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Abstract

Examples of hyperbolic knots in S* are given such that their complements contain quasi-Fuchsian
non-Fuchsian surfaces. In particular, this proves that there are hyperbolic knots that are not
toroidally alternating.

1991 Mathematics subject classification (Amer. Math. Soc.): 57 N 10, 57 M 50.

1. Introduction

In the following, an essential surface in a compact orientable 3-manifold M shall
mean a properly embedded incompressible, boundary incompressible, compact
orientable surface in M that is not boundary parallel.

Given a compact orientable 3-manifold M with non-empty boundary and
with hyperbolic interior, and a closed essential surface embedded within it, it is
of interest to determine the geometry inherited by the surface. Such surfaces
are either quasi-Fuchsian, meaning that, the limit set for the representation of
the surface group into PSL(2, C) induced by the hyperbolic structure on M is a
topological circle, or they contain an accidental parabolic element, meaning that,
there is a loop on the surface that lifts to a parabolic isometry of H> under the
induced representation of the surface group. We remark that it follows from the
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classical theory of Kleinian groups that the existence of an accidental parabolic
element in a surface group implies a simple accidental parabolic loop. Indeed,
the only possibilities other than simple loops are powers of the appropriate
primitive element in the fundamental group of the surface, cf. [10, Chapter 9D].

A particularly simple class of hyperbolic structure within the class of quasi-
Fuchsian structures is that of a totally geodesic surface. In this case the surface
group is a Fuchsian group and hence stabilizes a geometric circle.

This paper is concerned with the case of a closed essential surface in a
hyperbolic knot exterior in $*. Large classes of hyperbolic knots and links in
$* are known to contain closed essential surfaces in their complements. See
for example [8, 9, 15]. However, all of these constructions yield surfaces that
contain accidental parabolic elements. In [11], it was shown that every closed
incompressible surface in the complement of an alternating hyperbolic link
complement in the 3-sphere contains an accidental parabolic curve. This was
extended to hyperbolic almost alternating knots in [2] and hyperbolic toroidally
alternating knots in [1]. These examples include all but at most three of the
hyperbolic knots of eleven or fewer crossings appearing in [4].

It was conjectured in [11] that a hyperbolic knot in $* cannot contain a
closed embedded totally geodesic surface in its complement. In fact, up to this
point, an explicit example of even a quasi-Fuchsian surface in a hyperbolic knot
complement has not been given. One of the aims of this paper is to give a fairly
general construction for such examples. We will then prove that for most of the
examples given, the surfaces generated are quasi-Fuchsian surfaces that are not
Fuchsian, and hence do not contradict the conjecture of [11].

We remark that examples of link complements in S* that contain a closed
essential totally geodesic surface are known, cf. [12], and there are examples of
hyperbolic knot exteriors in closed 3-manifolds other than S that do contain a
closed essential totally geodesic surface, cf. [13].

These examples of knot complements containing quasi-Fuchsian surfaces
also provide the first examples of hyperbolic knots in S* that are known to fall
outside the category of toroidally alternating knots. A toroidally alternating knot
is defined to be a knot that can be projected onto a standardly embedded torus
in $* such that the projection is alternating when viewed from one side of the
torus and such that every non-trivial curve on the torus intersects the projection.
In [1], it was proved that a toroidally alternating knot in §* contains no incom-
pressible meridianally incompressible surfaces in its complement. However, an
incompressible surface with no accidental parabolic elements must be meridi-
anally incompressible. Hence a knot that contains an incompressible surface
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with no accidental parabolic elements in its complement cannot be toroidally
alternating.

Extensive use has been made of SNAPPEA, the computer program developed
by Jeff Weeks that computes hyperbolic structures on 3-manifolds. See [18] for
more information on this remarkable program. Thanks to Allen Hatcher and
Jeff Weeks for helpful conversations.

2. Knots in handlebodies

The basic fact that underlies our construction is the following.

OBSERVATION 2.1. Let K be a knot in a genus g handlebody H, where g > 2.
Let W be the complement of the interior of a genus g handlebody in S*. If K has
been chosen so that H — K is hyperbolic and H — N (K) contains no essential
annuli running from the surface to the knot, and if W has been chosen to be
hyperbolic and contain no essential annuli, then we can choose a way to glue
dH to dW in order to obtain a knot complement in S* that is hyperbolic and
that contains a genus g closed essential quasi-Fuchsian surface.

