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Abstract
Determining an individual’s strategic reasoning capability based solely on choice data is a complex task.This
complexity arises because sophisticated playersmight have non-equilibrium beliefs about others, leading to
non-equilibrium actions. In our study, we pair human participants with computer players known to be fully
rational. This use of robot players allows us to disentangle limited reasoning capacity from belief formation
and social biases. Our results show that, when paired with robots, subjects consistently demonstrate higher
levels of rationality, compared to when paired with human players. Furthermore, players’ rationality levels
are relatively stable across games when paired with robot players, even though those with intermediate
rationality levels exhibit inconsistency across games. Leveraging our experimental design, we identify and
document potential causes of this inconsistency.
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1. Introduction
Understandingwhether individualsmake optimal choices in strategic environments is a fundamental
question in economics. Unlike individual decision-making, a game involves multiple players whose
payoffs depend on each other’s choice. In this setting, achieving equilibrium requires a player to
exhibit both first-order rationality and higher-order rationality. This necessitates that players are not
merely rational themselves but also operate under the assumption that their counterparts are rational.
Furthermore, they must believe that other participants consider them to be rational, and this belief
cascades infinitely. As a result, in equilibrium, each player’s assumptions about the strategies of their
peers match the actual strategies employed, allowing them to optimally respond.

However, expecting players to engage in iterative reasoning and demonstrate infinite levels of
rationality is notably demanding, especially when viewed empirically. This is evidenced by well-
documented instances of players diverging from equilibrium play (see, for example, Camerer 2003).
Given these empirical discrepancies, a significant volume of research has been dedicated to deter-
mining the extent of iterative reasoning an individual can realistically execute within different
contexts.

Apart from exploring the extent of iterative reasoning an individual can undertake, this paper
delves into another crucial, related query: Is there consistency in an individual’s depth of strategic
reasoning across various games? Measuring strategic reasoning abilities of interacting individuals
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can facilitate our understanding and predictions of individuals’ behavioral patterns. It also helps us
evaluate whether the observed non-equilibrium actions are driven by bounded rationality or by other
factors. Nevertheless, if we observe no regularity when measuring one’s depth of strategic reasoning
in different environments, there may not even exist such a persistent trait called “strategic thinking
ability.”

The main challenge behind inferring individual strategic reasoning ability from choice data is that
the strategic sophistication revealed by one’s choices does not directly imply the maximum steps
of iterative reasoning one is able to perform. As noted by Ohtsubo & Rapoport (2006),1 a player’s
observed depth of reasoning is determined not only by their reasoning capability but also by their
beliefs about the opponents’ (revealed) sophistication, a notion supported by empirical evidence in
Agranov et al. 2012 and Alaoui and Penta (2016). An individual who can carry out more than k steps
of reasoning would act as a kth-order rational player when they believe that their opponent exhibits
(k − 1)th-order rationality. In other words, measuring an individual’s revealed strategic sophisti-
cation only yields a lower-bound estimate of their actual sophistication. In addition, psychological
factors other than bounded rationality such as lying aversion and fairness concern may also motivate
a player to deviate from an equilibrium (Cooper & Kagel, 2016). Without controlling for a player’s
beliefs and social preferences, the estimation of their strategic reasoning ability could be unstable and
lack external validity.

In a study on bounded strategic sophistication by Georganas et al. (2015), a question similar to
the one posed in this paper is explored. In their research, participants play two distinct families of
games. Although their study does not extensively control for participants’ beliefs, it reveals a limited
persistence of individual strategic sophistication between the two families of games.2

In this paper, we demonstrate a method to test the stability of individual strategic sophistication
and to possibly pin down the upper bound of an individual’s depth of strategic reasoning in the lab:
having human subjects interact with equilibrium-type computer players induced by infinite order of
rationality. By informing human players that they are facing fully rational computer players, we are
able to unify players’ expectations about their opponents. Additionally, introducing computer players
precludes the possible effect of social preferences (Houser & Kurzban, 2002; Johnson et al., 2002; Van
den Bos et al., 2008).Thus, human players with an infinite order of rationality are expected to select an
equilibrium strategy. In this setting, out-of-equilibrium actions would provide us with a solid ground
to identify an individual’s order of rationality for inferring their strategic reasoning ability since those
actions are likely driven by bounded rationality.

To investigate the stability of individual strategic sophistication across games, we conduct an
experiment with two classes of dominance-solvable games, ring games and guessing games. Proposed
by Kneeland (2015) for identifying higher-order rationality, an n-player ring game can be character-
ized by n payoff matrices and has the following ring structure: the kth player’s payoff is determined
by the kth player’s and (k + 1)th player’s actions, and the payoff of the last (nth) player, who has a
strictly dominant strategy, is determined by the last and the first player’s actions.We employ guessing
games that represent a symmetric variant of the two-person guessing games studied by Costa-Gomes
and Crawford (2006), in which a player’s payoff is single-peaked and maximized if the player’s guess
equals its opponent’s guess multiplied by a predetermined number.3

1“Subjects who go through several levels of reasoning and figure out the equilibrium solution to the game, will in general
not invoke the maximum depth of reasoning precisely because they do not assume—and perhaps should not assume—that
the other n− 1 players are as smart as they are” (Ohtsubo & Rapoport, 2006, p. 45).

2Another study that reports inconsistent depth of reasoning across games is Cooper et al. (2024), which examines the
comparative statics predictions of the level-kmodelwithout controlling for participants’ beliefs.Note that the idea of examining
cross-game persistence of reasoning depth can be traced back to Stahl and Wilson (1995), who found that 72% of subjects had
a stable depth of reasoning, though they focused on a single family of games.

3The guessing game we implement in this paper diverges from the standard beauty contest game, primarily because
the standard beauty contest game is not strictly dominant solvable. However, it is worth noting that if the beauty
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Among the games that have been used to study strategic reasoning, we choose to implement ring
games and guessing games in our experiment for two reasons. First, our instruction of a fully rational
computer player’s behavior is tailored to alignwith the payoff structure of dominance-solvable games,
inwhich the computer players’ actions can be unambiguously determined (see Section 5.1 for details).
Furthermore, these dominance-solvable games enable a structure-free identification approach, lever-
aging the notion of rationalizable strategy sets (Bernheim, 1984; Pearce, 1984). The core idea behind
this identification approach is that, within a dominance solvable game, we can gauge an individ-
ual’s depth of reasoning by assessing how many rounds of iterated deletion of dominated strategies
the individual’s chosen action would survive. Importantly, this approach does not impose structural
assumptions on (the beliefs about) non-rational players’ behavior. Therefore, these classes of games
provide a plausible, structure-free method to empirically categorize individuals into distinct levels of
rationality.

Second, we intend to implement two types of games that are sufficiently different so that, if we
observe any stability in individual strategic reasoning levels across games, the stability does not result
from the similarity between games. We believe that ring games and guessing games are dissimilar to
each other. On the one hand, a ring game is a four-player discrete game presented in matrix forms.
On the other hand, a guessing game is a two-player game with a large strategy space, which is more
like a continuous game. In fact, Cerigioni et al. 2019 report that the correlation of their experimental
subjects’ reasoning levels between ring games and beauty contest games is only 0.10. Although not
intended to provide conclusive evidence from a limited number of games, we believe our study takes
an important step toward investigating the consistency of reasoning levels across diverse game types,
in line with recent literature encouraging further examination of cross-game stability.

Our experiment comprises two treatments within each game family: the Robot Treatment and the
History Treatment. In the Robot Treatment, subjects encounter computer players employing equilib-
rium strategies. In the History Treatment, subjects confront choice data from human players in the
Robot Treatment. The History Treatment simulates an environment where human subjects interact
without displaying social preferences and serves two main objectives. First, by examining if a sub-
ject’s observed rationality level in the Robot Treatment exceeds that in the History Treatment, we can
evaluate whether the subject responds to equilibrium-type computer players by employing a strategy
that reaches their full capacity for strategic reasoning. Second, by comparing the individual orders of
rationality inferred from data in both the Robot and History Treatments, we can investigate whether
the introduction of robot players contributes to stabilizing observed rationality levels across various
games.

Overall, our findings indicate that strategic reasoning ability may be a persistent personality trait
deducible from choice data when subjects interact with robot players in strategic scenarios. Relative
to interactions with human opponents, we observe a larger proportion of participants adopting equi-
librium strategies and demonstrating higher levels of rationality. This observation is supported by
both our between- andwithin-subject statistical analyses, underscoring the effectiveness of our Robot
Treatment and implying that the rationality levels exhibited in this treatment potentially approach
subjects’ strategic thinking capacity.4

Furthermore, our investigation reveals that subjects’ rationality levels remain relatively stable
across distinct game classes when interacting with robot players. In terms of absolute levels, a sub-
stantial number of first-order and fourth-order rational players retain their respective types while
transitioning from ring games to guessing games. In the Robot Treatment, approximately 38% of

contest game involves only two players, then it becomes dominant solvable (Chen & Krajbich, 2017; Grosskopf &
Nagel, 2008).

4One might doubt if a subject has the motivation to act rationally upon the presence of an opponent with a (much) higher
rationality level than the subject has. In Section 7.1, we argue that a subject does have the incentive to exhibit the highest order
of rationality they can achieve when they know their opponent is at least as rational as themselves.

https://doi.org/10.1017/eec.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.5


4 Fong et al.

subjects exhibit constant rationality levels across games.5 Statistical tests demonstrate that this stabil-
ity in rationality levels, unlike in the History Treatment, cannot be attributed to independent type
distributions, highlighting the impact of our belief manipulation regarding opponents’ reasoning
depth. Despite the relatively stable distribution of rationality levels, players with intermediate ratio-
nality (second-order and third-order rationality) display inconsistency across games. To address this,
we introduce a diagnostic classification, which demonstrates that these players are more inclined
to avoid dominated strategies rather than exhibit consistent levels of rationality, particularly when
uncertain about others’ strategies (as seen in the History Treatment).

A subject’s performance in other cognitive tests could potentially hold predictive power regarding
their strategic reasoning performance in games. As such, we incorporate tasks measuring cognitive
reflection, short-term memory, and backward induction abilities (see Section 5.3 for details) into
our experiment. We observe that a subject’s cognitive reflection and backward induction abilities are
positively correlated with their levels of rationality, whereas no significant correlation is found with
their short-term memory capacity.

