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The Chern–Ricci Flow on Oeljeklaus–Toma
Manifolds

Tao Zheng

Abstract. We study the Chern–Ricci �ow, an evolution equation of Hermitian metrics, on a family
of Oeljeklaus–Toma (OT-) manifolds that are non-Kähler compact complex manifolds with nega-
tive Kodaira dimension. We prove that a�er an initial conformal change, the �ow converges in the
Gromov–Hausdorò sense to a torus with a �at Riemannianmetric determined by the OT-manifolds
themselves.

1 Introduction

_eChern–Ricci �ow is an evolution equation for Hermitianmetrics by their Chern–
Ricci forms on complex manifolds, which coincides exactly with the Kähler–Ricci
�owwhen the initial metric is Kählerian. It was introduced by Gill [8] in the setting of
complex manifolds with vanishing ûrst Bott–Chern class. Tosatti and Weinkove [30,
31] investigated the �ow onmore general complexmanifolds and proposed a program
to study its behavior on all compact surfaces. _e results in [10,11,15,23,30–32] are very
similar to those for the Kähler–Ricci �ow, and provide aõrmative evidence that the
Chern–Ricci �ow is a natural geometric �ow on complex surfaces whose properties
re�ect the underlying geometry of these manifolds.
Class VII surfaces are by deûnition non-Kähler compact complex surfaces with

negative Kodaira dimension and ûrst Betti number one. _is class of surfaces are of
especial interest, because there exists a well-known problem to complete their classi-
ûcation. Naturally, we will try to understand the properties of the Chern–Ricci �ow
on these surfaces, with the long-term aim of obtaining more topological or complex-
geometric properties (cf. [28], where a diòerent �ow is considered). In this direction,
in [5], the authors consider a family of Class VII surfaces, known as Inoue surfaces
(see [12]) and proved that for a large class of Hermitian metrics, the Chern–Ricci �ow
always collapses the Inoue surface to a circle at inûnite time, in theGromov-Hausdorò
sense. Also, the authors [5] posed some conjectures and open problems concerning
the Chern–Ricci �ow.

In this paper, wewill concentrate on [5, Problem 3]; that is, wewill study the behav-
ior of the Chern–Ricci �ow on a family of well-understood Oeljeklaus–Toma (OT-)
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manifolds, analogous to the Inoue–Bombieri surfaces SM (see [12]) in high dimen-
sions. OT-manifolds, ûrst constructed by Oeljeklaus and Toma [16] from the view of
algebraic number theory, are non-Kähler compact complex solvmanifolds with neg-
ative Kodaira dimension and without Vaisman metrics (see [16, Proposition 2.5] and
[13, Section 6]). Battisti and Oeljeklaus [1, _eorem 3.5] states that OT-manifolds ad-
mit no analytic hypersurfaces and their algebraic dimension is zero. Verbitsky [34,35]
also proved that OT-manifolds carry no closed 1-dimensional analytic subspaces and
that OT-manifolds cannot contain any nontrivial compact complex 2-dimensional
submanifolds except the Inoue surfaces. More recent progress and open problems
about OT-manifolds can be found in [18] and references therein.

We investigate a class of complex m-dimensional OT-manifolds denoted by MK
with universal cover Hm−1 × C and whose quotient covering map is denoted by
π∶Hm−1 × C → MK (see Section 2), where H is the upper half plane. _is class of
OT-manifolds have locally conformally Kähler metric structure and admit no non-
trivial complex subvariety (see [16, 17] and [18, _eorem 4.5]). In particular, the OT-
manifolds with universal cover H2 ×C give counterexamples to a conjecture of Vais-
man [4, p. 8] (see also [18, Section 4.2]). Denote the standard coordinates onHm−1×C
by (z1 , . . . , zm). On OT-manifolds MK a constant multiple of the product of standard
Poincaré metric α =

√
−1∑m−1

i=1
dz i∧dz i
4(Imz i)2 on Hm−1 descends to a closed semipositive

real (1, 1) form on MK denoted by ω∞ (also denoted by α itself) with

0 ≤ ω∞ ∈ −cBC1 (MK),
where cBC1 (MK) is the ûrst Bott–Chern class of MK . _e (1, 1) form ω∞ will play a
key role in our results.

We consider the normalized Chern–Ricci �ow

(1.1)
∂
∂t

ω = −Ric(ω) − ω, ω∣t=0 = ω0

on MK , with an initial Hermitian metric ω0. Here Ric(ω) is the Chern–Ricci form of
the Hermitian metric ω =

√
−1g i jdz i ∧ dz j deûned by

Ric(ω) = −
√
−1∂∂ log det g .

Since the canonical bundle ofMK is nef, the results of [30–32] imply that there exists
a unique solution to (1.1) for all time. We are concerned with the behavior of the
normalized Chern–Ricci �ow as t →∞.

_eorem 1.1 Let MK be an OT-manifold and let ω be any Hermitian metric on MK .
_en there exists a Hermitian metric ωLF = eσω in the conformal class of ω such that
the following holds.

Let ω(t) be the solution of the normalized Chern–Ricci �ow (1.1) with the initial
Hermitian metric of the form

ω0 = ωLF +
√
−1∂∂ρ > 0.

_en as t →∞, ω(t) → ω∞ uniformly on MK and exponentially fast, where ω∞ is the
(1, 1) form deûned above. Furthermore,

(MK ,ω(t)) Ð→ (Tm−1 , g)
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in the Gromov-Hausdorò sense, where g is deûned as in (2.8), is the �at Riemannian
metric on torus Tm−1 determined by the OT-manifold MK .

_erefore, we prove that the (normalized) Chern–Ricci �ow collapses a Hermitian
metric ω on the OT-manifold MK to a torus, modulo an initial conformal change
to ω. Indeed, we prove more than this, since our initial Hermitian metric can be
any one in the ∂∂-class of eσω. Note that this collapsing to Tm−1 is in stark contrast
with the properties of theKähler–Ricci �ow that always collapses to even-dimensional
manifolds (cf. [6, 9, 24–27, 33]).

Our conformal change is relative to a holomorphic foliation structure without sin-
gularity F deûned by ω∞ on the OT-manifold MK . Now we give an outline of the
explanation of this holomorphic foliation structure (more details can be found in Sec-
tion 2). Note that F can be induced by the holomorphic foliation F̃ generated by ∂zm
on the universal covering manifoldHm−1 ×C and every leaf of F̃ is of form {z′} ×C,
where z′ ∈ Hm−1. Motivated by [5], we give some deûnitions and deduce a useful
proposition as follows.

Deûnition 1.1 A Hermitian metric ω on MK is called �at along the leaves if the
restriction of π∗ω to every leaf of F̃ is a �at Kähler metric on C, and called strongly
�at along the leaves if this restriction of π∗ω to every leaf of F̃ equals to

c((Imz1) ⋅ ⋅ ⋅ (Imzm−1))
√
−1dzm ∧ dzm ,

where c > 0 is a constant independent of the leaf.

_e Hermitian metric ωLF we need in the statement of _eorem 1.1 is exactly
strongly �at along the leaves. _e following proposition shows that the assumption of
being strongly �at along the leaves is not in fact restrictive, because it can always be
obtained from any Hermitian metric ω by a conformal change (see also Lemma 2.2).

