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Abstract
In this paper, we propose a sea current relative navigation method using an interacting multiple model (IMM) filter
with adaptive fading technique that can compensate an inaccurate sea current dynamics model. Due to the marine
environment, the underwater vehicles largely depend on inertial navigation. Unfortunately, since its performance
deteriorates with time, it is usually aided by another sensor. An electromagnetic-log (EM-log) and a Doppler
velocity log (DVL), which are mainly used in marine navigation, provide relative velocity measurements to the sea
currents, and hence require an accurate sea current dynamics model to fully utilise them. However, it is difficult
to reflect the actual sea current changes with just a single fixed model, resulting in degraded overall navigation
performance. Therefore, this paper proposes an IMM filter that can use multiple sea current dynamics models and
has sub-filters designed with adaptive fading extended Kalman filter (AFEKF) to compensate for the mismodelling
of sea current dynamics. The method is verified by simulation and shows a performance improvement comparable
to the optimal filter.

1. Introduction

Recently, underwater vehicles are operating in the ocean to perform a variety of missions. For such
operations, a proper navigation system that accurately estimates the position and the attitude of the
vehicles is required. The global navigation satellite system (GNSS) is a widely used navigation system
(Groves, 2013). However, since the satellite signal quickly attenuates below sea level, the inertial
navigation system (INS) is generally adopted under water (Titterton and Weston, 2004). Unfortunately,
the navigational error of INS tends to accumulate over time. Thus, an aiding system that can mitigate
this is required. Such aiding systems mainly used in underwater vehicles include long baseline (LBL),
ultra-short baseline (USBL), Doppler velocity log (DVL) and electromagnetic-log (EM-log). Among
them, systems such as LBL (Zhang et al., 2018) and USBL (Wang et al., 2020) require a separate
infrastructure. On the other hand, DVL (Yao et al., 2017, 2019; Zhu and He, 2020; Hou et al., 2021)
and EM-log (Vaisgant et al., 2011; Sun et al., 2015) are equipped in the vehicle’s body and are suitable
for voyages over long distances. These two sensors are similar in a sense that both provide the vehicle’s
relative velocity to the sea current to perform the relative navigation, but their principles are quite
different.

DVL measures the velocity of the vehicle relative to the ground, which is equal to the absolute velocity,
by measuring the Doppler shift of the frequency that occurs when the ultrasonic wave is emitted in the
direction of the seabed and returned. Meanwhile, because part of the ultrasonic wave is reflected off the
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underwater float unintentionally, it provides a relative velocity to the sea current rather than the ground
velocity: the further the sea floor, the more it captures the velocity relative to the sea current rather than
the ground. As DVL intermittently fails to provide any ground velocity, sea current relative navigation
using relative velocity to the sea current (Yao et al., 2019) has been studied. On the other hand, EM-log
is a device that provides relative velocity to the sea current from induced electromotive force based on
Faraday’s law. Hence, contrary to DVL, EM-log is not affected by the sea floor and is not detected by
other vessels or underwater vehicles.

To use the relative velocity to the sea current as measurement information, it is necessary to model the
motion of the sea current. However, it is difficult to model the sea current dynamics because it changes
irregularly, depending on various factors, such as wind and temperature. Therefore, in the recent study
(Yao et al., 2019), the motion of the sea current was approximated and used as the first-order Markov
model (Brown and Hwang, 2012). Nevertheless, since the first-order Markov model consists of only
two parameters, there is a limitation in capturing all the dynamics characteristics of the sea current that
change every moment. An inaccurate sea current dynamics model degrades the accuracy of navigation;
hence, a technique that can compensate for this is required to ensure the success of a prolonged
mission.

Therefore, an adaptive filtering technique is required to mitigate the effects of mismodelling the
dynamics of the sea current. The adaptive fading extended Kalman filter (AFEKF) is one of such
techniques that can compensate for either the inaccurate dynamics model or measurement model of
the conventional extended Kalman filter (EKF) using residuals. It has been used in the field of attitude
estimation (Johansen and Kristiansen, 2017), topography estimation (Haghighi and Pishkenari, 2021)
and fault detection (Kim et al., 2009) as a verified and promising adaptive technique. Still, there has not
yet been a precedent of applying the filter in modelling the sea current dynamics.

Another conceivable technique to mitigate the effects of sea current dynamics mismodelling is using
multiple models. The interacting multiple model (IMM), originated from the field of target tracking, is
the most representative technique that can consider multiple models, and has been widely applied to
navigation technology (Cho, 2014; Zhou and Guo, 2018). In particular, in the navigation field of marine
vehicles, IMM has been adopted to use multiple measurement models. Yao et al. (2017) has configured
an IMM with INS/DVL and zero velocity update (ZUPT), while Yao et al. (2019) and Zhu and He (2020)
have proposed an IMM with sub-filters that have different measurement covariance. Nevertheless, these
works have overlooked the effects of the mismodelling by simply adopting a single and fixed sea current
dynamics model.

In this paper, we propose a method of designing an IMM with AFEKF as sub-filters for the integrated
navigation of an underwater vehicle equipped with DVL or EM-log. Despite being more robust than
EKF, AFEKF with a single model still has a limited range that the filter can compensate for the inaccurate
sea current dynamics models. The composition of the IMM unites the range that each sub-filter can
cover, so that performance degradation due to the sea current dynamics mismodelling can be reduced.

The structure of this paper is as follows. Section 2 introduces a general sea current relative navigation
method using a single-model EKF. Section 3 introduces a preliminary of adaptive filtering technique to
improve the single-model EKF. In Section 4, IMM-AFEKF-based sea current relative navigation method
is proposed, and its performance is verified by computer simulation. Finally, Section 5 concludes this
paper.

