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Abstract. Gravity is nearly a universal constant in the cusp of an NFW galaxy halo. Inside
this external field an isothermal gas sphere will collapse and trigger a starburst if above a
critical central pressure. Thus formed spheroidal stellar systems have Sersic-profile and satisfy
the Faber-Jackson relation. The process is consistent with observed starbursts. We also recover
the MB H −σ∗ relation, if the gas collapse is regulated or resisted by the feedback from radiation
from the central BH.
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1. Tight correlation of formation of black holes and bulges
The formation of central black holes (BHs) in galaxies is likely a rapid process since

most quasars have already formed at redshift z > 2. The co-relation between the BH
mass and the velocity dispersion of the spheroidal (bulge) component is so tight that it
is hard to explain unless bulges form as fast as BHs to keep their growth neck-to-neck.
While at the present day the BH accretion rate is completely decoupled from the bulge
growth, it is possible that their growth was correlated during the violent feedbacks at
high redshift. Indeed starburst activities peak at similar redshifts as quasars as a whole.

In two recent papers by Xu, Wu, & Zhao (2007) and Xu & Wu (2007), we propose
that bulges can form by a rapid collapse due to radial instability of isothermal gas. This
model has the nice feature of forming bulges before disks.

Here we iterate the key steps of the above scenario, but without invoking the gravother-
mal instability as in Xu et al. (2007). Instead we follow Elmegreen (1999) and find the
equilibrium configurations of the maximum gas mass inside an external gravity. We also
generalize the argument to a star-gas mixture to show we can form bulges with a reason-
able profile. Assuming the rapid star bursts in the bulge are regulated by the accretion-
driven wind of the central black hole, we derive the BH mass-stellar dispersion relation.

2. A universal constant gravity scale for dark halos
In the Cold Dark Matter (CDM) framework, baryons fall into the potential well of

CDM, cool and condense into stars. Here we consider the properties of gas and stellar
equilibrium in the external field of dark matter.

The background dark matter distribution is often described by the NFW density dis-
tribution for dark matter (Navarro, Frenk & White 1997), which has a density ρN F W ≈
ρsrs/r inside a scale radius rs . In the central region which concerns the galaxy bulge, we
note an interesting universal scale for the dark halo gravity

gDM(r) =
GMDM (r)

r2 = 2πGΠ ∼ 10−10m sec−2Ξ, Ξ ∼ 1 (2.1)
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where Π = ρsrs ∼ 130M�pc−2Ξ is a column density and Ξ(Mvir , z, c) ∼ 1 is a shallow
function of the halo virial mass Mvir , the redshift, and the concentration c. In other
words, the gas where formed the bulge was imbedded in a uniform external field from
the dark matter potential. We can also define a dark matter central pressure PDM for
later use:

PDM ≡ g2
DM /(4πG) = gDM Π/2 = ρDM (r) · gDM · (r/2). (2.2)

3. Maximum gas mass sustainable by halo gravity
In general for a gas and a stellar sphere imbedded in an external DM gravity, Consider

imbedded in an external DM gravity an isothermal gas sphere ρ(r) of sound speed σ, and
an isotropic stellar sphere ρ∗(r) of dispersion σ∗ in quasi-static equilibrium, the potential
at a given radius r is

Φ =
∫ r

0

(
gDM +

GM + GM∗
r2

)
dr. (3.1)

The equilibrium satisfies the equations(
gDM +

GM + GM∗
r2

)
= −σ2

1d ln[σ2ρ(r)]
dr

= −σ2
∗
d ln[σ2

∗ρ∗(r)]
dr

, (3.2)

4πr2 =
dM(r)
ρ(r)dr

=
dM∗(r)
ρ∗(r)dr

, (3.3)

where we define σ2
1 ≡ (1 + Γ)σ2 . Here a position-independent feedback factor Γ � 1 is

introduced because the radiation from the star burst and the accreting central black hole
can generate an additional opacity-induced pressure (ρσ2)Γ on the dusty gas sphere (but
not the stellar sphere), countering the gravity.

First consider the stage where the stellar mass is negligible, so M∗ � M . Rewrite the
equations in term of the following dimensionless mass, radius and density,

m ≡ M

σ4
1gDM /G

, x(m) ≡ r

σ2
1/gDM

, p(m) =
ρ(M)σ2

1

g2
DM (4πG)−1 , (3.4)

and express the rescaled gas mass m as the independent coordinate, the problem is
recasted to solving the pair of dimensionless ODEs

−x2dp(m)
dm

= 1 +
m

x(m)2 ,
x2dx(m)

dm
=

1
p(m)

. (3.5)

For each value of p(0), the gas density profile under the hydrostatic equilibrium can
be totally determined with the following initial conditions at the center for the radius
x(0) = 0 and the rescaled density

p0 = p(0) =
ρ0σ

2
1

PDM
, PDM ≡ g2

DM

4πG
, (3.6)

where p(0)/(1 + Γ) equals the ratio of the gas central pressure ρ0σ
2 vs the dark matter’s

pressure under self-gravity PDM .
Computing the gas equilibrium for a range of core pressure p0 (see figure 1), we find

that the gas density generally falls montonically with radius or mass. All models have
finite mass out to infinite radius where ρ = 0. This interesting behavior is due to the
deep potential well of the external gravity, which makes the isothermal density drop
exponentially with radius as − σ 2