Proposition 1.2 For any Hermitian metric ω on the OT-manifold MK , there exists a
smooth function σ ∈ C∞(MK , R) such that ωLF ∶= eσω is strongly �at along the leaves.

We remark that in the case of Inoue surfaces SM , Deûnition 1.1 and Proposition 1.2
specialize to the corresponding ones in [5].
Another interesting question is whether we can get the smooth (C∞) convergence

of ω(t) to ω∞ instead of the uniform (C0) convergence in _eorem 1.1. In this di-
rection, if the initial Hermitian metric is of a more restricted type, then we can get
Cα convergence for 0 < α < 1. More precisely, Oeljeklaus and Toma [16] and Ornea
and Verbitsky [17] constructed an explicit Hermitian metric ωOT deûned in (2.2) on
the exact OT-manifold MK we consider, which is strongly �at along the leaves. For
the initial Hermitian metrics in the ∂∂-class of ωOT and 0 < α < 1, we prove the Cα

convergence as follows.

_eorem 1.3 Let ω(t) be the solution of the normalized Chern–Ricci �ow (1.1) on an
OT-manifold MK with an initial Hermitian metric of the form

ω0 = ωOT +
√
−1∂∂ρ > 0.
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_en the solution metric ω(t) is uniformly bounded in the C1 topology, and for any
0 < α < 1, there holds ω(t) → ω∞, as t →∞ in the Cα topology.

We note that while the strategy of the proofs is the same as in [5], new diõculties
arise due to the fact that these manifolds have dimension greater than 2. _is is the
ûrst general result where collapsing of the Chern–Ricci �ow in dimensions greater
than 2 is established for a large class of manifolds and initial metrics.

2 Oeljeklaus–Toma Manifolds

Let Q be the ûeld consisting of rational numbers and let K be a ûnite extension ûeld
ofQwith degree [K ∶Q] = n. _en the ûeld K admits precisely n = s+ 2t distinct em-
beddings σ1 , . . . , σn into the ûeld C consisting of complex numbers, where σ1 , . . . , σs
are real embeddings and σs+1 , . . . , σn are complex embeddings. Without loss of gen-
eration, assume that σs+i = σs+t+i for 1 ≤ i ≤ t, because the complex embeddings of K
intoC occur in pairs of complex conjugate embeddings. Also assume that both s and
t are positive. Let

σ ∶K Ð→ Cm , σ(a) ∶= (σ1(a), . . . , σs+t(a))
be the geometric representation of K.

Let OK be the ring of algebraic integers of K and let O∗
K be themultiplicative group

of units of OK , that is,

O∗
K ∶= { a ∈ OK ∶ σ1(a) ⋅ ⋅ ⋅ σs(a)∣σs+1(a)∣2 ⋅ ⋅ ⋅ ∣σs+t(a)∣2 = ±1} .

Also, let
O∗,+

K ∶= { a ∈ O∗
K ∶ σ1(a) > 0, . . . , σs(a) > 0} .

It is well known that the image σ(OK) is a lattice of rank n inCm , wherem ∶= s+t (see,
for example, [2, _eorem 1 in Section 3 of Chapter 2]). _erefore, we get a properly
discontinuous action of OK on Cm by translations.
Consider the multiplicative action of OK on Cm given by

az ∶= (σ1(a)z1 , . . . , σm(a)zm) .
Denote by H the upper complex half-plane, that is, H = {z ∈ C ∶ Imz > 0}. Since for
a ∈ OK , aσ(OK) ⊂ σ(OK), combining the additive action of OK and the multiplica-
tive action of O∗,+

K , Oeljeklaus and Toma [16] (see also [19]) obtained a free action of
O∗,+

K ⋉ OK on Hs ×Ct . Now consider the logarithmic representation of units

L∶O∗,+
K Ð→ Rm ,

L(a) ∶= ( log σ1(a), . . . , log σs(a), 2 log ∣σs+1(a)∣, . . . , 2 log ∣σs+t(a)∣) .
(2.1)

It follows from the Dirichlet’s Units _eorem (see, for example, [2]) that L(O∗,+
K ) is a

full lattice in the subspace H of Rm , where

H ∶= {x ∈ Rm ∶
m

∑
i=1

x i = 0} .

For t > 0, the projection Pr∶H → Rs given by the ûrst s coordinate functions is sur-
jective. So there exists subgroups G of rank s of O∗,+

K such that Pr ○L(G) is a full
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lattice Λ in Rs . Such a subgroup is called admissible for the ûeld K by Oeljeklaus and
Toma [16].

TakeG admissible forK. _equotientmanifold (Hs×Ct)/σ(OK) is diòeomorphic
to a trivial torus bundle (R+)s × (S1)n , and G acts properly discontinuously on it
because it induces a properly discontinuous action on (R+)s . _erefore, we get an
m-dimensional compact complex manifold

MK ,G ∶= (Hs ×Ct)/(G ⋉ OK)
which is a ûber bundle over

Ts ∶= S1 × ⋅ ⋅ ⋅ × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s−times

with Tn ∶= S1 × ⋅ ⋅ ⋅ × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−times

as ûber. Such a manifold is called an Oeljeklaus–Toma (OT-) manifold.
For s = t = 1, G = O∗,+

K , MK ,G is an Inoue-Bombieri surface SM (see [12]).
In this paper, we will consider the OT-manifold in the case of s > 0, t = 1 (to

prove similar results in the case when t > 1, it seems that new ideas will be required
(see [18, 36])), that is, MK ∶= MK ,G = (Hm−1 × C)/Γ, where Γ ∶= (G ⋉ OK) and
denote the quotient covering map by π∶Hm−1 ×C → MK and the ûber projection by
p∶MK → Tm−1.

Let
z i = x i +

√
−1y i , i = 1, . . . ,m,

where z1 , . . . , zm−1 is the standard coordinates of Hm−1 and zm is the standard coor-
dinate of C. _en we have some Γ-invariant forms on Hm−1 ×C that can be induced
on MK and denoted by the same symbols, deûned as follows (see [16, 17]):

α ∶=
√
−1

m−1

∑
i=1

dz i ∧ dz i

4y2
i

, β ∶=
√
−1(y1 ⋅ ⋅ ⋅ ym−1)dzm ∧ dzm , γ ∶=

√
−1

m−1

∑
k ,ℓ=1

dzk ∧ dzℓ
4yk yℓ

.

In addition, α is d-closed and also denoted byω∞ when it descends toMK in Section 1.
_erefore, we can construct a Hermitian metric ωOT by

(2.2) ωOT = α + β + γ

with Ricci form
Ric(ωOT) = −α ∈ cBC1 (MK).

If we deûne a function ψ(z) = (y1 ⋅ ⋅ ⋅ ym−1)−1 on Hm−1 ×C, then ωOT was deûned in
[16, 17] to be √

−1∂∂(ψ(z) + ∣zm ∣2)
ψ(z) ,

and a simple calculation shows that this is equal to α + β + γ. In the case of Inoue–
Bombieri surfaces, ωT = 4α + β is called the Tricerri metric [29].

