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ENRIQUES’ CLASSIFICATION IN CHARACTERISTIC
p > 0: THE P12-THEOREM

FABRIZIO CATANESE and BINRU LI

Dedicated to David Mumford on the occasion of his 80th birthday

Abstract. The main goal of this paper is to show that Castelnuovo–Enriques’

P12- theorem (a precise version of the rough classification of algebraic surfaces)

also holds for algebraic surfaces S defined over an algebraically closed field k of

positive characteristic (char(k) = p > 0). The result relies on a main theorem

describing the growth of the plurigenera for properly elliptic or properly

quasielliptic surfaces (surfaces with Kodaira dimension equal to 1). We also

discuss the limit cases, i.e., the families of surfaces which show that the result

of the main theorem is sharp.

Introduction

The main technical result of the present article, expressed in modern

language, is the following one:

Main Theorem. Let S be a projective surface of Kodaira dimension 1

defined over an algebraically closed field k, and let KS be a canonical divisor

on S, so that Ω2
S
∼=OS(KS).

Then the growth of the plurigenera Pn(S) = dimH0(OS(nKS)) =

dimH0((Ω2
S)⊗n) satisfies:

(1) P12(S) > 2;

(2) there exists n6 4 such that Pn(S) > 1;

(3) there exists n6 8 such that Pn(S) > 2;

(4) ∀n> 14 Pn(S) > 2.

While (2)–(3) of the above theorem are new also in the classical case where

k is a field of characteristic zero, (1) is due to Enriques [15] in characteristic

0 and (4) was shown by Katsura and Ueno [23] for elliptic surfaces in all
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202 F. CATANESE AND B. LI

characteristics (but we reprove their result here as a part of the above more

general statement). Needless to say, we use in the proof of our theorem many

results, lemmas and propositions previously established by many authors,

especially Bombieri–Mumford, Raynaud, and Katsura–Ueno [27], [5], [6],

[31], [23].

Statement (1) is most important, which allows us to extend to the

positive characteristic case the main classification theorem of Castelnuovo

and Enriques. In modern language (see the next section for more details,

and a more precise and informative statement), the classification theorem

implies the following:

P12-Theorem. Let S be a projective surface defined over an algebraically

closed field k.

Then for the Kodaira dimension Kod(S) we have:

• (I) Kod(S) =−∞⇐⇒ P12(S) = 0;

• (II) Kod(S) = 0⇐⇒ P12(S) = 1;

• (III) Kod(S) = 1⇐⇒ P12(S) > 2 and, for S minimal, K2
S = 0;

• (IV) Kod(S) = 2⇐⇒ P12(S) > 2 and, for S minimal, K2
S > 0.

It should be observed that the estimates for the growth of the plurigenera

are much weaker if one considers properly elliptic nonalgebraic surfaces,

see [21], where the analogue of (4) of the main theorem for nonalgebraic

surfaces is proved. Iitaka showed that, for n> 86, H0(OS(nKS)) yields the

canonical elliptic fibration. One of the reasons why the estimate is much

weaker depends on the failure of the Poincaré reducibility theorem, implying

in the algebraic case that a certain monodromy group G is Abelian. Hence,

for instance, if G is Abelian, it cannot be a Hurwitz group, i.e., G cannot

have generators a, b, c of respective orders (2, 3, 7) satisfying abc= 1.

Indeed (we omit here the simple proof), the analogue of statement (1) for

nonalgebraic surfaces is that P42 > 2.

Concerning higher dimensional algebraic varieties, a natural question

emerges:

Question 0.1. Given a projective manifold of X dimension N , is there

a sharp number d= d(N) such that:

(1) Kod(X) =−∞⇐⇒ Pd(X) = 0;

(2) Kod(X) = 0⇐⇒ Pd(X) = 1;

(3) Kod(X) > 1⇐⇒ Pd(X) > 2 ?
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Progress on a related question, about effectivity of the Iitaka fibration,

was made, among others, by Fujino and Mori [18] and Birkar and Zhang [9].

§1. The classification theorem of Castelnuovo and Enriques

Let S be a nonsingular projective surface defined over an algebraically

closed field k, and let KS be a canonical divisor on S, so that Ω2
S
∼=OS(KS).

We assume that S is minimal: this means that there does not exist an

irreducible exceptional curve C of the first kind, i.e., an integral curve C

with C2 =KS · C =−1. Let us recall the definition of the basic numerical

invariants associated with S, which allow its birational classification.

For each integer m ∈ N, we denote as usual, following Castelnuovo and

Enriques, by

Pm(S) := h0(S, mKS),

the mth plurigenus of S.

In particular, the geometric genus is pg(S) := P1(S), while the arithmetic

irregularity is defined as h(S) := h1(OS), and the arithmetic genus is defined

as

pa(S) := pg(S)− h(S) = χ(OS)− 1.

To finish our comparison of classical and modern notation, recall that the

geometric irregularity is defined as q(S) := 1/2b1(S), where b1(S) is the first

l-adic Betti number of S, b1(S) := dimQl
H1
et(S,Ql).

q(S) is equal to the dimension of the Picard scheme Pic0(S), and also

(cf. [28, Chapter III. 13]) of the dual scheme Pic0(Pic0(S)), and of the

Albanese variety Alb(S) := Pic0(Pic0(S)red).

The above numbers are all equal in characteristic zero: q(S) = h(S) =

h0(Ω1
S), but not in characteristic p > 0, where one just has some inequalities.

Since H1(OS) is the Zariski tangent space to the Picard scheme at the

origin [26, Lecture 24. 2◦], one has the inequalities (cf. [5, pp. 34–35])

h(S) > q(S), 2pg(S) > ∆ := 2(h(S)− q(S)) = 2h(S)− b1(S) > 0.

The inequality h0(Ω1
S) > q was shown by Igusa [19], and there are

examples where the equality does not hold, cf. [20, p. 964, The Example],

[25, p. 341, Corollary]1.

1The space of regular one forms on the Albanese variety A pulls back injectively to a
subspace V of the space H0(Ω1

S), contained in the space of d-closed forms; it is an open
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Moreover, the linear genus p(1)(S) :=K2
S + 1 is the arithmetic genus of

any canonical divisor on the minimal surface. It is a birational invariant for

every nonruled algebraic surface.