PROOF. This is almost a tautology following from classical theory. An essen-
tial annulus running from the knot to the surface corresponds to an accidental
parabolic loop. As noted above, the existence of an accidental parabolic loop
implies the existence of a simple accidental parabolic loop and therefore, by the
annulus theorem, there can be no immersed annulus running from the knot to
the surface. Hence the surface is quasi-Fuchsian in H — N(K).

The assumption on W implies there is no annulus running from the surface
back to itself. Therefore the surface is acylindrical in W. On gluing H — N(K)
to W as prescribed, we get a hyperbolic knot complement with a closed essential
quasi-Fuchsian surface.

If we further insist that in H — N (K) the surface is also acylindrical, that is,
there is no annulus running from the surface back to itself, then the resultant
closed surface will be acylindrical.

We now proceed to construct explicit examples, with a view to making them
as simple as possible. In this regard, it would be interesting to compute the
smallest volume of a hyperbolic knot complement containing a closed essential
quasi-Fuchsian surface.
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(a) (b}

FIGURE 1

We begin with the knot K in the genus two handlebody H that appears in
Figure 1. This example was suggested by Allen Hatcher.

LEMMA 2.2. Int(H — N(K))) is hyperbolic and 3(H — N(K\)) contains no
accidental parabolic elements. However, H — N (K ) does contain an essential
annulus with both boundary components in 0H.

PROOF. In order to show that H — K is hyperbolic, the work of Thurston
(cf. [16]) implies that it is enough to show that H — N(K) is irreducible, has
incompressible boundary, and contains no essential torus. In order to prove 9 H
contains no accidental parabolic elements, it is enough to show that there is no
essential annulus with at least one boundary component in N (K,).

That H — N(K)) is irreducible is immediate, as the knot represents a non-
trivial element in 7, (H) and hence could not be contained in a 3-ball.

Let D be the twice-punctured disk depicted in Figure 1a. For convenience,
we will also denote by D the disk with two holes obtained from this disk when
the interior of a neighborhood of K, is removed. Let H’ be the solid torus
that results when we cut H open along D. Let D, and D, be the two copies
of D on the boundary of H’. We will use F to denote the surface in either
H or H'. Let sy, 5, a; and a, be the four arcs depicted in Figure 1b, and let
q1 = sy Uay, q¢2 = s, Ua,. Then g, and g, are non-trivially linked and ¢,
wraps twice longitudinally around H’. Notice that H — N(K,) contains no
essential torus that does not intersect D, for such a torus would be essential in
H' — N(s; U s,), which is impossible.

Let F be a properly embedded disk, annulus or torus in H — N(K) that is
essential. Since H' — N (K) is a handlebody, and since F N H' is incompressible
in H' — N(K), it follows that F N H’ must be a set of disks and annuli.
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Let (d, ¢) measure the complexity of the intersection of F and D, where d is
the number of intersections of 3 F with 3D (when we remove int(N (X)) from
D) and e is the number of simple closed curves and arcs in F N D. Isotope F
to minimize (d, e) lexicographically.

Suppose first that there is a disk component D’ in F N H’ with boundary a
simple closed curve in int(F). Then its boundary is contained in D. Hence it
must cut a 3-ball from H’. If the 3-ball contains s, or s,, it will contain ¢, or g,
respectively. As ¢, and g, are linked, it must contain both or neither of them.
It cannot contain both, as the boundary of D’ is contained in either D; or D,.
Hence, D’ can be isotoped through D, contradicting our assumption that (d, ¢)
is minimal.

Suppose now that D’ is a disk component of F' N H' such that one connected
arc of its boundary lies in D and the remaining arc of its boundary lies in 3H.
Since H' is a solid torus, D’ is either a meridianal disk in H’ or it cuts a 3-ball
from H’. In the first case, the algebraic intersection number of ¢, with D' must
be two. Since s, cannot intersect D', a, must intersect d D’ twice algebraically.
However, the boundary of D’ only intersects D in a single connected arc, making
this impossible.