2. Sea current relative navigation

Owing to its accumulating and gradually increasing error over time, INS requires an aiding sensor. In
underwater navigation, LBL, USBL, DVL and EM-log are used as such a sensor, but among them,
DVL and EM-log do not require additional infrastructure. This section is devoted to illustrating the
measurement principle of EM-log and DVL, the sea current dynamics modelling required for their
operation and what problems to be overcome when their measurements are used for the integrated
navigation.
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2.1. EM-log and DVL

EM-log measures the relative velocity of the vehicle to the sea current. Its principle is based on
Faraday’s law, which states the relationship between induced electromotive force and velocity, shown
as Equation (1):

𝐸 = 𝐵𝑙 (𝑣𝑥 − 𝑣𝑐𝑥) (1)

where E is the electromotive force measured directly by the sensor; B is the strength of the magnetic
field; and l is the gap where the induced electromotive force is generated. B and l are calibrated before
the use of the sensor; 𝑣𝑥 and 𝑣𝑐𝑥 are the velocity of the vehicle and sea current, respectively, in the
𝑥-direction of the vehicle, for example the forward direction. It can be seen that the physical quantity
calculated by Equation (1) is not the vehicle’s own velocity but its relative velocity to the sea current.

On the other hand, DVL measures the relative velocity of the moving body to the ground, that is
the absolute velocity of the vehicle by measuring the Doppler shift, which is the frequency change
that occurs when the ultrasonic wave is emitted to the seabed and returned. Equation (2) shows the
relationship between the two physical quantities

𝑓0 + Δ 𝑓 =
𝑣𝑢 + 𝑣
𝑣𝑢 − 𝑣

𝑓0 (2)

where 𝑓0 is original frequency of the emitted ultrasonic wave; 𝑣𝑢 is the ultrasonic velocity in water, and
Δ 𝑓 and v are the frequency change and the vehicle’s velocity, respectively. Generally, since 𝑣𝑢 � 𝑣
holds, Equation (2) can be rewritten as Equation (3):

𝑣 ≈ 𝑣𝑢
2 𝑓0

Δ 𝑓 (3)

In other words, there is a linear relationship between the frequency change and the velocity of the
vehicle.

However, some of the waves are unintentionally bounced back from the underwater float, providing
a relative velocity to the sea current rather than the ground, and the ratio increases as the seabed gets
further away. In this case, the velocity should be calculated using Equation (4) instead of Equation (3):

𝑣 − 𝑣𝑐 ≈ 𝑣𝑢
2 𝑓0

Δ 𝑓 (4)

Thus, in order to accurately estimate the velocity of the vehicle using EM-log or DVL, the velocity of
the sea current must be accurately estimated. This will be dealt with in detail in the following subsection.

2.2. Sea current model

To aid INS using EM-log or DVL, an accurate sea current dynamics model is required. However, as
the sea current is affected by countless factors, it is essentially impossible to find a perfect model.
Even though there have been various attempts such as advanced three-dimensional circulation model
(ADCIRC) (Luettich et al., 1992), curvilinear-grid hydrodynamics 3D (CH3D) (Sheng and Liu, 2011)
and regional ocean modelling system (ROMS) (Shchepetkin and McWilliams, 2005) to model the sea
current dynamics, it is difficult to implement them in practical applications. A method of preloading
the sea current map and using it online has also been researched, but the resolution is limited and the
information is insufficient, since the sea current changes every moment.

In this circumstance, it is a reasonable choice to approximate the sea current dynamics model as a
first-order Markov model, which has been adopted in the related works (Yao et al., 2019). The first-order
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Markov model (Brown and Hwang, 2012) is presented by Equation (5):

�𝑣𝑐 = − 1
𝑇𝑐
𝑣𝑐 + 𝑤𝑐 (5)

where 𝑇𝑐 is the time constant, and 𝑤𝑐 is the zero-mean white Gaussian noise with standard deviation 𝜎c.
𝑇𝑐 and 𝜎c are the only two important parameters that describe the first-order Markov process. However,
the actual sea current is strongly influenced by topography or wind, ever-changing depending on place
and time. In other words, approximating the actual model with a single fixed pair of the parameters
has limited effectiveness. Therefore, to overcome this problem, it is desirable to propose a method that
adapts each parameter or has several model candidates combining them according to the situation, which
is discussed further in Section 3.

2.3. EKF-based sea current relative navigation

One of the most basic methods to implement the sea current relative navigation is to use the conventional
EKF. Since the proposed method in this paper also has its roots in an EKF-based method, it is important
to note how it is composed. Thus, this subsection is devoted to introducing the conventional EKF-based
sea current relative navigation method and its performance evaluation.

2.3.1. Time propagation model
The 15th order INS error model (Titterton and Weston, 2004) is a time propagation model widely used
in navigation using inertial sensors. The EKF-based sea current relative navigation augments the sea
current velocities in its state vector. The nominal state of the filter is defined in Equation (6):

𝒙 =
[
𝒑𝑇 𝒗𝑇 𝒒𝑛𝑏

𝑇 𝒃𝑇𝑎 𝒃𝑇𝑔 𝒗𝑇𝑐
]𝑇 ∈ R19 (6)

where 𝒑 =
[
𝐿 𝑙 ℎ

]𝑇 is the position vector containing latitude, longitude and altitude; 𝒗 =
[
𝑣𝑁 𝑣𝐸 𝑣𝐷

]𝑇
is the velocity vector in the north-east-down (NED) navigation frame {𝑛}; 𝒒𝑛𝑏 =

[
𝑞0 𝑞1 𝑞2 𝑞3

]𝑇 is the
quaternion between the forward-right-down (FRD) body frame {𝑏} and {𝑛}; and 𝒃𝑎 and 𝒃𝑔 are the bias
of accelerometer and gyro, respectively. Then, the error state vector which is dealt with in the filter is
defined in Equation (7):

𝛿𝒙 =
[
𝛿 𝒑𝑇 𝛿𝒗𝑇 𝝋𝑇 𝒃𝑇𝑎 𝒃𝑇𝑔 𝛿𝒗𝑇𝑐

]𝑇 ∈ R18 (7)

where 𝛿 𝒑, 𝛿𝒗, 𝝋 and 𝛿𝒗c are position, velocity, attitude and sea current velocity errors, which are defined
as Equation (8), respectively:

𝛿 𝒑 = 𝒑̂ − 𝒑
𝛿𝒗 = 𝒗̂ − 𝒗
𝑪 ( 𝒒̂𝑛𝑏) = (𝑰3×3 − [𝝋×])𝑪 (𝒒𝑛𝑏)
𝛿𝒗𝑐 = 𝒗̂𝑐 − 𝒗𝑐

(8)

where the ·̂ symbol indicates the estimates of the symbol right below; 𝑪 (𝒒) is a direction cosine matrix
corresponding to 𝒒; and [·×] transforms vector in R3 to a skew symmetric matrix.