The classification of smooth projective integral curves C is given in terms

of the genus g(C) := h0(OC(KC)):

(I) g(C) = 0⇐⇒ C ∼= P1;
(II) g(C) = 1⇐⇒OC ∼=OC(KC)⇐⇒ C is an elliptic curve (it is isomor-

phic to a plane cubic curve);

(III) g(C) > 2⇐⇒ C is of general type, i.e., H0(C,OC(mKC)) yields an

embedding of C for all m> 3.

Enriques and Castelnuovo ([15] and [10]) were able to classify surfaces

essentially in terms of P12(S), as follows:

Theorem 1.1. (P12-theorem of Castelnuovo–Enriques) Let S be a

smooth projective surface defined over an algebraically closed field k of

characteristic zero, and let p(1)(S) :=K2
S + 1 be the linear genus of a

minimal model in the birational equivalence class of S where P12 > 0. Then

(I) P12(S) = 0⇐⇒ S is ruled ⇐⇒ S is birational to a product C × P1,

g(C) = q(S) = h(S).

(II) P12 = 1⇐⇒OS ∼=OS(12KS).

(III) P12 > 2 and p(1)(S) = 1⇐⇒ S is properly elliptic, i.e., H0(S,OS
(12KS)) yields a fibration over a curve with general fibers elliptic

curves

(IV) P12 > 2 and p(1)(S)> 1⇐⇒ S is of general type, i.e., H0(S,OS
(mKS)) yields a birational embedding of S for m large (m> 5 indeed

suffices, as conjectured by Enriques in [17] and proven by Bombieri

[3, Main Theorem]).

Moreover, if S is minimal, then in modern terminology:

• Case (I) S ∼= P2 or S is a P1-bundle over a curve C.

• Case (II) pg(S) = 1, q(S) = 2⇐⇒OS ∼=OS(KS), q(S) = 2⇐⇒ S is an

Abelian surface.

question how to characterize V , for instance Illusie suggested V could be the intersection
of the kernels of d ◦ Cm, where C is the Cartier operator, and m is any positive integer;
see [33], [13], [22].
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• Case (II) pg(S) = 1, q(S) = 0⇐⇒OS ∼=OS(KS), q(S) = 0⇐⇒ S is a K3

surface.

• Case (II) pg(S) = 0, q(S) = 0⇐⇒OS �OS(KS), OS ∼=OS(2KS), q(S) =

0⇐⇒ S is an Enriques surface.

• Case (II) q(S) = 1(⇒ pg(S) = 0)⇐⇒OS �OS(KS),OS ∼=OS(mKS), for

some m ∈ {2, 3, 4, 6}, q(S) = 1⇐⇒ S is a hyperelliptic surface.

• Case (III) pa(S) =−1⇐⇒ S ∼= C × E, g(E) = 1, g(C) = q(S)− 1.

A modern account of the Castelnuovo–Enriques classification of surfaces

was first given in [32], [24], then it appeared also in [4], [2] ([2] is the only

text which mentions the P12-theorem, in the historical note on p. 118), later

also in [1] and [7].

Remark 1.2. (i) Nowadays, cases (I)-(IV) are distinguished according

to the Kodaira dimension, which is defined to be −∞ if all the plurigenera

vanish (Pn = 0 ∀n> 1), otherwise it is defined as the maximal dimension

of the image of some n-pluricanonical map (the map associated with

H0(OX(nKX))).

(ii) The occurrence of the number 12 is rather miraculous: it first appears

since, by the canonical divisor formula 1.6, in case (II) the equation

2 =
∑
j

(
1− 1

mj

)

admits only the following (positive) integer solutions:

(2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)

and then we get a set of integers mj whose least common multiple is

precisely 12.

Respectively, we have 2KS ≡ 0, 3KS ≡ 0, 4KS ≡ 0, 6KS ≡ 0, where D ≡ 0

means that D is linearly equivalent to zero, i.e., OS(D)∼=OS . It follows that

in case (II) we have 12KS ≡ 0, hence P12 = 1.

The second occurrence is more subtle, and is the heart of the theorem: in

case (III) one has P12 > 2.

It is now customary (the name “key theorem” is due to [2]) to see the

two major steps of surface classification as follows:

Theorem 1.3. (Key theorem) If S is minimal, then

KS is nef (i.e., KS · C > 0 for all curves C ⊂ S) ⇐⇒ S is nonruled.
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Theorem 1.4. (Crucial theorem) S is minimal, with pg(S) = 0, q(S) =

1 ⇐⇒ S is isogenous to a product, i.e., S is the quotient (C1 × C2)/G of a

product of curves of genera

g1 := g(C1) = 1, g2 := g(C2) > 1,

by a free action of a finite group of product type (G acts faithfully on C1, C2

and we take the diagonal action g(x, y) := (gx, gy)), and such that moreover

if we denote by g′j = g(Cj/G), then g′1 + g′2 = 1.

More precisely, let A be the Albanese variety of S, which is an elliptic

curve and let

α : S→A

be the Albanese map.

Then either:

(1) S is a hyperelliptic surface, g2 = 1, G is a subgroup of translations of

C1, A= C1/G, while C2/G∼= P1.

In this case all the fibers of the Albanese map are isomorphic to C2,

P12(S) = 1 and S admits also an elliptic fibration ψ : S→ C2/G∼= P1.

(2) S is properly elliptic (P12(S) > 2) and the genus g = g2 of the Albanese

fibers satisfies g2 > 2: again G is a subgroup of translations of C1, A=

C1/G, C2/G∼= P1, all the fibers of the Albanese map are isomorphic

to C2.

(3) S is properly elliptic (P12(S) > 2) and the genus g = g1 of an Albanese

fiber satisfies g1 = 1: A= C2/G, C1/G∼= P1, and the fibers of the

Albanese map

α : S = (C1 × C2)/G→A= C2/G

are either isomorphic to the elliptic curve C1 or are multiples of smooth

elliptic curves isogenous to C1.

