − 1
2σ 2

s −φs
∫
R
(ez −1−z)ν(dz),

and further

σs =
{

σt∗−, s < t∗,
σt∗, s ≥ t∗,

φs =
{

φt∗−, s < t∗,
φt∗, s ≥ t∗,

s ∈ [t∗ − ε,t∗ + ε], (4)

with (σt∗−,φt∗−) being Ft∗−ε-adapted random variables and (σt∗,φt∗,�xt∗)
being Ft∗-adapted random variables. Furthermore, the jumps (σ 2

t∗ − σ 2
t∗−,φt∗ −

φt∗−,�xt∗) are independent from Ft∗− and �xt∗ is Ft∗−-conditionally independent
from σ 2

t∗ and φt∗ . Finally, for any u ∈ R, we have |EQ

t∗−(eiu�xt∗ )| > 0.

We make several comments regarding the above assumption. First, assumption
A is for the risk-neutral dynamics of x. The local equivalence of P and Q, however,
restricts the diffusive coefficient, σt, to be the same under P and Q. Nevertheless,
the risk premium can drive a wedge between the P and Q conditional expectations
of future σt and its jump at time t∗. Related to this, the restriction on the drift
coefficient at in assumption A is due to the fact that the cum-dividend and
discounted at the risk-free stock price is a martingale under Q. To keep notation
simple, and since our interest is in asset behavior over short time intervals, we have
implicitly set the risk-free rate and the dividend yield to zero. Third, we allow both
the diffusive volatility and the jump intensity to jump at time t∗, and our interest is
to design a test for deciding if this can happen with nontrivial probability. Fourth,
the volatility and jump intensity are assumed constant before and after t∗. This
is a simplification of the analysis, as the asymptotics here is for shrinking time
windows around t∗. This assumption can be further relaxed at the expense of more
complicated proofs.

Finally, we note that we need a nonvanishing characteristic function for the price
jump �xt∗ at arbitrary levels of u. The reason for this is that in our analysis, we use
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returns over intervals including t∗, and our interest is in the return outside the jump
at t∗. The latter, however, is convoluted with that jump in the observed asset return.
This situation is analogous to a standard deconvolution problem in statistics. Such
a restriction on E

Q

t∗−
(
eiu�xt∗

)
is satisfied for many distributions commonly used in

applied work.

2.2. Observation Scheme

We next describe the observation scheme. As already mentioned, we will use
options with short time-to-expiration for designing our test. We will use the options
to recover the risk-neutral conditional characteristic function of the log-price
increment. We denote this quantity with

Lt,T(u) = EQ
t (eiu(xt+T −xt), u ∈ R, (5)

and we note that unlike the Introduction, here the expectation has a superscriptQ to
signify the fact that it is a risk-neutral expectation.5 The conditional characteristic
function of the log-return can be computed from a portfolio of options over a
continuum of strikes. More specifically, following Carr and Madan (2001), we
have

Lt,T(u) = 1− (u2 + iu
)∫

R

eiu log(K/Xt)
Ot,T(K)

K2
dK, (6)

where Ot,T(K) denotes the price at time t of a European-style out-of-the-money
(OTM) option price, expiring at time t + T with strike K, and whose underlying
asset price at time t is Xt. We recall that Ot,T(K) is the minimum of the put and call
option prices with strike K. In practice, we do not observe options on a continuum
of strikes but rather on a discrete grid, which we denote by

K1 < · · · < KNt,T, for some integer Nt,T . (7)

For simplicity, we will assume that the grid is equidistant and we will denote � =
Kj − Kj−1. In order to keep the notation simple, we suppress the dependence of
the observed strike grid on (t,T). Option prices are observed with error, i.e., we
observe

Ôt,T(Kj) = Ot,T(Kj)+ εt,T(Kj), (8)

where the errors εt,T(Kj) are defined on a space �(1) = RR+ × RR+ × ·· · (each
RR+ being reserved for the option errors corresponding to a specific pair (t,T)),
which is equipped with the product Borel σ -field F (1), and transition probability
P(1)(ω(0),dω(1)) from the probability space �(0), on which X is defined, to �(1).
We further define

� = �(0) ×�(1), F = F (0) ×F (1),

5For the discussion in the Introduction, there was no need to specify the probability measure under which the
expectations were taken.
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and

P(dω(0),dω(1)) = P(0)(dω(0))P(1)(ω(0),dω(1)) .

Using the observed options, we can construct the feasible counterpart of Lt,T(u)

via Riemann sum:

L̂t,T(u) = 1− (u2 + iu)

Nt,T∑
j=2

eiu log(Kj−1/Xt)
Ôt,T(Kj−1)

K2
j−1

(Kj −Kj−1). (9)

The above option-based estimator of the characteristic function is very similar to
that of Todorov (2020) given in equation (3.2) in that paper (see also Todorov,
2019, eqn. (3.12)). The slight difference comes from the fact that in Todorov
(2019, 2020), the feasible estimator is constructed on the basis of discretizing the
equivalent representation of Lt,T(u) in equation (6) in terms of an integral with
respect to log-strike. This difference is numerically small and is asymptotically of
higher order relative to the rate of convergence in a CLT for L̂t,T(u).

For our testing procedures, we will use option-based characteristic functions all
computed at a point in time t and which have three different times-to-maturity: T1,
T2, and T3. For characterizing the asymptotic behavior of L̂t,T(u), for T = T1,T2,
and T3, we need a set of assumptions on the strike grid and the option observation
errors. They are stated below.

B1. We have εt,Tl(Kj) = s�εt,l,jOt,Tl(Kj), for l = 1,2,3, where s� is a deter-
ministic sequence satisfying s� → 0 and s�/

√
� → ∞ as � ↓ 0. The three

sequences {εt,1,j}Nt,T1
j=1 , {εt,2,j}Nt,T2

j=1 , and {εt,3,j}Nt,T3
j=1 are defined on F (1), are i.i.d.

and independent of each other and of F (0), and are bounded in absolute value. We
further have E(εt,l,j|F (0)) = 0 and E((εt,l,j)

2|F (0)) = vt,l, for l = 1,2,3, and some
positive F (0)

t -adapted processes vt,1, vt,2, and vt,3, which are left continuous.

B2. There exist sufficiently small ε > 0 such that, for t ∈ [t∗ − ε,t∗) and s ∈
[t∗,t∗ + ε], we have E

Q
t

(
e(2+ι)|xs|)< ∞, almost surely, for some ι > 0.

B3. We have K2
1/� → 0 and K2

Nt,Tl
� → ∞, as � ↓ 0 and for l = 1,2,3.

We make several comments about these assumptions. First, the observation
errors are assumed to have F (0)-conditional means of zero and they are assumed
proportional to the true option prices they are added to. The size of the error
is assumed to be shrinking asymptotically as � ↓ 0 at an arbitrary slow rate.
Obviously, in practice, � is fixed. The current asymptotic setup for the observation
error seems proper in light of the fact that observed bid–ask spreads are small
relative to the mid option quotes, which we take as noisy proxies for the true option
prices in the application of the developed theory (see, e.g., Andersen et al., 2015,
Figure 2). The empirical relevance of the above shrinking error assumption will be
confirmed later on in our numerical analysis.

We also note that for deriving infeasible CLT result in Theorem 2, we do not need
s� → 0 and s� fixed will work too. The shrinking observation error, i.e., s� → 0, is
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needed only for the approach adopted here for feasible estimation of the asymptotic
variance of the limiting distribution. Finally, the requirement s�/

√
� → ∞

guarantees that bias terms in our test statistic are of higher asymptotic order relative
to the term due to the observation error that drives the CLT for the statistic.

Assumption B2 is a conditional moment restriction. The existence of conditional
moments of the increments of xt have implications for how fast the true option
price, Ot,T(K), decays as K ↓ 0 and K ↑ ∞. We note that for the existence of
Ot,T(K) for K > Xt, we need E

Q
t (ext+T ) < ∞. Finally, assumption B3 imposes

conditions on the strike range and the mesh of the strike grid. It is clear that for
L̂t,T(u) to be a consistent estimate ofLt,T(u), we need � ↓ 0, K1 ↓ 0, and KNt,T ↑ ∞.
Assumption B3 restricts the rate at which this happens and ensures that the error
due to the discrete strike grid is larger asymptotically than the error due to the lack
of option observations for K < K1 and K > Kt,T . These conditions are connected
with the moment condition in B3, with a stronger moment condition corresponding
to a weaker requirement for K1 and Kt,T .