The rest of the paper proceeds as follows. The next subsection reviews the related literature.
Section 2 summarizes the theoretical framework upon which our identification approach and
hypotheses to be tested are based. Section 3 describes the ring games and guessing games imple-
mented in our experiment. Section 4 discusses how we identify a subject’s rationality level given
choice data. Section 5 presents our experimental design and the hypotheses to be tested. The exper-
imental results are reported in Section 6. In Section 7, we discuss the validity and limitations of our
belief control approach for the Robot Treatment, as well as the results of the diagnostic classification
of types. Finally, Section 8 concludes. The complete instructions of our experiment can be found in
Supplementary Information.6

1.1. Related literature
Over the past thirty years, various researchers have theoretically studied the idea of limited depth of
reasoning, including Selten (1991); Selten (1998), Aumann 1992, Stahl (1993), Camerer et al. (2004),
Alaoui and Penta (2016); Alaoui and Penta (2022), Lin 2023, and Lin and Palfrey (2024). In addition
to theoretical contributions, Nagel (1995) conducts the first experiment on beauty contest games
and introduces the level-k model to describe non-equilibrium behavior. The behavior that can be
explained by assuming level-k reasoning has subsequently been observed in a variety of game types,
including matrix games (e.g., Costa-Gomes et al., 2001; Crawford & Iriberri, 2007a; Stahl & Wilson,
1994; Stahl & Wilson, 1995), investment games (e.g., Rapoport & Amaldoss, 2000), guessing games
(e.g., Costa-Gomes &Crawford, 2006), undercutting games (e.g., Arad & Rubinstein, 2012), auctions
(e.g., Crawford & Iriberri, 2007b), and sender-receiver games (e.g., Cai & Wang, 2006; Fong & Wang,
2023; Wang et al., 2010), though the list is not exhaustive.

Unlike the literature that primarily investigates individuals’ strategic sophisticationwithin the con-
text of a single specific game, our work, which is closely related toGeorganas et al. (2015) (hereinafter,
GHW), centers on the examination of the consistency of strategic sophistication across different
games. In particular, we follow the language of GHW to formalize our hypotheses to be tested.7
Although both GHW and this paper experimentally investigate whether a subject’s sophistication
type persists across games, our study differs from GHW in several ways. First, we substitute the ring
games for the undercutting games in GHW and use a simplified, symmetric version of the guess-
ing games. Second, we employ an identification strategy distinct from the standard level-k model to

5The constant rationality level hypothesis is the strictest requirement for the stability of rationality levels across games. In
Online Appendix B, we explore two weaker notions of stability and find that players’ rationality levels are more stable across
games in the Robot Treatment, even when considering these weaker notions of stability.

6The provided instructions are originally in Chinese and have been translated into English.
7For a brief summary of the model in GHW, see Section 2.1; also, see Section 5.2 for the hypotheses.

https://doi.org/10.1017/eec.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.5


Experimental Economics 5

determine a subject’s strategic sophistication. We use dominance solvable games in order to iden-
tify higher-order rationality without imposing strong and ad hoc assumptions on players’ first-order
beliefs, which can in turn reduce the noise in the estimation of individual reasoning depth using a
level-k model.8 More importantly, we control for human subjects’ beliefs about opponents’ sophisti-
cation (and social preferences) using computer players. As a result, we observe a higher correlation
in subjects’ types across games compared to GHW, in which subjects are matched with each other.

Ring games, first utilized for identifying higher-order rationality by Kneeland (2015), are subse-
quently studied by Lim and Xiong 2016 and Cerigioni et al. 2019, who investigate two variants of the
ring games. In this study, we follow the revealed rationality approach adopted by Lim and Xiong 2016
and Cerigioni et al. 2019 as our identification approach (discussed in Section 4). It is worth noting
that Cerigioni et al. 2019 also find little correlation in subjects’ estimated types across various games,
including ring games, e-ring games, p-beauty contests, and a 4 × 4 matrix game. Again, our results
suggest that the lack of persistence in the identified order of rationality at the individual level is driven
by subjects’ heterogeneous beliefs about the rationality of their opponents.

Indeed, several empirical studies have shown that beliefs about others’ cognitive capacity for
strategic thinking can alter a player’s strategy formation. Friedenberg et al. 2018 indicate that some
non-equilibrium players observed in the ring games (Kneeland, 2015) may actually possess high
cognitive abilities but follow an irrational behavioral model to reason about others. Alternatively,
Agranov et al. 2012, Alaoui and Penta (2016), Gill and Prowse (2016), and Fe et al. (2022) find that,
in their experiments, subjects’ strategic behavior is responsive to the information they receive about
their opponents’ strategic abilities.9 The designs of experiments allow them to manipulate subjects’
beliefs, whereaswe aim to elicit and identify individual strategic capability by unifying subjects’ beliefs
about opponents.

Some recent studies have tried to distinguish between non-equilibrium players who are limited
by their reasoning abilities and players who are driven by beliefs. Identifying the existence of ability-
bounded players is important since, if non-equilibrium behavior is purely driven by beliefs, it would
be unnecessary to measure an individual’s reasoning depth. Jin (2021) utilizes a sequential version of
ring games, finding that around half of the second-order and third-order rational players are bounded
by ability. Alaoui et al. (2020) also report the presence of ability-bounded subjects by showing that an
elaboration on the equilibrium strategy shifts the subjects’ level-k types toward higher levels. Overall,
the existence of both ability-bounded and belief-driven players in the real world indicates the need
for an approach that can measure individual reasoning ability without the impact of beliefs. Whereas
Jin (2021) and Alaoui et al. (2020) do not pin down the belief-driven players’ actual ability limit, we
aim to directly measure each subject’s strategic ability.

Bosch-Rosa and Meissner (2020) propose an approach to test a subject’s reasoning level in a given
game: letting a subject play against herself (i.e., an “one-person” game). Specifically, in their study,
each subject acts as both players in a modified two-person p-beauty contest (Chen & Krajbich, 2017;
Grosskopf & Nagel, 2008), in which a player’s payoff decreases in the distance between their own
guess and the average guess multiplied by p, and the subject receives the sum of the two players’ pay-
offs.10 The one-person game approach eliminates the impact of beliefs that arises from interacting
with human players. However, a limitation of this approach is that it can only be applied to the game

8Burchardi and Penczynski (2014) conduct an experiment in a standard beauty contest with belief elicitation, finding
heterogeneity in both level-0 beliefs and level-0 actions within a game.

9In Agranov et al. 2012, subjects play against each other, graduate students from NYU Economics Department, or players
taking uniformly random actions. In Alaoui and Penta (2016), subjects play against opponents majoring in humanities, major-
ing in math and sciences, getting a relatively high score, or getting a low score in a comprehension test. In Gill and Prowse
(2016) and Fe et al. (2022), subjects play against opponents with similar or differing performance in cognitive tests.

10Bosch-Rosa and Meissner (2020) report that 69% of the subjects do not select the equilibrium action (0, 0) when playing
the one-person game, which echoes the findings of the presence of ability-bounded players in Jin (2021) and Alaoui et al.
(2020).
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in which the equilibrium is Pareto optimal. For instance, it would be rational for a payoff-maximizing
subject to deviate from the equilibrium and choose (Cooperate, Cooperate) in the prisoner’s dilemma
since (Cooperate, Cooperate) maximizes the total payoff of both players even though those are not
equilibrium strategies.11 In this study, we employ an alternative approach that overcomes this limi-
tation to measure rationality levels: letting a subject play against equilibrium-type computer players
(i.e., the Robot Treatment).

Similar to the motivation of our Robot Treatment, Devetag and Warglien (2003), Grehl and Tuti ́c
(2015), and Bayer and Renou (2016) also employ rational computer players to mitigate the impact of
beliefs and social preferences on individual decisions in their experiments. Grehl andTuti ́c (2015) and
Bayer and Renou (2016) explore players’ ability to reason logically about others’ types in the incom-
plete information game known as the dirty faces game. In contrast, our study focuses on investigating
whether playing against computers can provide a robust measure of strategic reasoning ability across
different families of games with complete information. Additionally, Devetag and Warglien (2003)
examine the relationship between short-term memory performance and conformity to standard the-
oretical predictions in strategic behavior, finding a positive correlation between the two. Building
on this, we include a memory task to investigate whether the lack of significant predictive power of
short-term memory on reasoning levels observed in GHW is influenced by uncontrolled beliefs, and
to offer a robustness check for the findings of Devetag and Warglien (2003) in different settings.

In previous studies on strategic reasoning, equilibrium-type computer players have been intro-
duced into laboratory experiments to induce human players’ equilibrium behavior (e.g., Costa-
Gomes & Crawford, 2006; Meijering et al., 2012) and to eliminate strategic uncertainty (e.g., Hanaki
et al., 2016).12 In contrast, our aim is to utilize computer players to uncover individual strategic rea-
soning ability. Our study contributes to the literature by demonstrating that introducing robot players
can induce human subjects to exhibit stable reasoning levels across games, thus providing a solid
foundation for measuring individual strategic ability.

2. Theoretical framework
2.1. The model in GHW
To formalize the idea of the depth of rationality and the hypotheses we are going to test, we introduce
the model and notations used in GHW. In their model, an n-person normal form game 𝛾 ∈ Γ is
represented by (N, S, {ui}i∈N), where N = {1, ..., n} denotes the set of players, S = S1 × ⋯ × Sn =
Πn

i=1Si denotes the strategy sets, and ui : S → R for i ∈ N denotes the payoff functions.
Player i’s strategic ability is modeled by two functions (ci, ki). Let T be the set of environmental

parameters, which captures the information a player observes about their opponents’ cognitive abili-
ties. The function ci : Γ → ℕ0 represents i’s capacity for game 𝛾, and the function ki : Γ × T → ℕ0
represents i’s (realized) level for game 𝛾. A player’s level for a game is bounded by their capacity,
so ki(𝛾, 𝜏i) ≤ ci(𝛾) for all 𝛾, 𝜏i ∈ T , and i ∈ N . The goal of our experiment is to measure ci(𝛾)
and to test if ci(𝛾) (or ki(𝛾, 𝜏i), after controlling for 𝜏i) exhibits any stability across different games
(see Section 5.2 for further discussion).