The sea current-augmented INS model for the state vector in Equation (6) is presented in Equation (9):

�𝒙 = 𝑓 (𝒙, 𝒖,𝒘𝑐) (9)

https://doi.org/10.1017/S0373463322000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000431


1194 Jaehyuck Cha et al.

where 𝒖 indicates the inertial measurement vector. Then, Equation (10) is obtained by linearisation of
Equation (9) for 𝛿𝒙:

𝛿 �𝒙 = 𝑭𝛿𝒙 + 𝒘

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑭𝑝𝑝 𝑭𝑝𝑣 03×3 03×3 03×3 03×3
𝑭𝑣 𝑝 𝑭𝑣𝑣 𝑭𝑣𝜑 𝑭𝑣𝑏 03×3 03×3
𝑭𝜑𝑝 𝑭𝜑𝑣 𝑭𝜑𝜑 03×3 𝑭𝜑𝑏 03×3
03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3 𝑭𝑐𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝛿𝒙 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1
𝒘𝑎

𝒘𝑔

03×1
03×1
𝒘𝑐

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

where 𝒘𝑎 and 𝒘𝑔 are the zero-mean white Gaussian noise of the accelerometer and gyro, respectively,
of which covariances are nominated by 𝑸𝑎 and 𝑸𝑔. The submatrices in Equation (10) are presented in
Appendix A, and the detailed derivation process is introduced in Titterton and Weston (2004).

2.3.2. Measurement update model
EM-log or DVL provide velocity information relative to the sea current, as discussed in Section 2.
Hence, the measurement model for them is expressed as Equation (11):

𝝆 = 𝑪̂
𝑏

𝑛 (𝒗̂ − 𝒗̂𝒄) − 𝒛

≈ [
03×3 𝑪𝑏

𝑛 −𝑪𝑏
𝑛 [(𝒗 − 𝒗𝒄)×] 03×3 03×3 −𝑪𝑏

𝑛

]
𝛿𝒙 + 𝜼 (11)

:= 𝑯𝛿𝒙 + 𝜼

where 𝒛 is the velocity measurement of EM-log or DV;, and 𝜼 is the zero-mean white Gaussian noise
with covariance 𝑹. Note that Equation (11) generates a correlation between the INS error and the sea
current which are independent at time propagation process as shown in Equation (10). In other words,
if the parameters of the sea current propagation model dealt with in Equation (5) are not correct, it will
adversely affect the navigation error in the measurement update process.

3. Adaptive filtering preliminary to sea current relative navigation

The sea current relative navigation requires a dynamics model of the sea currents. However, since
the conventional method uses a single fixed model, as in Equation (5), the navigation performance is
degraded due to mismodelling of the true sea current. To overcome this problem, two adaptive techniques
are applied in this paper: one is an adaptive fading technique (Kim et al., 2009) that compensates
for the effects of sea current parameter modelling errors online, and the other is the IMM technique
(Yao et al., 2017, 2019; Zhu and He, 2020) that uses two or more models in combination.

3.1. Adaptive fading extended Kalman filter

The AFEKF compensates for model inaccuracy by comparing the filter residual and its covariance.
The model inaccuracy is inherent in the time propagation model or the measurement update model.
Depending on where the inaccuracy exists, the AFEKF applies the adaptive technique by using the two
forgetting factors 𝛽𝑘 and 𝛾𝑘 in different ways.

First, in the filter, the calculated residual covariance is obtained as in Equation (14):

𝑺𝑘 = 𝑯𝑘𝑷
−
𝑘𝑯

𝑇
𝑘 + 𝑹𝑘 (14)
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On the other hand, the estimated residual covariance is obtained using the sampled residuals 𝝆𝑖 as in
Equation (15):

𝑺̄𝑘 =
1

𝑀 − 1

𝑘∑
𝑖=𝑘−𝑀+1

𝝆𝑖𝝆
𝑇
𝑖 (15)

where M is the fading window size, and 𝑷−
𝑘 is a priori covariance. By comparing these two covariances

as in Equation (16), the forgetting factor 𝛽𝑘 is obtained:

𝛽𝑘 = max
{
1,

1
𝑚

trace(𝑺̄𝑘𝑺
−1
𝑘 )

}
OR 𝛽𝑘 = max{1, trace(𝑺̄𝑘 )/trace(𝑺𝑘 ))} (16)

where m is the dimension of the measurement vector; 𝛾𝑘 adjusts the a priori covariance and Kalman
gain together with another forgetting factor 𝛽𝑘 , as in Equation (17):

𝑷̄
−
𝑘 = 𝛾𝑘𝑷

−
𝑘

𝑲̄𝑘 =
𝛾𝑘
𝛽𝑘

𝑷̄
−
𝑘𝑯

𝑇
𝑘 (𝑯𝑘 𝑷̄

−
𝑘𝑯

𝑇
𝑘 + 𝑹𝑘 )−1 (17)

As mentioned previously, AFEKF is implemented differently according to the model inaccuracies. If
the time propagation model is inaccurate, 𝛾𝑘 is set as 𝛽𝑘 , so that it inflates a priori covariance but does
not particularly adjust the Kalman gain. In contrast, if the measurement update model is inaccurate, 𝛾𝑘
is set as 1, so that the update rate is reduced by adjusting the Kalman gain. Our problem falls under the
former case since the propagation model of the sea current is inaccurate.