3. TESTS FOR ANTICIPATED EVENT RISK VOLATILITY JUMPS

This section contains the main theoretical results of the paper. Formally, our
interest is to design a test that can allow us to determine in which of the following
two subsets of �, the random outcome ω belongs to

�0 = {ω : Qt∗−(σ 2
t∗ = σ 2

t∗−) = 1 and Qt∗−(φt∗ = φt∗−) = 1},
�A = {ω : EQ

t∗−(σ 2
t∗ −σ 2

t∗−) �= 0 or EQ

t∗−(φt∗ −φt∗−) �= 0}. (10)

We note that the union of �0 and �A is not �. The remaining part of the sample
space consists of outcomes for which E

Q

t∗−(σ 2
t∗ −σ 2

t∗−) =E
Q

t∗−(φt∗ −φt∗−) = 0, but

either EQ

t∗−(σ 2
t∗ −σ 2

t∗−)2 �= 0 and/or EQ

t∗−(φt∗ −φt∗−)2 �= 0. We discuss this situation
in more detail after Theorem 1.

We start in Section 3.1 with designing a statistic that can separate the null
from the alternative hypothesis on the basis of characteristic functions of price
increments over three distinct short time windows. Following this, we derive a
functional CLT for a version of the statistic constructed from observable options in
Section 3.2. Since the limit of the statistic is nonstandard, we develop a bootstrap-
type procedure for determining the quantiles of the test statistic in Section 3.3, and
finally we present the test in Section 3.4.

3.1. Return Characteristic Functions in the Presence of Event Risk

We start first with decomposing the characteristic function of the log-price incre-
ment that covers a time window including t∗ in terms of the event price jump and
the nonevent risks in the asset price. Toward this end, let us denote

ψt(u) = iuat − u2

2
σ 2

t +φt

∫
R

(eiuz −1)ν(dz), u ∈ R, t > 0. (11)
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ANTICIPATED CHANGES IN SPOT VOLATILITY AT EVENT TIMES 11

Using successive conditioning, the Lévy–Khinchine formula (see, e.g., Sato, 1999,
Thm. 8.1), the assumption for the spot characteristics of x, and the jump �xt∗ in
assumption A, we can write

Lt,T(u) = e(t∗−t)ψt∗−(u)E
Q

t∗−
(

eiu�xt∗+(t+T−t∗)ψt∗ (u)
)
, (12)

where t ∈ (t∗ −ε,t∗) and t+T ∈ (t∗,t∗ +ε). If σt and φt do not jump at t = t∗, then
Lt,T(u)/E

Q

t∗−
(
eiu�xt∗

)
is the conditional characteristic function of the increment

of a Lévy process, and hence its logarithm scales linearly with T. This suggests
a testable implication using conditional characteristic functions Lt,T(u) for three
different values of T.

Let us consider t∗ −ε < t < t +T1 < t∗ < t +T2 < t +T3 < t∗ +ε. Note that the
first time window [t,t + T1] does not include the event time t∗, whereas the other
two, [t,t+T2] and [t,t+T3], do. Conditional on �0 and using (12), it is easy to see
that we have

Lt,T1(u)
T3−T2

T1 Lt,T2(u) = Lt,T3(u), for {u ∈ R : max{T1,T3 −T2}|(ψt∗−(u))| < π},
(13)

where the power in the above expression is uniquely defined by the principal value
of the argument of the complex number. Note that we restrict the values of u in
(13) to ensure that both eT1ψt∗−(u) and e(T3−T2)ψt∗−(u) are away from the negative
real axis where the complex power function has a discontinuity. Of course, since
(ψt∗−(u)) = Op(u) as u → ∞, any value of u will be included for sufficiently
small T.

Given the identity in (13), it is natural to consider the following quantity as a
way to separate the situation in which σt and/or φt jump at t = t∗ with positive
probability:

Wt,T =
∫

|u|≤uT

∣∣∣∣Lt,T1(u)
T3−T2

T1 Lt,T2(u)−Lt,T3(u)

∣∣∣∣ 2w(u)du, (14)

for some positive-valued and continuous weight function w and uT being a
deterministic sequence of positive numbers. We will use weight functions with
exponential tail decay, i.e., ones for which the following holds:∫

|z|>u
w(z)dz = o(e−αuρ

) as u → ∞, for some α > 0 and ρ > 0. (15)

As an example, in our numerical analysis, we will use the probability density
function of a normal random variable as our choice for the weight function w.
This choice clearly satisfies the exponential tail decay requirement in (15).

We can compare the quantity Wt,T, which we will use to test our null
hypothesis, with the one considered by Todorov (2020) for testing against the
presence of event risk. In the notation here, Todorov (2020) considers the following
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two alternative quantities:

W̃(1)
t,T =

∫
R

∣∣∣∣Lt,T3 (u)−Lt,T1 (u)
T3
T1

∣∣∣∣2w(u)du, W̃(2)
t,T =

∫
R

∣∣∣∣Lt,T3 (u)−Lt,T2 (u)
T3
T2

∣∣∣∣2w(u)du.

(16)

If there is no event risk, i.e., t∗ is outside the interval [t,t+T3], then it is easy to see
based on the analysis above that W̃ (1)

t,T = W̃ (2)

t,T = 0. On the other hand, if t∗ − ε <

t < t +T1 < t∗ < t +T2 < t +T3 < t∗ +ε, which is our assumption here, W̃ (1)

t,T �= 0

and W̃ (2)

t,T �= 0, and this outcome is in the alternative hypothesis of Todorov (2020)
therefore.

We have the following result for our distance measure Wt,T.

Theorem 1. Suppose t∗ − ε < t < t + T1 < t∗ < t + T2 < t + T3 < t∗ + ε and
T1 � T, T2 � T and T3 � T, for some T ↓ 0. Let uT satisfy

uT → ∞ and u2
TT → 0. (17)

We have:

(a) P(Wt,T �= 0|�0) → 0.
(b) Wt,T � T conditional on �A.

In Theorem 1, we restrict the rate of growth of uT . With this restriction, given the
expression for (11), we have that Lt,T1(u) converges to 1 as T → 0. This restriction
on uT guarantees that, with probability approaching 1, the range requirement for
u in (13) is satisfied. Conditional on �A, the distance measure Wt,T is Op(T). We
note in this regard that in the definition of �A, we require either EQ

t∗−(σ 2
t∗) �= σ 2

t∗−
or EQ

t∗−(φt∗) �= φt∗−. If this is not the case but we still have jump at t = t∗ in either

σ 2
t or φt with positive probability, i.e., if EQ

t∗−(σ 2
t∗ −σ 2

t∗−)2 �= 0 and/or EQ

t∗−(φt∗ −
φt∗−)2 �= 0, then one can show that Wt,T � T2.

Since, for sufficiently small T, uT exceeds the absolute value of any u, the
measureWt,T can detect jumps in either σ 2

t or φt. For higher values of |u|, ψt(u)/u2

converges to − 1
2σ 2

t . Therefore, if in defining the statistic Wt,T, we use only large
in absolute value u-s, then we can detect expected jumps only in σ 2

t at t = t∗.

3.2. Infeasible Limit Theory

We note that Wt,T is an integral over a function of u, which we can estimate from
the data. Therefore, we will need to derive functional convergence results for the
characteristic function estimates L̂t,T(u). This is what we do in this section. The
functions that we consider take values in the complex-valued Hilbert space L2(w):

L2(w) =
{

f : R → C

∣∣∣∣∫
R

|f (u)|2w(u)du < ∞
}

, (18)
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ANTICIPATED CHANGES IN SPOT VOLATILITY AT EVENT TIMES 13

where w is the weight function in (14) and satisfies the exponential tail decay
condition in (15). The inner product on L2(w) is induced from the inner products
of its real and imaginary parts, i.e., for f and g two elements of L2(w), we set

〈f,g〉 =
∫
R

f (z)g(z)w(z)dz. (19)

Next, for a random complex function Z taking values in L2(w), we introduce the
covariance operator Kh = E[(Z −E(Z))〈h,Z −E(Z)〉] and the relation operator
Ch =E[(Z −E(Z))〈h,Z −E(Z)〉], where h ∈L2(w). We recall that a Gaussian law
on L2(w) is uniquely identified by the mean, covariance, and relation operators,
and we denote it by CN (μ,K,C), for μ being the mean, K being the covariance,
and C being the relation operator (see, e.g., Cerovecki and Hörmann, 2017,
Sect. 2).

We are now ready to derive our functional convergence results. We denote the
counterpart of Wt,T estimated from the data with Ŵt,T. We further define

Ẑt,T(u) =
⎧⎨⎩L̂t,T1 (u)

T3−T2
T1 L̂t,T2 (u)− L̂t,T3 (u)− (Lt,T1 (u)

T3−T2
T1 Lt,T2 (u)−Lt,T3 (u)), if |u| ≤ uT,

0, otherwise,

(20)

where uT is the sequence used in Wt,T. From Theorem 1, conditional on �0 and
with probability approaching 1, we have that ||Ŵt,T|| = ||̂Zt,T||. For characterizing
the behavior of Ŵt,T conditional on �0, we need therefore a functional CLT for
Ẑt,T. This is given in the following theorem in the statement of which we use s�

defined in assumption B1.

