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Abstract

Given a combinatorial search problem, it may be highly useful to enumerate its (all) solutions
besides just finding one solution, or showing that none exists. The same can be stated about
optimal solutions if an objective function is provided. This work goes beyond the bare enu-
meration of optimal solutions and addresses the computational task of solution enumeration by
optimality (SEO). This task is studied in the context of answer set programming (ASP) where
(optimal) solutions of a problem are captured with the answer sets of a logic program encoding
the problem. Existing answer set solvers already support the enumeration of all (optimal) an-
swer sets. However, in this work, we generalize the enumeration of optimal answer sets beyond
strictly optimal ones, giving rise to the idea of answer set enumeration in the order of optimality
(ASEO). This approach is applicable up to the best k answer sets or in an unlimited setting,
which amounts to a process of sorting answer sets based on the objective function. As the main
contribution of this work, we present the first general algorithms for the aforementioned tasks of
answer set enumeration. Moreover, we illustrate the potential use cases of ASEO. First, we study
how efficiently access to the next-best solutions can be achieved in a number of optimization
problems that have been formalized and solved in ASP. Second, we show that ASEO provides
us with an effective sampling technique for Bayesian networks.

KEYWORDS: answer set programming, optimization problems, solution enumeration, sampling,
Bayesian networks

1 Introduction

In this paper, we address combinatorial problem solving where some solution compo-

nents are combined to meet problem specific requirements. Such problems are frequent

in computer science and computationally hard to solve since the number of solution can-

didates is usually exponential in the length of a problem instance (Karp 1972). Besides
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finding solutions for an instance, it is also possible to seek solutions that are optimal as

defined by an objective function f mapping solutions to numbers. In fact, combinatorial

optimization problems described, for example, by Korte and Vygen (2006) tend to be

computationally harder to solve, since the proof for optimality presumes the exclusion

of yet better solutions. However, optimal solutions are not necessarily unique, suggesting

the search and enumeration of all optimal solutions, for example, for the sake of gener-

ating alternatives or better understanding the true nature of the objective function f .

Besides enumeration, Murty (1968) was interested in the ranking of solutions based on

their cost, taking systematically into consideration sub-optimal solutions. While this idea

is general by nature, it is applied to a specific problem where cost-optimal assignments

are sought based on a cost matrix. If, in addition, a bound k on the number of solutions

is introduced, we arrive at the identification of the best k solutions as in the case of the

shortest path problem studied by Lawler (1972).

In this work, we adopt the ideas discussed above and concentrate on the enumeration

of optimal solutions but also take recursively into consideration sub-optimal but next-best

solutions according to f . This gives rise to a systematic procedure that we coin as solution

enumeration by optimality (SEO) which can also be understood as sorting solutions by

their values obtained from the objective function. Since the underlying solution space is

usually worst-case exponential, it is immediate that SEO poses computational challenges

in general. For simplicity, we confine our attention to problems and solving paradigms

yielding finite solution spaces in this work.

Besides tailoring native search algorithms, one viable way to solve combinatorial (op-

timization) problems is to describe their solutions in terms of constraints and to use

existing solver technology for the search of actual solutions. To this end, well-known ap-

proaches are (maximum) Boolean satisfiability (SAT/MaxSAT), integer linear program-

ming (ILP), constraint programming (CP), and answer set programming (ASP) with

optimization (Biere et al . 2009; Rossi et al . 2006; Simons et al . 2002; Brewka et al . 2003,

2011). While the number of solutions is generally unbounded in ILP, MaxSAT, CP, and

ASP yield finite solution spaces in their standard use cases, hence enabling the exhaustive

enumeration of all solutions in finite time.

As regards systematic solution enumeration (SE), ASP offers somewhat better

premises, since a typical ASP encoding aims at a one-to-one correspondence between

solutions and answer sets. Gebser et al. (2007a) present dedicated algorithms for answer

set enumeration (ASE) that are able to operate in polynomial space and to project answer

sets with respect to a user-defined signature. Furthermore, in the presence of an objective

function, the enumeration of optimal answer sets (ASO) is similarly feasible, once the

respective optimum value of the objective function has been determined. In contrast, the

enumeration features of contemporary SAT/MaxSAT solvers are quite limited although

the algorithmic ideas are described by Gebser et al. (2009). For this reason, we concen-

trate on ASP solvers that natively support SE and the enumeration of optimal solutions

(SO) as discussed above, but not SEO in any systematic way.

Our main goal is to combine both ASE and the enumeration of optimal answer sets

(ASO) as the task of enumerating answer sets in the order of optimality as determined by

an objective function f . In ASP, such functions are usually pseudo-Boolean expressions

that assign integer weights to literals. The outcome, that is, answer set enumeration by

optimality (ASEO) realizes SEO under the view that answer sets bijectively capture the
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solutions of a problem being solved. In the sequel, we will explore ways to extend ASO

procedures such that after enumerating all optimal solutions the search is continued to

enumerate next-best solutions, and so on. Basically, this is achieved by performing ASO

recursively but a careless implementation of this strategy may jeopardize the desired

(polynomial) consumption of space.