Remark 1.5. A crucial observation, used by Enriques in [15] for the P12-

theorem is that in the first two cases the group G is Abelian. The crucial

ingredient is the canonical divisor (canonical bundle) formula, established

by Enriques and Kodaira, and then extended to positive characteristic by

Bombieri and Mumford.

Theorem 1.6. [5, p. 27, Theorem 2] Let f : S→ C be a relatively min-

imal fibration such that the arithmetic genus of a fiber equals 1 (the general
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fiber is necessarily smooth elliptic in characteristic zero, but it can be rational

with one cusp in characteristic 2 or 3: the latter is called the quasielliptic

case).

Let {q1, . . . , qr} ⊂ C be the set of points over which the fiber f−1(qi) =

miF
′
i is a multiple fiber (i.e., mi > 2 and F ′i is not a multiple of any proper

subdivisor), and consider the coherent sheaf R1f∗(OS) on the smooth curve

C, which decomposes as

R1f∗(OS) =OC(L)⊕ T,

where OC(L) is an invertible sheaf and T is a torsion subsheaf with

supp(T )⊂ {q1, . . . , qr}. The fibers over the points of supp(T ) are called

wild fibers, moreover T = 0 if char(k) = 0.

Then

KS = f∗(δ) +
r∑
i=1

aiF
′
i , δ :=−L+KC

where

(i) 0 6 ai <mi;

(ii) ai =mi − 1 if miF
′
i is not wild (i.e., qi /∈ supp(T ));

(iii) d := deg(δ) = deg(−L+KC) = 2g(C)− 2 + χ(OS) + length(T ),

where g(C) is the genus of C.

Let us see how the above applies in characteristic zero and in the special

subcase: pg = 0, q = 1, the genus of the Albanese fibers equals 1, and there

exists a multiple fiber.

Then, for n= 2, since we have deg(δ) = 0, it follows that

2KS =

r∑
i=1

(mi − 2)F ′i + f∗
(

2δ +

r∑
i=1

qi

)
.

The divisor 2δ +
∑r

i=1 qi is effective by the Riemann–Roch theorem on the

elliptic curve A, so we have written 2KS as the sum of two effective divisors.

Hence we obtain that P2 > 1, and similarly one gets that P12 > 6.

§2. The P12-theorem in positive characteristic

The extension of the Castelnuovo–Enriques classification of surfaces to

the case of positive characteristic was achieved by Mumford and Bombieri

(cf. [6, Section 3], [5, Theorem 1]).
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In a remarkable series of three papers they got most of the following full

result.

Theorem 2.1. (P12-theorem in positive characteristic) Let S be a pro-

jective smooth surface defined over an algebraically closed field k of char-

acteristic p > 0, and let p(1)(S) :=K2
S + 1 be the linear genus of a minimal

model in the birational equivalence class of S where P12 > 0. Then

(I) P12(S) = 0⇐⇒ S is ruled ⇐⇒ S is birational to a product C × P1,

g(C) = q(S) = h(S).

(II) P12 = 1⇐⇒OS ∼=OS(12KS).

(III) P12 > 2 and p(1)(S) = 1⇐⇒ S is properly elliptic or properly quasiel-

liptic, i.e., H0(S,OS(12KS)) yields a fibration over a curve with

general fibers either elliptic curves or rational curves with one cusp.

(IV) P12 > 2 and p(1)(S)> 1⇐⇒ S is of general type, i.e., H0(S,OS
(mKS)) yields a birational embedding of S for m large (indeed, m> 5

suffices).

Moreover, Bombieri and Mumford in [5] and [6] gave a full description

of the surfaces in the classes (I) and (II) (with new nonclassical surfaces),

but classes (II) and (III) were not distinguished by the behavior of the 12th

plurigenus, but only by the Kodaira dimension, i.e., by the growth of Pn(S)

as n→∞.

The sharp statement (∀m> 5) in case (IV), established by Bombieri

[3, Main Theorem] in characteristic zero, was extended by Ekedahl’s to the

case of positive characteristic (cf. [14, Main Theorem], see also [11] and [12]

for a somewhat simpler proof).

§3. Auxiliary results and proof of the P12-theorem

Case (III) can be divided into two subcases: properly elliptic fibrations

and properly quasielliptic fibrations.

Recall the definition of quasielliptic surfaces:

Definition 3.1. A quasielliptic surface S is a nonsingular projective

surface admitting a fibration f : S→ C over a nonsingular projective curve

C such that f∗OS =OC and such that the general fibers of f are rational

curves with one cusp.

If the fibration f is induced by H0(S,OS(nKS)) for some n > 0, we call

S a properly quasielliptic surface.
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Remark 3.2. (1) By a result of Tate (cf. [34, Corollary 1]), quasielliptic

fibrations only appear in characteristic 2 and 3.

(2) In case (III), where Pn(S) := dimH0(S,OS(nKS)) grows linearly with

n, S is necessarily properly elliptic or properly quasielliptic.

The case where S admits a properly elliptic fibration was treated by

T. Katsura and K. Ueno who proved in [23, Theorem 5.2] that for any

properly elliptic surface S, ∀m> 14, Pm(S) > 2 and showed the existence

of an example where P13 = 1. They show that the situation is essentially

the same as in characteristic zero. The fact that P12(S) > 2 follows from

our more general theorem, which uses several auxiliary results developed by

Raynaud and Katsura–Ueno (they will be recalled in the sequel).

Theorem 3.3. (Main Theorem) Let f : S→ C be a properly elliptic or

quasielliptic fibration. Then:

(1) P12(S) > 2;

(2) there exists n6 4 such that Pn(S) 6= 0;

(3) there exists n6 8 such that Pn(S) > 2;

(4) ∀n> 14 Pn(S) > 2.

Remark 3.4. Let us indicate the examples (see Remark 4.3) which show

that in Theorem 3.3 the inequalities in our assumptions are best possible.

(2) and (4): in the notation of (2) of Theorem 1.4 we let G= Z/2⊕ Z/6;

in characteristic 6= 2, 3, G is isomorphic to a subgroup of any elliptic curve.

In order to obtain a curve C2 with an action of G such that C2/G∼= P1 we

consider a G-Galois covering C2 of P1 branched in 3 points, and with local

monodromies

(1, 0), (0, 1), (−1,−1).