Theorem 2. Suppose assumptions A and B1–B3 hold and consider t < t∗ <

t + T1 < t∗ < t + T2 < t + T3. Let t ↑ t∗, together with � → 0, T1 � T, T2 � T,
and T3 � T, for some T ↓ 0, and Tα/� → 0, for some arbitrary big α > 0. Let uT

satisfy (17). We then have

1

s�

√
�

Ẑt,T
L|F (0)−−−→ Z, (21)

with Z defined on an extension of the original probability space and having
F (0)-conditional law of CN (0,K,C), for K and C being covariance and relation
operators with integral representations

Kh(z) =
∫
R

k(z,u)h(u)w(u)du, Ch(z) =
∫
R

c(z,u)h(u)w(u)du, ∀h ∈ L2(w),

(22)

for some functions k(z,u) and c(z,u) defined in (A.18) and (A.19) the proof.

The rate of convergence of Ẑt,T is determined by the mesh of the strike grid and
the asymptotic size of the observation error. The above limit result is therefore of
joint type, i.e., both � ↓ 0 and T ↓ 0. The requirement that Tα/� → 0, for some
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arbitrary big α > 0, is relatively weak and can be further relaxed. It is needed
because Ẑt,T(u) takes the value of zero for |u| > uT , whereas the limit Z(u) does not.
We do not provide explicit expressions for K and C here as we will not need them
in our feasible implementation of the above result. These quantities are governed
by the conditional distribution of the jump �xt∗ . If the variance of the latter is
zero or of asymptotically shrinking size, then the rate of convergence in (21) will
change as well.

We can compare the above limit result with that of Todorov (2020) given in
Theorem 1 of that paper. The test statistic of Todorov (2020) is the feasible
counterpart of the quantity in (16). The asymptotic result in Theorem 2 and the one
in Theorem 1 of Todorov (2020) are very different. We derive the asymptotic result
under the assumption that event risk is present, while the CLT result in Todorov
(2020) holds only under the assumption of no event risk. That results in a very
different asymptotic behavior of the cross sections of options considered in the
analysis in our setting and that of Todorov (2020). Indeed, when no event risk is
present, then the option prices shrink asymptotically to zero as their tenor shrinks.
Moreover, this rate of time decay of the option prices is different depending on the
distance of the strikes of the options to the current stock price. This does not happen
when event risk is present in the underlying price between the observation time and
the expiration of the options. As a result, the rate of convergence of the statistic in
Todorov (2020) is faster than the one here. In addition, the limit of our statistic here
depends on the observation errors of all options used in the estimation, whereas the
limit of the statistic in Todorov (2020) is driven only by the option prices with the
strikes in the vicinity of the current stock price given their asymptotically dominant
role in the case of no event risk.

3.3. Feasible Limit Theory

For feasible inference, we will need estimates of the F (0)-conditional vari-
ance of the option observation errors. They are not directly observed, but
we can take advantage of the in-fill asymptotic setting here and the fact
that the true option prices, with strikes away from Xt, are differentiable
as functions of their strikes. A natural choice for an error estimate would
be to use

√
2
3

[
Ôt,Ti(Kj)− 1

2

(
Ôt,Ti(Kj−1)+ Ôt,Ti(Kj+1)

)]
as done in Andersen

et al. (2021) and Todorov (2020) for example. Since � ↓ 0, Ot,Ti(Kj) −
1
2

(
Ot,Ti(Kj−1)+Ot,Ti(Kj+1)

)
is approximately zero, and the above is an estimate

of εt,Ti(Kj)− 1
2

(
εt,Ti(Kj−1)+ εt,Ti(Kj+1)

)
. This approach is not going to work very

well, however, in finite samples with relatively coarse strike grid for two reasons.
First, it does not utilize the fact that the estimation error is proportional to the
option price and the latter varies a lot across strikes. Second, when the strike grid
is coarse, the convexity of the true option price can be nontrivial, particularly for
strikes close to the current stock price.

For this reason, we propose an alternative estimate for the volatility of the
observation error, which utilizes the observation error structure of assumption B1.
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Our estimate for εt,Ti(Kj) is given by

ε̂t,Ti(Kj) = ŝi,�Ôt,Ti(Kj), j = 1, . . . ,Nt,Ti, i = 1,2,3, (23)

where the estimates ŝi,� are given by

ŝi,� =
⎧⎨⎩
√

2
3

1
|Ii

t |
∑

j∈Ii
t

(
log(Ôt,Ti (Kj))− 1

2 log(Ôt,Ti (Kj−1))− 1
2 log(Ôt,Ti (Kj+1))

)2
, if Ii

t �= ∅,

1, if Ii
t = ∅,

(24)

and the sets Ii
t are defined as

I1
t =

{
j ∈ {2, . . . ,Nt,T1 −1} \ {j∗1} : |Kj −Xt| ≤√

T1 ×Ct,1

}
, (25)

Ii
t = {

j ∈ {2, . . . ,Nt,Ti −1} \ {j∗i } : Ôt,Ti(Kj) > Ct,i
}
, i = 2,3, (26)

with {Ct,i}i=1,2,3 being F (0)
t -adapted and strictly positive random variables and j∗i

being the smallest element of {2, . . . ,Nt,Ti −1} for which |Kj −Xt| is the smallest.
We make several observations regarding ε̂t,Ti(Kj). First, due to the fact that the

observation error is asymptotically shrinking, nonlinear transformations of the
option price can be made in the estimation of the F (0)-conditional variance of
εt,Ti(Kj). Second, the use of the log transformation in ŝi,� allows us to estimate the
variance of εt,Ti(Kj)/Ot,Ti(Kj), which does not depend on the strike. This way we
can pool information across strikes and significantly reduce the error in estimating
the option error variance. Third, by taking logarithm of the option prices in ŝi,�,
we reduce the positive bias in the estimation that is due to the convexity of the
true option price because for a convex, positive, and twice-differentiable function
f (k), we have f (k)(log(f (k))′′ ≤ f ′′(k). Finally, the sets of strikes, {Ii

t}i=1,2,3, used
in the estimation of ŝi,�, are determined so that the true option prices are strictly

above zero, which carries over to the ratio
Ot,Ti (Kj)√

Ot,Ti (Kj−1)Ot,Ti (Kj+1)
as well. Note that

this leads to slightly different sets I1
t and {Ii

t}i=2,3. The reason for this is that the
event risk takes place after the expiration of the shortest tenor options and before
that of the rest of the options used in forming the test. As a result, {Ot,T1(Kj)}j≥1

shrink asymptotically, whereas {Ot,Ti(Kj)}j≥1, for i = 1,2, do not.
We continue next with describing a feasible CLT using the estimates ε̂t,Ti(Kj). As

discussed in the previous section, the limit distribution in (21) is nonstandard, and
we will therefore develop a wild bootstrap approach for evaluating its quantiles.
With this in mind, using the noisy proxies for the observation error, we generate
new option prices as follows:

Ô∗
t,Ti

(Kj) = Ôt,Ti(Kj)+ ε̂t,Ti(Kj)zi,j, j = 1, . . . ,Nt,Ti, i = 1,2, (27)

where {z1,j}Nt,T1
j=1 , {z2,j}Nt,T2

j=1 , and {z3,j}Nt,T3
j=1 are three i.i.d. sequences of standard

normal variables defined on an extension of the original probability space and
independent from F and from each other. We then define L̂∗

t,Ti
from L̂t,Ti by
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replacing Ôt,Ti(Ki,j) with Ô∗
t,Ti

(Ki,j). With this notation, we set

Ẑ∗
t,T(u) =

⎧⎨⎩L̂∗
t,T1

(u)
T3−T2

T1 L̂∗
t,T2

(u)− L̂∗
t,T3

(u)− (L̂t,T1 (u)
T3−T2

T1 L̂t,T2 (u)− L̂t,T3 (u)), if |u| ≤ uT,

0, otherwise.

(28)

The following theorem shows that the F-conditional limit distribution of Ẑ∗
t,T is

the same as that of Ẑt,T.

Theorem 3. In the setting of Theorem 2, we have

1

s�

√
�

Ẑ∗
t,T

L|F−−→ Z, (29)

with Z defined on an extension of the original probability space and having the
same F-conditional law as that of the limit in Theorem 2.

3.4. The Test

We are now ready to state formally our test, which will be based on Ŵt,T. Under the
null hypothesis, i.e., conditional on �0, we have Ŵt,T = ||̂Zt,T||2 with probability
approaching 1 and the F (0)-conditional quantiles of ||̂Zt,T|| can be estimated by
those of ||̂Z∗

t,T|| using simulation. More specifically, we denote

ĉvα = Q1−α(||̂Z∗
t,T||2 |F), α ∈ (0,1), (30)

where Qα(Z) is the α-quantile of the random variable Z. We can evaluate ĉvα easily
via simulation. The following corollary follows from Theorems 1–3.

Corollary 1. In the setting of Theorem 2 and for α ∈ (0,1), we have:

(a)

P
(
Ŵt,T > ĉvα|�0

) −→ α. (31)

(b)

P
(
Ŵt,T > ĉvα|�A

) −→ 1, provided s�

√
�/T → 0. (32)

The requirement s�

√
�/T → 0 in part (b) of the above corollary is natural given

the results of Theorems 1 and 2. If this condition does not hold, then the option
observation error is too big relative to the changes caused by the jumps in volatility
and/or jump intensity to the return distribution.