When it comes to the enumeration of answer sets S as guided by an objective function

f(S), we will explore two mainstream approaches. The first aims at enumerating all

answer sets unless the enumeration procedure is interrupted by the user. The second

presumes a parameter k that gives the number of answer sets to be enumerated and,

thereafter, the best k answer sets S are sought given f(S). The latter approach opens up

new possibilities for organizing ASEO when k is small enough for storing intermediate

solutions in memory. To realize these two approaches, we will deploy existing enumeration

and optimization algorithms of Gebser et al. (2007a) and their implementations in the

Clingo system. The main contributions of our work are:

1. The concept of ASEO as a process where answer sets S are produced in an order

determined by an objective function f(S).

2. Relating ASE, ASO, and ASEO from the perspective of computational complexity.

3. The development of basic algorithms that implement ASEO either in limited

settings (the best k answer sets) or without limitation (sorting answer sets

subject to f).

4. An experimental evaluation of algorithms using ASP encodings of optimization

problems.

5. Demonstrating the potential of ASEO in sampling guided by objective

functions f .

It should be stressed that the main ideas of the paper can be generalized for other problem

solving paradigms supporting optimization as long as the solution spaces are finite.

This paper is organized as follows. First, we briefly recall some concepts of ASP and

optimization in Section 2, and assess the computational complexity of SEO in the context

of ASP (ASEO) in Section 3. Given these premises, we present our mixed algorithms for

ASEO in Section 4. The efficiency of the novel ASEO algorithms is then studied in Sec-

tion 5 by using optimization problems from ASP competitions as benchmarks. Yet further

application is established in Section 6: it is shown and experimentally verified that our

ASEO algorithms provide a potentially effective method for sampling and approximate

inference on Bayesian networks (BNs). Section 7 concludes the paper.

2 Preliminaries

The basic syntax of ASP (Brewka et al . 2011) is based on rules

h1| . . . | hl :- b1, . . . , bn, not c1, . . . , not cm. (1)

where hi:s, bi:s, and ci:s are atoms A constraint is a rule (1) with an empty head (l = 0).

A logic program P is a finite set of rules (1). The program P is called normal if l ≤ 1

holds for every rule (1) and disjunctive, otherwise. Given a set of atoms A, the reduct

PA of P with respect to A contains a positive rule h1| . . . | hl :- b1, . . . , bn for each

rule (1) of P such that l > 0 and no negated atom ci is in A. Given a logic program P ,
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let At(P ) be the signature of P , that is, the set of atoms that occur in P . An answer

set A ⊆ At(P ) of P (i) violates no constraint of P and (ii) is a subset-minimal set closed

under PA, that is, if b1 ∈ A, . . . ,bn ∈ A for some rule h1| . . . | hl :- b1, . . . , bn of PA,

then at least one hi is in A. Each program P induces set of answer sets, denoted AS(P ),

usually capturing the solutions of a search problem encoded by P .

The syntax of ASP has been generalized in various ways as proposed, for example, by

Simons et al. (2002), but many extensions can be translated back into rules of the form

(1) using transformations of Bomanson et al. (2014) and Alviano et al. (2015). To cater

for optimization problems within ASP, it is possible to introduce objective functions to

identify optimal answer sets. For the purposes of this work, an objective function f(A)

is defined as a pseudo-Boolean expression

w1 × l1 + . . .+ wn × ln =

n∑

i=1

(wi × li), (2)

where each wi is a non-negative integer weight and each li is a literal, that is, either an

atom “a” or its negation “not a”. If desired, negative weights can also be tolerated but

typically reduced back to non-negative ones. Given an answer set A ∈ AS(P ), the value

f(A) of (2) at A is

evalA(

n∑

i=1

(wi × li)) =
∑
{wi | 1 ≤ i ≤ n, A |= li}, (3)

where |= denotes the (standard) satisfaction of a literal li in A: (i) A |= a iff a ∈ A, and (ii)

A |= not a iff a �∈ A. An answer set A ∈ AS(P ) is optimal (in the sense of minimization)

if f(A′) < f(A) for no A′ ∈ AS(P ). Maximization can also be supported by transforming

f into f ′ suitable for minimization (Simons et al . 2002). Certain applications call for

several objective functions fi (2) indexed by a priority level 1 ≤ i ≤ p. The resulting

values (3) are interpreted lexicographically, that is, f1(A) is the most important, then

f2(A), etc. So, given an answer set (candidate) A, its (prioritized) objective value f(A)

is essentially a tuple 〈f1(A), . . . ,fp(A)〉.

3 Complexity landscape

In the following, we assume some familiarity with basic notions of computational com-

plexity; see, for example, the book of Papadimitriou (1994) for an account. As regards

decision problems, checking the existence of an answer set for a normal (resp. disjunctive)

ground logic program given as input is NP-complete (resp. Σp
2-complete) as respectively

shown by Marek and Truszczyński (1991) and Eiter and Gottlob (1995). However, the

task of computing an optimal answer set A for a normal logic program subject to an

objective function f forms an FPNP-complete function problem as established by Simons

et al. (2002). This means that only polynomially many calls to an NP-oracle are required

in the worst case. Indeed, the last call is typically the most demanding one since it ex-

cludes the existence of yet better answer sets. Once an optimal answer set A has been

determined, the respective optimum value f(A) is naturally also known.