If, on the other hand, D’ cuts a 3-ball B from H', the boundary of D' is a trivial
curve on 3 H’' bounding a disk D”. The desk D” cannot contain just one of the
two endpoints of either of the strings s; and s,. The arc of 3D’ — (int(D, U D;))
either cuts a disk from 9 H' — (int(D; U D,)) or it does not. In the first case, we
can isotope D’ to lower the number d, a contradiction. In the second case, D"
contains all of one of the two disks D, or D,. Hence the 3-ball B must contain
all of either g, or ¢,. Since these two knots in H’ are linked, B must contain
both of them. However, ¢, wraps twice longitudinally around H’ and therefore
cannot be contained in a 3-ball within H’,

Suppose now that D’ is a disk component of F N H' such that one connected
arc of its boundary lies in D and the remaining arc of its boundary lies in
dN(K,). The arc that lies in 3N (K,) must be parallel through N(K) to either
51 O s5,, as otherwise we could lower d. However, D’ then provides us with
either an isotopy of string s, to an arc in D, or an isotopy of string s, to an arc in
D,. As the only arc from one endpoint of s; to the other in D; is a;, up to isotopy,
the existence of D’ implies that g; is trivial in H' — g; for j # i. However, ¢,
links g5, a contradiction.

In the case that F is a disk, the only possibility remaining is that F does not
intersect D. Since F will not intersect the knot g, that wraps twice longitudinally
around H’, it must be that the boundary of F is trivial on d H'. The only way that

https://doi.org/10.1017/51446788700031967 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700031967

[6] Hyperbolic knot complements 121

F could be a compressing disk for 3 H is if 3 F cuts a disk off 3 H’ that contains
one or both of D, and D,. In this case, F cuts a 3-ball off H’ that contains one
or both of D, and D,. In this case, F cuts a 3-ball off H’ that contains at least
one of g or ¢q,. As they are linked, it must contain both, but as we have already
mentioned, a 3-ball in H’ cannot contain ¢,. This concludes the proof that 9 H
is incompressible in H — N(K)).

We next deal with annuli in F N H’. Suppose first that there is an annulus
component A of F N H’ with a boundary component that is meridianal on
dN(K,). If A has two meridianal boundary components on 3N (K,), then
A can be extended to a twice-punctured sphere in H' — (s, U s;). As each
string is unknotted, A is then parallel to an annulus in dN(K,). If only one
boundary component of A is a meridian on d N (K), then A can be extended to
a once-punctured disk E properly embedded in H' — (s U s5,). By the previous
elimination of possibilities for disks in F N H’, the boundary of E either lies
entirely in D, or D, oritliesin 8 H' — (D, U D,). Then E cannot be a meridianal
disk in H’ as it intersects g, at most once. Hence, E cuts a 3-ball from H'. In
order that the number of strings entering the 3-ball is even, it must be that the
boundary of E bounds a disk G in 8 H' containing an odd number of endpoints
of strings. Hence, 3 E must be contained entirely within one of the disks D, and
the other disk G must contain exactly one endpoint of s; U s,. However, E UG
then forms a sphere containing an unknotted strand of an s;. Hence, A can be
isotoped to lower d.

Suppose now that a component A of F N H' is an annulus that does not have
a boundary component that is meridianal on d N (K ). By the cases that we have
already eliminated, it must be that each boundary component of the annulus
either lies entirely in D, or D, or it lies entirely in d H' — (D; U D). Suppose
first that both boundary components of A are trivial on d H' and the two disks
that these trivial boundary components bound on 0 H' are disjoint. Then by
irreducibility of H’, A cuts a 3-ball from H’. For each i, it must either contain
both endpoints of s; in its boundary or neither endpoint. Suppose that it contains
both endpoints of s; in its boundary such that they both lie in the disk bounded
by one boundary component of A. Then g; is contained in the 3-ball. Since ¢;
is either completely contained in the 3-ball or does not intersect the 3-ball, and
since ¢; and g; are linked, g; is also contained in the 3-ball. But g, cannot be in
any such 3-ball, a contradiction.

Hence, if either endpoint of s; is contained in the boundary of the 3-ball, the
two endpoints must be contained in disks bounded by the two distinct boundary
components of A. However, this implies that both boundary components of A
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are contained in a particular D;. Hence s; is not contained in B, for j # i.
However, we then have the unknotted arc s; contained in the 3-ball B, so it
must be that the annulus A is parallel to the string s;. Such annuli can only glue
together to form a boundary-parallel torus, and as we will eliminate all other
possibilities for F N H’, an essential surface is not generated.