We finish this section with a brief discussion about a natural potential alternative
to the above testing procedure that is based on high-frequency returns of the
underlying asset. Mainly, one can form estimates of volatility in local blocks before
and after the event time and using these two estimates test for volatility jump at
the event time (see, e.g., Jacod and Todorov, 2010). There are several important
differences between the two approaches. The first is that here we use data strictly
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before the occurrence of the event for conducting the test, whereas with the high-
frequency return-based approach, we have to use data after the event too. Second,
with high-frequency return data, in general, we can only recover jump in the
diffusive volatility, but we cannot say anything about the intensity of the jumps.
This is due to the rare nature of jumps: over a short interval of time, jumps might
not occur, whereas their intensity is nevertheless strictly positive. Third, with the
high-frequency return data, one has access only to the realized volatility jump. By
contrast with the option data, we can infer risk-neutral moments of the jump in the
diffusive volatility and the jump intensity. As a result, we can have a situation in
which ω ∈ �A, but nevertheless no volatility jump takes place at the event time.
Fourth, the estimators of spot diffusive volatility from option data can in some
cases have higher precision than the return-based ones (see, e.g., Todorov and
Zhang, 2022). Finally, with the option data, one can study the pricing of the volatil-
ity jump risk at the event time as we will show later on in the empirical section.

4. MONTE CARLO STUDY

4.1. Setup and Choice of Tuning Parameters

The model for the underlying asset price in the Monte Carlo is specified by the
following choices:

• The jumps outside t∗ are specified by

ν(dz) = λ2

2

e−λ|z|

|z| , and φs = σ 2
t∗−. (33)

The Lévy measure ν corresponds to the Variance Gamma Lévy process, and we
set its scale parameter so that

∫
R

z2ν(dz) = 1. We choose λ = 50, which implies
Lévy tail decay that is roughly consistent with that found in previous studies.

• The instantaneous drift term is given by

as = −1

2
σ 2

s +σ 2
t∗−

λ2

2
log

(
1− 1

λ2

)
. (34)

• For the event jump, we set

�xt∗ ∼ N(−σ 2
∗ /2,σ 2

∗ ), (35)

for some parameter σ∗. With this specification, we have Et∗−(e�xt∗ ) = 1.
• The diffusive volatility after the event is specified as

σ 2
t∗ |Ft∗− is Inverse Gaussian with mean μ∗ and standard deviation v∗. (36)

We consider different values for the initial diffusive volatility σt∗−, the variance
of the event jump σ 2∗ , and the parameters μ∗ and v∗ of the conditional distribution
of σ 2

t∗ . The different parameter configurations are given in Table 1. The first five
columns correspond to different configurations in which the diffusive volatility
does not jump at t∗, which is the null hypothesis we test. We consider three different

https://doi.org/10.1017/S0266466623000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000178


18 VIKTOR TODOROV AND YANG ZHANG

Table 1. Monte Carlo parameter settings

Case Parameters Case Parameters

σ 2
t∗− σ 2∗ μ∗ v∗ σ 2

t∗− σ 2∗ μ∗ v∗

N-L-S 0.005 0.0025×5/252 0.005 0 A-L-S 0.005 0.0025×5/252 0.0075 0.0075×0.2

N-M-S 0.010 0.0050×5/252 0.010 0 A-M-S 0.010 0.0050×5/252 0.0150 0.0150×0.2

N-H-S 0.020 0.0100×5/252 0.020 0 A-H-S 0.020 0.0100×5/252 0.0300 0.0300×0.2

N-L-B 0.005 0.0050×5/252 0.005 0 A-L-B 0.005 0.0050×5/252 0.0075 0.0075×0.2

N-M-B 0.010 0.0100×5/252 0.010 0 A-M-B 0.010 0.0100×5/252 0.0150 0.0150×0.2

N-H-B 0.020 0.0200×5/252 0.020 0 A-H-B 0.020 0.0200×5/252 0.0300 0.0300×0.2

levels of the diffusive volatility: low, medium, and high. For each of these three
levels of volatility, we consider a scenario with small and big event risks. The
small even risk scenario is one in which the variance of the event risk is half of the
diffusive variance over an interval of 5 days, and in the big event risk scenario, we
double that number. In the specifications under the alternative, reported in the last
five columns of Table 1, we add a volatility jump at t∗ to their counterparts under
the null hypothesis. In all considered scenarios, the mean of σ 2

t∗ is double the value
of σ 2

t∗− and the standard deviation of σ 2
t∗ is 20% of its mean.

Turning next, to the specification of the observation setup, we set t− t∗ = 7/252,
T1 = 5/252, T2 = 10/252, and T3 = 15/252. This corresponds to options that
expire in 1, 2, and 3 weeks from now, respectively, and the event is approximately
in the middle of the second week. This setup mimics roughly the one in the
empirical study. The current value of the underlying asset price is set to X0 = 250.
The mesh of the strike grid � is set to 1. For each maturity, starting from a strike
equal to X0, we keep adding strikes above and below X0 at increments of � until
the true option price falls below 0.01. This strike grid mimics roughly the one of
observable individual equity options that we will use in our empirical analysis.
Finally, observed options are contaminated with error, i.e., we observe that

Ôt,Ti(Kj) = (1+0.1× zt,i,j)Ot,Ti(Kj), (37)

where zt,i,j are i.i.d. across both i and j, and each zt,i,j has a truncated standard
normal distribution with truncation interval (−1.96,1.96).

We finish this section with describing our choice of tuning parameters. First, we
set uT to

ûT = inf
{
u ≥ 0 : |L̂t,T1(u)| ≤ 0.5

}
. (38)

Second, we set the weight function to

w(u) = exp

(
− u2

u2
T

)
, uT = inf

{
u ≥ 0 : |L̂t,T3(u)| ≤ 0.5

}
. (39)

Finally, the random variables Ct,i in the definition of the sets Ii
t are set to

Ct,1 = 4×σ BSIV
t,1 and Ct,2 = 0.01, (40)
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Table 2. Monte Carlo results

Case Significance level Case Significance level

α = 10% α = 5% α = 1% α = 10% α = 5% α = 1%

N-L-S 10.06% 5.56% 1.36% A-L-S 56.08% 43.20% 20.78%

N-M-S 10.50% 5.34% 1.02% A-M-S 72.64% 60.48% 35.18%

N-H-S 10.60% 5.56% 1.28% A-H-S 87.28% 78.28% 53.08%

N-L-B 10.00% 5.42% 1.62% A-L-B 51.36% 38.28% 18.62%

N-M-B 10.16% 5.48% 1.60% A-M-B 64.84% 51.06% 26.94%

N-H-B 10.10% 5.06% 1.24% A-H-B 82.32% 70.78% 46.04%

Note: The entries in the table correspond to the empirical rejection rates of the volatility jump test (in
percentage) based on 5,000 Monte Carlo draws.

where σ BSIV
t,1 denotes the at-the-money Black–Scholes implied volatility extracted

from the options with tenor T1.

4.2. Results

The results from the Monte Carlo are reported in Table 2. They indicate good finite-
sample performance of the test under the null hypothesis, with empirical rejection
rates close to the significance level of the test in the various configurations under
the null hypothesis. The test has good power also under the considered alternatives.
The power is higher for higher initial volatility σt∗−. The reason for this is that
when volatility is high, the available number of options is higher as more strikes
are needed to cover the effective support of the return distribution. As a result,
the effect from the observation error on the estimation gets reduced, which in turn
allows for a higher power of the test. We further note that the power of the test
decreases when the variance of the jump �xt∗ increases. The reason for this is that
the information about the jump in σt and φt in the returns over time increments
including t∗ gets reduced, in relative terms, when the event risk is larger. This effect
is similar to the standard deconvolution problem in which higher noise makes it
more difficult to learn about the signal.

5. EMPIRICAL ANALYSIS OF EARNINGS ANNOUNCEMENT
VOLATILITY

In this section, we perform the proposed test for jumps in spot volatility at event
times for a sample of individual stocks.6 We focus on the event risk generated by
the pre-scheduled quarterly earnings announcements.7 We select a subsample of

6As recently documented in Jeon, McCurdy, and Zhao (2022), jumps in stock prices are typically associated with
important news releases. Our focus here is on a specific type of firm-related news which are pre-scheduled (and hence
there is no uncertainty about their time arrival).
7The results of the current paper can be also used to study anticipated changes in spot volatility due to macroeconomic
announcements. There is a large literature in finance that studies various effects of macroeconomic announcement on
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38 individual stocks from the S&P 100 index across different sectors with liquid
options. Our sample period is from January 2, 2014 to December 31, 2021. For
each stock, we obtain the earnings announcement history from the Zacks earnings
calendar, where both earnings dates and times (e.g., after close of before open) are
provided.8 We align the “after close” with the “before open” announcements by
adding one business day to the original “after close” announcement dates. Over
the period from January 2, 2014 to December 31, 2021, each stock in the sample
has 32 earnings announcement events.