3.2. Interacting multiple model

IMM was initially applied and used in the field of target tracking. Since the dynamics model of a target
is not precisely known, generally, several manoeuvre candidates are modelled as sub-filters, and the
transition probability between them is reflected in IMM. After successful application in the field of
target tracking, it has been widely used in the field of navigation. In particular, in the navigation field of
marine vehicles, there are cases such as using different types of measurement (Yao et al., 2017) or setting
different measurement covariance in each sub-filter (Yao et al., 2019; Zhu and He, 2020). Nevertheless,
they do not focus on the modelling of the sea current dynamics, which is one of the most important
aspects in sea current relative navigation. In this paper, therefore, the sea current relative navigation is
performed using multiple sub-filters with different sea current dynamics models.

Figure 1 shows the sea current relative navigation scheme using the IMM filter. To operate an IMM,
first, it is necessary to define the Markov chain transition matrix 𝑻, which deals with the transition
probability between the sea current models in each sub-filter. In this paper, two sub-filters, that is, two
model candidates, are used for convenience, and the transition matrix is defined as Equation (18):

𝑻 =

[
𝑝11 𝑝12
𝑝21 𝑝22

]
(18)

where each element of 𝑻, 𝑝𝑖 𝑗 := Pr (𝛼𝑘 = 𝑗 |𝛼𝑘−1 = 𝑖) represents the probability that the sea current
model 𝛼 changes from 𝑖-th model at the previous time step 𝑡 = 𝑘 − 1 to 𝑗-th model at the current time
step 𝑡 = 𝑘 , and hence, the sum of each row of 𝑻, 𝑝𝑖1 + 𝑝𝑖2 = 1 must be satisfied, accordingly. In addition,
the mode probability vector 𝝁𝑘 , which indicates the probability of following a certain sub-filter model,
is defined as Equation (19):

𝝁𝑘 =
[
𝜇1,𝑘 𝜇2,𝑘

]𝑻 (19)

https://doi.org/10.1017/S0373463322000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000431


1196 Jaehyuck Cha et al.

Figure 1. IMM filter structure for sea current relative navigation.

where 𝜇 𝑗 ,𝑘 is the mode probability of the 𝑗-th sub-filter at 𝑡 = 𝑘 , and it must satisfy 𝜇1,𝑘 + 𝜇2,𝑘 = 1,
which initial value is given as 𝝁+

0 . The IMM filter has an iterative configuration of the following four
steps with predefined 𝑻 and 𝝁+

0 .

3.2.1. Interaction
In the first step, also called the mixing probability process, the state variable, covariance and mode
probability to be handled in each sub-filter of the current time step are initialised from the results of
the previous time step. First, the mode probability is propagated as in Equation (20) using the transition
matrix of Equation (18):

𝜇−𝑗 ,𝑘 : = Pr(𝛼𝑘 = 𝑗 |𝒁∗
1:𝑘−1) =

2∑
𝑖=1

𝑝𝑖 𝑗𝜇
+
𝑖,𝑘−1 (20)

where 𝒁∗
1:k−1={𝒛1, · · · , 𝒛𝑘−1} is a set of measurements up to the previous time step, so that the mode

probability 𝜇−𝑗 ,𝑘 of Equation (20) contains information of measurements up to the previous time step.
Next, the mixing probability is calculated as in Equation (21) according to Bayes’ rule:

𝜇𝑖 | 𝑗 ,𝑘−1 := Pr(𝛼𝑘−1 = 𝑖 |𝛼𝑘 = 𝑗) =
𝑝𝑖 𝑗𝜇

+
𝑖,𝑘−1

𝜇−𝑗 ,𝑘
(21)

Using Equation (21), the state variable and covariance to be estimated in each sub-filter is initialised
as Equation (22):

𝒙̂0
𝑗 ,𝑘−1 := E

[
𝒙𝑘−1 |𝛼𝑘 = 𝑗 , 𝒁∗

1:𝑘−1
]
=

2∑
𝑖=1

𝒙̂+𝑖,𝑘−1𝜇𝑖 | 𝑗 ,𝑘−1

𝑷0
𝑗 ,𝑘−1 := 𝐸

[
(𝒙𝑘−1 − 𝒙̂0

𝑗 ,𝑘−1)(𝒙𝑘−1 − 𝒙̂0
𝑗 ,𝑘−1)

𝑇 |𝛼𝑘 = 𝑗 , 𝒁∗
1:𝑘−1

]
(22)

=
2∑
𝑖=1

{𝑷+
𝑖,𝑘−1+(𝒙̂+𝑖,𝑘−1−𝒙̂0

𝑗 ,𝑘−1)(𝒙̂+𝑖,𝑘−1−𝒙̂0
𝑗 ,𝑘−1)

𝑇 }𝜇+𝑖 | 𝑗 ,𝑘−1

3.2.2. Sub-filtering
In the second step, the time propagation and measurement update are performed in each sub-filter
according to its own models. At this step, the model or the type of sub-filters should be different from

https://doi.org/10.1017/S0373463322000431 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000431


The Journal of Navigation 1197

each other. The sub-filtering is summarised as:

𝒙̂−𝑗 ,𝑘 := E
[
𝒙𝑘 |𝛼𝑘 = 𝑗 , 𝒁∗

1:𝑘−1
]
= 𝑓 (𝒙̂0

𝑗 ,𝑘−1, 𝒖𝑘 )
𝑷−

𝑗 ,𝑘 := 𝐸
[
(𝒙𝑘 − 𝒙̂−𝑗 ,𝑘 )(𝒙𝑘 − 𝒙̂−𝑗 ,𝑘 )𝑇 |𝛼𝑘 = 𝑗 , 𝒁∗

1:𝑘−1

]
= 𝑭 𝑗 ,𝑘𝑷

0
𝑗 ,𝑘−1𝑭

𝑇
𝑗,𝑘 + 𝑸 𝑗 ,𝑘

𝑲 𝑗 ,𝑘 = 𝑷−
𝑗 ,𝑘𝑯 𝑗 ,𝑘𝑺

−1
𝑗 ,𝑘 (23)