Now we give more details about the holomorphic foliation F mentioned in Sec-
tion 1. We begin with the holomorphic foliation F̃ without singularity on Hm−1 × C
generated by vector ûeld ∂zm . _e foliation F̃ is Γ-invariant and is also the kernel of
the Γ-invariant form α. _erefore, it induces a holomorphic foliation F without sin-
gularity on MK with the kernel α = ω∞ (see [17]). A leaf of the foliation F̃ including
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the point (t1 , . . . , tm) ∈ Hm−1 ×C is given as

L̃t1 , . . . ,tm−1 ∶= {(z′ , zm) ∈ Hm−1 ×C ∶ z′ = (t1 , . . . , tm−1) ∈ Hm−1} .

Since the isotropy group of the leaf denoted by

GL̃t1 ,. . . ,tm−1
∶= { g ∈ Γ ∶ gL̃t1 , . . . ,tm−1 = L̃t1 , . . . ,tm−1} .

is trivial, we get a leaf L of F via the natural immersion of L̃t1 , . . . ,tm−1/GL̃t1 ,. . . ,tm−1
dif-

feomorphic to L̃t1 , . . . ,tm−1 into MK . All the leaves of F can be obtained in this way
(see [14]). For the closure Z of a leaf L = π(L̃t1 , . . . ,tm−1) of F, Ornea and Verbitsky
[17, Proposition 3.2] proved that

π−1(Z) ⊇ Zα1 , . . . ,αm−1 ∶= {(z1 , . . . , zm) ∈ Hm−1 ×C ∶ α i = Imz i , 1 ≤ i ≤ m − 1},

where α i = Imt i , 1 ≤ i ≤ m − 1 and Zα1 , . . . ,αm−1 is the closure of OK(L̃t1 , . . . ,tm−1). _ere-
fore, we can deduce the following lemma.

Lemma 2.1 For any point a ∈ MK , the leaf La of the foliation F through this point is
dense in theTm+1-ûber of the point p(a) ∈ Tm−1; that is, for any point t = (t1 , . . . , tm) ∈
Hm−1 ×C, π(L̃t1 , . . . ,tm−1) is dense in the Tm+1-ûber of the point p ○ π(t) ∈ Tm−1.

_e following lemma shows that every Hermitian metric ω on MK is conformal to
a Hermitian one that is strongly �at along the leaves.

Lemma 2.2 A Hermitian metric ωLF on m-dimensional MK is �at along the leaves
if and only if

(2.3) αm−1 ∧ ωLF = (p∗η)αm−1 ∧ β,
where

η∶Tm−1 = S1 × ⋅ ⋅ ⋅ × S1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(m−1)−times

Ð→ R

is a smooth positive function. And it is strongly �at along the leaves if and only if

(2.4) αm−1 ∧ ωLF = cαm−1 ∧ β,
where c > 0 is a constant. For any Hermitian metric ω on MK , deûne σ ∈ C∞(MK , R)
by

eσ = α
m−1 ∧ β
αm−1 ∧ ω

.

_en ωLF = eσω satisûes (2.4) with c = 1 and hence is strongly �at along the leaves.

Proof Write the pullback of the Hermitian ωLF as

π∗ωLF =
m

∑
i , j=1

g i jdz i ∧ dz j ,

and we have

(2.5)
αm−1 ∧ π∗ωLF

αm−1 ∧ β = gmm

y1 ⋅ ⋅ ⋅ ym−1
.
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So (2.3) is equivalent to
gmm

y1 ⋅ ⋅ ⋅ ym−1
= π∗p∗η.

Notice that the function π∗p∗η depends only on (y1 , . . . , ym−1). Since the restriction
of π∗ωLF to a leaf {z′} ×C equals

√
−1gmmdzm ∧ dzm , and its Ricci curvature equals

−∂m∂m log gmm , we can deduce that if (2.3) holds then ωLF is �at along the leaves.
Conversely, if ωLF is �at along the leaves, then for each ûxed z′ ∈ Hm−1 we have

that

∂m∂m log
gmm

y1 ⋅ ⋅ ⋅ ym−1
= ∂m∂m log gmm = 0.

_anks to (2.5) we get that the function log(gmm/y1 ⋅ ⋅ ⋅ ym−1) on Hm−1 × C is
Γ-invariant, hence bounded (because it is the pullback of a function from MK).
_erefore, log(gmm/y1 ⋅ ⋅ ⋅ ym−1) for (z1 , . . . , zm−1) ∈ Hm−1 ûxed is a bounded har-
monic function on C, and so it must be constant. In other words, the ratio
(αm−1 ∧ ωLF)/(αm−1 ∧ β) is constant along each leaf of F. Since every leaf is dense
in the Tm+1 ûber that contains it, we obtain that (αm−1 ∧ ωLF)/(αm−1 ∧ β) equals the
pullback of a function from Tm−1.

On the other hand, it is now clear that ω is strongly �at along the leaves if and only
if (2.4) holds, or equivalently,

gmm

y1 ⋅ ⋅ ⋅ ym−1
= c,

where c > 0 is a constant. _e last assertion of the lemma is immediate.

To end this section, we give some details about the Riemannian metric on Tm−1

induced from α. On Hm−1, α corresponds to the Riemannian metric

m−1

∑
i=1

dx i ⊗ dx i + dy i ⊗ dy i

2y2
i

,

which is restricted on (R+)m−1,

(2.6)
m−1

∑
i=1

dy i ⊗ dy i

2y2
i

.

Under the local coordinate

f ∶ (R+)m−1 Ð→ Rm−1 , (y1 , . . . , ym−1) z→ (log y1 , . . . , log ym−1),

the metric (2.6) can be expressed as

(2.7)
1
2

m−1

∑
i=1

dx i ⊗ dx i .

Now let a1 , . . . , am−1 be the generators of the admissible group G. _en under the
logarithmic representation (2.1),

( log σ1(a i), . . . , log σm−1(a i)) =∶ (v i1 , . . . , v i ,m−1), i = 1, . . . ,m − 1
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is the basis of the full lattice Λ inRm−1 and Tm−1 = Rm−1/Λ, whereRm−1 is equipped
with the metric (2.7). So the metric on Tm−1 is

(2.8)
1
2

m−1

∑
k ,ℓ=1

(
m−1

∑
i=1

vkivℓi)dxk ⊗ dxℓ ,

and the radius of the k-th (k = 1, . . . ,m − 1) factor S1 of Tm−1 is

1
2
√

2π
(

m−1

∑
i=1

vkivki)
1/2

.

Obviously, the metric on Tm−1 depends on the lattice Λ. In fact, the metrics gΛ and
gΛ′ deûned on Tm−1 are isometric if and only if there exists an isometry of Rm−1 that
sends the lattice Λ on the lattice Λ′ (see [7, _eorem 2.23]).

3 The Chern–Ricci flow on OT-manifolds

We will write the normalized Chern–Ricci �ow as a parabolic complex Monge–Am-
père equation. Let ωLF =

√
−1∑m

i , j=1(gLF)i jdz i ∧ dz j be the Hermitian metric that is
strongly �at along the leaves, as in the setup of _eorem 1.1. First, we deûne

(3.1) ω̃ = ω̃(t) = e−tωLF + (1 − e−t)α > 0,

and denote by g̃ the Hermitian metric associated with ω̃. We deûne a volume form Ω
by

(3.2) Ω = mαm−1 ∧ ωLF = mcαm−1 ∧ β,
with the constant c deûned by (2.4). Direct calculation using (3.2) implies

√
−1∂∂ logΩ = α.