The option data are obtained from OptionMetrics. It consists of closing best bid
and ask quotes. For each day in the sample, we keep the three shortest available
tenors with time-to-maturity of at least 2 business days. We consider only tenors
for which there are at least 10 out-of-the-money options with different strikes and
nonzero bid quotes. The moneyness is determined by the implied forward rate,
which in turn is computed by using put-call parity for three distinct strikes with
the smallest gap between call and put mid-quotes. To perform the specification test,
three distinct tenors are needed, among which only the last two include the earnings
event. Since weekly options for individual stocks always expire on Fridays, we first
locate the Friday prior to the week of the earnings announcement, which we refer
to as the first prior-earning Friday.9 We then find the Friday in the week before the
first prior-earning Friday and perform the specification test on this date, i.e., on
the so-called second prior-earning Friday. If the second prior-earning Friday is a
holiday, we then use the following trading day.

Summary statistics for the data are reported in Table 3. On average, the number
of strikes for the different stocks is high, which is important for the good finite-
sample performance of the test. The stocks with the highest number of strikes under
consideration are Amazon (AMZN), Google (GOOG), Netflix (NFLX), and Tesla
(TSLA). For most stocks, the strike range is also wide. Of course, the length of the
strike range naturally depends on the volatility of the underlying stock, with more
volatile stocks such as Tesla having wider strike range. We also note that the strike
range for essentially all stocks is a bit skewed to the left, relative to the current
stock price, which is manifestation of the negative skew of the risk-neutral return
distribution. This effect is quite mild though compared with the one observed for
market index options.

We implement the test for every stock–announcement pair in the sample. The
results from the tests are summarized in Table 4. Overall, these results provide
nontrivial evidence for the anticipated jump at the earnings announcement time t∗
in the stocks’ volatility and/or jump intensity. Indeed, at the 10% significance level,
the test rejects more than half of the times for the stock/announcement pairs in our
sample. Table 4 also reveals some variation in the test results across the stocks

asset prices (see, e.g., Cochrane and Piazzesi, 2002; Rigobon and Sack, 2004; Bernanke and Kuttner, 2005; Savor and
Wilson, 2014; Lucca and Moench, 2015; Ai and Bansal, 2018; Nakamura and Steinsson, 2018, among many others).
8The Zacks earnings calendar is publicly accessible via https://www.zacks.com/stock/research/“XXX"/earnings-
calendar, where “XXX” represents the ticker symbol of the stock.
9If Friday is a holiday, then preceding Thursday is used instead.
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Table 3. Summary statistics for short-dated options across earnings announce-
ments

Ticker No. of strikes log(K/S)min log(K/S)max Ticker No. of strikes log(K/S)min log(K/S)max

AAPL 43 0.76 1.22 JNJ 23 0.85 1.09

AMZN 139 0.71 1.30 JPM 30 0.81 1.14

AXP 29 0.83 1.12 KO 21 0.86 1.12

BA 40 0.76 1.23 MCD 22 0.86 1.10

BAC 21 0.79 1.16 MMM 22 0.85 1.11

BLK 35 0.83 1.10 MRK 23 0.88 1.09

C 28 0.82 1.15 MS 21 0.82 1.12

CAT 34 0.80 1.15 MSFT 31 0.81 1.13

COF 31 0.83 1.12 NFLX 63 0.67 1.36

CSCO 23 0.83 1.14 NKE 30 0.84 1.14

CVX 26 0.87 1.10 NVDA 50 0.69 1.30

DIS 32 0.81 1.18 PFE 20 0.87 1.16

FB 41 0.75 1.23 PG 25 0.88 1.08

GE 18 0.77 1.23 T 17 0.85 1.11

GOOG 86 0.82 1.16 TSLA 76 0.56 1.46

GS 28 0.78 1.15 V 27 0.83 1.11

HD 26 0.82 1.11 VZ 17 0.87 1.08

IBM 28 0.82 1.14 WMT 30 0.86 1.14

INTC 26 0.81 1.16 XOM 26 0.87 1.10

Note: The table reports the average number of strikes per tenor and the minimum and maximum log-
moneyness of the available options for each stock across earnings announcement events with valid
option data (i.e., there are three consecutive weekly expiration dates available on the Friday 2 weeks
prior to the scheduled earnings announcement date and the minimum number of strikes across all three
tenors is higher than 10).

in the sample. For example, for stocks such as Amazon, Google, and Netflix, the
rejection rates are very high. On the other end of the spectrum are stocks such as
Facebook, Home Depot, and IBM.

We note that we conduct the test for every single earnings announcement in the
sample. This is similar to the way tests for presence of jumps in high-frequency
data are typically implemented. Of course, given the derived limit results in
the paper, it is easy to design a test for the null hypothesis that there were no
anticipated changes in volatility and jump intensity for a fixed number of earning
announcements for a given stock. This can be done either using the supremum or
the sum of the test statistics for all earning announcement events.

In Figures 3 and 4, we illustrate the data used in the construction of the test as
well as the two transformations of the characteristic functions that are contrasted
in Ŵt,T for two earnings announcements of Facebook (FB) in 2021. As seen from
the left panels of the two figures, the longer-dated options are considerably more
expensive. This is to be expected as the longer dated options contain more risk
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Table 4. Earnings announcement volatility jump test results

Ticker No. of obs. α = 10% α = 5% α = 1% Ticker No. of obs. α = 10% α = 5% α = 1%

AAPL 32 22 21 15 JNJ 30 21 15 9

AMZN 32 32 30 29 JPM 30 16 14 10

AXP 30 20 17 14 KO 12 8 5 4

BA 31 17 16 12 MCD 29 13 9 9

BAC 12 6 4 4 MMM 27 14 12 7

BLK 15 13 10 8 MRK 31 22 20 15

C 31 19 15 11 MS 28 19 15 14

CAT 32 19 16 13 MSFT 30 19 16 12

COF 27 21 20 16 NFLX 32 26 23 17

CSCO 16 11 11 9 NKE 28 15 10 6

CVX 32 23 21 18 NVDA 27 17 14 9

DIS 31 18 14 9 PFE 10 6 6 6

FB 32 15 14 11 PG 30 22 19 14

GE 6 3 2 2 T 21 7 4 2

GOOG 30 29 29 25 TSLA 32 24 22 20

GS 31 18 15 8 V 32 16 16 9

HD 31 8 6 5 VZ 26 8 7 5

IBM 31 14 8 5 WMT 30 19 12 8

INTC 25 12 9 6 XOM 32 23 22 16

Note: The table reports the total number of earnings announcement events with valid option data
(i.e., there are three consecutive weekly expiration dates available on the Friday 2 weeks prior to the
scheduled earnings announcement date and the minimum number of strikes across all three tenors is
higher than 10) and the number of times the volatility jump test rejects for different significance levels.

than their short-dated counterparts. What is unique for the option prices prior to
the earnings announcements displayed on the left panels of the figures is that
the gap between the option prices (with the same strike) with tenors T2 and T3

is much smaller than the one between those with tenors T1 and T2. This is due
to the announcement risk anticipated by investors. Recall that the announcement
takes place somewhere in the interval (t + T1,t + T2) and the risk it generates is,
therefore, not priced in the shortest tenor options.

The right panels of the two figures display |L̂t,T1(u)|
T3−T2

T1 |L̂t,T2(u)| and
|L̂t,T3(u)|. Under the null hypothesis, these two quantities should be the same
up to the measurement error. This seems to be the case for the second of the two
events with the two lines being almost on top of each other. For the announcement
in Figure 3, however, there seems to be considerable and persistent difference
between the two lines.

Given the above evidence for jumps in σt and/or φt, it seems difficult in general
to separate nonparametrically the expected volatility jump at t∗ from the one in
the jump intensity for many of the earnings announcement events in the sample.
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Figure 3. OTM option prices and characteristic function estimates for Facebook on January 15, 2021.
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Figure 4. OTM option prices and characteristic function estimates for Facebook on July 29, 2021.
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Table 5. Earnings announcement volatility jump risk premium

Ticker Realized QV QVD23 Ticker Realized QV QVD23 Ticker Realized QV QVD23

AAPL 0.2527 0.2693 GE 0.3105 0.3502 MSFT 0.2225 0.2230

AMZN 0.2724 0.3124 GOOG 0.2240 0.2374 NFLX 0.3608 0.3841

AXP 0.2258 0.2416 GS 0.2394 0.2608 NKE 0.2212 0.2239

BA 0.2931 0.3035 HD 0.2032 0.1940 NVDA 0.3832 0.4008

BAC 0.3089 0.3159 IBM 0.1972 0.1881 PFE 0.2751 0.2559

BLK 0.2269 0.2681 INTC 0.2762 0.2735 PG 0.1634 0.1658

C 0.2524 0.2710 JNJ 0.1680 0.1724 T 0.1906 0.2060

CAT 0.2635 0.2661 JPM 0.2152 0.2415 TSLA 0.4978 0.5597

COF 0.2824 0.2975 KO 0.1840 0.2065 V 0.2170 0.2166

CSCO 0.2104 0.2243 MCD 0.1750 0.1883 VZ 0.1647 0.1729

CVX 0.2366 0.2316 MMM 0.1997 0.2053 WMT 0.1893 0.1764

DIS 0.2107 0.2279 MRK 0.2153 0.1910 XOM 0.2348 0.2344

FB 0.2864 0.2964 MS 0.2653 0.2850

Note: The table reports the time-series averages of 1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti

Q̂Vti,Ti
(column Realized QV)

and 1
T3−T2

(Q̂Vt,T3
− Q̂Vt,T2

) (column QVD23) for each stock in the same sample.