Let us then address the computational complexity of enumerating solutions in an order

determined by an objective function f . Our first result concerns SE in general, that is, the
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tasks SE, SO, and SEO, identified earlier. It is assumed that a search problem instance P

has some finite representation, ultimately encoded as a string, based on which solutions

S can be sought and enumerated, and the value f(S) of the objective function f is

computable.

Proposition 1

Given a search problem instance P and an objective function f , (i) the task SE is

(constant-time) reducible to SO and SEO and (ii) the task SEO is not reducible to

SE nor to SO in general.

Proof

(i) The instance P can be reduced to an instance 〈P, f〉 of SO and SEO by setting a

constant value f(S) = c for every solution S of P . Then, both SO and SEO implement

SE since the order of solutions is irrelevant and all solutions get enumerated in the end.

(ii) Suppose that the instance 〈P, f〉 of SEO were reducible to an instance P ′ of SE
without an objective function. To enumerate the solutions of P , the instance P ′ must

possess the same set of solutions. However, since there is no objective function for P ′

under SE, these solutions can be enumerated in any order, not necessarily compatible

with f .

Quite similarly, suppose that the instance 〈P, f〉 of SEO is reducible to an instance

〈P ′, f ′〉 of SO. Since the latter must yield all solutions to P , the instance P ′ must have

the same solutions as P and, in addition, each solution S to P ′ must be optimal given

f ′, that is, f ′(S) is constant. Thus, the (optimal) solutions to P ′ can be enumerated in

any order, not necessarily compatible with f .

To conclude, reductions are not feasible in general, regardless of computational re-

sources.

On the other hand, if only the enumeration of the best k solutions is of interest, the

respective enumeration task may become easier than SEO: fewer solutions have to be

enumerated. For sufficiently small values of k, the task may be even easier than SO but

harder than SO if k exceeds the number of best solutions. However, the number of optimal

solutions is not known in advance, which makes SEO an attractive option for the user.

Typical answer set solvers perform SO with k = 1 by default when optimizing answer

sets. Next we concentrate on the enumeration of answer sets only and gather evidence

that ASEO can be more demanding than ASE or ASO in general. One way to implement

ASEO is to use ASO repeatedly as a subroutine and to exclude the solutions already

enumerated by a constraint. It is established below that the intermediate instances of

ASO remain equally hard enumeration problems in the worst case.

Theorem 1

Given a normal logic program P subject to an objective function f of the form (2) and

a non-negative integer lower bound b for f , the task of computing the next-best answer

set A subject to f(A) ≥ b is FPNP-complete.

Proof

The bound b and the objective function f(A) for a candidate answer set A can be in-

corporated by using a single weight rule r (Simons et al . 2002) that effectively expresses

f(A) ≥ b and by translating that rule into normal rules (Bomanson et al . 2014). The
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translation N(r) is feasible in polynomial time and P ∪ N(r) subject to f is an (un-

bounded) instance of answer set optimization and, thus, a member in FPNP as shown by

Simons et al. (2002). Hardness for FPNP is implied by the bound b = 0 and the original

(unbounded) complexity result of Simons et al. (2002).

Proposition 1 does not cover the reducibility of an instance 〈P, f〉 of ASO with respect

to ASE and ASEO. Interestingly, if the objective value f(A) = b for a best answer set

A were known, reductions would become feasible. By expressing the condition f(A) ≤ b

with a weight rule r rewritten as a set N(r) of normal rules (cf. the proof of Theorem

1), the instance P ∪N(r) of ASE, or the instance 〈P ∪N(r), f〉 of ASEO, would capture

the original ASO problem. The key observation is that such a bound b on f cannot be

determined in general in polynomial time.

Proposition 2

The problem ASO is not polytime reducible to ASE nor to ASEO unless P = coNP.

Proof

Let P be a normal program forming an instance of deciding if AS(P ) = ∅ or not. In

general, this problem was shown coNP-complete by Marek and Truszczyński (1991). Let

us construct a program Q by introducing new atoms a and b as well as rules “a:- not b.”,

“b :- not a.”, and the rules of P conditioned by the atom b. Then {a} ∈ AS(Q) and, if

A ∈ AS(P ), then A∪{b} ∈ AS(Q). By setting an objective function f(A) = 2×a+1×b,
the answer set {a} is optimal only if answer sets of the latter kind do not exist. Towards

our goal, let us assume that R is the polytime reduction of 〈Q, f〉 into an ASE problem.

We can check in polynomial time if {a} ∈ AS(R) (i.e. whether it should be enumerated

by ASE), iff AS(P ) = ∅.
Similarly, let 〈R, g〉 be a polytime reduction of 〈Q, f〉 into an ASEO problem. Again, we

can test if {a} ∈ AS(R) in polynomial time, giving rise to two cases. (i) If {a} �∈ AS(R),

then Q has answer sets of the form A ∪ {b}, all to be enumerated by ASEO and equally

admitted by g, that is, f(A∪{b}) = b is constant. Thus AS(P ) �= ∅. (ii) If {a} ∈ AS(R),

two subcases arise:

1. If g({a}) is not minimal, then R must have an answer set B �= {a} such that g(B) <

g({a}). Without loss of generality, assume that g(B) is minimal. Then B is to be

enumerated by ASEO but also {a}, since ASEO will enumerate the inferior answer

sets as well. Then both B and {a} should enumerated by ASO on the input 〈Q, f〉, a
contradiction.