It follows that the normalized Chern–Ricci �ow (1.1) is equivalent to the parabolic
complex Monge–Ampère equation

(3.3)
∂
∂t

φ = log
e t(ω̃ +

√
−1∂∂φ)m

Ω
− φ, ω̃ +

√
−1∂∂φ > 0, φ(0) = ρ.

Namely, if φ solves equation (3.3), then ω(t) = ω̃ +
√
−1∂∂φ solves the normalized

Chern–Ricci �ow (1.1), as is readily checked. Conversely, given a solutionω(t) of (1.1),
we can ûnd a solution (see [30]) φ = φ(t) of (3.3) such that ω(t) = ω̃ +

√
−1∂∂φ.

Let φ = φ(t) be the solution to (3.3) and write ω = ω(t) = ω̃ +
√
−1∂∂φ for the

corresponding Hermitian metrics along the normalized Chern–Ricci �ow (1.1). We
ûrst prove uniform estimates on the potential φ and its time derivative φ̇. Given the
choice of ω̃ and Ω, the proof is very similar to the one in [27, Lemmas 3.6.3 and 3.6.7]
(see also [5, 6, 9, 24, 32]).

Lemma 3.1 _ere exists a uniform positive constant C such that on MK × [0, ∞),
(i) ∣φ∣ ≤ C(1 + t)e−t ,
(ii) ∣φ̇∣ ≤ C,
(iii) C−1ω̃m ≤ ωm ≤ Cω̃m .
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Proof Since the discussion is very similar to those in [9,27,32], we will be brief. For
part (i), ûrst we claim that, by the choice of ω̃ and Ω, there holds

(3.4) ∣ e t log e
t ω̃m

Ω
∣ ≤ C′ ,

for uniform C′. Indeed, from (3.1) and (3.2), we have

e t ω̃m

Ω

=
e t∑m

k=0 (m
k )(1 − e

−t)kαk e−(m−k)tωm−k
LF

Ω

=
m(1 − e−t)m−1αm−1 ∧ ωLF + e−t∑m−2

k=0 (m
k )(1 − e

−t)k e−(m−2−k)tαk ∧ ωm−k
LF

Ω
= 1 + O(e−t),

(3.5)

which implies (3.4). Fromnowon,O( f (t))willmean≤ C f (t) for a uniformconstant
C, where f (t) is a positive function of t (e.g., e−t , 1, e t). Now consider the quantity

P = e tφ − (C′ + 1)t.

If supMK×[0, t0] P = P(x0 , t0) for some x0 ∈ MK and t0 > 0, we have at this point,

0 ≤ ∂P
∂t

≤ e t log e
t ω̃m

Ω
− C′ − 1 ≤ −1,

which is absurd. _erefore, supMK
P is bounded from above by its initial value, which

implies φ ≤ C(1 + t)e−t . _e lower bound is similar.
To prove (ii), choose a constant C0 satisfying C0ω̃ > α for all t ≥ 0. _en compute,

for the Laplacian ∆ = g j i∂ i∂ j ,

( ∂
∂t

− ∆)( φ̇ − (C0 − 1)φ) = 1 + trω(α − ω̃) − C0φ̇ + (C0 − 1) trω(ω − ω̃)

< 1 − C0φ̇ +m(C0 − 1).

_e maximum principle implies that φ̇ is bounded from above. For the lower bound
of φ̇,

(3.6)
( ∂
∂t

− ∆)(φ̇ + 2φ) = trω(α − ω̃) + 1 + φ̇ − 2 trω(ω − ω̃)

≥ trω ω̃ + φ̇ − (2m − 1).

By the geometric-arithmetic means inequality, we have

(3.7) e−
φ̇+φ
m = ( Ω

e tωm )
1
m ≤ C( ω̃m

ωm )
1
m ≤ C

m
trω ω̃,

where we use (3.5). Combining (3.6), (3.7), and themaximum principle indicates that
φ̇ is bounded from below.
Finally, (iii) follows from (i), (ii), and equation (3.3).

https://doi.org/10.4153/CJM-2015-053-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-053-0


_e Chern–Ricci Flow on Oeljeklaus–Toma Manifolds 229

Next, we bound the torsion and curvature of the reference metrics g̃. We will de-
note the Chern connection, torsion, and curvature of g̃ by ∇̃, T̃ , and R̃m, respectively,
and also write

T̃i jℓ = T̃ k
i j g̃kℓ = ∂ i g̃ jℓ − ∂ j g̃ i ℓ .

Since α is a closed form, we have

(3.8) T̃i jℓ = e
−t(TLF)i jℓ ,

where TLF is the torsion of the metric gLF. We can deduce the following bounds on
torsion and curvature of g̃, which are analogous to those in [32, Lemma 4.1].

Lemma 3.2 _ere exists a uniform constant C such that

(i) ∣T̃ ∣ g̃ ≤ C,
(ii) ∣∂T̃ ∣ g̃ + ∣∇̃T̃ ∣ g̃ + ∣R̃m∣ g̃ ≤ Ce t/2.

Proof Denote by g̃kℓ the component of metric matrix (g̃pq) in k-th row and ℓ-th
column. We have

g̃kk = e
−t(gLF)kk + (1 − e−t)αkk = O(1), 1 ≤ k ≤ m − 1,

g̃kℓ = e
−t(gLF)kℓ = O(e−t), otherwise.

Denote by g̃ℓk the component of the inverse matrix of (g̃pq) in ℓ-th row and k-th
column, and by Gkℓ the algebraic cofactor of the component g̃kℓ . Note that

Gmm = g̃11 ⋅ ⋅ ⋅ g̃m−1m−1 +∑ terms with factor e−t

= α11 ⋅ ⋅ ⋅ αm−1m−1 +∑ terms with factor e−t

and

Gkℓ = ∑ terms with factor e−t , (k, ℓ) /= (m,m).
A preliminary analysis implies that there exists a uniform constant c0 independent of
t such that

det(g̃pq) =
m

∑
ℓ=1

g̃mℓGmℓ = e−t
m

∑
ℓ=1

(gLF)mℓGmℓ ≥ c0e−t ,

where we also use the fact that (gLF)mm > 0. _erefore, we can deduce that all the
components of the inverse metric matrix (g̃qp) are bounded byO(1) except that g̃mm

is bounded by O(e t), where we use the formula g̃ℓk = Gkℓ
det( g̃pq) .

From (3.8), we have

∣T̃ ∣2g̃ = e−2t(TLF)ikq(TLF) jℓp g̃
j i g̃ℓk g̃qp ≤ C ,

since the only term involving the cube of g̃mm vanishes by the skew-symmetry of
(TLF)ikq in i and k, and by the bounds of other components of (g̃ℓk) all other terms
are bounded.

Since if one of the indexes 1 ≤ i , k, ℓ ≤ m equals m, we have

∂ i g̃kℓ = ∂ i g̃kℓ = O(e−t),(3.9)
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and

∂m g̃mm = ∂m g̃mm = 0,(3.10)

where for (3.10) we use the fact that g̃mm = ce−t(y1 ⋅ ⋅ ⋅ ym−1), we can bound on the g̃
norm of the Christoòel symbols Γ̃p

ik of the Chern connection of g̃ by

(3.11) ∣Γ̃p
ik ∣

2
g̃ = Γ̃p

ik Γ̃
q
jℓ g̃

j i g̃ℓk g̃pq = g̃ j i g̃ℓk g̃qp∂ i g̃kq∂ j g̃pℓ ≤ C .