The risk-neutral expectation of their sum is, however, easy to estimate using the
estimates of the risk-neutral quadratic variation over the different tenors. The latter
are given by

Q̂Vt,Tl
=

Nt,T∑
j=2

(
1− log

(
Kj−1

Xt

))
Ôt,Tl(Kj−1)

K2
j−1

(Kj −Kj−1), l = 1,2,3. (41)

Under similar conditions to the ones for proving the limit behavior of L̂t,Tl(u) in
our theoretical analysis, one can show that Q̂Vt,Tl

is a consistent estimator for the

expected risk-neutral quadratic variation E
Q
t (QVt,Tl), where we denote

QVt,T =
∫ t+T

t
σ 2

s ds+
∑

s∈[t,t+T]

(�xs)
2. (42)

Now, for our setting with event risk (under assumption A), we have

EQ
t (QVt,T1) = T1(σ

2
t∗− +φt∗−

∫
R

z2ν(dz)),

EQ
t (QVt,T3 −QVt,T2) = (T3 −T2)E

Q

t∗−(σ 2
t∗ +φt∗

∫
R

z2ν(dz)). (43)

Therefore, we can compare 1
T3−T2

(Q̂Vt,T3
− Q̂Vt,T2

) with 1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti

Q̂Vti,Ti
, where the ti’s in the summation are the times of market close on each

of the trading days between t + T2 and t + T3, Ti is the shortest available tenor at
time ti, and Nt is the number of observations in the interval (t + T2,t + T3]. The
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sum 1
Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti

Q̂Vti,Ti
is a proxy for σ 2

t∗ + φt∗
∫
R

z2ν(dz). We note that

the expected value EP
(
σ 2

t∗ +φt∗
∫
R

z2ν(dz)−E
Q

t∗−(σ 2
t∗ +φt∗

∫
R

z2ν(dz))
)

reflects

risk premium for the jump in σ 2
t + φt

∫
R

z2ν(dz) at the announcement time t∗
demanded by investors. To study the potential existence of such premium, in
Table 5, we report the time-series average of 1

Nt

∑
i:ti∈(t+T2,t+T3]

1
Ti

Q̂Vti,Ti
(column

Realized QV) and 1
T3−T2

(Q̂Vt,T3
− Q̂Vt,T2

) for each ticker. As the results of the
table show, for most of the stocks, the option-implied expected value is above
the realization on average.10 This is an indication that this risk is priced by
investors. The economic rationale for that is that earnings announcements contain
information about systematic risk, particularly for big companies, and this carries
over to the extra volatility triggered by the announcements.

6. CONCLUSION

In this paper, we consider the behavior of assets’ volatility and jump intensity
following the occurrence of pre-scheduled events. Our analysis is based on options
with short time to maturity written on an underlying asset prior to the event and
expiring before or shortly after it. We derive a functional relationship between
characteristic functions of returns with different horizons that can discriminate
between the hypothesis that volatility and jump intensity are anticipated to remain
unchanged following the event and the alternative hypothesis where this is not
the case. Using functional limit theory, we derive an asymptotically valid test
for no jump in volatility and/or jump intensity at the event time. In an empirical
application to earnings announcements, we find evidence for volatility jump at
the earnings announcement event times for many stocks and announcements. The
implied earnings announcement volatility jump from options is on average higher
than the realized one, suggesting that investors are willing to pay in order to avoid
this volatility jump risk.

On a general level, the results of the paper can be used for deciding on the way
option data can be incorporated in the estimation of spot volatility when options
are “contaminated” by event risk. Our results, and extensions of them, can be used
also for the study of the volatility risk generated by important events.

APPENDIX

A. PROOFS

A.1. Proof of Theorem 1

The proof of part (a) follows by use of successive conditioning and taking into account that
on �0, Qt∗−(σ 2

t∗ = σ 2
t∗−)=1 and Qt∗−(φt∗ = φt∗−) = 1. The equality in (13) holds for

10A formal test shows high statistical significance of this difference.
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values of u for which max{T1,T3 − T2}|(ψt∗−(u))| < π . Note that |∫R sin(uz)ν(dz)| ≤
C|u|, for some positive constant C. Therefore, max{T1,T3 −T2}|(ψt∗−(u))| < π holds for
|u| < u∗

T = π
max{T1,T3−T2}Cφt∗− . From here, since u2

T T → 0, we have the result in part (a).

We proceed with part (b). A first-order Taylor expansion yields

eTaψt∗ (u) = 1+Taψt∗ (u)+RTa(u), (A.1)

for some RTa(u) satisfying |RTa(u)| ≤ C(u2Ta)2 with C being a positive constant. Similarly,

eTbψt∗−(u) = 1+Tbψt∗−(u)+RTb(u), (A.2)

for some RTb(u) satisfying |RTb(u)| ≤ Ct∗−(u2Tb)2 with C being a positive constant.
Using these two results and (12), we can write for |u| < u∗

T (u∗
T being the quantity defined

in the proof of part (a) above):

Lt,T1(u)
T3−T2

T1 Lt,T2 (u)−Lt,T3(u) = e(t∗−t)ψt∗−(u)

×
{
E
Q
t∗−

(
eiu�xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
−E

Q
t∗−

(
eiu�xt∗+(t+T3−t∗)ψt∗ (u)

)}
.

(A.3)

Next, using the expansion results above, we get

E
Q
t∗−

(
eiu�xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
−E

Q
t∗−

(
eiu�xt∗+(t+T3−t∗)ψt∗ (u)

)
= −(T3 −T2)E

Q
t∗−

(
eiu�xt∗ (ψt∗(u)−ψt∗−(u))

)
+RT (u), (A.4)

for RT (u) satisfying |RT (u)| ≤ CT2
3 u4 and some positive constant C. Using the Ft∗−-

independence of �xt∗ from σ 2
t∗ −σ 2

t∗− and φt∗ −φt∗−, we have

E
Q
t∗−

(
eiu�xt∗ (ψt∗(u)−ψt∗−(u))

)
= E

Q
t∗−

(
eiu�xt∗

)
E
Q
t∗−

(
ψt∗(u)−ψt∗−(u)

)
. (A.5)

For u sufficiently high, ψt∗(u)−ψt∗−(u) is dominated by − u2

2 (σ 2
t∗ −σ 2

t∗−), and hence if

E
Q
t∗−(σ 2

t∗ −σ 2
t∗−) �= 0, we have

E
Q
t∗−

(
eiu�xt∗+(t+T2−t∗)ψt∗ (u)+(T3−T2)ψt∗−(u)

)
−E

Q
t∗−

(
eiu�xt∗+(t+T3−t∗)ψt∗ (u)

)
� T .

(A.6)

If EQ
t∗−(σ 2

t∗ −σ 2
t∗−) = 0, then since EQ

t∗−(ψt∗ −ψt∗−) �= 0 by the definition of �A, we have

again E
Q
t∗−

(
ψt∗(u)−ψt∗−(u)

) �= 0, and therefore the above result holds again.

A.2. Proof of Theorem 2

Throughout the proof, we do the normalization Xt = 1 and we set τ = T3−T2
T1

. We start with
establishing some preliminary results. We can decompose

1√
�

(
L̂t,T (u)−Lt,T (u)

)= Lt,T (u)+R(1)
t,T (u)+R(2)

t,T (u), (A.7)
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where we denote

Lt,T (u) = − 1√
�

(u2 + iu)

Nt,T∑
j=2

eiu log(Kj−1)
εt,T (Kj−1)

K2
j−1

(Kj −Kj−1), (A.8)

R(1)
t,T (u) = 1√

�
(u2 + iu)

Nt,T∑
j=2

∫ Kj

Kj−1

(
eiu log(Kj−1)Ot,T (Kj−1)

K2
j−1

− eiu log(K)Ot,T (K)

K2

)
dK,

(A.9)

R(2)
t,T (u) = − 1√

�
(u2 + iu)

∫ K1

0

eiu log(K)Ot,T (K)

K2
dK − 1√

�

∫ ∞
KNt,T

eiu log(K)Ot,T (K)

K2
dK.