In the characteristic zero case this exists by Riemann’s existence theorem

(since the sum of the three local monodromies equals zero). Indeed the

resulting curve has affine equation y2 = x6 − 1, which is smooth in char-

acteristic 6= 2, 3. Hence we get such a curve for any characteristic 6= 2, 3

(see [23, Example 4.6]).

The fibration f : S→ C2/G∼= P1 is elliptic and has exactly three singular

fibers, with multiplicities 2, 6, 6. It follows that

Pn(S) = max

{
0, −2n+ 1 +

[
n

2

]
+ 2 ·

[
5n

6

]}
,

where [a] denotes the integral part of a.
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It follows that P1 = P2 = P3 = 0, P4 = P5 = 1, P6 = 2, P13 = 1.

(2) and (3): in the notation of (2) of Theorem 1.4 we let G= Z/10; in

characteristic 6= 2, 5, G is isomorphic to a subgroup of any elliptic curve. In

order to obtain a curve C2 with an action of G such that C2/G∼= P1 we

consider a G-Galois covering C2 of P1 branched in 3 points, and with local

monodromies

(5), (4), (1).

This exists in characteristic zero by Riemann’s existence theorem, since the

sum of the three local monodromies is 10, which equals zero in G. Indeed,

the resulting curve is defined by the affine equation y2 = x5 − 1 and we

obtain therefore such a smooth curve for each characteristic 6= 2, 5.

The fibration f : S→ C2/G∼= P1 is elliptic and has exactly three singular

fibers, with multiplicities 2, 5, 10. It follows that

Pn(S) = max

{
0, −2n+ 1 +

[
n

2

]
+

[
4n

5

]
+

[
9n

10

]}
.

Follows that P1 = P2 = P3 = 0, P4 = P5 = P6 = P7 = 1, P8 = P9 = 2, P10 =

3, P11 = 1, P12 = P13 = 2.

In the case of properly quasielliptic fibrations, we shall use some result of

Raynaud, [31], and a corollary developed by Katsura and Ueno [23, Lemmas

2.3 and 2.4].

Given a multiple fiber mF ′ we denote by ωn :=OnF ′(KS + nF ′) the

dualizing sheaf of nF ′.

Observe that F ′ is an indecomposable divisor of elliptic type (see [27,

p. 330]2 for the definition), hence (see [27, p. 332] [12, Theorem 3.3]) for any

degree-zero divisor L on F ′, we have h0(OF ′(L)) = h1(OF ′(L)), and these

dimensions are either = 0, or = 1, the latter case occurring if and only if

OF ′(L)∼=OF ′ .
Consider now the exact sequence

0→OF ′(−(n− 1)F ′)→OnF ′ →O(n−1)F ′ → 0,

and apply the previous remark for L=−(n− 1)F ′ to deduce that

h0(OnF ′) = h0(O(n−1)F ′) or = h0(O(n−1)F ′) + 1.

2In Mumford’s definition it is called “indecomposable of canonical type.”
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The second equality holds only if

(∗) OF ′((n− 1)F ′)∼=OF ′ .

Conversely, if (∗) holds, either h0(OnF ′) = h0(O(n−1)F ′) and h1(OnF ′) =

h1(O(n−1)F ′), or both h0(OnF ′) = h0(O(n−1)F ′) + 1 and h1(OnF ′) =

h1(O(n−1)F ′) + 1.

This in any case shows that the function h0(OnF ′) is monotonously

nondecreasing. One says that n is a jumping value if n> 1 and h0(OnF ′) =

h0(O(n−1)F ′) + 1. Considering all the n> 1, we can then define the first

jumping value, the second, and so on (they are then clearly > 2).

Recall now:

Proposition 3.5. [5, Proposition 4] Since (OF ′i (F
′
i )) is a torsion ele-

ment in the Picard group of F ′i , we consider its torsion order:

νi := order(OF ′i (F
′
i )).

We have then

(1) νi divides both mi and ai + 1;

(2) letting p= char(k), there exists an integer ei > 0 such that mi = νi · pei ;
(3) h0(F ′i ,O(νi+1)F ′i

) = 2, h0(Fi,OνiF ′i ) = 1, so that νi + 1 is a jumping

value;

(4) h0(F ′i ,OrF ′i ) is a nondecreasing function of r.

Proof. In the proof we suppress the subscripts.

(4) follows from the above discussion.

(3) consider the exact sequence:

0→OF ′ ∼=O(ν+1)F ′(−νF ′)→O(ν+1)F ′ →OνF ′ → 0.

Passing to the exact cohomology sequence we get

0→ k ∼=H0(O(ν+1)F ′(−νF ′))→H0(O(ν+1)F ′)→H0(OνF ′)→ · · · .

By our previous argument, we see that H0(OνF ′)' k. Since

H0(O(ν+1)F ′(−νF ′)) is a space of functions which have value zero on

F ′, and the constants in H0(O(ν+1)F ) are mapped to constants in

H0(OνF ′), we see that h0(O(ν+1)F ′) = 2.
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(1) ν divides m since mF ′ is trivial in a neighborhood of F ′.

Note that OF ′((a+ 1)F )' ωF ′ , ωF ′ is nef and has degree zero and

h0(ωF ′) = h1(OF ′) = h0(OF ′) = 1. Since F ′ is indecomposable of elliptic

type, from the previous discussion, we have ωF ′ 'OF ′ , hence ν|(a+ 1).

(2) Set on := Ord(OnF ′(F ′)). Since OnF ′(mF ′) is trivial for any n> 1, we

have on|m. Using Lemma 3.8 (ii) we see that on−1 divides on and on = penν

for some nonnegative integer en. Noting that m is the order of F ′ in the

formal neighborhood of F ′ (cf. [30, Proposition 6.1.11 (3)]) it follows that

m|on for large n (cf. [30, Lemme 6.4.4]), hence m= on for some large n,

therefore m= peν for some e> 0.

Using Proposition 3.5, we get the following corollary:

Corollary 3.6. [5, p. 30, Corollary] If h1(S,OS) 6 1, we have either

ai =mi − 1

or

ai =mi − 1− νi.