Note that the quantity ∣Γ̃p
ik ∣2g̃ is only locally deûned.

Since

(TLF)imm = ∂ i(gLF)mm − ∂m(gLF)im = O(1),
∂m(TLF)imm = ∂ i∂m(gLF)mm − ∂m∂m(gLF)im = −∂m∂m(gLF)im = O(1),

we have, using the skew-symmetry of (TLF)ikq in i and k,

∣(TLF)i jr ∣2g̃ ≤ Ce2t , ∣∂ℓ(TLF)i jk ∣
2
g̃ ≤ Ce3t .

_erefore, from (3.8) and the Cauchy–Schwarz inequality, we have

∣∂T̃ ∣2g̃ = ∣∇T̃ ∣2g̃ = e−2t ∣∂ℓ(TLF)i jk − Γ̃r
ℓk(TLF)i jr ∣2g̃

≤ 2e−2t ∣∂ℓ(TLF)i jk ∣
2
g̃ + 2e−2t ∣Γ̃r

ℓk ∣
2
g̃ ∣(TLF)i jr ∣2g̃

≤ 2e−2t ∣∂ℓ(TLF)i jk ∣
2
g̃ + Ce−2t ∣(TLF)i jr ∣2g̃ ≤ Ce t .

Similarly, we can deduce ∣∇T̃ ∣2g̃ ≤ Ce t .
Recall that the curvature of the Chern connection of g̃ is given by

R̃ i jkℓ = −∂ i∂ j g̃kℓ + g̃qp∂ i g̃kq∂ j g̃pℓ .

For the bound of ∣R̃ i jkℓ ∣2g̃ , using (3.11), we just need to bound ∣∂ i∂ j g̃kℓ ∣2g̃ . _anks to
(3.9) and (3.10), we can obtain

∣∂ i∂ j g̃kℓ ∣
2
g̃ =

m−1

∑
k ,ℓ=1

(∂m∂m g̃km)(∂m∂m g̃mℓ)g̃
mm g̃mm g̃mm g̃ℓk

+ terms bounded by constant ≤ Ce t .

So ∣R̃m∣2g̃ ≤ Ce t , as required.

Now we can apply the arguments of [32, 33] to establish the estimates of the solu-
tion ω(t) to the normalized Chern–Ricci �ow (1.1) and also the solution φ(t) to the
parabolic complex Monge–Ampère equation (3.3).

_eorem 3.3 For φ = φ(t) solving (3.3) on MK , the following estimates hold:
(i) _ere exists a uniform constant C such that C−1ω̃ ≤ ω(t) ≤ Cω̃.
(ii) _e Chern scalar curvature R satisûes the bound −C ≤ R ≤ Ce t/2 , where C is

uniform constant.
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(iii) For any η ∈ (0, 1/2) and σ ∈ (0, 1/4), there exists a constant Cη ,σ such that

−Cη ,σ e−ηt ≤ φ̇ ≤ Cη ,σ e−σ t .

_erefore, combining Lemma 3.1(i) and this bound gives (taking η = σ)

∣φ + φ̇∣ ≤ Cσ e−σ t .

(iv) For any ε ∈ (0, 1/8), there exists a constant Cε satisfying

∥ω − ω̃∥C0(MK , ω0) ≤ Cεe−εt .

Proof Given Lemmas 3.1 and 3.2, the proof is almost identical to the discussion in
[32, 33]. _erefore, we give only a brief outline and point out the main diòerences.
For part (i), we claim that

(3.12) ( ∂
∂t
−∆) log trω̃ ω ≤ 2

(trω̃ ω)2 Re( g̃ℓi gqk T̃kiℓ∂q trω̃ ω)+Ce t/2 trω ω̃, t ≥ 0.

Indeed, this inequality can be obtained by an argument that is almost identical to the
one in [32, Lemma 5.2]. From [30, Proposition 3.1] we have

(3.13) ( ∂
∂t

− ∆) log trω̃ ω = (I) + (II) + (III) − 1
trω̃ ω

g̃ℓp g̃qkαpq gkℓ ,

where

(I) = 1
trω̃ ω

[ − g jp gqi g̃ℓk∇̃k g i j∇̃ℓ gpq +
1

trω̃ ω
gℓk∂k(trω̃ ω)∂ℓ(trω̃ ω)

− 2Re( g j i g̃ℓk T̃ p
ki∇̃ℓ gp j) − g j i g̃ℓk T̃ p

ik T̃
q
jℓ gpq]

(II) = 1
trω̃ ω

[ g j i g̃ℓk(∇̃i T̃
q
jℓ − R̃ i ℓp j g̃

qp) gkq]

(III) = − 1
trω̃ ω

[ g j i(∇̃i T̃ ℓ
jℓ) + (∇̃ℓ T̃

p
ik) g j i g̃ℓk g̃p j − T̃q

jℓ T̃
p
ik g

j i g̃ℓk g̃pq] .

Let us point out some diòerences from the calculation in [30]. Here, ω is evolved by
normalized Chern–Ricci �ow (1.1), and our reference metric ω̃ also depends on time.
In particular, in our case we have Ti jℓ = T̃i jℓ (instead of Ti jℓ = (T0)i jℓ in [30]) and
the metrics ĝ and g0 in [30] are replaced by ω̃. _e last term in (3.13) comes from the
−ω term on the right side of (1.1) and the time derivative of ω̃. Fortunately, we have

− 1
trω̃ ω

g̃ℓp g̃qkαpq gkℓ ≤ 0.

Proposition 3.1 in [30] gives us

(I) ≤ 2
(trω̃ ω)2 Re( g̃ℓi gqk T̃kiℓ∂q(trω̃ ω)) .

_erefore, to complete the proof of the lemma, we only need to show that

(II) + (III) ≤ Ce t/2 trω ω̃.
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To see this, from Lemma 3.1(iii) and the geometric-arithmetic means inequality, we
can deduce trω̃ ω ≥ C−1 for a uniform constant C, which, combining with ∣g∣ g̃ ≤ trω̃ ω
and ∣g−1∣ g̃ ≤ trω ω̃, implies

1
trω̃ ω

∣ g j i g̃ℓk∇̃i T̃
q
jℓ gkq ∣ ≤

1
trω̃ ω

∣g−1∣ g̃ ∣g̃−1∣ g̃ ∣∇̃T̃ ∣ g̃ ∣g∣ g̃ ≤ C(trω ω̃)e t/2 ,

1
trω̃ ω

∣ g j i g̃ℓk g̃qp gkq R̃ i ℓp j ∣ ≤
1

trω̃ ω
∣g−1∣ g̃ ∣g̃−1∣2g̃ ∣g∣ g̃ ∣R̃m∣ g̃ ≤ C(trω ω̃)e t/2 ,

1
trω̃ ω

∣ g j i∇̃i T̃ ℓ
jℓ ∣ ≤

1
trω̃ ω

∣g−1∣ g̃ ∣∇̃T̃ ∣ g̃ ≤ C(trω ω̃)e t/2 ,

1
trω̃ ω

∣ g j i g̃ℓk g̃p j∇̃ℓ T̃
p
ik ∣ ≤

1
trω̃ ω

∣g−1∣ g̃ ∣g̃−1∣ g̃ ∣g̃∣ g̃ ∣∇̃T̃ ∣ g̃ ≤ C(trω ω̃)e t/2 ,

1
trω̃ ω

∣ g j i g̃ℓk T̃ p
ik T̃

q
jℓ g̃pq ∣ ≤

1
trω̃ ω

∣g−1∣ g̃ ∣g̃−1∣ g̃ ∣g̃∣ g̃ ∣T̃ ∣2g̃ ≤ C(trω ω̃),

which completes the proof of the claim.
To prove part (i), ûrst note that Lemma 3.1(i) implies that e t/2φ is uniformly bound.