(A.10)

We start with analyzing R(1)
t,T (u) and R(2)

t,T (u). Using the definition of Ot,T (K), we have

Ot,T (K) ≤ Ct

(
E
Q
t

(
e2|xt+T−xt|

)
+1

)(
e− log(K/Xt)1{K>Xt} + e3log(K/Xt)1{K≤Xt}

)
,

(A.11)

and

|Ot,T (K2)−Ot,T (K1)| ≤ |K2 −K1|Q(xt+T − xt ≤ log(K1/Xt)), for K1 ≤ K2 ≤ Xt,

|Ot,T (K2)−Ot,T (K1)| ≤ |K2 −K1|Q(xt+T − xt ≥ log(K2/Xt)), for Xt ≤ K1 ≤ K2.
(A.12)

From here, we have altogether

|R(1)
t,T (u)| ≤ Ct(|u|3 ∨|u|)√�, |R(2)

t,T (u)| ≤ Ct(|u|3 ∨|u|)
(

K2
1 +K−2

Nt,T

)
. (A.13)

Next, using assumption B1 (the F (0)-conditional independence of the observation errors in
particular), it is easy to derive

E
(|Lt,T (u)|p∣∣F (0)

)≤ Cts
p
�(|u|2 ∨|u|)p, for p > 1, (A.14)

where the F (0)
t -adapted random variable Ct depends on p.

We are now ready to prove the limit result of the theorem. We denote

Zt,T(u) = √
�τLt,T2 (u)Lt,T1(u)+√

�Lt,T2(u)−√
�Lt,T3(u). (A.15)

With the notation of u∗
T as in the proof of Theorem 1, we have the following decomposition:

Ẑt,T(u)−Zt,T(u) = Zt,T(u)1{|u|>uT } + (L̂t,T1 (u)τ −Lt,T1 (u)τ )(L̂t,T2 (u)−Lt,T2 (u))1{|u|≤uT }
+ (R(1)

t,T3
(u)+R(2)

t,T3
(u))1{|u|≤uT } +Lt,T1 (u)τ (R(1)

t,T2
(u)+R(2)

t,T2
(u))1{|u|≤uT }

+ τLt,T1 (u)τ−1Lt,T2 (u)(R(1)
t,T1

(u)+R(2)
t,T1

(u))1{|u|≤uT ∧u∗
T }1{|L̂t,T1

(u)−Lt,T1
(u)|≤ 1

2Lt,T1
(u)}

+ (τ (Lt,T1 (u)τ−1 −1)Lt,T2 (u)
√

�Lt,T1 (u)+ (Lt,T1 (u)τ −1)
√

�Lt,T2 (u))1{|u|≤uT }
+ τ(τ −1)L̃t,T1 (u)τ−2Lt,T2 (u)(L̂t,T1 (u)−Lt,T1 (u))21{|u|≤uT ∧u∗

T }1{|L̂t,T1
(u)−Lt,T1

(u)|≤ 1
2Lt,T1

(u)}
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+ τLt,T1 (u)τ−1Lt,T2 (u)
√

�Lt,T1 (u)1{|u|≤uT }1{(|u|≤u∗
T ∩|L̂t,T1 (u)−Lt,T1 (u)|≤ 1

2Lt,T1 (u))c}
+ (L̂t,T1 (u)τ −Lt,T1 (u)τ )1{|u|≤uT }1{(|u|≤u∗

T ∩|L̂t,T1
(u)−Lt,T1

(u)|≤ 1
2Lt,T1

(u))c}, (A.16)

where L̃t,T1(u) is an intermediate value between L̂t,T1(u) and Lt,T1 (u). Using the bounds

for Lt,T (u), R(1)
t,T (u), and R(2)

t,T (u) derived above and taking into account the rate condition
in assumption B3, we can then show

1

s�
√

�
||̂Zt,T −Zt,T|| = op(1). (A.17)

We are thus left with showing 1
s�

√
�

Zt,T
L|F (0)

−−−−→ Z, where Z is the limit process of the

theorem with kernels of the covariance and relation operators given by

k(z,u) = k2(z,u)− k3(z,u), and c(z,u) = c2(z,u)+ c3(z,u), (A.18)

where

kl(z,u) = vt,l

∫ ∞
0

(z2 + iz)eiz log(K)(u2 + iu)eiu log(K)
O2

t∗(K)

K4
dK,

cl(z,u) = vt,l

∫ ∞
0

(z2 + iz)eiz log(K)(u2 + iu)eiu log(K) O2
t∗(K)

K4
dK, l = 2,3, (A.19)

and Ot∗(K) = Et∗−(e�xt∗ − K)+∧Et∗−(K − e�xt∗ )+ with the notation x+ = max{0,x}
for x ∈ R.

Using a subsequence criterion for convergence in probability, we need to show that
for all ω(0) and every subsequence, there is a further subsequence along which we have

1
s�

√
�

Zt,T(ω(0)) converge in distribution to Z.

To show the functional convergence, we first show that the sequence is asymptotically
finite-dimensional (see van der Vaart and Wellner, 1996, Sect. 1.8). That is, we need to
establish that for arbitrary δ > 0 and ε > 0, there is J > 0 big enough such that

limsup
�↓0

P

⎛⎝ 1

s2
��

∑
j>J

〈Zt,T,ej〉2 > δ

∣∣∣∣F (0)

⎞⎠< ε, (A.20)

where {ej}j≥1 denotes an orthonormal basis in L2(w). We first note that by Bessel’s
inequality,∑
j>J

〈Zt,T,ej〉2 ≤ ||Zt,T||2. (A.21)

In addition, using our assumptions for the option observation error as well as the fact that
the option price is monotonic for K < 1 and K > 1, we have

1

s2
��

E

(
||Zt,T||2∣∣F (0)

)
≤ Ct

∑
i=1,2,3

∫ ∞
0

O2
t,Ti

(K)

K4
dK, (A.22)

for some F (0)
t -adapted random variable Ct > 0.

https://doi.org/10.1017/S0266466623000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000178


ANTICIPATED CHANGES IN SPOT VOLATILITY AT EVENT TIMES 29

Using our assumptions for the option observation error,

1

s2
��

E

⎛⎝∑
j>J

〈Zt,T,ej〉2
∣∣F (0)

⎞⎠≤ Ct

∑
i=1,2,3

∫ ∞

0

∑
j>J

(∫
R

ft,i(u,K)ej(u)w(u)du

)2 O2
t,Ti

(K)

K4
dK +Rt,�,

(A.23)

for some functions ft,i(u,K) which depend on u, K, t, and T, and where Ct > 0 is

F (0)
t -adapted random variable and Rt,� satisfies limsup�↓0 Rt,� = 0. For showing the

negligibility of Rt,�, we use the fact that, for l = 1,2,3,

Nt,Tl∑
i=1

∫ Ki

Ki−1

∑
j>J

(∫
R
(ft,l(u,K)− ft,l(u,Ki−1))ej(u)w(u)du

)2 O2
t,Tl

(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

||ft,l(·,K)− ft,l(·,Ki−1)||2
O2

t,Tl
(K)

K4
dK → 0, as � ↓ 0 (A.24)

as well as

Nt,Tl∑
i=1

∫ Ki

Ki−1

∣∣∣∣∣∣
∑
j>J

〈ft,l(·,K)− ft,l(·,Ki−1),ej〉〈ft,l(·,Ki−1),ej〉
∣∣∣∣∣∣

O2
t,Tl

(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

√∑
j>J

〈ft,l(·,K)− ft,l(·,Ki−1),ej〉2
√∑

j>J

〈ft,l(·,Ki−1),ej〉2
O2

t,Tl
(K)

K4
dK

≤
Nt,Tl∑
i=1

∫ Ki

Ki−1

||ft,l(·,K)− ft,l(·,Ki−1)||||ft,l(·,Ki−1)||
O2

t,Tl
(K)

K4
dK → 0, as � ↓ 0,

(A.25)

where the last inequality follows from the application of Cauchy–Schwarz and Bessel
inequalities. We further use∫ K1

0

∑
j>J

〈ft,l(·,K),ej〉2
O2

t,Tl
(K)

K4
dK ≤

∫ K1

0
||ft,l(·,K)||2

O2
t,Tl

(K)

K4
dK → 0, as � ↓ 0,

(A.26)

and a similar result for the right tail.
From here, the asymptotic finite dimensionality result to be proved follows by an

application of Lebesgue’s dominated convergence theorem. Therefore, the limit result of
the theorem will follow from Theorem 1.8.4 in van der Vaart and Wellner (1996) if we can
establish

1

s�
√

�
〈Zt,T,h〉 L|F (0)

−−−−→ 〈Z,h〉, (A.27)

h being an arbitrary element in L2(w). Note that this is F (0)-conditional convergence in
distribution of a bivariate random vector, conditions for which are readily available. In
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addition, since Z is F (0)-conditionally CN (0,K,C), we have

E

(
〈Z,h〉〈Z,h〉∣∣F (0)

)
= 〈Kh,h〉, E

(
〈Z,h〉2∣∣F (0)

)
= 〈Ch,h〉. (A.28)

The finite-dimensional CLT, in turn, will therefore hold by the application of Theorem
VIII.5.25 of Jacod and Shiryaev (2003), if we can establish the following convergence
results:

1

s2
��

E

(
〈Zt,T,h〉〈Zt,T,h〉∣∣F (0)

)
P−→ 〈Kh,h〉, 1

s2
��

E

(
〈Zt,T,h〉2∣∣F (0)

)
P−→ 〈Ch,h〉,

(A.29)

1

s2+ε
� �1+ε/2

E

(
|〈Zt,T,h〉|2+ε

∣∣F (0)
)

P−→ 0, for some ε ∈ (0,1). (A.30)

These results can be shown using our assumption for the option observation error.