𝒙̂+𝑗 ,𝑘 := E
[
𝒙𝑘 |𝛼𝑘 = 𝑗 , 𝒁∗

1:𝑘
]
= 𝒙̂−𝑗 ,𝑘+𝑲 𝑗 ,𝑘𝝆 𝑗 ,𝑘

𝑷+
𝑗 ,𝑘 := 𝐸

[
(𝒙𝑘 − 𝒙̂+𝑗 ,𝑘 )(𝒙𝑘 − 𝒙̂+𝑗 ,𝑘 )𝑇 |𝛼𝑘 = 𝑗 , 𝒁∗

1:𝑘

]
= (𝑰 − 𝑲 𝑗 ,𝑘𝑯 𝑗 ,𝑘 )𝑷−

𝑗 ,𝑘

3.2.3. Mode probability calculation
In the third step, the mode probability of each sub-filter is updated. It is based on the likelihood of the
residual, which is calculated in each sub-filter as shown in Equation (24):

𝜆 𝑗 ,𝑘 =
1√

det(2𝜋𝑺 𝑗 ,𝑘 )
𝑒𝑥𝑝

{
−1

2
𝝆𝑇𝑗,𝑘𝑺

−1
𝑗 ,𝑘𝝆 𝑗 ,𝑘

}
(24)

Bayes’ rule and Equation (24) lead to Equation (25), which contains the information of the
measurement of the current time step in the mode probability of each sub-filter:

𝜇+𝑗 ,𝑘 := Pr(𝛼𝑘 = 𝑗 |𝒁∗
𝑘 ) =

𝜆 𝑗 ,𝑘𝜇
−
𝑗 ,𝑘∑2

𝑖=1 𝜆𝑖,𝑘𝜇
−
𝑖,𝑘

(25)

3.2.4. Combination of estimation
In the last step, the final solution of the IMM filter is calculated by combining the result of each sub-filter
as:

𝒙̂+𝑘 =
2∑
𝑗=1

𝒙̂+𝑗 ,𝑘𝜇
+
𝑗 ,𝑘

𝑷+
𝑘 =

2∑
𝑗=1

{𝑷+
𝑗 ,𝑘+(𝒙̂+𝑗 ,𝑘−𝒙̂+𝑘 )(𝒙̂+𝑗 ,𝑘−𝒙̂+𝑘 )𝑇 }𝜇+𝑗 ,𝑘 (26)

To improve the performance of the sea current relative navigation, the IMM filter is configured by
sub-filters with different sea current dynamics models, thus adopting the one that best describes the
actual sea current dynamics. The filter can be designed by adjusting the transition matrix as well as the
sea current parameters 𝑇𝑐,𝑖 and 𝜎𝑐,𝑖 .

4. IMM-AFEKF-based sea current relative navigation

In this section, we propose an IMM–AFEKF-based sea current relative navigation method that combines
the adaptive fading method that adjusts the sea current model parameters and IMM using multiple
sea currents models, to improve the navigation performance. The results demonstrate a performance
improvement from applying the adaptive fading technique to the conventional EKF in situations where
the sea current dynamics model is inaccurate. Then, the limitation of a single model-based method is
analysed, which is overcome by configuring a multiple model structure using IMM.

4.1. Filter configuration

IMM–AFEKF-based sea current relative navigation has a similar structure to an IMM-based method,
shown in Figure 1, with a difference in equipping its sub-filters with AFEKFs of different sea current
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Figure 2. Simulation trajectory.

Table 1. Sensor specification.

Accelerometer Gyro EM-log/DVL

Bias 0 · 05 mg 0 · 02 deg/h –
Noise 0 · 01 mg/

√
Hz 0 · 005 deg/

√
hr 0 · 01 m/s

Sampling rate 100 Hz 1 Hz

parameters. The window size M is set to 20. Among the two parameters 𝑇𝑐 and 𝜎𝑐 that configure the sea
current model approximated by first-order Markov process, the latter further affects filter performance.
Hence, 𝑇c,1 = 𝑇𝑐,2 = 2 h is fixed and let 𝜎𝑐,1 < 𝜎𝑐,2 for convenience. Meanwhile, since the conversion

between sea current models does not occur frequently, 𝑻 =

[
0 · 9 0 · 1
0 · 1 0 · 9

]
is set. Also, the initial mode

probability is set to 𝝁+
0=

[
0 · 5 0 · 5

]𝑇 since initial information about the sea current model is insufficient,
in general.

4.2. Performance evaluation

4.2.1. Conventional method
To show the performance degradation caused by an inaccurate sea current model in conventional EKF-
based sea current relative navigation, a simulation was performed. The trajectory used in the simulation
is as shown in Figure 2, where the vehicle moves counter-clockwise for 2 h at a constant speed of 20 knots
from the origin of 36 degrees north latitude and 127 degrees east longitude. The sensor specifications
were set as shown in Table 1, and measurements of EM-log or DVL in the forward direction of the body
frame were used for convenience.

Figure 3 shows the performance degradation due to an inaccurate sea current model when performing
EKF-based sea current relative navigation. The x-axis of the figure is the actual 𝜎𝑐 used to generate
the sea current data, which is denoted by 𝜎𝑡 in this paper to distinguish it from 𝜎 𝑓 used in the filter
model. According to a survey by the Korea Hydrographic and Oceanographic Agency, the sea current
speed near the Korean Peninsula is generally less than 1 kn, so it was carried out up to 𝜎𝑡 of 1 m/s with
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Figure 3. Performance of EKF-based sea current relative navigation with incorrect parameters.
(a) TCEP, (b) TCEP compared to optimal filter.

a margin. The y-axes of (a) and (b) of Figure 3 are the time circular error probable (TCEP) and its
improvement rate after 2 h navigation, respectively. TCEP is defined as Equation (27):

TCEP𝑘 = 0 · 589 × {RMS(𝛿𝑃𝑁 ,1:𝑘 ) + RMS(𝛿𝑃𝐸,1:𝑘 )} (27)

where k is the current time step, and RMS stands for root mean squares. The reason for adopting such
TCEP index is that it can reduce the effect of the Schuler period (Titterton and Weston, 2004), which
appears in general indices such as RMS error and CEP. The black dotted line is the result of performing
the pure navigation without the measurement update, and the circle-marked black solid line is the
minimum error which can be achieved when synchronously setting 𝜎 𝑓 with 𝜎𝑡 in an EKF-based sea
current relative navigation, hence indicating an optimal result. Finally, the triangle-marked blue line,
the square-marked green line, and the diamond-marked red line are the results of 𝜎 𝑓 is set by 0 · 1, 0 · 5
and 1 · 0 m/s, respectively, regardless of 𝜎𝑡 , representing suboptimal results. Each point represents 100
times of Monte-Carlo simulation result, where the other parameter of the sea current model, 𝑇𝑐 , was
fixed as 2 h.