2.2. Higher-order rationality
To characterize a player’s behavior in the games, we define kth-order rationality (Bernheim, 1984;
Lim & Xiong, 2016; Pearce, 1984) in the following way. Let Rk

i (𝛾) be the set of strategies that survive
k rounds of iterated elimination of strictly dominated strategies (IEDS) for player i. Namely, a strategy
si is in R1

i (𝛾) if si is a best response to some arbitrary s−i, and si is in Rk′

i (𝛾) if si is a best response to
11Also note that in the ring game G1, both the equilibrium strategy profile (P1: b, P2: c, P3: c, P4: b) and a non-equilibrium

strategy profile (P1: a, P2: b, P3: a, P4: a) lead to a total payoff of 66 (see Figure 1).
12For a survey of economics experiments with computer players, see March (2021).
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some s−i ∈ Rk′−1
−i (𝛾) for k′ > 1.We say that a player i exhibits kth-order rationality in 𝛾 if and only if i

always plays a strategy in Rk
i (𝛾). Note that given any game 𝛾 ∈ Γ, Rk+1

i (𝛾) ⊂ Rk
i (𝛾) for all k ∈ ℕ0. In

other words, a player exhibiting kth-order rationality also exhibits jth-order rationality for all j ≤ k.
We characterize boundedly rational behavior using higher-order rationality rather than the stan-

dard level-k model employed by GHW to avoid the ad hoc assumption regarding level-0 players.13
In the standard level-k model, pinning down a level-k player’s strategy requires an assumption about
the level-0 strategy. However, studies have reported variations in level-0 actions and level-0 beliefs
across individuals (Burchardi & Penczynski, 2014; Chen et al., 2018). Consequently, an individual’s
identified level of reasoning can be sensitive to the structural assumptions of the level-k model.
Alternatively, the higher-order rationality approach avoids structural assumptions about (beliefs
regarding) non-rational players’ behavior, thereby providing a structure-free method for empirically
categorizing individuals into distinct reasoning levels.

3. The games
We study two classes of games: the four-player ring games used in Kneeland (2015) for identifying
individuals’ higher-order rationality and a variant of the two-person guessing games first studied by
Costa-Gomes & Crawford (2006) and used in GHW for identifying players’ level-k types.

3.1. Ring games
A four-player ring game is a simultaneous game characterized by four 3× 3 payoff matrices. Figure 1
summarizes the structures of the two ring games, G1 and G2, used in our experiment. As shown
in Figure 1, each player i ∈ {1, 2, 3, 4} simultaneously chooses an action ai ∈ {a, b, c}. Player 4 and
Player 1’s choices determine Player 4’s payoff, and Player k and Player (k + 1)’s choices determine
Player k’s payoff for k ∈ {1, 2, 3}.

The payoffmatrices for Player 1, 2, and 3 are identical inG1 andG2.However, thematrix for Player
4 differs between G1 and G2, with the rows corresponding to Player 4’s actions (a, b, c) interchanged,
leading to different best replies in the subsequent matrices.

Specifically, Player 4 has a strictly dominant strategy in each ring game: b in G1 and c in G2.
Given the payoff structure, a (first-order) rational individual will always choose b in G1 and c in G2
when acting as Player 4. By eliminating dominated strategies, an individual exhibiting second-order
rationality will always choose c in G1 and b in G2 when acting as Player 3. Continuing this process
iteratively, an individual exhibiting third-order rationality will always choose c in G1 and a in G2
when acting as Player 2, and an individual exhibiting fourth-order rationality will always choose b in
G1 and c in G2 when acting as Player 1. Thus, the unique Nash equilibrium of G1 is Player 1, 2, 3,
and 4 choosing b, c, c, and b, respectively, and for G2, Player 1, 2, 3, and 4 choosing c, a, b, and c, as
highlighted in Figure 1.

Note that the payoff structures in our ring games are identical to those in Kneeland (2015),
except that rows a and b are swapped for Player 4 in G1. This modification ensures that our
equilibrium-predicted actions do not coincide with the secure actions (or max-min actions) in both
G1 and G2, which maximize the total payoff sum over the opponents’ possible actions, potentially
encouraging subjects to choose the equilibrium strategy based on non-payoff-maximizing motives.14

13Let 𝜈 : ℕ0 → Δ(ℕ0) be a player’s belief about their opponents’ levels. In the standard level-k model, 𝜈(m) = 𝟙{m − 1}
for all m ≥ 1, and a level-0 player i’s strategy is exogenously given as 𝜎0

i ∈ Δ(Si). For all s′i ∈ Si, 𝜎k
i satisfies ui(𝜎k

i , 𝜎𝜈(k)
−i ) ≥

ui(s′i , 𝜎𝜈(k)
−i ), where 𝜎𝜈(k)

−i = (𝜎k−1
1 , ..., 𝜎k−1

i−1 , 𝜎k−1
i+1 , ..., 𝜎k−1

n ). Here, ui(𝜎) refers to E𝜎[ui(𝜎)], where 𝜎 = (𝜎1, ..., 𝜎n) is a
profile of mixed strategies (i.e., 𝜎i ∈ Δ(Si)). Notice that an individual exhibits kth-order rationality if and only if there exists
some 𝜎0

−i such that the individual can be classified as a level-k player under the standard level-k model.
14A consequence of this modification is that the minimum possible payoff for the equilibrium strategy in G1 becomes 0 for

Player 1, 2, and 3.
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Figure 1. The ring games. The Nash equilibrium is highlightedwith colored borders, and the secure actions are underscored

Adopting the same payoff structure as Kneeland’s design facilitates comparability between our results
and hers.

3.2. Guessing games
In our experiment, the guessing game is a simultaneous two-player game parameterized by a constant
p ∈ (0, 1). We use p = 1/3, 1/2 and 2/3 in our experiment. Each player i simultaneously chooses
a positive integer si between 1 and 100. Player i’s payoff strictly decreases in the difference between
the number chosen by i, si, and the number chosen by i’s opponent multiplied by a constant p, ps−i.
Specifically, player i’s payoff is equal to 0.2 × (100 − |si − ps−i|). Thus, a payoff-maximizing player’s
objective is to make a guess that matches their opponent’s guess times p. Note that, given p< 1, any
action (integer) greater than or equal to ⌊100p+ 0.5⌋ + 1 is strictly dominated by ⌊100p+ 0.5⌋ since
|⌊100p + 0.5⌋ − ps−i| < |s′i − ps−i| for all s−i ∈ {1, ..., 100} and s′i ∈ {⌊100p + 0.5⌋ + 1, ..., 100}.15

Given the payoff logic above, a (first-order) rational individual will choose an integer between 1
and K1 ≡ ⌊100p+0.5⌋, since any action greater than K1 is strictly dominated by K1. A second-order
rational individual will believe the other player is first-order rational and choose a positive integer
between 1 and ⌊K1p + 0.5⌋, and so on. The unique equilibrium of the two-person guessing game is
thus both players choosing 1.

4. Identification
Our model does not allow us to directly identify one’s higher-order rationality from choice data.
For example, an equilibrium player will choose 1 in the guessing game with p = 1/2, while a
player choosing 1 may have only performed one step of reasoning if their first-order belief is that
their opponent guesses 2. Thus, observing a player i choosing a strategy in Rk

i (⋅) for k> 1 (in a

15For instance, in a guessing game with p = 1/3, every integer between 34 and 100 is dominated by 33; when p = 1/2,
every integer between 51 and 100 is dominated by 50; when p = 2/3, every integer between 68 and 100 is dominated by 67.

https://doi.org/10.1017/eec.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.5


Experimental Economics 9

Table 1. Predicted actions in the ring games under the revealed rationality approach

Ring Games

P1 P2 P3 P4

Level G1 G2 G1 G2 G1 G2 G1 G2

R0 N/A N/A N/A not (b, c)

R1 N/A N/A not (c, b) (b, c)

R2 N/A not (c, a) (c, b) (b, c)

R3 not (b, c) (c, a) (c, b) (b, c)

R4 (b, c) (c, a) (c, b) (b, c)

finite number of rounds) does not imply that i exhibits kth-order rationality, which renders an
individual’s higher-order rationality unidentifiable. In fact, following the definition of Rk

i (⋅), we have
Rk+1
i (⋅) ⊂ Rk

i (⋅) for all k ∈ ℕ0. Namely, every strategy (except for the dominated actions) can be
rationalized by some first-order belief.

Following the rationale of higher-order rationality, we use the revealed rationality approach (Lim
& Xiong, 2016; Brandenburger et al., 2019; Cerigioni et al., 2019) as our identification strategy.
As explained below, this approach allows us to identify individual higher-order rationality in a
dominance-solvable game. Under the revealed rationality approach, we say that a player i exhibits
kth-order revealed rationality if (and only if) we observe the player actually playing a strategy that
can survive k rounds of IEDS, i.e., si ∈ Rk

i (⋅). A subject is then identified as a kth-order (revealed-
)rational player when they exhibit mth-order revealed rationality for m= k but not for m = k + 1.
That is, a player is classified into the upper bound of their (revealed) rationality level.16

The idea behind the revealed rationality approach is the “as-if ” argument: a subject i selecting si ∈
Rk
i (⋅)\Rk+1

i (⋅) in finite observations behaves like a kth-order rational player, who always selects a strat-
egy in Rk

i (⋅) but probably not in Rk+1
i (⋅), and thus is identified as a kth-order revealed rational player.

Under this identification criterion, we can identify an individual’s order of (revealed) rationality with-
out requiring them to play in multiple games with different payoff structures. In our data analysis, we
will classify subjects into five different types: first-order revealed rational (R1), second-order revealed
rational (R2), third-order revealed rational (R3), fourth-order (or fully) revealed rational (R4), and
non-rational (R0).17 Tables 1 and 2 summarize the predicted actions under the revealed rationality
approach for each type of players in our ring games and guessing games, respectively.