Suppose now that the boundary components of A are still trivial in 3 H' but
the disks that they bound on 8 H' are concentric, one containing the other. The
irreducibility of H' implies A either cuts a non-trivial knot exterior from H’ or
A cuts H' into two solid tori V| and V,. In the first case, the incompressibility
of A would imply that the boundary of the knot exterior was incompressible
in H' — N(K,). However, the fundamental group of H' — N(K)) is free and
therefore cannot contain a subgroup isomorphic to the fundamental group of a
non-trivial knot exterior.

In the second case, let V, be the solid torus such that its boundary contains the
disk bounded by the innermost boundary component of A. The incompressibility
of A implies that at least one endpoint of an s; lies within this inner disk. If the
other endpoint does not lie within the inner disk, it must lie outside the larger
disk. However, then both boundary components of A lie within D; and A can
be isotoped through D; to lower e.

Therefore there must be an s; such that both of its endpoints are contained in
the inner disk. The endpoints of s; for j # i must both either lie in the inner disk,
outside the outer disk or in the outer disk but not in the inner disk. In the first two
cases, we can either isotope F to lower (d, e), or F is boundary-compressible in
dH. In the last case, each of V; and V; contain one of ¢, or ¢,. Since ¢, wraps
twice longitudinally around H’, and since V) is contained in a 3-ball in H’, it
must be that ¢, is contained in V, and ¢, is contained in V;. However, we could
then isotope A through H' — ¢, to 3 H' by pushing it through V), isotoping ¢, to
d H’ in the process. This contradicts the fact g, and g, are linked once while ¢,
wraps twice longitudinally around H'.

Suppose now that one boundary component of A is trivial on d H’ and the
other is not. Then the non-trivial boundary component must be meridianal on
dH', as it is isotopic to a trivial component. Let D” be the disk on 3 H’ bounded
by the trivial boundary component of A. Then AU D" is a meridianal disk of H'.
Hence g, must intersect it twice algebraically. However, ¢, will not intersect A
and if it intersects D”, it can be pushed off slightly to intersect it at most once,
a contradiction.

The last possibility for A is that both boundary components are non-trivial on
dH’. Then the boundary components must be contained in dH' — (D, U D,),
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FIGURE 2

implying that F is the annulus A, with both boundary components in d H. This
case does occur, and provides an essential annulus in H — N(K,;) when both
boundary components are (1,2)-curves on d H’. We draw such an annulus in
Figure 2.

The only remaining possibility for the essential surface F is if it is an annulus
such that it intersects H’ in disks, each disk of which has four arcs on its
boundary, two of which are in D, U D,.

It cannot be the case that there exists an essential annulus with both boundary
components in N (K), as the existence of such an annulus would imply the
existence of an essential torus, a case we have already eliminated.

Suppose that F is an essential annulus with one boundary component in d H
and the otherin d N (K,). Each disk in F N H' has two connected arcs in D; U D,
onearcin dN(K,)andonearcind H'— (D,UD,). Thearcin N (K,) is parallel
through N (K) to either s, or s,. There is at least one such disk for each of s; and
5;. Let D’ be such a disk for s,. Then, D’ provides an isotopy of s, to an arc a;
in dH'. Since s, is already isotopic in a,, we have that a, is homotopic to g}, so
a,Uay is homotopically trivial in H' — g,. Since a; Uaj crosses 3 D, at only two
points, it cannot be a homotopically meridianal curve on d H'. Since g, wraps
twice longitudinally around H’, a; — D, must cut a disk from d H' — (D, U D5).
However, we can then isotope F to lower d, a contradiction.
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FIGURE 3

Note that the above proof could be extended to apply to any knot of the form
in Figure 3, where T is a tangle such that the bottom two strands in the tangle
are connected to one another in the tangle, and similarly for the top two strands,
and T makes the two knots ¢, and ¢, (as in Figure 1b) into a non-splittable link.

Our next example of a knot complement in a handlebody does not contain
any essential annulus,

D
(a}

FIGURE 4

LEMMA 2.3. If K, is the knot appearing in the handlebody H in Figure 4,
then H — N (K,) has hyperbolic interior and contains no essential annulus.