As expected, the pure navigation results in Figure 3(a) shows constant performance regardless of
sea current model since it does not use Equation (11). In contrast, in the case of the optimal EKF,
the performance deteriorates as the standard deviation of the sea current increases, which is further
elaborated in Appendix B. The TCEPs of suboptimal EKF are the same with those of the optimal EKF
at 𝜎 𝑓 = 𝜎𝑡 and larger elsewhere. Note that the performance degradation is particularly greater where
𝜎𝑡 > 𝜎 𝑓 than in the opposite case, and when 𝜎𝑡 � 𝜎 𝑓 , the performance of EKF-based sea current
relative navigation is inferior to that of the pure navigation.

Figure 3(b) shows the result of suboptimal EKF shown in Figure 3(a) compared with the results of
pure navigation and optimal EKF, presented through a converted TCEP value, shown in Equation (28):

TCEP rate =
TCEPpure − TCEPsub

TCEPpure − TCEPopt
× 100% (28)

This index shows how much the performance of the suboptimal EKF is degraded by sea current
mismodelling compared to the optimal performance improvement that can be achieved by the aiding
sensors. The figure also shows that the performance improvement is more degraded when 𝜎𝑡 > 𝜎 𝑓 ,
and if 𝜎𝑡 � 𝜎 𝑓 , the performance improvement of EKF-based sea current relative navigation becomes
negative.

To sum up, the EKF-based sea current relative navigation can show optimal performance only
when the current parameters are correctly set, which is practically impossible to be satisfied, and the
performance cannot be guaranteed with a single fixed parameter. Therefore, a novel method using
adaptive techniques is required for the sea current relative navigation with guaranteed performance.
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Figure 4. Performance of AFEKF-based sea current relative navigation with incorrect parameters.
(a) TCEP, (b) TCEP compared to optimal filter.

Figure 5. Performance of IMM-AFEKF-based sea current relative navigation with multiple parameters.
(a) TCEP, (b) TCEP compared to optimal filter.

4.2.2. Proposed method
To verify the performance of the proposed method, a new simulation was performed by replacing the
conventional fixed single-model EKF with a single-model AFEKF under the same conditions as the
simulation performed in Section 2. Figure 4 shows the navigation performance of a single AFEKF
compared to the results of the pure navigation and optimal EKF-based sea current relative navigation.
Compared with the conventional EKF results in Figure 3, it can be seen that the degradation of navigation
performance is reduced in the large 𝜎𝑡 domain. Nevertheless, none of the single model AFEKFs shows
a prominent performance in the entire 𝜎𝑡 domain. In other words, similarly to the EKF, when 𝜎 𝑓 is
set small, a prominent performance is shown in the domain where 𝜎𝑡 is also small, but performance
degradation occurs in the domain where 𝜎𝑡 is large indeed. Similarly, when 𝜎 𝑓 is set large, the opposite
is true for 𝜎𝑡 values.

Based on such insight, an additional simulation was performed to verify the performance of IMM–
AFEKF, of which the results are shown in Figure 5. Two AFEKFs from the simulations shown in Figure 4
are adopted as sub-filters of IMM–AFEKF. In particular, the first sub-filter was fixed to 𝜎 𝑓 ,1 = 0 · 1 m/s
in order to guarantee the performance in the small 𝜎𝑡 domain. From this simulation, it was confirmed
that the performance of the IMM–AFEKF was more robust than the single models, maintaining high
TCEP improvement of 90% rate in all 𝜎𝑡 domain. In addition, in the domain of 0 · 1 < 𝜎𝑡 < 1 · 0 m/s,
the IMM filter with 𝜎 𝑓 ,2 = 0 · 5 m/s has a better performance than that with 𝜎 𝑓 ,2 = 1 · 0 m/s due to the
adaptive fading scheme.

Tables 2 and 3 show the navigation results of chosen filters at 𝜎𝑡 = 0 · 05 m/s and 𝜎𝑡 = 1 m/s as
representatives of the small 𝜎𝑡 domain and the large 𝜎t domain, respectively. It was confirmed that the
results were consistent with the previous analysis. When 𝜎𝑡 is small, as detailed in Table 2, it can be seen
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Table 2. Navigation performance of various filters in small 𝜎𝑡 domain (0 · 05 m/s).

Position Velocity Levelling Heading
Filter error [m] error [m/s] error [deg] error [deg]

EKF (𝜎 𝑓 = 0 · 1 m/s) 362 0 · 411 0 · 00353 0 · 0221
AFEKF (𝜎 𝑓 = 0 · 1 m/s) 375 0 · 418 0 · 00361 0 · 0222
EKF (𝜎 𝑓 = 0 · 5 m/s) 749 0 · 483 0 · 00421 0 · 0241
AFEKF (𝜎 𝑓 = 0 · 5 m/s) 750 0 · 485 0 · 00424 0 · 0241
IMM-AFEKF (𝜎 𝑓 = 0 · 1, 0 · 5 m/s) 477 0 · 435 0 · 00374 0 · 0228

Table 3. Navigation performance of various filters in large 𝜎𝑡 domain (1 m/s).