5. Experimental design and hypotheses
5.1. Treatments
We design a laboratory experiment to measure subjects’ higher-order rationality. In the main part of
the experiment, subjects first play the ring games, followed by the guessing games, in two different
scenarios: theRobot Treatment and theHistory Treatment. Using a within-subject design, we alternate
the order of the two scenarios (RH Order and HR Order) across sessions to balance out potential
spillover effects from one treatment to another.

16Kneeland (2015) uses the exclusion restriction (ER) as its identification strategy, assuming that a player with low order
rationality does not respond to changes in payoff matrices positioned away from herself. However, Lim and Xiong 2016 show
that more than three-quarters of their experimental subjects change their actions in two identical ring games, which suggests
the failure of the ER assumption since a rational player is predicted to take the same action in two identical games under the
exclusion restriction. Also, the ER assumption does not facilitate the identification of higher-order rationality in the guessing
games since we cannot separate out first-order payoffs from higher-order ones.

17In a four-player ring game, the highest identifiable (revealed) order of rationality is level four.
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Table 2. Predicted actions in the guessing games under the revealed rationality approach

Guessing Games

Level p = 1/3 p = 1/2 p = 2/3

R0 34–100 51–100 68–100

R1 12–33 26–50 46–67

R2 5–11 14–25 31–45

R3 2–4 8–13 21–30

R4 (or above) 1 1–7 1–20

In each scenario, each subject first plays the two four-player, three-action ring games (G1 and
G2 in Figure 1) in each position in each game once (for a total of eight rounds). Each subject is, in
addition, assigned a neutral label (Member A, B, C, or D) before the ring games start.The label is only
used for the explanation of an opponent’s strategy in theHistory Treatment and does not reflect player
position. To facilitate the cross-subject comparison, all the subjects play the games in the following
fixed order: P1 in G1, P2 in G1, P3 in G1, P4 in G1, P1 in G2, P2 in G2, P3 in G2, and P4 in G2.18 The
order of payoff matrices is also fixed, with a subject’s own payoff matrix being fixed at the leftmost
side.19

In the Robot Treatment, the subjects play against fully rational computer players. Specifically, each
subject in each round is matched with three robot players who only select the strategies that survive
iterated dominance elimination (i.e., the equilibrium strategy).We inform the subjects of the presence
of robot players that exhibit third-order rationality.20 The instructions for the robot strategy are as
follows:21

When you start each new round, you will be grouped with three other participants who are in
different roles. The three other participants will be computers that are programmed to take the
following strategy:

(1) The computers aim to earn as much payoff as possible for themselves.
(2) A computer believes that every participant will try to earn as much payoff as one can.
(3) A computer believes that every participant believes “the computers aim to earn as much

payoff as possible for themselves.”

The first line of a robot’s decision rule (“The computers aim to...”) implies that a robot never plays
strictly dominated strategies and thus exhibits first-order rationality. The second line (along with the
first line) indicates that a robot holds the belief that other players are (first-order) rational and best
responds to such belief, which implies a robot’s second-order rationality.The third line (alongwith the
first and second lines) implies that, applying the same logic, a robot exhibits third-order rationality.

18Note that Player 4 has a dominant strategy in the ring game. We have our subjects play in each position in the reverse
order of the IEDS procedure to mitigate potential framing effects resulting from the hierarchical structure.

19This feature is adopted in Jin (2021) and the main treatment of Kneeland (2015). Kneeland (2015) perturbs the order of
payoff matrices in a robust treatment and finds no significant effects on subject behavior.

20Since level four is the highest identifiable (revealed) order of rationality in a four-player ring game, incorporating a third-
order rational computer player is sufficient to identify this maximum level.

21Our instructions are adapted from the experiment instructions of Study 2 of Johnson et al. (2002).Theoriginal instructions
are as follows: “In generating your offers, or deciding whether to accept or reject offers, assume the following: 1. You will be
playing against a computer which is programmed to make as much money as possible for itself in each session. The computer
does not care how much money you make. 2. The computer program expects you to try to make as much money as you can,
and the program realizes that you have been told, in instruction (1) above, that it is trying to earn as much money as possible
for itself ” (p. 44-45).
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In the History Treatment, the subjects play against the data drawn from their decisions in the
previous scenario. Specifically, in each round, a subject is matched with three programmed players
who adopt actions chosen in the Robot Treatment by three other subjects.22 Every subject is informed
that other human participants’ payoffs would not be affected by their choices at this stage. By having
the subjects play against past decision data, we can exclude the potential confounding effect of other-
regarding preferences on individual actions.

After the ring games, the subjects play the two-person guessing games (in the order of p = 2/3,
1/3, 1/2) in both the Robot Treatment and the History Treatment. Instead of being matched with
three opponents, a subject is matched with only one player in the guessing games. The instructions
for the guessing games in both treatments are revised accordingly.

5.2. Hypotheses
The Robot Treatment is designed to convince subjects that the computer opponents they face are the
most sophisticated players they could encounter. Consequently, if our Robot Treatment is effectively
implemented, it should prompt subjects to employ a strategy at the highest achievable level k, i.e.,
ki(𝛾, 𝜏i = Robot) = ci(𝛾) for all 𝛾 and i. (Recall that ki and ci denote subject i’s realized level and
capacity, respectively.) This observation gives rise to the first hypothesis we aim to evaluate.

Hypothesis 1 (Bounded Capacity) ki(𝛾, 𝜏i = History) ≤ ki(𝛾, 𝜏i = Robot) for all 𝛾.

In other words, we test whether subjects’ rationality levels against robots capture individual
strategic reasoning capacity. The corresponding analysis is presented in Section 6.2.

If Hypothesis 1 holds, then we can evaluate several possible restrictions on ci by forming hypothe-
ses on ki(𝛾,Robot). In evaluating Hypothesis 2, we examine whether there are stable patterns in
(revealed) individual reasoning depth across games.

Hypothesis 2 (Constant Capacity) ki(𝛾,Robot) = ki(𝛾′,Robot) for all 𝛾, 𝛾′.

This hypothesis imposes the strictest requirement on stability by testing if a player’s rationality level
remains constant across games. In other words, it assesses whether playing against robots provides a
measure of one’s absolute depth of reasoning. The corresponding analysis is presented in Section 6.3.

In addition to these two hypotheses, Online Appendix B explores two less stringent sta-
bility requirements, such as the stability of relative rankings between players’ rationality levels
(Hypothesis 3) or the consistency of game difficulty in terms of revealed rationality across players
(Hypothesis 4).23

5.3. Cognitive tests
Apart from the ring games and the guessing games, subjects also complete three cognitive tests to
measure different aspects of their cognitive ability and strategic reasoning:

(1) the Cognitive Reflection Test (CRT),
(2) the Wechsler Digit Span Test, and
(3) the farsightedness task.

22In the HR Order sessions, the choices made by a subject’s opponents were drawn from the participants in the Robot
Treatment of previous sessions.

23Our Hypothesis 2, 3, and 4 correspond to Restriction 2, 3, and 5 in GHW, respectively (see p. 377).
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Figure 2. The farsightedness task in Bone et al. (2009)

The CRT, proposed by Frederick (2005), is designed to evaluate the ability to reflect on intu-
itive answers. This test contains three questions that often trigger intuitive but incorrect answers.
Performance on this test has been found to be correlated with strategic abilities. For instance, GHW
report that the subjects’ CRT scores have moderate predictive power on their expected earnings and
level-k types.

The second test is the Wechsler Digit Span Test (Wechsler, 1939), which is designed to test short-
term memory. In our experiment, this test contains eleven rounds. In each round, a subject needs to
repeat a sequence of digits displayed on the screen at the rate of one digit every second. The maxi-
mum length of the digit sequence a subject can memorize reflects the subject’s short-term memory
capacity.24 Devetag and Warglien (2003) find a positive correlation between individual short-term
memory and strategic ability.

Lastly, the farsightedness task, developed by Bone et al. (2009), is an individual task to measure
a subject’s ability to do backward induction, or to anticipate their own future action and make the
best choice accordingly. Specifically, it is a sequential task that involves two sets of decision nodes
and two sets of chance nodes (see the decision tree in Figure 2). The first and third sets of nodes are
the decision nodes where a decision maker is going to take an action (up or down). The second and
fourth sets of nodes are the chance nodes where the decision maker is going to be randomly assigned
an action (with equal probability).

Notice that there is one dominant action, in the sense of first-order stochastic dominance, at each
of the third set of nodes (i.e., the second set of decision nodes). Anticipating the dominant actions at
the second set of decision nodes, the decision maker also has a dominant action (down) at the first
node. However, if a payoff maximizer lacks farsightedness and anticipates that each payoff will be
reachedwith equal chance, then the dominated action (up) at the first nodewill become the dominant
option from this decisionmaker’s perspective.Therefore, a farsighted payoff-maximizer is expected to
choose down, but a myopic one is expected to choose up, at the first move (and choose the dominant

24The length of the digit sequence increases from three digits to thirteen digits round by round.
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Figure 3. Experiment protocol

actions at the second moves). Consequently, we can use their choice at the first move to evaluate the
correlation between one’s farsightedness and rationality level.

5.4. Laboratory implementation
Weconducted 41 sessions betweenAugust 31, 2020 and January 28, 2021 at theTaiwan Social Sciences
Experiment Laboratory (TASSEL) in National Taiwan University (NTU). The experiment was pro-
grammed with the software zTree (Fischbacher, 2007) and instructed in Chinese. A total of 299 NTU
students participated in the experiment, all recruited through ORSEE (Greiner, 2015). In our exper-
iment, 136 subjects played the Robot Treatment before the History Treatment in both families of
games (RH Order), while 157 subjects played the History Treatment first (HR Order).25

Each experimental session lasted about 140 minutes, and the protocol is summarized in Figure 3.
At the beginning of the experiment, subjects first completed the CRT and the Wechsler Digit Span
Test. After these tasks, subjects played the ring games in both the Robot Treatment and the History
Treatment, followed by the guessing games in both treatments. In the final section of the experiment,
subjects were asked to complete the farsightedness task. The experimental subjects did not receive
any feedback about the outcomes of their choices until the end of the experiment.