Using the idea from Phong–Sturm [21], we consider the quantity

Q = log trω̃ ω − Ae t/2φ + 1
e t/2φ + C̃

,

where C̃ is a constant satisfying e t/2φ + C̃ ≥ 1 and A is a large constant that will be
determined later. Notice that

0 ≤ 1
e t/2φ + C̃

≤ 1.

Since ∆φ = m − trω ω̃, using the bounds for φ and φ̇ in Lemma 3.1, we have

(3.14)

( ∂
∂t

− ∆)(−Ae t/2φ + 1
e t/2φ + C̃

)

= −(A+ 1
(e t/2φ + C̃)2

)(e t/2φ̇ + 1
2
e t/2φ)

+ (A+ 1
(e t/2φ + C̃)2

)∆(e t/2φ) −
2∣∂(e t/2φ)∣2g
(e t/2φ + C̃)3

≤ CAe t/2 − Ae t/2 trω ω̃ −
2∣∂(e t/2φ)∣2g
(e t/2φ + C̃)3

.

At the point (x0 , t0) with t0 > 0 where Q attains a maximum, we have ∂qQ = 0,
implying

∂q trω̃ ω
trω̃ ω

= (A+ 1
(e t0/2φ + C̃)2

) e t0/2∂qφ.
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At this point,

(3.15)

2
(trω̃ ω)2 Re( g̃ℓi gqk T̃ p

ki g̃pℓ∂q trω̃ ω)

= 2
trω̃ ω

Re( g̃ℓi gqk T̃ p
ki g̃pℓ(A+

1
(e t0/2φ + C̃)2

) e t0/2∂qφ)

≤ CA2

(trω̃ ω)2 (e
t0/2φ + C̃)3gqk T̃ i

k i T̃ r
qr +

∣∂(e t0/2φ)∣2g
(e t0/2φ + C̃)3

≤ CA2

(trω̃ ω)2 trω ω̃ +
∣∂(e t0/2φ)∣2g
(e t0/2φ + C̃)3

,

where for the last step we used Lemmas 3.1 and 3.2 and the Cauchy–Schwarz inequal-
ity for the quantity gqk T̃ i

k i T̃ r
qr . Combining (3.12), (3.14), and (3.15), we have, at a point

(x0 , t0), for a uniform C > 0,

( ∂
∂t

− ∆)Q ≤ CA2 trω ω̃ + Ce t0/2 trω ω̃ + CAe t0/2 − Ae t0/2 trω ω̃

≤ CA2 trω ω̃ + Ce t0/2 trω ω̃ + CAe t0/2 − Ae t0/2 trω ω̃,

where we are assuming, without loss of generality, that at this maximum point of Q
we have trω̃ ω ≥ 1. Choose a uniform A satisfying A ≥ C + 1. We can also assume
t0 > T0, where T0 satisûes

CA2 − e t/2 ≤ −1, ∀ t ≥ T0 .

_en we can deduce

[trω ω̃](x0 , t0) ≤
CAe t0/2

e t0/2 − CA2 ∈ (CA, CA+ C2A3),

at the maximum of Q, implying that [trω̃ ω](x0 , t0) is bounded from above, by using
Lemma 3.1(iii) and the fact (see, for example, [27, Corollary 3.5])

(3.16) trω̃ ω ≤ 1
(m − 1)!

ωm

ω̃m (trω ω̃)m−1 .

Combining the upper bound of [trω̃ ω](x0 , t0), the deûnition ofQ, and Lemma 3.1(i)
gives the uniform estimate

(3.17) trω̃ ω ≤ C

Again using (3.16) and Lemma 3.1(iii), the uniform upper bound (3.17) shows that ω
is equivalent to ω̃.
As for part (ii), we claim that there exists a uniform constant C > 0 satisfying

( ∂
∂t

− ∆) trω̃ ω ≤ −C−1∣∇̃g∣2g + Ce t/2 ,(3.18)

( ∂
∂t

− ∆) trω α ≤ ∣∇̃g∣2g − C−1∣∇ trω α∣2g + Ce t/2(3.19)
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along the normalized Chern–Ricci �ow (1.1). As a result, uniform positive constants
C0 and C1 exist such that for all t ≥ 0

(3.20) ( ∂
∂t

− ∆)(trω α + C0 trω̃ ω) ≤ −∣∇̃g∣2g − C−1
1 ∣∇ trω α∣2g + C1e t/2 .

Indeed, the claim follows from an argument similar to the one in [32, Lemma 6.2] (see
also [5]). From [30, Proposition 3.1], as the argument in the proof of inequality (3.13),
we have

( ∂
∂t

− ∆) trω̃ ω = J1 + J2 + J3 − g̃ℓp g̃qkαpq gkℓ ,

where

J1 = −g jp gqi g̃ℓk∇̃k g i j∇̃ℓ gpq − 2Re( g j i g̃ℓk T̃ p
ki∇̃ℓ gp j) − g j i g̃ℓk T̃ p

ik T̃
q
jℓ gpq ,

J2 = g j i g̃ℓk(∇̃i T̃
q
jℓ − R̃ i ℓp j g̃

qp) gkq ,

J3 = −[ g j i(∇̃i T̃ ℓ
jℓ) + (∇̃ℓ T̃

p
ik) g j i g̃ℓk g̃p j − T̃q

jℓ T̃
p
ik g

j i g̃ℓk g̃pq] .

Using Lemma 3.2(i) and the Cauchy–Schwarz inequality, we get (3.18).
Inequality (3.19) comes from a parabolic Schwarz Lemma argument as in [5,24,37].

A key diòerence is that we do not have a global holomorphic map from MK to a lower
dimensional complex manifold. Fortunately, we have a locally deûned holomorphic
map f from a holomorphic chart in MK to the cross productHm−1 ofm− 1 upper half
planes with the property that α = f ∗ωH, where ωH is the multiple of the product of
Poincaré metrics

ωH =
√
−1

m−1

∑
i=1

dz i ∧ dz i

4y2
i

onHm−1. Since the parabolic Schwarz Lemma calculation is completely local, we can
deduce inequality (3.19) exactly as in [32].