More precise results are the following two lemmas of Raynaud (cf. [31], [8,

Section 2]).

Lemma 3.7. [31, Corollaire 3.7.6], [8, Lemma 2.1.8] Let f : S→ C be an

elliptic or quasielliptic fibration with f−1(q) =mF ′ a multiple fiber over

q ∈ C. Then for any integer n> 2:

(i) The dualizing sheaf ωn :=OnF ′(KS + nF ′) of nF ′ is nontrivial iff

h0(ωn) = h0(ωn−1).

(ii) ωn is trivial iff h0(ωn) = h0(ωn−1) + 1.

Lemma 3.8. [31, Lemma 3.7.7] Notation being as in Lemma 3.7,

observe that the invertible sheaves OnF ′(F ′) are torsion elements in the

Picard group of nF ′. There are only two possibilities for their torsion orders.

Setting on := Ord(OnF ′(F ′)) (hence o1 = ν), we have

(i) on = on−1;

(ii) on = p on−1.

Moreover, case (ii) occurs only if ωn is trivial.
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Proof. Setting N :=OF ′(−(n− 1)F ′), we consider the following two

exact sequences:

0→N→OnF ′ →O(n−1)F ′ → 0.(2)

0→ 1 + N→O∗nF ′ →O∗(n−1)F ′ → 0.(3)

Since N2 = 0, the map x 7→ 1 + x defines an isomorphism of abelian sheaves:

β : N' 1 + N.

Taking the induced long exact sequences of (2) and (3) and observing that

H2(F ′,N)'H2(F ′, 1 + N) = 0, we get

(4) H0(O(n−1)F ′)
∂−→H1(N)→H1(OnF ′)

α−→H1(O(n−1)F ′)→ 0

and

(5) H0(O∗(n−1)F ′)
∂∗−→H1(1 + N)→ Pic(nF ′)

α∗−→ Pic((n− 1)F ′)→ 0.

By a result of Oort (cf. [29, §6]), we have that H1(β)(Im(∂)) = Im(∂∗).

Since H1(N) is a Z/pZ-vector space, we see that any element in ker(α∗)

has pth power equal to 1, hence we have on = on−1 or on = pon−1.

If on = pon−1, then ker(α∗) 6= {1} and hence ker(α) 6= {0}. Since

h1(nF ′,OnF ′) = h0(ωn), by Lemma 3.7 we have that h0(ωn) = h0(ωn−1) + 1

and ωn is trivial.

Assume that we have a multiple fiber over the point qj , and denote by tj
the length of the skyscraper sheaf T at qj .

Then, by the base change theorem we have

tj + 1 = rkqjR1f∗(OS) = h1(OmjF ′j
) = h0(OmjF ′j

).

The two lemmas by Raynaud imply the following useful corollary.

Corollary 3.9. [31, Lemma 3.7.9], [8, Lemma 2.1.11], [23, Lemmas

2.3–2.4]

(1) Let n
(i)
j be the ith jumping value of a wild fiber mF ′j (recall that n

(i)
j > 2).

Setting νj := Ord(OF ′j (F
′
j)), we have

n
(1)
j = νj + 1,

https://doi.org/10.1017/nmj.2018.8 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2018.8


214 F. CATANESE AND B. LI

and

n
(2)
j =

2νj + 1 if Ord(O(νj+1)F ′j
) = νj ,

(p+ 1)νj + 1 if Ord(O(νj+1)F ′j
) = pνj .

(2) If h0(OmF ′j ) = 2⇔ tj = 1, then aj =mj − 1 or aj =mj − 1− νj.
(3) If h0(OmF ′j ) = 3⇔ tj = 2, then aj =mj − 1, aj =mj − 1− νj, aj =

mj − 1− 2νj, or aj =mj − 1− (p+ 1)νj.

Finally, Katsura and Ueno proved for elliptic fibrations in characteristic

p the analogue of a result which in characteristic zero follows from the

description of the fundamental group of the complement of a finite set of

points on P1.

Definition 3.10. [23, Definition 3.1] Let f : S→ P1 be an elliptic fibra-

tion with χ(S,OS) = 0, let miF
′
i , i= 1, . . . , k, be the multiple fibers, and

let as usual νi be the order of OF ′i (F
′
i ).

Then S is said to be of type (m1, . . . , mr|ν1, . . . , νr).

Definition 3.11. [23, Definition 3.2] Given 1 6 i6 r, we say that two

sequences (m1, . . . , mr|ν1, . . . , νr) satisfy condition Ui, if there exist inte-

gers n1, . . . , nr (depending on i) such that

• ni ≡ 1 mod νi and

•
∑r

j=1 nj/mj ∈ Z.

Theorem 3.12. [23, Theorem 3.3] In the situation of Definition 3.10,

the sequences (m1, . . . , mr|ν1, . . . , νr) satisfy condition Ui ∀i= 1, 2, . . . , r.

§4. Proof of the main theorem 3.3

Let f : S→ C be a relatively minimal properly elliptic or properly

quasielliptic fibration. Set here g := g(C) and set t := length(T ), where T is

the torsion sheaf appearing in the canonical bundle formula.

The first important observation is that in the canonical bundle formula

the term χ(OS) is > 0, by Mumford’s extension of Castelnuovo’s theorem

[27, p. 330].

The case χ(OS) + t> 1 and g > 1 follows from the inequality

Pn(S) = h0(OS(nKS)) > h0(OC(nδ)) > g + (n− 1) > n.

If g > 2, and χ(OS) = t= 0, then we are done, since Pn > (2n− 1)(g − 1).
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If instead g = 1 and χ(OS) = t= 0, then there are no wild fibers, hence

nKS =
∑
j

n(mj − 1)F ′j =D +mj

{
n(mj − 1)

mj

}
F ′j ,

where D :=
∑

j [n(mj − 1)/mj ]Fj .

Since the canonical divisor is nef and not numerically trivial, we have∑
j(1− 1/mj)> 0, therefore D is an effective divisor (with integral coeffi-

cients).

Hence

(∗∗) Pn(S) >
∑
j

[
n(mj − 1)

mj

]
>

[
n

2

]
.