1
gD M

ln ρ(M )
ρ0

∼ r(M), hence the mass converges quickly if
neglecting self-gravity.
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The finite mass of these gas spheres will give another interesting behavior. There is a
critical core pressure

p0 =
ρ0σ

2
1

PDM
≈ 30 (3.7)

above which the gas density ρ(M) of a parcell of gas dM no longer increases monoton-
ically with an increase of central pressure, and in fact the total mass will decrease with
increasing p0 after it reaches a maximum value

Mmax ≈ 4.3
(

σ4
1

gDM G

)
. (3.8)

These limits on gas central pressure and total mass are related to the instability first
discussed by Elmgreen (1999). Gas sphere above certain critical mass Mmax ∝ σ4

1 or
critical central gas density or pressure do not have stable solutions; adding tiny amount
of gas would lead to collapse. It is interesting to speculate that the bulge formation
originates from such a gas instability.

4. Post-starburst mass profile
Our models are also generalizable while gas is converting to stars. The simplest solution

would be a model where stars trace gas radial distribution, so we have

ρ∗(r)
ρ(r)

=
M∗(r)
M(r)

=
f∗

1 − f∗
,

σ2
∗

σ2 = 1 + Γ � 1, (4.1)

where the position-independent factor f∗(t) is the fraction of gas formed into stars at
time t. Such a solution is possible if the feedback is regulated by star formation. Rescaling
the gas-only solution, we obtain the stability criterion

ρ0σ
2

(1 − f∗)/(1 + Γ)
=

ρ∗,0σ
2
∗

f∗
� 30g2

DM

2πG
. (4.2)

Gas can turn into stars quasi-staticly where maintaining the above equality at the
critical density and mass. Such formed stellar system would have a total mass

M∞
∗ =

4.3σ4
∗

gDM G
∼ 4 × 1011M�

( σ∗
200kms−1

)4
, (4.3)

and a profile

M∗(r)
M∞

∗ f∗(t)
=

∫ y

0
j(y)(4πy2dy), y =

r

σ2
∗g

−1
DM

, j(y) ≈ 0.64y−1 exp(−1.6y1/1.2),

(4.4)
where j(y) is numerically fitted by a Sersic profile (of the volume density with a total mass
unity). Integrating the density, we find the central surface density I∗(0)f−1

∗ ∼ 2gDM /G ∼
10Π ∼ 1300M�pc−2 for these systems, independent of the initial gas dispersion σ and the
feedback parameter Γ. Eventually f∗ = 1 when the gas is exhausted by star formation,
and we form a stellar system with a bulge-like density profile. Our model resembles
real bulges in term of the central brightness I∗(0) and the Faber-Jackson-like relation
M∞

∗ ∼ σ4
∗ between the total mass and stellar dispersion.

During the star burst (SB), the central Black Hole (BH) accretes. the SB and BH emit
photons with a luminosity LSB+BH , which diffuse out of the gas sphere while keeping
the gas isothermal. The momentum deposite rate 2LS B + B H

c of photons drives an overall
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Figure 1. shows mass distribution of an isothermal gas sphere embedded in a NFW dark
matter cusp of a uniform gravity gD M ∼ 10−10m/sec2 for models (from bottom to top) with
increasing dimensionless central gas pressure p0 = 1, 3, 10 (in solid green), and p0 = 30, 100
(black dashed). Panel (a) shows the models in log p(m) vs log x(m) (rescaled density vs. rescaled
radius x(m) = r

σ 2 /gD M
). Note how the black curves are above the green curves at small radii,

but dip below the green curves at large radii, a feature of reaching a maximum in total gas mass
at the critical pressure (p0 = 30). Also shown is a Sersic (n = 1.2) profile (red circles). Panel (b)
shows ln p(m) (the logarithm of rescaled gas density or pressure, p(m) = ρ (M )σ 2

g 2
D M

/ (4π G ) ) as function

of the rescaled enclosed gas mass m = M/(σ4/G/gD M ), cf. eq. 3.4). Note the total gas mass
m increases with p0 until the critical value p0 ∼ 30, afterwards the mass decreases with central
pressure.

feedback force acting on the gas, which can be computed by

2LSB+BH

c
= F (t) =

∫ ∞

0
d(4πr2)(ρσ2)Γ ∼ 10(1 − f∗)Γ

1 + Γ
σ4
∗

G
∼ 2(1 − f∗)M∞

∗ gDM (4.5)

insensitive to Γ if Γ � 1. The luminosity and force are maximum initially and die out as
the star burst finishes. If the maximum luminosity at the onset of star burst is contributed
fifty-fifty between the luminosity of the SB and the Eddington luminosity of the BH, then
we obtain

MBH

108M�
=

LSB

1013L�
=

( σ∗
200kms−1

)4
, (4.6)

which agree with the observed scaling relations of the stellar dispersion σ∗ with the BH
mass and the star burst luminosity respectively. Assuming the usual SB efficiency of
0.001, the star formation time scale is 0.001M∞

∗ c2/LSB ∼ 0.04H−1
0 , comparable to the

free-fall time scale ∼ 0.1Gyr. The short time scales and high luminosity are consistent
with the assumption of violent feedback Γ � 1.
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