Now we turn to the estimate of the bound of Chern scalar curvature R. First note
that the minimum principle and the evolution equation of R ∂R

∂t = ∆R + ∣Ric ∣2 + R
imply the lower bound R ≥ −C directly. For the upper bound of R, we consider the
quantity u ∶= φ + φ̇ with the property that −∆u = R + trω α ≥ R. We want to bound
−∆u from above by Ce t/2. Using a Cheng–Yau type argument in [3] (cf. [22, 24]) and
applying the maximum principle to

Q1 ∶=
∣∇u∣2
A− u

+ C1(trω α + C0 trω̃ ω)

for A and C1 chosen suõciently large, we can deduce the estimate ∣∇u∣2g ≤ Ce t/2 ,
exactly as in [32, Proposition 6.3] (replacing ωS with α wherever it occurs). A direct
calculation gives

(3.21) ( ∂
∂t

− ∆) ∣∇u∣2g ≤ −
1
2
∣∇∇u∣2g − ∣∇∇u∣2g + ∣∇ trω α∣2g + ∣∇̃g∣2g + Ce t .

On the other hand, we have

(3.22) ( ∂
∂t

− ∆)(−∆u) ≤ 2∣∇∇u∣2g − ∆u + Ce t/2 + ∣∇̂g∣2g − C−1∣∇ trω α∣2g .
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Combining (3.20), (3.21), and (3.22) implies, for C1 large,

( ∂
∂t

− ∆)(−∆u + 6∣∇u∣2g + C1(trω α + C0 trω̃ ω)) ≤ −∣∇∇u∣2g − ∆u + Ce t ,

and it follows from the maximum principle that −∆u ≤ Ce t/2, giving the upper
bounded of the Chern scalar curvature R ≤ Ce t/2 . Next, using the discussion in [32,
Lemma 6.4] (cf. [27]), we can deduce the bound (iii) on φ̇ follows from the bounds
on R, Lemma 3.1, and the evolution equation

∂
∂t

φ̇ = −R − (m − 1) − φ̇.

For (iv), we ûrst obtain, as in [32, Lemma 7.3] (replacing ωS with α, whenever it oc-
curs),

( ∂
∂t

− ∆) trω ω̃ ≤ Ce t/2 − C−1∣∇̃g∣2g .

Combining this and the bounds of φ and φ̇, we consider the quantity

eεt(trω ω̃ −m) − eδtφ
for 0 < ε < 1/4 and δ, δ′ > 0 chosen carefully. _e maximum principle discussion of
[32, Proposition 7.3] (replacing trω ω̃ − 2 with trω ω̃ −m, whenever it occurs) gives

(3.23) trω ω̃ −m ≤ Ce−εt .
On the other hand, there exists a uniform TI > 0 depending only on the initial data
of MK such that the following holds, for t ≥ TI :

ω̃m

ωm = e
t ω̃m

Ω
Ω
e tωm = e

t ω̃m

Ω
e−φ−φ̇ = e−φ−φ̇(1 + O(e−t))(3.24)

≥ e−φ−φ̇ − Ce−t ≥ 1 − C′e−σ t ,

where we use (3.5), Lemma 3.1, and the bound of φ + φ̇ in part (iii). From (3.23) and
(3.24) we can apply [33, Lemma 2.6] (choose coordinates such that ω is the identity
and ω̃ is given by matrix A and take ε = σ in (3.23) and (3.24)) to get

∥ω − ω̃∥C0(MK , ω) ≤ Cσ e−σ t/2 .

Noting ω ≤ Cω0, we can deduce part (iv) for t ≥ TI . _en we canmodify the uniform
constant such that part (iv) holds for all t ≥ 0.

Using the estimate in _eorem 3.3(i), we can get the Gromov–Hausdorò conver-
gence of ω(t) in _eorem 1.1.

Proof of_eorem 1.1 Note that ω∞ = α represents −cBC1 (MK), and by deûnition of
the reference metric, ω̃(t) → α uniformly and exponentially fast as t → ∞. _eo-
rem 3.3(iv) implies that the same convergence holds for ω(t).

Now we turn to determining the Gromov–Hausdorò limit of (MK ,ω(t)). Call
F = p∶MK Ð→ Tm−1

the projectionmap and denote by Ta = F−1(a) theTm+1-ûber over a ∈ Tm−1. Fix ε > 0
and let Lt be the length of a curve in MK measured with respect tometric ω(t). Let dt
be the induced distance function on MK . Also denote by L∞ and d∞ the length and
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distance functions of the degenerate metric α on MK and by L and d the length and
distance functions of the �at Riemannian metric g deûned by (2.8) on Tm−1. Deûne

G∶Tm−1 Ð→ MK

by mapping every point a ∈ Tm−1 to some chosen point in MK on the ûber Ta . Note
that the map G will in general be discontinuous.
Clearly, we have F ○ G = Id, while G ○ F is a ûber-preserving discontinuous map

of MK . In particular, for any a ∈ Tm−1 we have trivially

(3.25) d(a, F ○G(a)) = 0.

Since F is the kernel of α and each leaf of F is dense in a Tm−1-ûber, we conclude
that d∞(x , y) = 0 for all x , y ∈ MK with F(x) = F(y). _erefore, combining _eo-
rem 3.3(i) and uniform convergence of ω̃(t) to α as t →∞ implies that for any x ∈ MK
and for all t large enough, we have

(3.26) dt(x ,G ○ F(x)) ≤ ε.
Now take any two points x , y ∈ MK and let γ be a curve joining x to y with Lt(γ) =
dt(x , y). _en F(γ) is a path in Tm−1 between F(x) and F(y). We claim that

L(F(γ)) ≤ L∞(γ).
Indeed, for any tangent vector V on MK , we can write it locally as

V =
m

∑
i=1

(X i∂x i + Y i∂y i ),

and from the deûnitions of ω∞ and g we see that

∣F∗V ∣2g =
m−1

∑
i=1

(Y i)2

2y2
i

≤
m−1

∑
i=1

(X i)2 + (Y i)2

2y2
i

= ∣V ∣2ω∞ ,

where for convenience we use the local coordinates y1 , . . . , ym−1 on Tm−1 and write
the �at Riemannianmetric g onTm−1 using the form of (2.6). ChoosingV = γ̇ implies
the claim. _erefore, given two points x , y ∈ MK , letting γ be a minimizing geodesic
for the metric ω(t) joining them, we can get

(3.27) d(F(x), F(y)) ≤ L(F(γ)) ≤ L∞(γ) ≤ Lt(γ) + ε = dt(x , y) + ε,
for all t large. Obviously this also implies that

(3.28) d(a, b) = d(F ○G(a), F ○G(b)) ≤ dt(G(a),G(b)) + ε,
for all a, b ∈ Tm−1 and all t large.