2. Thus g({a}) is minimal and {a} is to be enumerated by ASEO. Then it must be

enumerated by ASO given 〈Q, f〉 excluding all other answer sets. Thus AS(P ) = ∅.
Thus we obtained a (hypothetical) polynomial-time test whether AS(P ) = ∅.

Proposition 3

In the worst case, a (normal) logic program P subject to an objective function f may

possess exponentially many answer sets A with different objective values f(A).

Proof

For an illustration, let us consider a concrete normal program Pn based on

atoms a1, . . . ,an and b1, . . . ,bn parameterized by n. The intended objective function
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f(a1, . . . ,an) =
∑n

i=1 2
i−1 × ai. Thus assignments to a1, . . . ,an encode distinct values in

the range 0, . . . ,2n − 1 in binary. Using complementary atoms a for the atoms a involved,

the rules of Pn are for all i = 1, . . . ,n:

ai :- not ai. ai :- not ai. bi :- not bi. bi :- not bi.

lti :- ai, bi. lti :- ai, bi, lt(i+1), (i < n). lti :- ai, bi, lt(i+1), (i < n).

:- b1, lt2. :- b1, not lt2.

The rules of Pn serve the following purposes. The rules of the first line simply choose

truth values for ai:s and bi:s. The rules in the second line check whether the value

represented by ai:s is lower than the value represented by bi:s such that lti takes bits

i, . . . ,n into account. Regarding constraints in the third line, they accept only one half

of possible values for bi:s given some fixed values of ai:s. Thus Pn has 2n−1 answer

sets A corresponding to each (fixed) assignment to the atoms a1, . . . ,an and, in total,

2n × 2n−1 = 22n−1 answer sets.

Given an answer set A of Pn, the objective value f(A) is f(a1, . . . ,an) =
∑n

i=1 2
i−1×ai

based on the truth values of a1, . . . ,an in A. Given Pn and f , any ASEO algorithm must

enumerate all answer sets A with value f(A) = 0 first, all answer sets with value f(A) = 1

next, and so on, until (finally) all answer sets with value f(A) = 2n − 1 get enumerated.

Each subtask in this sequence can be viewed as an ordinary ASO task yielding 2n−1

assignments for bi:s and those assignments are different for each assignment of ai:s. This

is to prevent the learning of nogoods for systematically excluding certain values of bi:s.

In this way, Pn maximally exercises the underlying enumeration procedure, although

finding a single answer set is yet easy.

4 Algorithms for ASEO

Propositions 1–3 support the view that ASEO can be strictly more demanding task

than ASE and ASO. This, however, does not prevent us from using ASE and ASO

as subroutines when realizing ASEO in practice. Therefore, we implement our ASEO

algorithms on top of a state-of-the-art ASP solver Clingo (Gebser et al . 2008) treated

as a black box for running ASO and ASE subtasks for the enumeration of answer sets.

Clingo implements an efficient search for answer sets, as witnessed by ASP competitions

(see, e.g. the report of Calimeri et al. (2016)), deploying conflict-driven nogood learning

algorithms devised by Gebser et al. (2007b). However, sub-optimal answer sets cannot be

readily enumerated, thus motivating the goals of our work. A way to implement ASEO is

to use Clingo’s Python API that extends the functionality of the underlying solver. While

the API enables quite straightforward implementation of ASEO algorithms detailed in

the sequel, it excludes certain options available for native implementations.

We call our first approach to ASEO the naive algorithm. The algorithm simply enumer-

ates all answer sets one by one with the help of Clingo API during which pairs 〈A, f(A)〉
of answer sets A and the respective objective values f(A) = 〈f1(A), . . . ,fp(A)〉 for prior-
ity levels are recorded for an input program P . Once the ordinary ASE task is completed,

the pairs recorded are sorted lexicographically based on their objective values. Then the

output consists of all answer sets of the program in the sorted order. While our naive

algorithm for ASEO is easy to implement, its obvious weakness is its consumption of

space. However, it may perform surprisingly well in cases where the number of answer
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Algorithm 1 Weight Enumeration

Input: Program: P , Integer: k

Objective functions: (1, (l11, w
1
1), . . . , (l

1
n1
, w1

n1
)), . . . , (p, (lp1 , w

p
1), . . . , (l

p
np
, wp

np
)

Output: Sorted answer sets: S

1: S ← {}; p′ ← p; P ′ ← P

2: while p′ ≥ 1 do

3: A ← ASP-Optimize(P ′)
4: if UNSAT(P ′) and p′ > 1 then

5: if |S| = 0 then

6: return S

7: end if

8: p′ ← p′ − 1; P ′ ← P

9: for i from 1 to p′ − 1 do

10: P ′ ← P ′ ∪ {EQi(C[i])}
11: end for

12: P ′ ← P ′ ∪ {GTl(C[p′])}
13: else

14: P ′ ← P ; C ← [ ]

15: for i from 1 to p do

16: C[i]← evalA(
∑ni

j=1(w
i
j × lij)); P ′ ← P ′ ∪ {EQi(C[i])}

17: end for

18: for A′ ← ASP-Solve(P ′) do
19: S ← S ∪ {A′}
20: if |S| = k then

21: return S

22: end if

23: end for

24: p′ ← p; P ′ ← P

25: for i from 1 to p′ − 1 do

26: P ′ ← P ′ ∪ {EQi(C[i])}
27: end for

28: P ′ ← P ′ ∪ {GTl(C[p′])}
29: end if

30: end while

31: return S

sets is low. Therefore, it makes a reasonable baseline algorithm for our purposes as well

as a basis for comparisons against more sophisticated algorithms.