We may therefore assume that g = 0.

If g = 0, and χ(OS) + t> 3, then Pn(S) > n+ 1.

If g = t= 0, and χ(OS) = 2, then again there are no wild fibers and the

same argument as in (∗∗) yields

Pn(S) > 1 +
∑
j

[
n(mj − 1)

mj

]
> 1 +

[
n

2

]
.

We are left with the following possibilities:

Case (1) χ(OS) = 1, t= 1 and g = 0;

Case (2) χ(OS) = 0, t= 2 and g = 0;

Case (3) χ(OS) = 1, t= 0 and g = 0;

Case (4) χ(OS) = 0, t= 1 and g = 0;

Case (5) χ(OS) = t= 0 and g = 0.

The next lemma shows that, except possibly in cases (1) and (3), we have

only to consider the properly elliptic case.

Lemma 4.1. There exists no quasielliptic fibration f : S→ P1 with

χ(OS) = 0.

Proof. Assume we have such a fibration.

Let α : S→A be the Albanese map of S and assume that q := dim(A)>1.

Since a general fiber of f is a cuspidal rational curve, whose image in A must

be a single point, we see that α factors through f . Hence the image of α is a

point: since the image generates A, A is a point, and q = 0, a contradiction.

We conclude that q = 0, hence pg > h and χ(OS) > 1, a contradiction.
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Let us now proceed with the proof.

Lemma 4.2. We write

KS ≡ dF +
∑
i

aiF
′
i ,

where F is a fiber of f . Then we have pg(S) = max(0, d+ 1).

Proof. Indeed, if pg > 1, we can write |KS |= |M |+ Φ, where Φ is the

fixed part, and where the movable part is of the form (pg − 1)F .

Hence KS is linearly equivalent to an effective divisor D of the form

(pg − 1)F +
∑

i biF
′
i , with 0 6 bi <mi.

If d> 0, then pg = d+ 1 and the fixed part Φ =
∑

i aiF
′
i .

Otherwise, if d < 0 , and we assume pg > 1 we have a linear equivalence

of effective divisors: (|d|+ pg − 1)F +
∑

i biF
′
i ≡

∑
i aiF

′
i , which shows that

|d|+ pg − 1 = 0, a contradiction.

Hence in our cases we have respectively:

Case (1) χ(OS) = 1, t= 1, h= 1, pg = 1 and g = 0;
Case (2) χ(OS) = 0, t= 2, h= 2, pg = 1 and g = 0;
Case (3) χ(OS) = 1, t= 0, h= 1, pg = 0 and g = 0;
Case (4) χ(OS) = 0, t= 1, h= 1, pg = 0 and g = 0;
Case (5) χ(OS) = t= 0, h= 1, pg = 0 and g = 0.

Observe therefore that Corollary 3.6 applies in all cases except (2).

Case (1): KS ≡
∑

i aiF
′
i , and if there exists a multiple fiber for which

aj =mj − 1, we are done, since Pn > [n/2] + 1.

Otherwise, there is exactly one multiple fiber, wild, with tj = 1, and by

Corollary 3.6 and Proposition 3.5 a := aj satisfies

a=m− 1− ν = ν(pe − 1)− 1> 0.

If ν = 1, we obtain a/m=m− 2/m> 1/3. If ν > 2, then we get

a

m
>
pe − 1− 1

2

pe
=

2pe − 3

2pe
>

1

4
.

Thus the inequality

Pn >


[
n

3

]
+ 1 if ν = 1,[

n

4

]
+ 1 if ν > 2,

holds.
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Case (2): Again KS ≡
∑

i aiF
′
i , and if there exists a multiple fiber for

which aj =mj − 1, we are done, since then Pn > [n/2] + 1.

Otherwise there are only wild fibers, either one with t1 = 2, or two with

t1 = t2 = 1. In the latter case by Corollary 3.9 we have aj =mj − 1− νj ,
and we argue as in Case (1).

In the former case, we are left (set m :=m1, a := a1, and ν := ν1) with the

case a=m− 1− 2ν or a=m− 1− (p+ 1)ν. It is clear that the first case

will give a better estimate than the second. Thus, we have only to consider

the second case.

Here
a

m
=
pe − p− 1− 1

ν

pe
,

which is a monotonously increasing function of e, ν, and p.

We must have e> 2. For e= 2 and ν = 1, we must have p> 3.

In conclusion, for ν = 1, a/m> min(4/9, 4/8) = 4/9⇒ Pn > [4n/9] + 1.

Instead, for ν > 2, the minimum is given in the case p= 2, e= 2 and ν = 2,

and we obtain a/m> 1/8.

In this case, we get Pn = [n/8] + 1, which would be a limit case.3

Case (3): Here KS ≡−F +
∑r

i aiF
′
i , where F is a fiber of f . Since KS is

Q-linearly equivalent to an effective divisor, for any ample divisor H on S,

we have

KS .H =

(
− 1 +

r∑
i=1

ai
mi

)
F.H > 0,

which is equivalent to

(>) −1 +

r∑
i=1

ai
mi

> 0.

It follows that r > 2. The condition t= 0 implies that there is no wild fiber,

hence ai =mi − 1 for all i.

If r > 3, one sees easily that Pn > [n/2] + 1 and we are done.

If r = 2, we have at least one mi > 3, therefore we get

Pn >

[
n

2

]
+

[
2n

3

]
− n+ 1.

We have Pn > 1 for n> 3 and Pn > 2 for n> 8.

3However the actual existence of this case with only one multiple fiber, and the above
numerical characters, is unclear to us.
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Case (4): Here KS ≡−F +
∑r

i aiF
′
i , where F is a fiber of f . For the

same reason as in Case (3), we have r > 2. Since t= 1, there exists exactly

one wild fiber, say m1F
′
1, with t1 = 1: by Corollary 3.6 and Proposition 3.5

a1 =m1 − 1, or a1 =m1 − 1− ν1. Hence we can rewrite KS as follows:

KS ≡−F + a1F
′
1 +

r∑
i=2

(mi − 1)F ′i ,

so that

Pn = max

(
0, 1− n+

[
na1
m1

]
+

r∑
i=2

[
n(mi − 1)

mi

])
.