There was a 180-second time limit on every subject’s decisions in the ring games, guessing games,
and farsightedness task. A subject who did not confirm their choice within 180 seconds would have
earned zero payoff for that round; however, no subjects exceeded the time limit.26

The subjects were paid based on the payoffs (in ESC, Experimental Standard Currency) they
received throughout the experiment. In addition to the payoff in the farsightedness task, one round
in the ring games and one round in the guessing games were randomly chosen for payment. A subject
also got three ESC for each correct answer in the CRT, and one ESC for each correct answer in the
Digit Span Test. Including a show-up fee of NT$200 (New Taiwan dollars; approximately $7 in USD
in 2020), the earnings in the experiment ranged between NT$303 and NT$554, with an average of
NT$430.27

6. Experimental results
In this section, we first provide a general description of the data in Section 6.1. Next, we classify
subjects into different rationality levels using the revealed rationality approach in Section 6.2, show-
ing that subjects display higher levels of rationality when playing against robots. In Section 6.3, we
demonstrate that individual rationality levels are relatively more stable when controlling for sub-
jects’ beliefs about their opponents’ depth of reasoning. Finally, we explore the correlation between

25Six subjects are dropped from our analysis due to computer crashes.
26Jin (2021) sets a 60-second time limit on decisions in the ring games and finds little effect on type classification.
27The exchange rate was 1 ESC for NT$4, and the foreign exchange rate was around US$1 = NT$29.4.
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Figure 4. Ring game choice frequency at each position. The first and the second arguments represent the actions of G1 and
G2

depth of reasoning, performance on cognitive tests and the heuristics of choosing secure actions in
Section 6.4.

6.1. Data description
Before delving into the main results, we begin by summarizing the subjects’ choice frequencies in the
ring games (Figure 4) and guessing games (Figure 5). Figure 4 reports the subjects’ choice frequencies
in the two ring games (G1 and G2, see Figure 1) at each player position. From the figure, we can first
observe that in both treatments, over 97% of subjects choose the equilibrium strategy (b, c) at P4 (𝜒2

test p-value = 0.252). This suggests that subjects are able to recognize strict dominance in the ring
games.

Second, at each player position except P4, the significance of 𝜒2 tests suggests that subjects’ behav-
ior is responsive to the treatments (P1: 𝜒2 test p-value = 0.020; P2: 𝜒2 test p-value< 0.001; P3: 𝜒2 test
p-value = 0.088).Moreover, the Robot Treatment shows a 10 to 15 percentage point higher frequency
of subjects choosing the equilibrium strategy (b, c) at P1, (c, a) at P2, and (c, b) at P3 compared to
the History Treatment, indicating that the Robot Treatment effectively prompts subjects to display
higher rationality levels.

Third, at each player position except P4, a notable proportion of subjects choose the secure action
that maximizes the minimum possible payoff among the three available actions (a at P1, b at P2, a at
P3). As shown in Figure 4, a high proportion of subjects opt for secure actions as an alternative to equi-
librium actions.Moreover, except at P4, the proportion of secure actions is higher in earlier positions.
At P1, 38% of subjects in the Robot Treatment and 44% in the History Treatment choose the secure
actions (a, a). This tendency is more pronounced in the History Treatment, where secure actions are
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Figure 5. Cumulative distribution of guesses

chosen more frequently than equilibrium actions at P1 and P2.28 This evidence suggests that when
players have uncertainty about their opponents’ reasoning and strategic behavior, some players may
opt for a non-equilibrium strategy to avoid the possibility of experiencing the worst possible payoff.29
A detailed analysis of the behavior of choosing secure actions is provided in Section 6.4.

Figure 5 presents the cumulative distribution of subjects’ guesses across the three guessing games.
We observe significant differences in the distributions between the two treatments, regardless of the
value of p (p = 2/3: KS test p-value = 0.001; p = 1/3: KS test p-value < 0.001; p = 1/2: KS
test p-value = 0.001). Furthermore, in the Robot Treatment, there is a 13 to 16 percentage point
higher proportion of subjectsmaking the equilibrium guess (i.e., choosing 1) across all three guessing
games compared to the History Treatment. This difference leads to first order stochastic dominance
of the cumulative distribution of guesses in the Robot Treatment over that in the History Treatment,
indicating a higher rationality level among subjects in the Robot Treatment for the guessing games.

Furthermore, these distributional differences are driven by variations in equilibrium choices
(i.e., 1). After excluding the equilibrium choice of 1, the cumulative distributions between the two
treatments are not significantly different for any value of p (p = 2/3: KS test p-value = 0.218; p = 1/3:
KS test p-value = 0.704; p = 1/2: KS test p-value = 0.129). This result further confirms that subjects
prompted to perform at their maximum depth of reasoning when facing robots are the primary driv-
ing force behind the deeper reasoning observed in the Robot Treatment. In the next section, we will
describe our approach for classifying individual rationality levels and perform statistical tests to assess
whether subjects demonstrate higher rationality levels when playing against robots.

6.2. Rationality level classification
We adopt the revealed rationality approach to classify subjects into different rationality levels.
Specifically, let si = (s𝛾i ) be the vector which collects player i’s actions in each family of games 𝛾,
where 𝛾 ∈ {Ring, Guessing}. In the ring games, we classify subjects based on the classification rule
shown in Table 1. In both the Robot Treatment and the History Treatment, if a subject’s action profile

28In the Robot Treatment at P2, the secure action profile (b, b) and the equilibrium action profile (c, a) are chosen 35% and
37% of the time, respectively. By contrast, in the History Treatment, the secure action profile and the equilibrium action profile
are chosen 33% and 23% of the time, respectively.

29It is also worth noting that at P1 and P2, compared to the Robot Treatment, action profiles involving secure actions in G1
and equilibrium actions in G2 (i.e., (a, c) at P1 and (b, a) at P2) are more frequently observed in the History Treatment. The
empirical frequency of action profile (a, c) at P1 is 18% in the Robot Treatment but 25% in the History Treatment. Similarly,
the frequency of action profile (b, a) at P2 is 19% in the Robot Treatment and 27% in the History Treatment. One potential
reason is that choosing (a, c) at P1 and (b, a) at P2 are the empirical best response in the History Treatment, and this behavior
could be highly rational under a more general notion of rationalizability (Germano et al., 2020). See Online Appendix B for
the analysis of the empirical best response in the History Treatment.
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matches one of the predicted action profiles of type R0–R4 exactly, then the subject is assigned that
level. Therefore, we can obtain each subject’s rationality level in the Robot Treatment and the History
Treatment, which are denoted as ki(Ring, Robot) and ki(Ring, History), respectively.

Similarly, for the guessing games, we classify subjects based on the rule outlined in Table 2. In both
treatments, each subjectmakes three guesses (at p = 2/3, 1/3, and 1/2). If a subject is categorized into
different levels in different guessing games, we assign the subject the lower level. Thus, we can obtain
the levels in both treatments, denoted as ki(Guessing, Robot) and ki(Guessing, History), respectively.
Following this rationale, we construct the overall distribution of individual rationality levels for each
treatment by assigning each subject the lower level they exhibit across the two classes of games, i.e.,
ki(𝜏i) = min{ki(Ring, 𝜏i), ki(Guessing, 𝜏i)}.30

Figure 6 reports the overall distribution of rationality levels for the Robot andHistory Treatments.
As shown in the top figure, subjects tend to be classified into higher levels whenplaying against robots.
There are more R1 and R2 players but fewer R3 and R4 players in the History Treatment than in the
Robot Treatment. To examine if a subject’s reasoning depth is bounded by their revealed rational-
ity level in the Robot Treatment (Hypothesis 1), at the aggregate level, we conduct the two-sample
Kolmogorov-Smirnov test to compare the distributions of rationality levels in the two treatments. If
Hypothesis 1 holds, we should observe either no difference in the two distributions or the distribu-
tion in the Robot Treatment dominating the distribution in the History Treatment. Our results show
that the underlying distribution of individual rationality levels in the Robot Treatment stochastically
dominates the one in the History Treatment (KS test p-value = 0.015), and thus provide supporting
evidence for Hypothesis 1.

This result is robust across different types of games. As shown in the bottom panels of Figure 6, a
similar pattern of first order stochastic dominance is observed regardless of whether rationality levels
are classified based on behavior in the ring games or the guessing games (Ring game: KS test p-value
= 0.015; Guessing game: KS test p-value = 0.001).

Moreover, our within-subject design gives us paired data of individual rationality levels across
treatments, which gives us another way to test Hypothesis 1. Overall, 85 percent of subjects (249/293)
exhibit (weakly) higher rationality levels in the Robot Treatment than in the History Treatment.
We further conduct the Wilcoxon signed-rank test to examine whether the subjects’ rationality lev-
els in the Robot Treatment are significantly greater than the History Treatment. Consistent with
Hypothesis 1, we observe higher rationality levels in the Robot Treatment (Wilcoxon test p-value
< 0.0001). Therefore, we conclude that the rationality levels in the Robot Treatment can serve as
a proxy of individual strategic reasoning capacity. In Online Appendix B, we separate the data by
different games, finding a robust pattern in both.

It is noteworthy that, contrary to previous findings, we observe very few R0 players in the ring
games in both treatments (Robot: 0.68%; History: 2.04%).31 In our experiment, the subjects do not
interact with each other in both treatments. Thus, our observation suggests that, when human inter-
actions exist, social preferences may play some roles in a ring game and lead to (seemingly) irrational
behavior, though we cannot exclude the possibility that this discrepancy in the prevalence of R0
players is due to different samples.

Yet in the guessing games, our classification results display a typical distribution pattern of esti-
mated levels as documented in Costa-Gomes and Crawford (2006) and GHW. First, the modal type
is R1 (Level 1), with more than 35 % of subjects classified as R1 players in both treatments (Robot:

30An alternative method for estimating overall levels across games is to impose a probabilistic error structure on deviations
from predicted actions (e.g., Stahl & Wilson, 1994; Stahl & Wilson, 1995). However, this is incompatible with the revealed
rationality framework, which does not predict a unique best action for each type. Additionally, assigning subjects to the lower
order provides a reserved estimate, allowing for amore conservative test when comparing types between the Robot andHistory
Treatments, thus increasing confidence if a statistical difference is observed.