Lastly, given x , y ∈ MK , let γ be a minimizing geodesic in Tm−1 connecting F(x)
and F(y), and let γ̃ be a li� of the curve γ starting at x; that is, γ̃ is a curve in MK with
F(γ̃) = γ and initial point x. _is li� can always be constructed because F = p is the
bundle projection map. We then concatenate γ̃ with a curve γ̃1 contained in the ûber
TF(y) joining the endpoint of γ̃ with y, and obtain a curve γ̂ in MK joining x and y.
We claim that L∞(γ̃) = L(γ) = d(F(x), F(y)). In fact we can construct a li� γ̃ such
that in local coordinates we have ˙̃γ = ∑m−1

i=1 Y i(t)∂y i , as in [31]. So we can obtain

∣γ̇∣2g = ∣F∗ ˙̃γ∣2g =
m−1

∑
i=1

(Y i(t))2

2y2
i

= ∣ ˙̃γ∣2ω∞ ,
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as required. _erefore, we can conclude that

(3.29) dt(x , y) ≤ Lt(γ̂) = Lt(γ̃) + Lt(γ̃1) ≤ L∞(γ̃) + 2ε = d(F(x), F(y)) + 2ε,

for all large t. _is also implies

(3.30) dt(G(a),G(b)) ≤ d(F ○G(a), F ○G(b)) + 2ε = d(a, b) + 2ε

for all a, b ∈ Tm−1. Combining (3.25)–(3.30) implies that (MK ,ω(t)) converges to
(Tm−1 , g) in the Gromov–Hausdorò sense.

Now we turn to _eorem 1.3. With the special reference metric

ω̃ = e−tωOT + (1 − e−t)α,
we can get better estimates than the ones in Lemma 3.2 as follows.

Lemma 3.4 _ere exists a uniform constant C such that

(i) ∣T̃ ∣ g̃ ≤ C,
(ii) ∣∂T̃ ∣ g̃ + ∣∇̃T̃ ∣ g̃ + ∣R̃m∣ g̃ ≤ C,
(iii) ∣∇̃∇̃T̃ ∣ g̃ + ∣∇̃∇̃T̃ ∣ g̃ + ∣∇̃R̃m∣ g̃ ≤ C.

Proof For this new reference metric g̃, we also have

g̃kk = e
−t(gOT)kk + (1 − e−t)αkk = O(1), 1 ≤ k ≤ m − 1,

g̃kℓ = e
−t(gOT)kℓ = O(e−t), otherwise,

and that all the components of the inverse metric matrix (g̃ℓk) are bounded by O(1)
except that g̃mm is bounded by O(e t). Part (i) was proved in Lemma 3.2.

Since ∣Γ̃p
ik ∣2g̃ ≤ C, that is, the g̃ norm of the ûrst order derivatives of g̃ is bounded,

using the Cauchy–Schwarz inequality, to complete the proof of the rest of the lemma,
we just need to bound the g̃ norm of the second and third order derivatives of the new
reference metric g̃. Since

∂m g̃kℓ = ∂m g̃kℓ = 0, 1 ≤ k, ℓ ≤ m(3.30)
and

∂ i g̃mm = ∂ i g̃mm = O(e−t), g̃ im = g̃mi = 0, 1 ≤ i ≤ m − 1,(3.31)

we can deduce

∣∂ i∂ j g̃kℓ ∣
2
g̃ =

m−1

∑
i , j,k ,ℓ ,r ,s ,p,q=1

(∂ i∂ j g̃kℓ)(∂s∂r g̃qp)g̃r i g̃ js g̃ pk g̃ℓq

+
m−1

∑
i , j,r ,s=1

(∂ i∂ j g̃mm)(∂s∂r g̃mm)g̃r i g̃ js g̃mm g̃mm ≤ C

and

∣∂a∂ i∂ j g̃kℓ ∣
2
g̃ =

m−1

∑
a ,b , i , j,k ,ℓ ,r ,s ,p,q=1

(∂a∂ i∂ j g̃kℓ)(∂b∂s∂r g̃qp)g̃ba g̃r i g̃ js g̃ pk g̃ℓq

+
m−1

∑
a ,b , i , j,r ,s=1

(∂a∂ i∂ j g̃mm)(∂b∂s∂r g̃mm)g̃ba g̃r i g̃ js g̃mm g̃mm ≤ C ,
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as required.

_e estimates in_eorem 3.3 imply that the special referencemetric g̃ is equivalent
to the solution metric g uniformly. _e other key ingredient of the proof of _eorem
1.3 is the following Calabi-type “third order” estimate.

Proposition 3.5 For the normalized Chern–Ricci �ow (1.1) with the reference metric

ω̃ = e−tωOT + (1 − e−t)α,

we have

(3.32) ∣∇̃g∣ g̃ ≤ C .

Proof _is Calabi-type estimate is very similar to the ones established in [23] and
[32, Section 8] (see also [20]), so we give only a brief outline, pointing out the main
diòerences. We consider the quantity S ∶= ∣∇̃g∣2g = ∣Ψ∣2g , where Ψk

i j = Γk
i j − Γ̃k

i j as in
[23]. _e quantity S is equivalent to ∣∇̃g∣2g̃ because g is equivalent to g̃.
Compared to the setup in [23], here we consider the normalized Chern–Ricci �ow

and the reference metric g̃ now depends on time t, while the reference metric ĝ in
[23] is ûxed. Combining these diòerences and the calculation in [23], we observe that
there is one new term in the evolution of the quantity S of the form

(3.33) −2Re( g i r gu j gvk g̃qi∇̃ jαkqΨr
uv) .

We claim that

(3.34) ∣∇̃α∣ g̃ ≤ C .

Indeed, since ∣Γ̃k
i j ∣2g̃ ≤ C and

∣α∣2g̃ =
m−1

∑
i , j,k ,ℓ=1

g̃ j i g̃ℓkα i ℓαk j =
m−1

∑
i , j=1

g̃ j i g̃ i jα i iα j j ≤ C ,

from the Cauchy–Schwarz inequality, to prove (3.34), it is enough to bound ∂ iα jℓ .
Noting that

∂mα i j = ∂mα i j = αmℓ = αℓm = 0, 1 ≤ i , j ≤ m − 1, 1 ≤ ℓ ≤ m,

we have

∣∂ iα jℓ ∣
2
g̃ =

m−1

∑
i , j,k ,ℓ ,p,q=1

g̃ j i g̃qp g̃ℓk(∂̃ iαkq)(∂̃ jαpℓ)

=
m−1

∑
i , j,k ,ℓ=1

g̃ j i g̃kℓ g̃ℓk(∂̃ iαkk)(∂̃ jαℓℓ) ≤ C ,

as required. _erefore, the new term (3.33) is of the orderO(
√

S) and harmless. Com-
bining [23, Remark 3.1] and the estimates in Lemma 3.4 gives the bound S, and hence
we can obtain (3.32).
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Proof of_eorem 1.3 We claim that

(3.35) ∣Γ̃ − ΓOT∣gOT ≤ C ,

where ΓOT is the Christoòel symbols of gOT. Indeed, we just need to bound the gOT

norm of Γ̃. _anks to (3.30) and (3.31), we have

∣Γ̃∣2gOT
= (gOT)kq(gOT)r i(gOT)s j g̃ℓk g̃qp(∂ i g̃ jℓ)(∂r g̃ps)

= (gOT)mm(gOT)r i(gOT)s j g̃mm g̃mm(∂ i g̃ jm)(∂r g̃ms)
+ other terms bounded by constant

= (gOT)mm(gOT)r i(gOT)mm g̃mm g̃mm0(∂ i g̃mm)(∂r g̃mm)
+ other terms bounded by constant ≤ C ,

as required. Now we use (3.32), (3.35), and the fact g̃ ≤ CgOT to deduce

∣∇OTg∣gOT ≤ ∣∇̃g∣gOT + C ≤ ∣∇̃g∣ g̃ + C ≤ C ,

which completes the proof of _eorem 1.3.
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