In contrast with the naive algorithm, the ASEO task can be alternatively implemented

without enumerating all answer sets first. Such a procedure is obtained by first (i) per-

forming ASO followed by (ii) the introduction of constraints that exclude solutions enu-

merated so far. Finally, (iii) the ASO task is performed on increasingly constrained prob-

lem instances until the desired number of answer sets have been found. The constraints

have to be introduced with extra care so that the (polynomial) space consumption of the

underlying ASEO task is not jeopardized. Algorithm 1 is such a constraining algorithm
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that augments the input program P between subsequent enumeration tasks. Once all

currently optimal answer sets have been enumerated, it appends constraints that make

subsequent answer sets strictly worse than those enumerated so far. We know by Theo-

rem 1 that this does not necessarily make the remaining computational task any easier,

that is, the subsequent computation of next-best solutions can still be challenging. For

a cost C = evalA(
∑ni

j=1(w
i
j × lij)) associated with an answer set A and a priority level

1 ≤ i ≤ p, a rule-based constraint GTi(C), mimicking the ASP core standard Calimeri

et al . (2020), is:

:- #sum{wi
1 : li1; . . . ;wi

ni
: lini

} <= C. (4)

The objective value at the priority level 1 ≤ i ≤ p is fixed with a similar constraint

EQi(C):

:- #sum{wi
1 : li1; . . . ;wi

ni
: lini

} != C. (5)

The weight enumeration algorithm starts in Line 2 by discovering an optimal answer

set A using Clingo’s optimization algorithm. The call ASP-Optimize(P ′) returns an

optimal answer set, if such an answer set A exists. Lines 5–7 cover programs having

no answer sets. Lines 14–23 calculate objective values f1(A), . . . ,fp(A) for priority levels

and introduce constraints (5) to enumerate all equally good answer sets. Enumeration is

done by Clingo’s ASE algorithm designed by Gebser et al. (2007a): it performs branch-

and-bound search based on literals in the input program and conflicts that occur during

the enumeration. In Line (18), the call ASP-Solve(P ′) receives all answer sets of P ′,
one at a time. Once these get enumerated, Lines 24–29 deploy constraints (5) for levels

i = 1 . . . p′ − 1 and a constraint (4) for level p′ to find next-best answer sets. Lines 4–12

are used to virtually relax all constraints in the augmented program P ′ so that next-best

answer sets from the following priority level can be enumerated.

Example 1

Consider an optimization program P with three answer sets A1, A2, and A3 with objective

values f(A1) = 〈1, 4, 1〉, f(A2) = 〈1, 4, 7〉, and f(A3) = 〈1, 7, 4〉. Algorithm 1 starts by

discovering the (only) optimal answer set A1 and constrains the answer sets A of P by

f1(A) = 1, f2(A) = 4, and f3(A) > 1. These make A2 optimal and once found, the last is

revised to f3(A) > 7. As a result, no answer sets exist, the constraints for f2 and f3 are

superseded by f2(A) > 4. When A3 is found, the constraints are revised to f1(A) = 1,

f2(A) = 7, and f3(A) > 4. From this point onward, no answer sets are met, the level p′

is decreased down to 1, and Algorithm 1 terminates.

Few observations about Algorithm 1 are worthwhile. First, it is designed to find the

best k answer sets as determined by the given objective functions f1, . . . ,fp. If the full

ASEO is rather desired, the parameter k should be set to ∞, enforcing the algorithm to

loop over all answer sets in an order compatible with f1, . . . ,fp. Second, the algorithm

uses an (ordered) set S as an intermediate storage for answer sets. Instead of storing found

answer sets in S, an option is to process them immediately, for example, by printing them

for the user. This saves the space taken by S.

Proposition 4

Algorithm 1 can be implemented so that it runs in space polynomial in |At(P )|.
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Algorithm 2 Smart Enumeration

Input: Program: P , Integer: k

Objective functions: (1, (l11, w
1
1), . . . , (l

1
n1
, w1

n1
)), . . . , (p, (lp1 , w

p
1), . . . , (l

p
np
, wp

np
)

Output: Sorted answer sets: S

1: S ← []; t← 〈∞, . . . ,∞〉; L← {}; A← {}
2: for L ← ASP-Enumerate(P ) do

3: C ← []

4: for i from 1 to p do

5: C[i]← evalL(
∑ni

j=1(w
i
j × lij))

6: end for

7: if L is complete then

8: S.insert(〈L+, C〉)
9: if |S| > k then

10: S.remove(k + 1)

11: 〈A, t〉 ← S[k]

12: end if

13: else if C > t then

14: P ← P ∪ {:-L.}
15: end if

16: end for

17: return S

Proof

The ASE and ASO tasks are feasible in polynomial space, see the CNDL-ENUM-ASP

algorithm of Gebser et al. (2007a) for details. Using this algorithm via the Clingo API,

Algorithm 1 is able to enumerate optimal as well as sub-optimal answer sets. Lines 4

and 12 therein relax constraints used to exclude optimal answer sets enumerated during

previous solver calls by forgetting them and by adding tightened ones. Thus the size

of P does not increase indefinitely and Algorithm 1 operates in space comparable to

CNDL-ENUM-ASP regardless the value of k.