31Kneeland (2015) observes 6% of R0 players (with the ER approach) andCerigioni et al. 2019 observemore than 15 percent
of R0 players (with the revealed rationality approach) in their experiments.
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Figure 6. Distributions of rationality levels. The top figure is the overall distribution of rationality levels. The bottom figures
are the distributions of rationality levels in ring games (Left) and guessing games (Right)

38.23%; History: 47.78%; Costa-Gomes and Crawford (2006): 48.86%; GHW: 50.00%). In particu-
lar, the proportion of R1 players reported in the History treatment of our guessing games is very
close to the proportion of level-1 players reported in Costa-Gomes and Crawford (2006) and GHW.
Second, R3 (Level 3) represents the least frequently observed category among the rational types
(i.e., R1–R4), with fewer than 10 percent of subjects classified as R3 players in both treatments, a
proportion that aligns with findings in the literature. (Robot: 6.14%; History: 4.10%; Costa-Gomes
and Crawford (2006): 3.41%; GHW: 10.34%). Third, the percentage of R4 players in our History
Treatment falls within the range of equilibrium-type player proportions reported in Costa-Gomes
and Crawford (2006) and GHW (Robot: 30.03%; History: 16.04%; Costa-Gomes and Crawford
(2006): 15.91%; GHW: 27.59%). Noticeably, in our Robot Treatment, we observe a relatively high
frequency of R4 players compared to previous literature.32 This finding underscores the significant
impact of non-equilibrium belief about opponents on non-equilibrium behavior.

While our subjects’ revealed rationality levels are comparatively higher when playing against
robots, most do not exhibit more than two steps of reasoning. In the Robot Treatment, around 70
percent of subjects still show an overall rationality level below the third order. This result supports
the long-standing idea in the level-k literature: humans have a relatively low cognitive ceiling for
strategic thinking, often below level four.

32For instance, Arad and Rubinstein (2012) also note that, in their 11–20 money request game, the percentage of subjects
employing more than three steps of iterative reasoning does not exceed 20 percent. This aligns with the proportion of R4
players identified in our History Treatment but is lower than that in our Robot Treatment.
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Table 3. Markov transition for rationality levels in the robot treatment

Guessing Games

From ↓ to → R0 R1 R2 R3 R4

Ring Games

R0 50.00% (1) 50.00% (1) 0.00% (0) 0.00% (0) 0.00% (0)

R1 22.69% (27) 45.38% (54) 12.61% (15) 5.88% (7) 13.45% (16)

R2 16.44% (12) 53.42% (39) 6.85% (5) 6.85% (5) 16.44% (12)

R3 8.00% (2) 36.00% (9) 24.00% (6) 0.00% (0) 32.00% (8)

R4 1.35% (1) 12.16% (9) 8.11% (6) 8.11% (6) 70.27% (52)

The number of observations is reported in parentheses.
The most frequently observed transitions are highlighted in bold.

6.3. Consistency of rationality levels across games
In this section, we evaluate whether controlling for beliefs about the opponent’s depth of reason-
ing leads individuals to reveal consistent rationality levels across games. There are different notions
of consistency. As a first exercise, we assess the strictest form of consistency: an individual reveals
constant rationality levels across games (Hypothesis 2).

To examine this hypothesis, we generate a Markov transition matrix of rationality levels between
the ring games and the guessing games in the Robot Treatment. Table 3 reports the frequency with
which an individualmoves from each rationality level in the ring games to each rationality level in the
guessing games in the Robot Treatment. If the observed individual rationality level is the same across
games, then every diagonal entry of each transition matrix in Table 3 will be 100%. Alternatively,
if subjects’ rationality levels in the ring games and guessing games are uncorrelated, every row in a
transition matrix will be the same and equals the overall distribution in the guessing games.

The transition matrix shows that most R1 and R4 players in the ring games remain as the same
level in the guessing games. Most R2 ring game players, however, only exhibit first-order rationality
in the guessing games. We do not observe any subjects consistently classified into R3 for both ring
and guessing games, possibly because we have relatively low numbers of R3 subjects in either games.
Overall, there is a relatively high proportion of subjects (38.23%) that exhibit the same rationality level
across games.33 Also, note that we observe a relatively high proportion (52/293 = 17.74%) of subjects
classified as R4 players in both games,34 suggesting that subjects in our experiment understand the
instruction for robots’ decision rules and try to play the best response to such rules.

Moreover, to formally test whether the rationality levels from the ring games and guessing games
are independent, we conduct aMonteCarlo simulation inOnlineAppendix B, following the approach
ofGHW.Contrary to their findings,we observe that the null hypothesis of independence in rationality
levels across games is rejected in the Robot Treatment but not in theHistory Treatment. Furthermore,
we observe that rationality levels in the Robot Treatment are more stable across games than in the
History Treatment under alternative notions of consistency compared toHypothesis 2.These findings
provide supportive evidence for our belief control approach.

Although the null hypothesis of independence in rationality levels across games is statistically
rejected in the Robot Treatment, the Markov transition matrix reveals that R2 and R3 types appear
to be relatively unstable across games. Both R2 and R3 types identified in the ring games tend to
“cluster” at R1 in the guessing games, a pattern that is also evident in the History Treatment.

33GHW report that only 27.3% of their subjects play at the same level across two families of games.
34In the History Treatment, constant R4 players across games constitute only 6.82% (20/293) of the subjects. See Online

Appendix A for the Markov transition matrix for the History Treatment.
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Table 4. OLS regressions for revealed rationality levels

Robot Treatment History Treatment

Ring Level Guess Level Ring Level Guess Level

CRT Score 0.298*** 0.566*** 0.239** 0.461***
(0.072) (0.103) (0.074) (0.085)

Memory Score 0.026 0.030 0.005 0.012
(0.036) (0.032) (0.028) (0.034)

Farsightedness 0.569** 0.842*** 0.339* 0.631***
(0.167) (0.188) (0.167) (0.165)

Constant 1.058*** 0.092 1.078*** 0.187
(0.303) (0.316) (0.301) (0.276)

N 293 293 293 293

R-squared 0.0966 0.1788 0.0556 0.1563

The standard errors are clustered at the session level.
Significance level: *p < 0.05, **p < 0.01, ***p < 0.001.

There are two possible explanations for this pattern. First, the revealed rationality approach identi-
fies an individual’s level by the maximum order of rationalizability of their strategy without imposing
additional structural assumptions. Since a kth-order rational player’s strategy can also be rational-
ized by lower-order rationality (see Section 2.2 and Footnote 13), this approach could mechanically
“inflate” the identified levels compared to the standard level-k model, which imposes specific struc-
tures on beliefs. More importantly, this inflation may be sensitive to the structure of the games,
suggesting that the inconsistency of R2 and R3 types could result from thismechanical effect. Second,
rather than engaging in higher-order rationality inferences, R2 and R3 types may simply be “avoiding
dominated strategies.” To test these hypotheses, in Section 7.3, we compare the revealed rationality
approach with the standard level-k model and a diagnostic model, Random, Avoiding Dominated,
and Equilibrium (RADE), and report the corresponding results.

6.4. Cognitive tests, secure actions and strategic sophistication
6.4.1. Cognitive tests and strategic sophistication
In addition to analyzing consistency across games, this section investigates whether an individual’s
performance in other cognitive tests can predict their strategic reasoning ability. To explore this, we
regress subjects’ revealed rationality levels on their CRT scores, short-term memory task scores, and
farsightedness task scores.

The definitions of the independent variables are as follows: CRT Score (ranging from 0 to 3) repre-
sents the number of correct answers a subject gets in the three CRT questions.Memory Score (ranging
from 0 to 11) is defined as the number of correct answers a subject provides before making the first
mistake. Farsightedness is an indicator variable that equals one if a subject chooses to go down at the
first move in the farsightedness task (see Section 5.3). Lastly, the dependent variables is the individual
revealed rationality levels (ranging from 0 to 4) within each class of games and treatment.

Table 4 presents the OLS regression results for revealed rationality levels. The analysis shows a
positive correlation between a subject’s CRT performance and their revealed rationality levels across
all game types and treatments. Overall, the CRT score is a stronger predictor of rationality levels in
the guessing games and the Robot Treatment. In the Robot Treatment, each additional correct answer
on the CRT is associated with an average increase of 0.298 (p-value < 0.001) in revealed rationality
levels for the ring games, and 0.566 (p-value < 0.001) for the guessing games. In comparison, in
the History Treatment, each additional correct answer on the CRT corresponds to a smaller average
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increase of 0.239 (p-value = 0.002) for the ring games and 0.461 (p-value < 0.001) for the guessing
games—approximately 80% of the effect size observed in the Robot Treatment.

In contrast to the previous finding, our results show no significant correlation between short-term
memory and strategic sophistication.The coefficient estimates ofMemory Score are all below0.03, and
all the corresponding p-values are above 0.3. Notably, these findings are in line with those of GHW,
who also observe that CRT scores hold some predictive power over subjects’ strategic thinking types,
whereas short-term memory capacity does not.

Lastly, an individual’s performance on the farsightedness task also significantly predicts their
revealed rationality level across all game types and treatments. Similar to the CRT score, we observe
a stronger correlation between farsightedness and individual rationality levels in the guessing games
and in the Robot Treatment. In the Robot Treatment, a farsighted subject’s revealed rationality level is,
on average, 0.569 (p-value = 0.002) and 0.842 (p-value < 0.001) levels higher than that of a myopic
subject when playing ring games and guessing games, respectively. Comparatively, in the History
Treatment, a farsighted subject’s revealed rationality level is, on average, 0.339 (p-value = 0.050) and
0.631 (p-value < 0.001) levels higher than that of a myopic subject when playing ring games and
guessing games, respectively. Both of these coefficients are smaller in size compared to the estimates
reported for the Robot Treatment. These results indicate a strong correlation between an important
strategic thinking skill in a dynamic game—backward induction ability—and the revealed rationality
levels in one-shot interactions.

6.4.2. Secure actions in the ring games35

Another feature of our modified ring games is that, except at P4, the secure actions differ from the
equilibrium actions.This distinction allows us to explore whether players opt for secure actions when
they have reached their rationality capacity.