A.3. Proof of Theorem 3

As in the proof of Theorem 2, we do the normalization Xt = 1 and set τ = T3−T2
T1

. We define,
for l = 1,2,3,

L∗
t,Tl

(u) = − 1√
�

(u2 + iu)

Nt,Tl∑
j=2

eiu log(Kj−1)
ε̂t,T (Kj−1)zl,j

K2
j−1

(Kj −Kj−1). (A.31)

Next, with the notation

L̆∗
t,Tl

(u) = − 1√
�

(u2 + iu)

Nt,Tl∑
j=2

eiu log(Kj−1)
s�
√

vt,lOt,Tl(Kj−1)zl,j

K2
j−1

(Kj −Kj−1), (A.32)

where we recall the definition of vt,l in assumption B1 and using this assumption for the
option observation error, we have

E

(
||L∗

t,Tl
− L̆∗

t,Tl
||2∣∣F)≤ Ct

Nt,Tl∑
j=2

(̂sl,�Ôt,Tl (Kj−1)− s�
√

vt,lOt,Tl(Kj−1))2

K4
j−1

(Kj −Kj−1)

≤ Ct (̂sl,� − s�
√

vt,l)
2�

Nt,Tl∑
j=2

Ôt,Tl(Kj−1)2

K4
j−1

+Cts
2
��

Nt,Tl∑
j=2

(Ôt,Tl(Kj−1)−Ot,Tl (Kj−1))2

K4
j−1

.

(A.33)

Using again assumption B1 for the observation error and the integrability assumption in B2,
we get

�

Nt,T1∑
j=2

Ôt,T1(Kj−1)2

K4
j−1

= Op(T3/2
1 ), �

Nt,T1∑
j=2

(Ôt,T1(Kj−1)−Ot,T1 (Kj−1))2

K4
j−1

= Op(T3/2
1 s2

�),

(A.34)
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�

Nt,Tl∑
j=2

Ôt,Tl (Kj−1)2

K4
j−1

= Op(1), �

Nt,Tl∑
j=2

(Ôt,Tl (Kj−1)−Ot,Tl (Kj−1))2

K4
j−1

= Op(s2
�), l = 2,3.

(A.35)

Next, using the algebraic inequality |√y−√
x| ≤ √|y− x|, for x,y ∈R+, we need to analyze

|̂s2
l,� − s2

�vt,l|. First, we note that using Lemma 2 of Todorov (2019), we have that, for

j ∈ I1
t , Ot,T1(Kj) > Ct

√
T1 for some strictly positive F (0)

t -adapted random variable Ct
(this is because the diffusive volatility σt∗− > 0). Similarly, because of the boundedness of
the option observation error assumed in B1, we have Ot,T2(Kj) > Ct,2/2 and Ot,T3 (Kj) >

Ct,3/2, for j ∈ I2
t and j ∈ I3

t , respectively (Ct,2 and Ct,3 are the variables appearing in the
definition of I2

t and I3
t ). Combining these results, we have∣∣∣∣log(Ot,Tl (Kj))− 1

2
(log(Ot,Tl (Kj−1))+ log(Ot,Tl (Kj+1)))

∣∣∣∣≤ Ct�, for j ∈ Il
t and l = 1,2,3.

(A.36)

Next, utilizing the boundedness of the observation error and the fact that s� → 0 as � ↓ 0,
we easily have that for � sufficiently small,

| log(1+ s�εt,l,j)− s�εt,l,j| ≤ 1

4
s2
�ε2

t,l,j, for j ∈ Il
t and l = 1,2,3. (A.37)

Altogether, since | log(1+ s�εt,1,j)| is bounded uniformly over j, we get

|̂s2
1,� − s2

�vt,1| =
{

Op(1), if
√

T1/�is bounded,

Op(s2
�

√
�/T1/4

1
∨

s4
�), if

√
T1/� → ∞.

(A.38)

Further, since varQt∗−(�xt∗) > 0, this means that Ot,Tl (K) > Ct,Tl for K in a neighborhood
of Xt and l = 2,3. Therefore,

|̂s2
l,� − s2

�vt,l| = Op(s2
�

√
�
∨

s4
�), for l = 2,3. (A.39)

Combining these results, and taking into account that s�/
√

� → ∞ by assumption B1, we
get

E

(
||L∗

t,Tl
− L̆∗

t,Tl
||2∣∣F)≤ Ctl(�)s2

�, (A.40)

where Ct is a positive-valued F (0)
t -adapted random variable and l(�) is a deterministic

sequence with l(�) → 0 when � → 0. We can similarly establish

E

(
|L∗

t,Tl
(u)− L̆∗

t,Tl
(u)|2∣∣F)≤ Ct(|u|2 ∨|u|)l(�)s2

�. (A.41)

Further, exactly as in the proof of Theorem 2, we can show

E

(
|L̆∗

t,Tl
(u)|p|F (0)

)
≤ Ct(|u|2 ∨|u|)psp

�, (A.42)

for some F (0)
t -adapted random variable Ct that depends on p.

https://doi.org/10.1017/S0266466623000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466623000178


32 VIKTOR TODOROV AND YANG ZHANG

With this, we are ready to complete the proof of the theorem. We denote

Z
∗
t,T(u) = τLt,T1(u)τ−1Lt,T2(u)

√
�L∗

t,T1
(u)+Lt,T1 (u)τ

√
�L∗

t,T2
(u)−√

�L∗
t,T3

(u),

(A.43)

and the set

ÛT = {u : |u| ≤ u∗
T, |L̂t,T1 (u)−Lt,T1 (u)| ≤ 1

2
|Lt,T1 (u)|, |L̂∗

t,T1
(u)− L̂t,T1 (u)| ≤ 1

2
|L̂t,T1 (u)|}.

(A.44)

With this notation, using the first-order Taylor series expansion, we have

Ẑ∗
t,T(u)−Z

∗
t,T(u) = −Z

∗
t,T(u)1{|u|>uT } + (L̂∗

t,T1
(u)τ −Lt,T1 (u)τ )(L̂∗

t,T2
(u)− L̂t,T2 (u))1{|u|≤uT }

+ (L̂∗
t,T1

(u)τ − L̂t,T1 (u)τ )(L̂t,T2 (u)−Lt,T2 (u))1{|u|≤uT }
+ (L̂∗

t,T1
(u)τ − L̂t,T1 (u)τ )Lt,T2 (u)1{|u|≤uT &u/∈ ÛT }

+ τ(L̃∗
t,T1

(u)τ−1 −Lt,T1 (u)τ−1)(L̂∗
t,T1

(u)− L̂t,T1 (u))Lt,T2 (u)1{|u|≤uT &u∈ ÛT }
− τLt,T1 (u)τ−1

√
�L∗

t,T1
(u)Lt,T2 (u)1{|u|≤uT &u/∈ ÛT }

+ (τLt,T1 (u)τ−1Lt,T2 (u)(R(1)
t,T1

+R(2)
t,T1

)+Lt,T1 (u)τ (R(1)
t,T2

+R(2)
t,T2

)− (R(1)
t,T3

+R(2)
t,T3

))1{|u|≤uT },
(A.45)

and L̃∗
t,T1

(u) is an intermediate value between L̂∗
t,T1

(u) and L̂t,T1(u).

Similar to the proof of Theorem 2, using the bounds for L∗
t,Tl

(u), L̆∗
t,Tl

(u), R(1)
t,T (u), and

R(2)
t,T (u), we can establish

1

s�
√

�
||̂Z∗

t,T −Z
∗
t,T|| = op(1). (A.46)

Since from the bounds above E
(
||L∗

t,Tl
− L̃∗

t,Tl
||2∣∣F) ≤ Ctl(�)s2

� and ||Lτ−1
t,T1

− 1|| +
||Lτ

t,T1
−1|| = oP(1) (recall that t +T1 < t∗), we further have

1

s�
√

�
||Z∗

t,T − Ž∗
t,T|| = op(1), (A.47)

where

Ž∗
t,T(u) = τLt,T2(u)

√
� Ľ∗

t,T1
(u)+√

� Ľ∗
t,T2

(u)−√
� Ľ∗

t,T3
(u). (A.48)

Hence, we are left with establishing a CLT for 1
s�

√
�

Ž∗
t,T. This can be done in exactly the

same way as the CLT for 1
s�

√
�

Zt,T is shown in the proof of Theorem 2.
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