Position Velocity Levelling Heading
Filter error [m] error [m/s] error [deg] error [deg]

EKF (𝜎 𝑓 = 0 · 1 m/s) 2990 1 · 41 0 · 0119 0 · 0511
AFEKF (𝜎 𝑓 = 0 · 1 m/s) 1820 0 · 998 0 · 00770 0 · 0285
EKF (𝜎 𝑓 = 0 · 5 m/s) 1370 0 · 889 0 · 00712 0 · 0263
AFEKF (𝜎 𝑓 = 0 · 5 m/s) 1330 0 · 888 0 · 00695 0 · 0255
IMM-AFEKF (𝜎 𝑓 = 0 · 1, 0 · 5 m/s) 1370 0 · 905 0 · 00716 0 · 0257

that the navigation errors of single model filters with small 𝜎 𝑓 are satisfactory. Note that the EKF-based
ones show slightly better performance than do the AFEKF-based ones, because the adaptive fading
technique can only inflate the overestimated a priori covariance but cannot deflate the underestimated
one, as shown in Equations (16) and (17). However, as detailed in Table 3, the performance of those
single-model filters with small 𝜎 𝑓 rapidly deteriorates in the region where 𝜎𝑡 is large. In particular,
the EKF-based one shows severe performance degradation due to its incapability to compensate for the
inaccurate sea current dynamics model. On the contrary, single-model filters with large 𝜎 𝑓 have decent
performance in the large 𝜎𝑡 domain but deteriorate in the region where 𝜎𝑡 is small. Still, the adaptive
fading technique is effective for cases when 𝜎 𝑓 < 𝜎𝑡 , as in Table 3. Finally, the proposed IMM–AFEKF
filter shows the most robust navigation performance in all domains of 𝜎𝑡 . Due to the influence of the
sub-filter of the relatively inaccurate model, the proposed method presents slightly worse performance
compared to the best filter. Nonetheless, we would like to point out once again the high TCEP rate of
over 90% shown in Figure 5(b), and safely claim that the performance discrepancy between the proposed
and the best is insignificant.

Notice that the filter that performs best in one case has the worst performance in the other case,
indicating that single-model filters lack reliability. Thus, the proposed method is most suitable for the
sea current relative navigation where 𝜎𝑡 is uncertain.

Figure 6 shows the mode probability from the simulation shown in Figure 5. In the domain where 𝜎𝑡

is small, the model of sub-filter 1 is more similar to the actual model, hence the mode probability is high
and, conversely, the mode probability of sub-filter 1 decreases rapidly in the domain where 𝜎𝑡 is large.
Note that since the sum of the mode probabilities of all sub-filters must be 1 in each IMM, as one mode
probability decreases, the other increases accordingly. In addition, it was confirmed that the greater the
difference between 𝜎 𝑓 ,1 and 𝜎 𝑓 ,2, the greater the difference of mode probabilities. As a result, in the
𝜎𝑡 domain where the performance of one sub-filter is degraded, the other sub-filter compensates for it,
thereby improving the integrated navigation performance.

From this analysis, the proposed IMM-AFEKF-based sea current relative navigation may be unsuit-
able in the case when strong prior information about the sea current velocity is given. In other words,
it may be more appropriate to use a specific single filter when changes of the sea current velocity can
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Figure 6. Mode probability of IMM-AFEKF-based sea current relative navigation with multiple param-
eters. (a) Sub-filter 1, (b) Sub-filter 2.

be predicted accurately in the area to be navigated. In addition, the computation complexity is natu-
rally increased when compared to those of the existing filters. However, if sub-filtering is implemented
well in parallel, this problem can be alleviated. Also, since the adaptive fading scheme is one of many
components of the overall structure, the increased computational cost should not be a major concern in
implementing the proposed method. As a future work, it is possible to improve the transition probability
matrix, a key element in designing IMM.

5. Conclusion

In this paper, a sea current relative navigation method using an IMM–AFEKF scheme is proposed.
An accurate sea current dynamics model is required to perform the relative navigation to the sea
current. Yet, describing the true sea current dynamics is near impossible in practice. Therefore, an
IMM filter using multiple model candidates and an adaptive fading technique that can compensate for
the inaccuracy of each model is adopted. The performance of the conventional EKF-based sea current
relative navigation deteriorated when the standard deviation of sea current approximated by the first-
order Markov model was smaller than actual value. Although the performance degradation was reduced
when the adaptive fading technique was applied, there was a limit to the sea current domain where
the navigation performance is guaranteed with the single filter. In contrast, the IMM–AFEKF-based
sea current relative navigation method proposed in this paper showed good performance in the entire
domain as one sub-filter compensated for the performance degradation of the other. In particular, due to
the adaptive fading scheme, it showed superior performance even when the standard deviations of the
sub-filters were set smaller than the actual value. Eventually, it was possible to guarantee more than 90%
of the performance compared to the optimal EKF-based sea current relative navigation. It was found
that the proposed method requires more computation, but the computation time of IMM, which greatly
contributes to such increase, can be reduced through sub-filtering in parallel. In addition, it is expected
that a more meticulously designed transition probability matrix will improve the filter performance.
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A. Appendix A: 15th order inertial navigation error model

This section summarises the 15th order INS error model for completeness, which is introduced in
Titterton and Weston (2004) in detail. Note that the reference frame is aligned with the north-east-down
(NED) geodetic axes, while the body frame is aligned with IMU axes. The submatrices in Equation (10)
are presented as from Equations (A1)–(A11):

𝐹𝑝𝑝 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌𝐸𝑅𝑚𝑚

𝑅𝑚 + ℎ 0
𝜌𝐸

𝑅𝑚 + ℎ
𝜌𝐷

cos 𝐿
− 𝜌𝑁 𝑅𝑡𝑡

(𝑅𝑡 + ℎ) cos 𝐿
0 − 𝜌𝑁

(𝑅𝑡 + ℎ) cos 𝐿
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A1)

𝐹𝑝𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
𝑅𝑚 + ℎ 0 0

0
1

(𝑅𝑡 + ℎ) cos 𝐿
0

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A2)
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𝐹𝑣 𝑝 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜌𝐸𝑅𝑚𝑚