In this section, we analyze the behavior of choosing secure actions by decomposing the revealed
rationality levels identified from the ring games into secure and non-secure types. Specifically, for any
rationality level k, a player is classified as Rk-Secure (or Rk-S) if they exhibit rationality level k and
choose secure actions in earlier positions.36 Conversely, a player is classified as Rk-Non-Secure (or
Rk-NS) if they exhibit rationality level k but do not choose secure actions in earlier positions. Based
on this classification, players are divided into eight possible types: R0, R1-S, R1-NS, R2-S, R2-NS,
R3-S, R3-NS, and R4. The distributions for the Robot and History Treatments are shown in Figure 7.

From this figure, we can first observe that there are more secure-type players in the Robot
Treatment than in the History Treatment. Among the R1 players, 25.2% are classified as R1-S in the
Robot Treatment, while 19.7% are classified as R1-S in the History Treatment. Furthermore, among
the R2 players, 42.5% are R2-S in the Robot Treatment, compared to 24.4% in the History Treatment.
This result suggests that instead of betting on risky actions, players are more likely to choose a secure
action when facing robot players rather than human players.37

Given this result, we can further explore the behavior of these secure-type players in the guessing
games. This is an interesting exercise because there is no secure action in the guessing games, and
one might reasonably hypothesize that secure-type players will exhibit higher rationality levels, as
their choice of secure actions in the ring games suggests a degree of deliberate, thoughtful decision-
making.However, from theMarkov transitionmatrices inOnlineAppendixA,we find that, in neither
the Robot Treatment nor the History Treatment, for any k ∈ {1, 2, 3}, are the transition probabilities

35We thank an anonymous referee for suggesting the analysis of secure actions.
36A player is classified as R3-S if they are R3 and choose (a, a) at P1. Similarly, a player is classified as R2-S if they are R2

and choose (a, a) at P1 and (b, b) at P2. A player is classified as R1-S if they are R1 and choose (a, a), (b, b), and (a, a) at P1, P2,
and P3, respectively. Note that R1-S corresponds to the type that consistently chooses secure actions.

37Refer to Online Appendix B for the joint distribution of rationality levels with secure actions across the Robot Treatment
and the History Treatment.
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Figure 7. Distribution of rational levels with secure actions in the ring games

between Rk-S and Rk-NS significantly different.38 This suggests that the existence of secure actions
is indeed a unique feature of our modified ring games. Given any rationality level, choosing secure
actions when reaching their rationality capacity does not imply significantly different behavior in the
guessing games, where secure actions are absent.

7. Discussions
7.1. Validity of robot treatment
The validity of the Robot Treatment in eliciting individual strategic thinking capacity relies on our
Hypothesis 1 (i.e., that individual rationality levels are higher in the Robot Treatment). An implicit
assumption behind this hypothesis is that a subject has an incentive to play at the highest level they
can achieve when encountering fully rational opponents playing at their maximum reasoning level.
This statement is trivially true for equilibrium-type subjects, as they know their opponents will play
the equilibrium strategy and are able to best respond to it. However, for a bounded rational player,
this may or may not hold.

If we assume that an iterative reasoning model describes an individual’s actual decision-making
process, two scenarios explain why a player might only perform k steps of iterative reasoning. First,
they may incorrectly believe that other players can exhibit (at most) (k − 1)th-order of rationality
and best respond to that belief. Second, they may correctly perceive that other players can exhibit (at
least) kth-order of rationality but fail to best respond to it. While our statement regarding incentive
compatibility holds in the first case, it becomes unclear how a bounded rational player would respond
when facing opponents with rationality levels above k.

Nevertheless, this scenario does not pose a problem under the identification strategy of the
revealed rationality approach. Notice that a player exhibiting kth-order rationality would also exhibit

38To test whether the transition probabilities between Rk-S and Rk-NS differ, we conduct 𝜒2 tests, with the null hypothesis
that the transition probabilities between Rk-S and Rk-NS are the same. In the Robot Treatment, the p-values for R1-S vs.
R1-NS, R2-S vs. R2-NS, and R3-S vs. R3-NS are 0.240, 0.338, and 0.582, respectively. Similarly, in the History Treatment, the
p-values for R1-S vs. R1-NS, R2-S vs. R2-NS, and R3-S vs. R3-NS are 0.285, 0.211, and 0.476, respectively.
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mth-order rationality for allm ≤ k. Thus, a level-k player i who perceives other players as exhibiting
at least kth-order rationality also perceives them as exhibiting (k − 1)th-order rationality. That is,
the player knows that their robot opponents’ strategies will survive k − 1 rounds of IEDS. Therefore,
a payoff-maximizing player i capable of k steps of iterative reasoning will choose a strategy in Rk

i (⋅),
which contains all undominated strategies after k − 1 rounds of IEDS. Under the revealed rationality
approach, player i will then be classified as a kth-order revealed-rational player.

Indeed, whether subjects follow the hypothesis and exhibit higher rationality levels when facing
fully rational robots is an empirical question. In our setting, we have provided supportive evidence for
Hypothesis 1 in Section 6.2. However, it remains an open question whether this increased rationality
consistently emerges when individuals encounter robot players in other strategic environments. For
instance, in complex games (e.g., Go), individualsmight lower their effort and opt for random actions
if they perceive highly intelligent robot opponents as unbeatable. Accordingly, exploring how infor-
mation about robot opponents may influence people’s strategic responses in various settings could
deepen our understanding of human-robot interactions, especially as AI increasingly shapes human
decision-making processes.

7.2. Choice of robot strategy instruction
To elicit individual strategic thinking capacity, our Robot Treatment instructions inform subjects that
the computer player is third-order rational (i.e., the computer is rational, knows its opponent is ratio-
nal, and knows its opponent knows it is rational) to control for their beliefs about the sophisticated
robot. Previous experimental studies have used different approaches to inform subjects about the
strategy of a fully rational, equilibrium robot player, such as explaining the concept of equilibrium
(e.g., Costa-Gomes & Crawford, 2006) or fully disclosing the computer player’s exact strategy (e.g.,
Meijering et al., 2012; Hanaki et al., 2016). However, both approaches may introduce a coaching
effect: providing background knowledge about the robot’s exact strategy or the concept of equilib-
rium could directly teach subjects how to play and succeed in the specific game, potentially inflating
our estimate of their true strategic thinking capacity. On the contrary, we describe the robot players’
rationality in a multi-layered, recursive manner without providing specific details about their actions
(Johnson et al., 2002), aiming to reduce the risk of over-coaching while still conveying the robot’s
strategic sophistication.

Despite our efforts, we acknowledge that our instruction strategy might not fully eliminate the
possibility of instruction effects, and some subjects might still be influenced by the way the robot
players’ rationality is described. For instance, some subjects might pick up hints on how to apply the
logic of IEDS in our dominance-solvable games, thereby enhancing their depth of strategic thinking.
Conversely, others may find the verbal representation of iterative, self-referential logic confusing,
which could hinder deeper reasoning. In future experiments, one could evaluate these effects by run-
ning a treatment where subjects read the robot instructions but still play against human opponents,
then compare their estimated rationality levels to those in a treatment against humans without robot
instructions.

Notably, the goal of our design is to capture individual strategic thinking capacity with respect to
iterative reasoning by aligning subjects’ beliefs about the robot’s higher-order rationality. As a result,
a limitation of our design is that we do not aim to measure how well subjects form beliefs about the
overall distribution of the population’s strategic reasoning depth and best respond accordingly, which
is a key aspect of strategic sophistication in the sense of Stahl and Wilson (1995)’s “worldly type.” An
interesting future direction could be to introduce such a “worldly” robot player and examine whether
subjects could outsmart this strategically sophisticated type when playing against the robot.39

39We thank an anonymous referee for encouraging further discussion on our robot strategy instruction.
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7.3. Diagnosis of the inconsistency of R2 and R3 with alternative models40

Following up on the discussion at the end of Section 6.3, we diagnose the inconsistency of R2 and
R3 types by comparing the revealed rationality approach with two alternative models: the standard
level-k model and a diagnostic model: Random, Avoiding Dominated, and Equilibrium (RADE).
The comparison between the revealed rationality approach and the level-k model aims to deter-
mine whether the inconsistency arises from a mechanical effect inherent in the revealed rationality
approach. Furthermore, the differences between RADE and the revealed rationality approach help
clarify whether R2 and R3 types are simply “avoiding dominated strategies” rather than engaging in
higher-order rationality inferences.

In our diagnostic analysis, we consider the standard level-k model where level-0 players are
assumed to uniformly randomize across all strategies and level-k players best respond to level k − 1
players. The revealed rationality approach, in contrast, does not impose structural assumptions on
how irrational players behave or how higher-order rational players respond to lower types. Instead,
it classifies individuals based on the highest rationalizable order of their strategy, identifying irra-
tional (R0) players as those who choose strictly dominated strategies. In our ring games, the standard
level-k model predicts that a level-1 player best responds to uniformly random opponents by con-
sistently choosing secure actions at all player positions, aligning with the R1-S type (see Footnote
36). Moreover, Player 1’s and Player 2’s secure actions are also best responses to those of Player 2 and
Player 3, respectively (see Figure 1). Consequently, level-2 and level-3 players correspond to R2-S
and R3-S, respectively, while level 4 (and above) players are classified as R4.41 In the guessing games,
level-k players choose 50pk for k ≥ 1. To ensure a fair comparison between the revealed rationality
approach and the level-k model, we consider five level types: L0, L1, L2, L3, and L4+.

On the other hand, the RADE model can be viewed as a simplified version of Stahl and Wilson
(1995), featuring three behavioral types: Random (R), Avoiding Dominated (AD), and Equilibrium
(E). Players of the equilibrium type consistently select equilibrium strategies. Consequently, they
choose equilibrium actions at all positions in the ring games and select 1 in all three guessing
games. Players of the avoiding dominated type never choose a dominated strategy, even though
they do not always select equilibrium strategies. Thus, they behave as R1, R2, or R3 in the ring
games and avoid strictly dominated numbers in the guessing games. Lastly, random players are
assumed to make choices randomly and are the only type that would ever select a strictly dominated
strategy.

To evaluate whether the level-k model and the RADE classification offer greater consistency in
type classification than the revealed rationality approach, we first classify subjects into revealed ratio-
nality types, level-k types and RADE categories based on their behavior in the ring games. These
classifications are then used to predict their behavior in the guessing games. Since both the revealed
rationality approach and the RADE model generally lack precise predictions for choices in the guess-
ing games, we make quantitative comparisons by assuming that each type of player selects any
number consistent with their behavioral type with equal probability.42 Under this assumption, we
evaluate the consistency of the three models by comparing their mean squared deviation (MSD)
scores.