Due to our black-box implementation, Algorithm 1 may suffer from restarts after

enumerating all answer sets pertaining to a particular objective value. The underlying

solver could benefit from previously learned conflicts and there is even further potential

expected from keeping track of seen non-optimal answer sets that could be reused in

subsequent runs. However, such functionalities call for a native enumeration algorithm

and/or modifications to the underlying solver.

Algorithm 2 realizes a window-based approach where answer sets are computed using

an ASE process while keeping the best k answer sets A1, . . . ,Ak in memory. In addition,

the objective value f(Ak) of the k:th best answer set is used as a threshold t to discard

found (partial) answer sets that are worse than Ak and thus not contributing to the top

k answer sets. Our implementation of Algorithm 2 relies much on Clingo API as it needs

to keep track of assigned literals as well as to introduce new nogoods for excluding answer

sets. As regards storing answer sets, the space requirement of Algorithm 2 is k×|At(P )|. If
the underlying ASE algorithm were completely used a black box, the actual enumeration

of answer sets is feasible in space polynomial in |At(P )|, but for sufficiently large values of

https://doi.org/10.1017/S1471068421000375 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000375


760 J. Pajunen and T. Janhunen

k, this is dominated by k× |At(P )|. However, since Algorithm 2 adds nogoods explicitly

and for a different purpose than the underlying ASE algorithm, their number may become

exponential in |At(P )| in contrast with Algorithm 1 (cf. Proposition 4). This issue can

be best approached in terms of either native algorithms or an enhanced API that is able

to keep track and manipulate nogoods used for different purposes.

The main loop of smart enumeration in Lines 2–16 start with a call to ASP-

Enumerate(P ) that is based on the standard ASE algorithm of Gebser et al. (2007a). The

call provides a new partial assignment L, that is, a set of literals for the input program

P . For each iteration of the loop, L is extended by some chosen literal l and further

literals may be derived using propagation. The underlying enumeration algorithm is also

responsible for backtracking if L becomes inconsistent. Note that since L is partial, (3) is

revised to evalL(
∑n

i=1(wi × li)) =
∑{wi | 1 ≤ i ≤ n, li ∈ L}. If L is complete (covers all

of At(P )), Lines 8–12 append the respective answer set L+ = {a ∈ L | a ∈ At(P )} and
the corresponding cost(s) C to the list S of best k solutions so far. Moreover, the thresh-

old value t for excluding future answer sets is updated. Line 8 implements insertion sort

and places 〈L+, C〉 in the list S based on its cost(s) C. However, if L is not yet complete

and its cost vector f(L) is greater than the current threshold value t, the program P can

be extended by a nogood for excluding all supersets of L as done in Lines 13–15. The

algorithm terminates once the whole search space limited by the nogoods is exhausted.

Example 2

Consider a single objective function f as defined by (l1, 5), (l2, 1), (l3, 2), (l4, 2), (l5, 6)

and all possible answer sets A1 = {l1, l2, l3}, A2 = {l1, l3, l5}, A3 = {l2, l3, l5}, A4 =

{l1, l2, l4}, A5 = {l1, l4, l5} of a program P for which the best k = 2 answer sets are

sought. Suppose that f(A4) = 8 and f(A3) = 9 are the currently known top k = 2

answer sets which gives threshold t = 9. If L = {l1} is the current partial answer set and
the search heuristic picks l5 as the next literal to branch on, we end up with L′ = {l1, l5}
with cost f(L′) = 11. Since 11 > t, any extensions of L′ are eliminated by a nogood

:- l1, l5. Thus the underlying ASP solver will skip A2 and A5 altogether as it cannot

construct the corresponding partial assignments anymore.

Algorithms 1 and 2 work quite differently. For the program Pn from the proof of

Proposition 3, there exist exponentially many answer sets while finding and enumerating

optimal values is easy. Using Algorithm 1 on this problem instance is fast due to easy

enumeration while Algorithm 2 slows down as it needs to find objective values among an

exponential number of possibilities.

5 Benchmarking: Optimization problems

The performance of our ASEO algorithms is evaluated on several optimization problems

adopted from ASP competitions, as reported by Calimeri et al. (2016). The criterion for

choosing problems was solvability by Clingo in a reasonable time. For each benchmark

problem, the difficulty of instances increases and the numbers of answer sets are problem-

specific. In the experiments, we measure runtime subject to a timeout of 1800s. All

experiments are conducted using an Intel(R) Xeon(R) CPU (E5-1650 v4 @ 3.60GHz ),

with 32GB RAM, and Ubuntu OS. Our experimental setup is available as supplementary

material for this article.
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Table 1. Experimental results for ASEO algorithms

Instance Target Answer Sets ka

Problem #Instances Naiveb Algc 10 100 103 104 #TOd

BayesianNL 30 1800s (30) Alg 1 41s41s41s 67s67s67s 171s171s171s 460s460s460s 222
Alg 2 919s 991s 1083s 1379s 64