PROOF. Let F be an essential disk, annulus or torus in H — N(K3). Utilizing
the disk D in Figure 4, together with the knots ¢,, ¢, and ¢;, we can mimic
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the arguments in the proof of Lemma 2.1 to prove hyperbolicity. We can also
eliminate all of the annular components of F N H’ with the possible exception
of an annulus such that both its boundary components are non-trivial curves on
dH'. These non-trivial curves must lic in d H' — (D, U D,).

Suppose first that the two boundary components of A are meridianal on
dH’. They cut the boundary of H’' into two annuli. If either annulus does not
contain one of D or D,, then either A is boundary-parallel into the boundary
of H' — (D, U D) or we can construct an incompressible torus in H — N (K3),
contradicting our elimination of these tori. Hence, A must separate g, from g,.
However, as both ¢, and g, are individually longitudinal in H’, no annulus with
meridianal boundary components can separate them.

Suppose now that the two boundary components of A are not meridianal on
9H’. An annulus of this type cuts a solid torus from H’ that must contain one of
q: Or g, so that it is not boundary compressible. However, if it does not contain
both of ¢, and ¢,, we could use it to homotope one to the boundary of H' in the
complement of the other, a contradiction. Hence, it must contain both ¢, and
¢»- Since we can then use it to homotope both of them into a (p, ¢)-annulus
on the boundary of H’, it must be that ¢ = £1. However, the annulus is then
boundary-compressible to the side that does not contain ¢; and g,.

As we did in the proof of Lemma 2.2, we can also eliminate all disk compon-
ents D’ of F N H' except for disks such that their boundaries contain two arcs
in D and either one arc in d N (K,) and the other arc in dH' — (D, U D,) or two
arcs in dH' — (D, U D,). In both these cases, F is an essential annulus.

In the first case, as we saw in the proof of Lemma 2.2, F is an annulus and
there is at least one such disk for each of s; and s,, yielding an isotopy of s;
to d H' in the complement of g;, j # i. However, g; links s;, and so such an
isotopy is not possible.

In the second case, d D’ cannot be meridianal on H’ as if it were, since D’
must avoid s; and s, the boundary of D’ would be forced to intersect D; and
D, more than once each. Otherwise, D’ must cut a 3-ball off H’. Each arc of
dD’ 0 (D; U D,) must be an essential arc in D, U D, so that the annulus F is
not boundary compressible. However, since d D’ cannot separate the endpoints
of an s;, both arcs must lie in the same D;. Since D’ does not intersect g;, and
since g; is longitudinal, ¢; must lie to the side of D’ that is not a 3-ball. If's; lies
to that side also, then we could lower (d, €) by isotoping D’ through D. Thus,
s; must be an unknotted arc in the 3-ball. However, we could then isotope s; to
0 H; through the 3-ball, contradicting the fact that g; links s;.
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3. Knotted handlebodies

Now, we would like to embed either of our two possibilities for (H, K) in
the 3-sphere, so that the complement of int(H) is itself a hyperbolic 3-manifold
with no essential annuli. There are several candidates for S> — H. In particular,
the two handlebody complements obtained by removing the interiors of regular
neighborhoods of the two graphs in S* that appear in Figure 5 will work.

W ¢

FIGURE 5

FIGURE 6

Denote these two handlebody complements by W, and W, respectively. The
first of these is stated to have the requisite properties in [6, p.194], and proved
to have them in [12]. Although the second graph appearing in [6, p.194] sup-
posedly has the appropriate properties, it actually does not. The corresponding
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handlebody complement does contain an essential annulus as in Figure 6, which
we discovered with some help from Jeff Week’s program SNAPPEA.

The manifold W, is the so-called tripos manifold, described in Chapter 3 of
[17]. It can be obtained by gluing together two truncated tetrahedra, each with
dihedral angles 7r/6, along pairs of faces. This is one of eight manifolds that
Kojima and Miyamoto prove to be the smallest closed hyperbolic manifolds
with totally geodesic boundary (cf. [7]).

Two particular choices of how to embed (H, K;) in S* so that the closure of
the complement of H is each one of W, and W, yield the two knots in Figure 7.