40We sincerely thank the guest editor, Ido Erev, for suggesting this diagnostic analysis.
41The following results remain robust under a more relaxed classification, where a player is classified as level-k ≥ 1 if their

strategy profile deviates from the level-k strategy profile in only one of the eight actions, following the approach of Kneeland
(2015) and Jin (2022).

42Take the guessing game with p = 1/2 as an example. Under the assumption of uniform randomization, R0 players are
assumed to randomize between 51 and 100. R1 players will uniformly randomize between 26 and 50, and so on. In contrast,
the RADE model predicts that Random types will uniformly randomize across all numbers, AD types will uniformly ran-
domize between 1 and 50, and E types will choose 1. To ensure a fair comparison of the level-k model’s performance without
introducing any parametric noise structure, we assume that a level-k player uniformly randomizes within an interval defined
by the midpoints of adjacent levels in the same spirit of Nagel (1995).

https://doi.org/10.1017/eec.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/eec.2025.5


24 Fong et al.

Table 5. MSD of revealed rationality, level-k and RADE

Mean Squared Deviation

p = 2/3 p = 1/3 p = 1/2 Mean

Robot Treatment

Revealed Rationality 1101 224 1363 896

Level-k 1060 199 1244 834

RADE 233 170 585 330

History Treatment

Revealed Rationality 494 212 968 558

Level-k 441 240 931 538

RADE 245 204 706 385

Note: Under the assumption of uniform randomization, all three models provide precise predictions about the percentage of each number
chosen. The MSD is computed by summing the squared deviations of these percentages, and the mean is determined by averaging across
games.

Table 5 presents the mean squared deviations (MSDs) for the revealed rationality approach, the
level-k model and the RADE model. When comparing the revealed rationality approach with the
level-k model, we observe that the MSDs of the level-k model are slightly lower than those of the
revealed rationality approach.This suggests that the way reasoning levels are classified in the revealed
rationality approach only marginally contributes to the inconsistency of the R2 and R3 types.

Furthermore, as shown in the table, the RADE model yields 30%–60% lower MSDs than the other
two approaches across all three guessing games in both the Robot andHistory Treatments.This result
suggests that the RADE model achieves greater consistency across games compared to the revealed
rationality approach. It also implies that the R2 and R3 types may simply be avoiding dominated
strategies rather than engaging in higher-order rationality inferences.43

Notably, the MSDs under RADE in the Robot Treatment are smaller than those in the History
Treatment, highlighting the effectiveness of our belief control approach. This finding aligns with
another notable contrast between the two treatments: the stability of the E types.44 In the Robot
Treatment, 66% of the 74 subjects classified as E types in the ring games remain classified as such
in the guessing games. In contrast, in the History Treatment, only 38% of the E types in the ring
games retain their classification in the guessing games. Additionally, 58% of the E types in the ring
games switch to AD types in the guessing games, suggesting that the inconsistency of intermediate
rationality levels may stem from the heuristic of avoiding dominated strategies when faced with a
novel game and uncertainty about opponents’ strategies.

In summary, the revealed rationality approach is a classification method that does not rely on any
ad hoc assumptions about beliefs and can be universally applied to any dominant-solvable game in
the same way. However, these appealing properties come at a cost. As demonstrated in this diagnostic
analysis, the consistency of the revealed rationality classification is sensitive to the structure of iter-
ative rationalizable reasoning. Moreover, this consistency can be potentially distorted if players are
simply avoiding dominated strategies.

Finally, to further investigate the correlation between the behavior of avoiding dominated strate-
gies and other cognitive abilities, we regress subjects’ RADE types on their performance in three

43For other empirical studies challenging the hierarchical reasoning model’s predictive power, refer, for example, to Erev
et al. (2015) and Cooper et al. (2024).

44Similar to the identification in the ring games, a player is classified as an E type in the guessing games if they always choose
1. A player is identified as an AD type if they are not an E type and never choose a strictly dominated strategy. Lastly, a player is
classified as an R type if they have ever chosen a strictly dominated strategy. See Online Appendix A for the joint distributions
in both treatments.
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Table 6. Multinomial logistic regressions for RADE types

Robot Treatment History Treatment

Ring R Ring E Guess R Guess E Ring R Ring E Guess R Guess E

(vs. Ring AD) (vs. Guess AD) (vs. Ring AD) (vs. Guess AD)

CRT Score −0.279 0.625* −0.924*** 0.900* 0.459 0.894* −0.734*** 1.319
(0.323) (0.263) (0.221) (0.411) (0.392) (0.443) (0.205) (0.764)

Memory Score 0.237* 0.096 0.112 0.138* −0.075 −0.028 −0.082 0.019
(0.111) (0.089) (0.100) (0.065) (0.143) (0.087) (0.086) (0.096)

Farsightedness 1.479 0.935** −0.315 1.295*** −0.473 0.781* −0.940 0.660
(1.265) (0.312) (0.590) (0.277) (1.121) (0.329) (0.624) (0.394)

Constant −6.509*** −3.809*** −0.146 −4.788*** −4.197* −4.170** 0.793 −5.674**
(0.929) (0.966) (0.869) (1.102) (2.097) (1.472) (0.815) (1.939)

N 293 293 293 293

Pseudo R2 0.0741 0.1360 0.0546 0.0940

The standard errors are clustered at the session level.
Significance level: *p < 0.05, **p < 0.01, ***p < 0.001.

cognitive tasks. Since RADE type is a categorical dependent variable, we use multinomial logis-
tic regression with the avoid dominated (AD) type as the reference category.45 Table 6 shows that,
whether in the Robot Treatment or the History Treatment, E types identified from the ring games
exhibit significantly higher CRT scores and better performance in the farsightedness task than AD
types. Additionally, AD types do not show significantly different performance on these cognitive
tests compared to R types. In contrast, AD types identified in the guessing games have signifi-
cantly higher CRT scores than R types. Furthermore, in the Robot Treatment, E types demonstrate
significantly better performance across all three cognitive tasks compared to AD types. Yet in the
History Treatment, no significant differences in performance are observed between E and AD types.
These results complement our main findings in Section 6.4.1 and contrast the two treatments from a
different perspective.

8. Concluding remarks
This study delves into the cognitive capacity of individuals in strategic interactions. To examine their
ability to engage in multi-step reasoning, we conduct an experiment designed to elicit and iden-
tify each subject’s “rationality bound,” while controlling for a subject’s belief about their opponent’s
depth of reasoning. Following the revealed rationality approach, we use two classes of dominance
solvable games, ring games and guessing games, as the base games in our experiment. More impor-
tantly, to disentangle the confounding impact of beliefs, we introduce equilibrium-type computer
players that are programmed to exhibit infinite order of rationality into the experiment. This design
allows us to test (1) whether a subject’s rationality level is (weakly) higher in the Robot Treatment and
(2) whether the observed rationality level in the Robot Treatment exhibits any stable pattern across
games.

Overall, our results offer compelling evidence that matching subjects with robot players to elicit
and identify individual strategic reasoning ability is an effective approach. First, subjects exhibit
a higher rationality level in the Robot Treatment compared to the History Treatment, supporting
the hypothesis that a subject plays at their highest achievable rationality level (i.e., their capacity

45See Online Appendix A for multinomial logistic regression with the random (R) type as the reference category.
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bound) in the Robot Treatment. Second, the observed absolute (and relative) order of rational-
ity in the Robot Treatment appears more stable across different families of games compared to
the History Treatment. Adopting the heuristic of avoiding dominated strategies for individual type
classification can enhance cross-game stability, yet classification remains more stable in the Robot
Treatment than in the History Treatment. Additionally, we find a positive association between a
subject’s rationality level and their CRT score and backward induction ability, while no significant
correlation is observed with short-term memory. These findings indicate that strategic reasoning
ability may represent an inherent personal characteristic that is distinct from other cognitive abil-
ities and can be reliably inferred from choice data when subjects’ beliefs about others are properly
controlled.

Considering that the revealed rationality bound identified in the Robot Treatment can serve as
a proxy for an individual’s strategic thinking ability, we can independently implement dominance-
solvable games, such as ring games and guessing games, with human subjects playing against fully
rational computer opponents to effectively elicit and identify human players’ strategic capacity, either
before or after any lab experiment. By matching human players with computer players, their revealed
strategic sophistication is not confounded by their endogenous beliefs about each other’s level of
sophistication. Furthermore, the robot approach eliminates the need for multiple players to identify
a single player’s kth-order rationality in a game, allowing for an individual task that efficiently elic-
its and identifies a subject’s higher-order rationality. Additionally, as the interactions with computer
players are independent of the interactions with human players, the two experiences are expected to
have minimal influence on each other. Consequently, the measurement of strategic reasoning ability
could remain distinct from the behavioral patterns observed in the main experiment session, thereby
avoiding any potential contamination between the two.

Ultimately, we believe that such experiment protocol, particularly the robot approach, has the
potential to become a standard tool formeasuring a player’s actual strategic sophistication, analogous
to the usage of the establishedmethod (for eliciting risk attitude) inHolt and Laury (2002) but applied
to the domain of strategic reasoning. By utilizing this tool, we can gain a better understanding of
whether non-equilibrium behavior observed in the main experiment can be attributed to bounded
strategic thinking capability or other factors, such as non-equilibrium beliefs and social preferences.

As a final remark, note that our robot strategy instruction is designed by progressively revealing
layers of the robot’s reasoning. By adding or removing these layers, we can introduce a computer
player with a higher or lower order of rationality compared to the robot in our experiment, thereby
manipulating subjects’ beliefs about their opponents’ rationality levels. This flexible, layered struc-
ture allows the experimental protocol to be more versatile and applicable to a broader range of
contexts, rather than being limited to unifying subjects’ beliefs. Using this instruction strategy, one
could experimentally study, for instance, a player’s strategic response and its evolution under different
distributions of opponents’ rationality levels (Stahl, 1993; Stahl & Wilson, 1995).

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/eec.2025.5.
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