MarkovNL 30 1800s (30) Alg 1 185s185s185s 311s311s311s 757s757s757s 1499s1499s1499s 282828
Alg 2 1800s 1800s 1800s 1800s 110

Supertree 35 1099s (10) Alg 1 457s 591s 696s 855s 32
Alg 2 391s391s391s 417s417s417s 507s507s507s 830s830s830s 292929

Connected 20 301s (0) Alg 1 1613s1613s1613s 1713s 1771s 1800s 73
Alg 2 1685s 1684s1684s1684s 1702s1702s1702s 1760s1760s1760s 727272

MaxSAT 10 1800s (10) Alg 1 21s21s21s 721s721s721s 902s902s902s 919s919s919s 141414
Alg 2 1098s 1368s 1790s 1800s 32

FastFood 20 212s (1) Alg 1 1s1s1s 1s1s1s 7s7s7s 500s 000
Alg 2 10s 9s 31s 185s185s185s 1

Hamilton 45 46s (0) Alg 1 126s126s126s 350s 797s 1243s 32
Alg 2 187s 216s216s216s 261s261s261s 394s394s394s 181818

aSearch up to k Answer Sets.
bAverage runtime, (number of timeouts) for Naive algorithm.
cWhich ASEO algorithm was used.
dNumber of timeouts in instance.

Table 1 collects the results obtained for optimization problems. The rows of the table

detail runs on different problems while columns denote different runs of our algorithms.

The second column shows average time for the naive algorithm as well as number of

timeouts in parentheses. The last column shows the collective number of timeouts (#TO)

for an enumeration algorithm. A single cell reports the average runtimes for all instances

of the benchmark problem in question, and for Algorithms 1 and 2. For each target of

enumeration, the better algorithm is indicated in boldface. The average runtimes suggest

that the weight enumeration algorithm tends to perform better than smart enumeration.

Even when smart enumeration gives faster results, the runtime of weight enumeration is

not too far off. Average runtimes obtained for BayesianNL and MaxSAT highlight how

much faster weight enumeration can be while Hamilton is the only benchmark with a

reverse effect. Yet it is important to note that for certain benchmarks, namely Connected

and Hamilton, the naive algorithm that enumerates all answer sets first works faster than

others.

Figure 1 reflects how enumeration algorithms scale differently. Figure 1(a) reveals that

BayesianNL is relatively easy for weight enumeration (W). The switch from enumerating

10 answer sets to 104 answer sets seems to increase the runtime of weight enumeration

somewhat linearly. Meanwhile, the performance of smart enumeration (S) algorithm de-
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(a) (b)

Fig. 1. Cactus plots for selected experiments.

grades rabidly to the timeout. In the same vein, we observe from Figure 1(b) that the two

enumeration algorithms scale quite similarly in the Supertree benchmark problem. Their

runtimes start to increase simultaneously but the increase is more drastic for weight enu-

meration than it is for smart enumeration, and the latter algorithm runs always slightly

faster than the former. It is evident that the algorithms behave differently across the

instances and relative to each other. Algorithm 1 works considerably better than oth-

ers when finding an optimal objective value and enumerating optimal values is easy as,

for example, in the case of the logic program introduced in the proof of Proposition 3.

However, enumeration based algorithms work better when the number of answer sets is

reasonably low such that they can be enumerated in comparable time. Algorithm 2 seems

to perform especially well when the objective values f(A1)≤ . . .≤f(Ak) for the best k

answer sets A1, . . . ,Ak vary a lot and it is easier to locate the threshold value t = f(Ak)

for ruling out worse answer sets.

To summarize the experiments reported in this section, Algorithm 1 (weight enumera-

tion) works reasonably well for a majority of the problem instances. It seems to be able

to discover next-best answer sets with ease similar to the previous ones and our best ex-

perimental results indicate linear increase in time with respect to the desired number of

answer sets k. Meanwhile, Algorithm 2 (smart enumeration) does not perform as well on

average and it fails on problem instances that are easy for weight enumeration. However,

we are able to demonstrate that there exist problems for which the smart enumeration

algorithm can be faster and thus beneficial.

6 Practical application: Bayesian sampling

For a practical application of ASEO, let us consider probabilistic inference in the con-

text of BNs with Boolean random variables and an approach similar to weighted model

counting (Chavira and Darwiche 2008). The goal is to approximate queries by comput-

ing Maximum a Posteriori (MAP) assignments using an ASP encoding of the respective

abduction problem devised by Beaver and Niemelä (1999). The optimal solutions of the

problem satisfy

cMAP = argmax
C

(p(C|e)) , (6)
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Table 2. Bayesian networks used in the experiments

Network Features Algorithm Features
Network Nodes Arcs Avg. Degree k

Boe 92 23 36 3.13 200
Win-95 76 112 2.95 500
Andes 223 338 3.03 2000

Fig. 2. ASEO-based approximation of probabilities.

that is, cMAP is an assignment to random variables C in a network N that makes the

observed evidence e in N most probable. Given a (Boolean) query variable q, the same