𝑅𝑚 + ℎ 𝑣𝐷 −
(
2Ω𝑁 + 𝜌𝑁 sec2𝐿 + 𝜌𝐷𝑅𝑡𝑡

𝑅𝑡 + ℎ

)
𝑣𝐸 0

𝜌𝐸
𝑅𝑚 + ℎ 𝑣𝐷 − 𝜌𝐷𝜌𝑁(

2Ω𝑁 + 𝜌𝑁 sec2𝐿 + 𝜌𝐷𝑅𝑡𝑡

𝑅𝑡 + ℎ

)
𝑣𝑁 +

(
2Ω𝐷 − 𝜌𝑁 𝑅𝑡𝑡

𝑅𝑡 + ℎ

)
𝑣𝐷 0

𝜌𝐷𝑣𝑁 − 𝜌𝑁 𝑣𝐷
𝑅𝑡 + ℎ

−2Ω𝐷𝑣𝐸 + 𝜌2
𝐸𝑅𝑚𝑚 + 𝜌2

𝑁 𝑅𝑡𝑡 + 𝜕𝑔0/𝜕𝐿
(1 + ℎ/𝑅)2 0 𝜌2

𝐸 + 𝜌2
𝑁 − 2𝑔0

𝑅(1 + ℎ/𝑅)3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A3)

𝐹𝑣𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑣𝐷
𝑅𝑚 + ℎ 2Ω𝐷 + 2𝜌𝐷 −𝜌𝐸

−2Ω𝐷 − 𝜌𝐷
𝑣𝑁 tan 𝐿 + 𝑣𝐷

𝑅𝑡 + ℎ
2Ω𝑁 + 𝜌𝑁

2𝜌𝐸 −2Ω𝑁 − 2𝜌𝑁 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A4)

𝐹𝑣𝜑 =

⎡⎢⎢⎢⎢⎢⎣
0 − 𝑓𝐷 𝑓𝐸

𝑓𝐷 0 − 𝑓𝑁
− 𝑓𝐸 𝑓𝑁 0

⎤⎥⎥⎥⎥⎥⎦
, (A5)

𝐹𝑣𝑏 = 𝐶𝑛
𝑏 , (A6)

𝐹𝜑𝑝 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω𝐷 − 𝜌𝑁 𝑅𝑡𝑡

𝑅𝑡 + ℎ
0 − 𝜌𝑁

𝑅𝑡 + ℎ
− 𝜌𝐸𝑅𝑚𝑚

𝑅𝑚 + ℎ 0 − 𝜌𝐸
𝑅𝑚 + ℎ

−Ω𝑁 − 𝜌𝑁 sec2𝐿 + 𝜌𝐷𝑅𝑡𝑡

𝑅𝑡 + ℎ
0

𝜌𝐷
𝑅𝑡 + ℎ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A7)

𝐹𝜑𝑣 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1

𝑅𝑡 + ℎ
0

− 1
𝑅𝑚 + ℎ 0 0

0 − tan 𝐿
𝑅𝑡 + ℎ

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A8)

𝐹𝜑𝜑 =

⎡⎢⎢⎢⎢⎢⎣
0 Ω𝐷 + 𝜌𝐷 −𝜌𝐸

−Ω𝐷 − 𝜌𝐷 0 Ω𝑁 + 𝜌𝑁
𝜌𝐸 −Ω𝑁 − 𝜌𝑁 0

⎤⎥⎥⎥⎥⎥⎦
, (A9)

𝐹𝜑𝑏 = −𝐶𝑛
𝑏 , (A10)

𝐹𝑐𝑐 =

⎡⎢⎢⎢⎢⎢⎣
−1/𝑇𝑐 0 0

0 −1/𝑇𝑐 0
0 0 −1/𝑇𝑐

⎤⎥⎥⎥⎥⎥⎦
, (A11)

where 𝑅𝑚 = 𝑅0(1 − 𝑒2)/(1 − 𝑒2sin2𝐿)3/2, 𝑅𝑡 = 𝑅0/(1 − 𝑒2sin2𝐿)1/2, 𝑅𝑚𝑚 = (𝜕𝑅𝑚/𝜕𝐿) =
3(𝑅0 (1 − 𝑒2)(𝑒2 sin 𝐿 cos 𝐿)/(1 − 𝑒2sin2𝐿)5/2), 𝑅𝑡𝑡 = (𝜕𝑅𝑡/𝜕𝐿) = (𝑅0𝑒

2 sin 𝐿 cos 𝐿/
(1 − 𝑒2sin2𝐿)3/2), Ω𝑁 = Ω𝑖𝑒 cos 𝐿, Ω𝐷 = −Ω𝑖𝑒 sin 𝐿, 𝜌𝑁 = 𝑣𝐸/𝑅𝑡 + ℎ, 𝜌𝐸 = −(𝑣𝑁 /(𝑅𝑚 + ℎ)),
𝜌𝐷 = −(𝑣𝐸 tan 𝐿/(𝑅𝑡 + ℎ)).
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B. Appendix B: Sea current model and navigation performance

In this section, a simplified one-dimensional sea current relative navigation problem is dealt with to
analyse the effect of the standard deviation of sea currents of the first-order Markov model. That is,
instead of Equation (6), we define a state vector as Equation (B1):

𝑥 =
[
𝑣 𝑣𝑐

]𝑇 ∈ R2. (B1)

Hence, the measurement model in Equation (11) is simplified to Equation (B2):

𝜌 = 𝑣 − 𝑣𝑐 + 𝜂. (B2)

By substituting this into the Kalman filtering process of Equation (23), the variance for the velocity
of the vehicle can be obtained as Equation (B3):

𝑃+
11=𝑃

−
11−

(𝑃−
11−𝑃−

12)2

𝑃−
11−2𝑃−

12+𝑃−
22+𝑅

(B3)

where 𝑃𝑖 𝑗 indicates the (𝑖, 𝑗)-th element of P. Although 𝑃−
11 is independent of the sea current model

by Equation (10), as the standard deviation of sea current increases, 𝑃−
22 and 𝑃+

11 increase consequently.
In other words, it implies that even if the filter was optimally designed, the guaranteed performance
improvement due to the aid of an EM-log or a DVL inevitably decreases as the standard deviation of
the sea current increases.
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