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On some mean value theorems of the
differential calculus

J.B. Diaz and R. Vyborny

A general mean value theorem, for real valued functions, is
proved. This mean value theorem contains, as a special case,
the result that for any, suitably restricted, function f
defined on [a, b] , there always exists a number ¢ in (a, b)
such that f(e) - fla) = f'(c)(e-a) . A partial converse of the
general mean value theorem is given. A similar generalized mean

value theorem, for vector valued functions, is also established.

1. Introduction

Flett's mean value theorem (6], which has attracted some attention
(see, for example the book by Boas [2]), was generalized by
Lakshminarasimhan [7], Trahan [9] and Reich [§]. Flett's Theorem reads:
If f(x) is a differentiable real valued function on [a, b] , and
f'(a) = f£'(b) , then there exists a number ¢ in (a, b) such that
fle) - fla) = f'(e)(e-a) . 1In this note, Flett's Theorem is generalized
further; this generalization brings out more clearly the geometrical fact
behind Flett's Theorem. Expressed in intuitive geometrical language,
Lagrange's mean value theorem says that, given a smooth plane curve Aﬂk
Joining two points A and B , there always is a point C( , interior to
the curve Aﬂk , such that the tangent to the curve at ( 1is parallel to
the chord Z_E-; whereas the present generalization of Flett's Theorem
states that, if the curve intersects the chord Z_E-, then there is a point

~
D , interior to the curve A B , such that the straight line AD is
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tangent to the curve at D . A partial converse of this theorem is also

given. Besides this, a theorem for vector valued functions is also proved.

2. Real valued functions

Let f and g be real valued functions, defined on a finite closed
interval [a, b] , where a <b . The set of all points (g(x), f(x)) ,
for x € [a, b] , will be called the graph of the couple (g, f) ; and, in
the special case when g(zx) = x , it will be simply called the graph of the

function f .

For convenience, the following terminology will be adhered to: The
graph of the couple (g, f) 1is said to intersect its chord (internally)

provided that there exists a number =z € (@, b) such that
(1) [f(z)-F(a)llg(b)-gla)] = [g(x)-g(a)}F(b)-fla)] .

The graph of the couple (g, F) is said to intersect its chord in the

extended sense, if either there is a number z € (@, b) such that (1)

holds, or else g(b) # gla) , 1lim .ﬁéﬁ)_:.ﬁ%ﬁ)l exists, and
xrat 9 z)-g(a

. flz)-fla) _ f(b)-f(a)
(2) o gla)gla) ~ g(B)-gla) -

THEOREM 1. Let the functions f and g satisfy the following

condi tions:
() f and g are continuwous on [a, D] ,
(i) glx) # gla) for a<x=b,

(ii1) the graph of the couple (g, f) <intersects its chord in the
extended sense.

Then there exists a number c € (a, b) , and two positive numbers,

8y, 8, , such that: either both inequalities

(3) [fle)-fla)llgle)-gle-h)] = [g(e)-g(a)]lf(e)-fle-R)] ,
and
(4) [fletk)-Fle)llgle)-gla)] = [gle+tk)-gle) 1 f(e)-fla)]

hold for 0 <h =28, , arnd 0 < k=8, ; or both inequalities (3), (4) are

https://doi.org/10.1017/50004972700047109 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700047109

Mean value theorems 229

valid, with the inequality signs reversed, for 0 < h =6, and

0<k=26,.
Proof. Define the auxiliary function @(x) = fz)-fla) for x> a,
glz)-g(a)
and, if (2) holds, define @ also at & = a by the equation
Qx) = g(g):ggg) . No matter whether (1) or (2) holds, there is a number

x , with a<z<b , such that @(x) = Q(b) , and the function @ is
continuous on [E, b] . Consequently, the function € attains either its
maximum or its minimum, over [E; b] , at a number ¢ , with x<e<b.
Since the conclusion of the theorem is not affected if the function f is
replaced by the function -f , it can be supposed that ¢ attains a

maximum at ¢ . Then, one has
(5) Qle-h) = Q(e) ,
for 0 <h<ec-x=26; , and

(6) Qletk) = Q(e) ,

for 0 < k = b-¢

IA

8§, . The inequality (5) means that

fle-h)-fla) . fle)-f(a)

gle-h)-gla) ~ gle)-gla) *
Since g(x) # gla) , for a<x <b , and g 1is continuous, one has that
either g(z) > gla) for a<x=<b , or g(x) <gla) for a<x=h .