ASP encoding and the ASEO algorithms proposed in this work can be used to enumerate

assignments in a decreasing order of significance, that is, starting from MAP assignments

but continuing with next probable assignments, and so on. This leads to a goal directed

sampling method as follows. Given a query q and some evidence e, we find out the k

most probable assignments c1, . . . ,ck (resp. d1, . . . ,dk) that satisfy q (resp. ¬q) and are

compatible with e. Thus, we obtain an estimate

P (q|e) ≈
∑k

i=1 P (q, ci | e)∑k
i=1 P (q, ci | e) +

∑k
i=1 P (¬q, di | e)

. (7)

Figure 2 illustrates the full procedure for approximating the query q given the evidence

e. First, for the sake of fair comparison with other sampling methods, the network is

simplified using d-separation following Geiger et al. (1989). Second, the input network

is transformed into an ASP encoding for solving the respective MAP problem. Then,

based on the given evidence e, the query q, and its negation ¬q, up to k most probable

assignments are computed in order to approximate the probability p(q|e) in the sense of

(7). Then, we evaluate our ASEO-based sampling method using few publicly available

BNs whose size varies from small to large (cf. Table 2). The experiments are conducted by

randomly picking a query variable and a set of evidence variables that represent 1 to 50%

of the variables in the network in total. In what follows, we compare our sampling results

to those obtained with a well-known native algorithm, viz. Gibbs sampler as provided in

the pyAgrum library of Gonzales et al. (2017). In this implementation, the sampler stops

by determining the convergence of the approximation with ε = 0.01.

In Figure 3, the sampling results for the input networks are presented. To obtain

the results we use Algorithm 1 to conduct ASEO where the choice of the enumeration
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Results of approximation algorithms compared to true probabilities in the networks.

algorithm was based on better overall performance. In each image, true probabilities are

mapped on the x-axis while the respective estimates are represented on the y-axis. Hence,

the closer to the diagonal points are, the better approximations have been obtained.

When looking at distributions, we observe that the ASEO-based approximations tend

to be better on smaller networks while this is no longer obvious for the largest network

Andes. As far as we can see, this is due to the fact that with larger networks there exists

increasing number of assignments with an equal objective value (i.e. the same probability)

and individual assignments having very low probability values. As a consequence, we do

not get a good overview of the distribution of probabilities and the probabilities are far

from the expected true ones as for the Andes network.

Table 3 presents further qualitative results over approximations where distances to true

probabilities are measured. The results of the table illustrate that ASEO-based sampling

can be competitive even with known methods such as Gibbs sampler. However, when

considering approximate reasoning task like Bayesian sampling, one should remember
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Table 3. Measured errors of approximations

Average distance
Algorithm Boe 92 Win-95 Andes

ASEO 0.03 0.04 0.16
Gibbs sampler 0.07 0.11 0.15

Maximum error
Algorithm Boe 92 Win-95 Andes

ASEO 0.11 0.98 0.99
Gibbs sampler 0.81 0.99 0.99

that there are highly optimized exact methods, such as that of Madsen and Jensen

(1999), to determine true probabilities fast.

7 Discussion and conclusion

In this work, we address SE in the context of combinatorial optimization problems, the

goal of which is to generate all optimal solutions to a given problem instance. As a novelty,

we take also sub-optimal solutions into consideration and propose algorithms that are able

to recursively enumerate next-best solutions until (i) all solutions or, alternatively, (ii)

the best k solutions have been enumerated. Such a procedure realizes our concept of SEO.

Besides screening the computational cost of SEO, we present dedicated SEO algorithms

geared toward ASP where solutions are captured with answer sets. The resulting ASEO

algorithms are implemented by Pajunen (2020) using the API of the Clingo solver and

are put to the test in experiments. These algorithms generalize the ASO reasoning mode

of Clingo. Moreover, we mention that the computation of k best solutions was considered

in an experimental track of MaxSAT Evaluation run by Bacchus et al. (2020), but the

solutions enumerated were supposed to assign different values to literals involved in the

objective function. Thus, such an enumeration differs from SEO up to k solutions.

The experimental evaluation comprises of two parts. First, we evaluate our ASEO

algorithms on a number of optimization problems that have been used in ASP competi-

tions. The results indicate the feasibility of ASEO in practice, enabling the exploitation

of next-best solutions when solving optimization problems. This is good news from the

perspective of Theorem 1 which indicates that the remaining computational complexity

does not necessarily decrease when excluding answer sets already enumerated. Second,

we illustrate the potential of ASEO in approximating Bayesian inference. There is some

resemblance to the approach of Chavira and Darwiche (2008) based on weighted model

counting. The difference is that the objective function derived from conditional probabil-

ity tables guides the search toward the most relevant assignments for query evaluation.

Ermon et al. (2013) deploy optimization oracles for similar inference but in the presence

of further constraints for uniformly distributing samples over the space of assignments.

It is worth noting that Bayesian inference has been well studied and there are further
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good alternatives to ASEO. Our main objective is to demonstrate the new way of utilizing

objective functions, effectively SEO, as means to reach the most significant solutions first.

As discussed in Section 4, our proof-of-concept implementations of ASEO are still sub-

optimal as they are essentially based on successive calls to ASO/ASE algorithms via

an API. This prevents, for example, the direct exploitation of nogoods learned during

the subsequent invocations of the underlying enumeration algorithm. This observation

suggests an obvious goal for future work: a native implementation of an ASEO reasoning

mode in some state-of-the-art answer set solver. To this end, we hope that our results

make this goal attractive for developers.
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