If r > 4, or if r = 3 and a1 =m1 − 1, we have Pn > 1− n+ 3[n/2], and

writing n= 2k + s, s ∈ {0, 1}, we get Pn > 1− 2k − s+ 3k = 1 + k − s,
which is > 1 for n> 2, and > 2 for n> 4.

In the case where r = 3 and a1 =m1− 1− ν1, consider first the case a1= 0.

Then (>) implies that m2 or m3 > 3, and we get

Pn > 1− n+

[
2n

3

]
+

[
n

2

]
.

Writing n= 2k + s with s ∈ {0, 1}, we get

Pn > 1− 2k − s+ k +

[
k + 2s

3

]
+ k = 1 +

[
k + 2s

3

]
− s,

which is 
1 +

[
k

3

]
if s= 0,[

k + 2

3

]
if s= 1.

Hence we get Pn > 1 for n> 2, P6 > 2 and Pn > 2 for n> 8.

If a1 > 0, we are done if m2 or m3 is > 3. The remaining case is m2 =

m3 = 2, and Condition U1 implies that there exists an integer l such that

(lν1 + 1)/(pe1ν1) ∈ Z, which implies ν1 = 1. Therefore we conclude that

a1
m1

=
m1 − 1− ν1

m1
>
m1 − 2

m1
,

whence m1 > 3 and a1/m1 > 1/3. Hence we have

Pn > 1− n+

[
n

3

]
+ 2

[
n

2

]
.
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We get

Pn >


1 +

[
2k

3

]
n= 2k[

2k + 1

3

]
n= 2k + 1.

Hence we have P2 > 1, P4 > 2, and Pn > 2 for n> 6.

We are left with the case r = 2.

Assume first that a1 =m1 − 1: the situation is then identical to the case

r = 3 and a1 = 0, and we are done.

We may therefore assume that a1 =m1 − 1− ν1 > 0, and Inequality (>)

becomes now

(>>) 1−
1 + 1

ν1

pe1
− 1

m2
> 0,

and we have

Pn > 1− n+

[
n(pe1 − 1− 1

ν1
)

pe1

]
+

[
n(m2 − 1)

m2

]
.

Conditions U1 and U2 imply that ν1|m2 and m2|m1 = pe1ν1, hence m2 = ν1p
ε

and ε6 e1.

If ν1 = 1, then an immediate consequence is that m2 > p. Moreover,

combining with (>>), we get pe1 > 5 or pe1 = pε = 4; however, in the latter

case, we have

(∗∗∗) Pn > fn := 1− n+

[
n

2

]
+

[
3n

4

]
= fs + k, n= 4k + s, 0 6 s6 3,

fs = 1, 0, 1, 1, s= 0, 1, 2, 3.

Let us consider the former case:

• If p> 5, then m2 > 5, hence Pn > fn := 1− n+ [3n/5] + [4n/5]. Writing

n= 5k + s with 0 6 s6 4, we get

Pn > fn = 2k + fs, fs = 1, 0, 1, 1, 2, s= 0, 1, 2, 3, 4.

Therefore we have Pn > 1 for n> 2, and Pn > 2 for n> 4.
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• If p= 3, then e1 > 2 and m2 > 3. It follows that Pn > fn := 1− n+

[7n/9] + [2n/3]. Writing n= 3k + s with 0 6 s6 2, we get

Pn > 1− 3k − s+ 2k +

[
3k + 7s

9

]
+ 2k +

[
2s

3

]
= 1 + k +

[
3k + 7s

9

]
+

[
2s

3

]
− s.

Hence Pn > 1 + k except for the case k = 0 and s= 1, which implies that

Pn > 1 for n> 2, and Pn > 2 for n> 3.

• If finally p= 2, observe that e1 > 3 and m2 > 2, hence we have Pn > fn :=

1− n+ [3n/4] + [n/2]. This case which was already treated in (∗ ∗ ∗).

In the following, we assume ν1 > 2.

• If pe1 > 4, we have that Pn > 1− n+ [5n/8] + [n/2]. Writing n= 2k + s

with s ∈ {0, 1}, we get

Pn > 1− 2k − s+ k +

[
2k + 5s

8

]
+ k

= 1 +

[
2k + 5s

8

]
− s.

It follows that Pn > 1 + [k/4] for s= 0 and Pn > [(2k + 5)/8] for s= 1.

In the worst case where pe1 = 4 and ν1 =m2 = 2 (this case does not

actually occur by Condition U1), we have that P1 = P3 = 0, P2 = P4 =

P5 = P6 = P7 = 1, P8 = 2 and Pn > 2 for n> 12.

• If pe1 = 3, we cannot have m2 = ν1 = 2, since this would contradict

inequality (>>). Hence we have either m2, ν1 > 3 or ν1 = 2, m2 = 6. We

obtain

(∗1) Pn > 1− n+

[
5n

9

]
+

[
2n

3

]
respectively

(∗2) Pn > 1− n+

[
n

2

]
+

[
5n

6

]
.

For (∗1), writing n= 3k + s with 0 6 s6 2, we get

Pn > 1 +

[
6k + 5s

9

]
+

[
2s

3

]
− s,
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which implies that Pn > 1 + [2k/3] for s= 0, Pn > [(6k + 5)/9] for s= 1

and Pn > 1 + [(6k + 1)/9] for s= 2. Hence Pn > 1 for n> 2, P6 > 2, and

Pn > 2 for n> 8.

For (∗2), writing n= 2k + s with s ∈ {0, 1}, we get

Pn > 1 +

[
4k + 5s

6

]
− s,

it follows that Pn > 1 + [2k/3] for s= 0 and Pn > [(4k + 5)/6] for s= 1.

We see that Pn > 1 for n> 2, and Pn > 2 for n> 4.

• If pe1 = 2, we have either m2 = ν1, ν1 > 4 or m2 = 2ν1, ν1 > 3. It follows

that

(∗3) Pn > 1− n+

[
3n

8

]
+

[
3n

4

]
respectively

(∗4) Pn > 1− n+

[
n

3

]
+

[
5n

6

]
.