FIGURE 7. (a) Vol = 22.42567 (b) Vol = 18.02997

The computer program SNAPPEA was utilized to attempt to find the partic-
ular embeddings so that the resultant knot complements had the least volume
possible. Since W, and W, are both acylindrical, the two resulting knot com-
plements are both hyperbolic and each contains an incompressible genus two
surface that carries no accidental parabolics. Since H — K is not acylindrical,
the incompressible surface cannot be totally geodesic in the knot complement.
Hence, each of these knots has a non-Fuchsian but quasi-Fuchsian surface in its
complement. Any of the other knots that would result from some other choice
of how to embed (H, K;) in S* such that the closure of its complement is W,
or W, would also have a hyperbolic complement containing an incompressible
non-Fuchsian quasi-Fuchsian surface.

In Figure 8 we display two knots resulting from two choices of how to embed
(H, K,) in §* so that the complement of the interior of H is one of the two
manifolds W, and W,. Again, we have utilized SNAPPEA to try to find the
embeddings that minimize the volume of the resulting knot complement.
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(a) (b)

FIGURE 9

Here, since both H — K, and W; are acylindrical, the incompressible genus
two surface could appear as a totally geodesic surface in the hyperbolic structure
on $* — K. However, by doubling (H, K,) along the boundary of H, we obtain
a two component link in (§? x S1)#(S? x S!). Representing this as a Dehn
surgery with slope 0 along two components of a four component link in $°, as
in Figure 9, we can utilize SNAPPEA in order to find the volume of the double
of H — K;. (The doubling surface is also depicted in Figure 9.)

Half of this then gives the volume of H — K, when the boundary of H
is totally geodesic. The resulting volume is 12.046092040094 ... . Since
Kojima and Miyamoto proved that a compact hyperbolic manifold with totally
goedesic boundary must have volume at least 6.451990270835 . .., we see that
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FIGURE 10

if the incompressible surface were to remain totally geodesic after H — K is
glued to W;, the volume of the resulting manifold would have to be at least
18.49808267177... . In fact, the tripos manifold realizes the lower bound on
volume of Kojima and Miyamoto and therefore when i = 2, the volume of the
resulting manifold would have to be exactly 18.49808267177... . Since this
is not the volume of the second knot complement, the essential surface is not
totally geodesic in this knot complement.

When W, is given a hyperbolic metric so that the boundary is totally geodesic,
similar techniques can be applied in order to use SNAPPEA to find the volume.
The result is 8.093993534733 ... . Since the volume of the corresponding knot
complement is greater than the sum of this volume and the volume of H — K, the
incompressible surface again cannot be totally geodesic in the knot complement.

The sequence of knots in Figure 10 all come from (1, p)-Dehn surgery on
the new component of a link obtained by encircling the two strands that are
being twisted about one another by a trivial component. By our work above,
all of these knots are hyperbolic. Since the link that we are performing surgery
on is hyperbolic, there exists an N such that for all i > N, the sequence
of volumes of the knot complements approaches the volume of the link from
below monotonically (cf. [14, 16]).

In particular, this means that the set of i > N yields an infinite set of knot
complements, all of which have distinct volumes. Since each can be cut open
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along the incompressible surface to yield the same two submanifolds, and since
the hyperbolic volumes of those two submanifolds corresponding to when the
boundary surface is totally geodesic are completely determined, it must be the
case that at most one of these knot complements can contain this surface as a
totally geodesic surface.

Explicit calculations with Jeff Week’s SNAPPEA program empirically point
to the conclusion that the least volume corresponds to the knot depicted in
Figure 7(b). A proof of this fact would imply that not even one of these knot
complements could contain the incompressible genus two surface as a totally
geodesic surface, as the least volume of any of these knot complements would
be greater than 18.498 . .. .

In closing, we note that a result of Wu implies at most two non-trivial surgeries
on either of the knots depicted in Figure 8 will yield a manifold in which th
essential surface compresses (cf. [19, Theorem 1]). (In fact, the offending
surgeries must be (p, 1) and (p + 1, 1)-surgeries.) Fori = 1, 2, an examination
of the shape of the cusp by SNAPPEA shows that the only homotopy class of a
simple closed curve in the boundary of a maximal cusp with a representative of
length less than 27 is a meridian. The 27 Theorem of Gromov and Thurston (cf.
[, 3] for a description and proof) then implies that any non-trivial surgery on
one of these knots yields a negatively curved manifold. However, a negatively
curved manifold that contains an essential surface must be hyperbolic. Thus, all
but at most two non-trivial surgeries on each of these knot complements yield
closed Haken hyperbolic 3-manifolds.
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