For (∗3), writing n= 4k + s with 0 6 s6 3, we get

Pn > 1 +

[
4k + 3s

8

]
+

[
3s

4

]
− s,

which equals 1 + [k/2] for s= 0, [(4k + 3)/8] for s= 1, [(4k + 6)/8] for s=

2, and 1 + [(4k + 1)/8] for s= 3. In the worst numerical case ν1 =m2 = 4

(this case does not actually occur by Condition U1), we have P3 = P4 =

P6 = P7 = 1, P2 = P5 = 0, P8 = 2, P12 = 2, P13 = 1, and Pn > 2 for n> 14.

For (∗4), writing n= 3k + s with 0 6 s6 2, we get

Pn > 1 +

[
3k + 5s

6

]
− s,

hence Pn > 1 + [k/2] for s= 0, > [(3k + 5)/6] for s= 1, and > [(3k + 4)/6]

for s= 2. We conclude that Pn > 1 for n> 3, P6 > 2, and Pn > 2 for n> 9.

Case (5): Here KS ≡−2F +
∑r

i=1(mi − 1)F ′i , since t= 0 implies that

there is no wild fiber.
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In view of Theorem 3.12 this situation is exactly as in the classical case

(of characteristic 0). However, our main theorem is new also in the classical

case, so we proceed to treat case (4).

We may assume that

m1 6m2 6 · · ·6mr,

and we recall that

(?) Pn = max

(
0, 1− 2n+

∑
j

[
n(mj − 1)

mj

])
.

For r > 5 we have Pn > 1− 2n+ 5[n/2], and writing n= 2k + s, s ∈
{0, 1}, we get Pn > 1− 4k − 2s+ 5k = 1 + k − 2s, which is at least 1 for

n> 4, and > 2 for n> 6.

Assume r = 4 and observe once more that the right hand side of (?)

is an increasing function of the multiplicities mj , hence the worst case is

(2, 2, 3, 3). However, the worst case would be (2, 2, 2, 3), this case does not

occur, since Condition U4 is not fulfilled.

Hence we obtain

Pn > 1− 2n+ 2

[
n

2

]
+ 2

[
2n

3

]
= 1 +

(
2

[
n

2

]
− n

)
+

(
2

[
2n

3

]
− n

)
.

For even numbers n= 2k, we get Pn = 1 + 2[k/3], which is > 1, and > 3

whenever n> 6. For odd numbers n= 2k + 1 we get

Pn = 2

[
4k + 2

3

]
− 2k − 1 = 2

[
k + 2

3

]
− 1,

which is > 1 for n> 3, > 3 whenever n> 9.

In the case r = 3, note that Conditions U1, U2, U3 are equivalent to

the condition that mk divides LCM(mi, mj) for each choice of {i, j, k}=

{1, 2, 3}.
Assume that m1 > 4: by monotonicity, the worst case is (4, 4, 4), where,

setting n= 4k + s, 0 6 s6 3,

Pn > 3

[
3n

4

]
− 2n+ 1 = 3

(
3k +

[
3s

4

])
− 8k − 2s+ 1 = 1 + k + 3

[
3s

4

]
− 2s.
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We get

• k + 1 for s= 0, 3;

• k for s= 2;

• k − 1 for s= 1.

Hence P3 = 1, P4 = 2, Pn > 2 for n> 10.

Assume that m1 = 3. Then 3 divides LCM(m2, m3). Hence either 3

divides both m2 and m3 or 3 does not divide m2 or m3.

Keeping in mind the positivity of KS , equivalent here to
∑

j (1/mj)< 1,

each case leads to the worst possible case, i.e., one maximizing
∑

j (1/mj)<

1.

(1) (3, 3a, 3b), a|b, b|a⇒ a= b⇒ (3, 3a, 3a): the worst case (3, 6, 6);

(2) (3, c, 3b) c not divisible by 3, 3b|3c, c|b⇒ b= c⇒ (3, c, 3c): worst case

(3, 4, 12);

(3) (3, 3a, c) c not divisible by 3, 3a|3c, c|a⇒ a= c⇒ (3, 3a, a): same as

in the previous case.

Recall the plurigenus formula, here it gives respectively

(3, 6, 6) : Pn = max(0, F (n)), F (n) := 1− 2n+

[
2n

3

]
+ 2

[
5n

6

]
.

(3, 4, 12) : Pn = max(0, F (n)), F (n) := 1− 2n+

[
2n

3

]
+

[
3n

4

]
+

[
11n

12

]
.

In the former case, writing n= 6k + s, 0 6 s6 5, we get

F (n) = 2k + F (s), and F (s) = 1,−1, 0, 1, 1, 2(s= 0, 1, . . . 5)

hence P3 > 1, P5 > 2, and Pn > 2 for n> 8.

In the latter case, writing n= 12k + s, 0 6 s6 11, we get

F (n) = 4k + F (s), F (0) = 1⇒ F (s) =−s+

[
2s

3

]
+

[
3s

4

]
for s> 1,

F (s) = 1,−1, 0, 1, 1, 1, 2, 2, 3, 3, 3, 4, 0 6 s6 11,

hence Pn > 1 for n> 3, Pn > 2 for n> 6.

Assume finally m1 = 2. Then one of m2 and m3 is even. If mj = c is odd

and mi = 2b, then c|b and 2b|2c⇒ b= c, hence we get (2, b, 2b) and the worst

case is (2, 5, 10), which was already considered in Remark 3.4.
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Similarly, in case (2, 2a, 2b) again a= b, hence we get a triple (2, 2a, 2a)

and the worst case is the case (2, 6, 6), which was already considered in

Remark 3.4.

Remark 4.3. Our analysis allows us also to see (cf. Remark 3.4) which

the possible cases are where the estimates are sharp in the main theorem.

• (2): P1 = P2 = P3 = 0 in Case (4) for triples (2, b, 2b), b> 5, 2 - b, or

(2, 2a, 2a), a> 3.

• (3): Pn 6 1 for n6 7 in Case (4) for the triple (2, 5, 10) and possibly in

Case (2) with one wild fiber and p= ν = e= 2.

• (4): P13 = 1 in Case (4) for the triple (2, 6, 6).
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