Therefore, the product [g(e)-g(a)llg(e-h)-g{a)] > 0 , and hence
[fle-n)-fla)llgle)-g(a)] = [f(e)-f(a)llgle-h)-g(a)] .

Adding [f(a)-fle))lgl(e)-g(a)] to both sides of the last inequality, one
obtains (3). Using the inequality (6) one arrives, in a similar way, at

the inequality (L4).

REMARK |. If alternative (2) holds, that is
lim Hx)-fla) _ Hb)-fla , then the numbers §&§; and §, can be taken
g+ 9(x)-gla) = g(b)-gla)

tobe e¢-a and b - ¢ , respectively.

REMARK 2. Assuming, further, that f 1is differentiable in (a, b) ,
and choosing g{(z) = x , it follows from (3) and (L), by passing to the

limit as h + 0+ and k -+ 0+ , respectively, that
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fle) - fla) = f'(e)(c-a) ,
F'(eMe-a) = fle) - fla) ,

A

which implies

fle) - fla) = f'(c)(c-a) .

This is precisely the conclusion of Flett's Theorem, but obtained here

under a weaker hypothesis.

REMARK 3., Without assuming that f is differentiable, but still
choosing g{a) = x , one obtains from the conclusion of Theorem 1 that,

either

N fletk)-fle) . fle)-f(a) . f(e)-fle=h)
k - c-a - h

or the reverse inegualities hold, for 0 < h =<§; and 0 <k =6, .
Passing to the limit as k + 0+, h »+ O+ , and employing the usual
notation for Dini derivates, one obtains that, either

(8% D*p(e) s feklla) o p ey |

c-a
or

- - < fle)=fla) .

(87) D fle) s D=0 < p fle)
This is the conclusion of Theorem 1 in [§], except that, in [8], ¢ could
conceivably be b , which is excluded here. It should also be mentioned
that the hypothesis

' _ fb)-fla ' _ f(b)-fla

[f (b) - Lp)=fla) ][f‘ (a) - LB-=L ]:o

in Theorem 1 of [§] can be shown to imply hypothesis (7i%), for g(x) = x ,

in the present Theorem 1, except in the trivial case when
b)-
f1(p) = IX.%_lXELL )
~a

The usual Lagrange's mean value theorem reads: if f is a real
valued function, continuous on [a, b] , and differentiable in (a, b) ,
then there exists a number ¢ € (a, b) such that
f(B) - fla) = f'(e)(b-a) . A generalization of Lagrange's mean value

theorem, concerning the Dini derivates, asppears in the work of W.H. and
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Grace Chisholm Young [10, p. 10], which states that, if f is a real
valued function continuous on [a, b] , then there exists a number ¢ ,

with a < ¢ < b , such that either

(9+) D+f(c) < M‘Q < D_f(C) ,

b-a

or

9" 0 (o) < LB=a) o e,
b-a +

A further generalization can be given as follows [3, p. 115]: If f is a
real valued function continuous on [a, b] , then there exists a number ¢

such that either

(10) fletk)-fle) _ f(b)~fla) . fle)=f(c-h)
k - b-a = h

hold for qll positive % and k such that c¢+k € (a, b) , c-h € (a, b) ,
or the reverse inequalities hold with the same restrictions on &k and k
The inequalities (9) and (10) bear the same relation to the Lagrange

Theorem as the inequalities (8) and (7) bear to Flett's Theorem.

REMARK 4. Assuming that both f and g are differentiable, one
obtains, from (3) and (&), by dividing by h and k , respectively, and
then passing to the limit as h -+ 0+ and k - O+ , that

fle)lglel-gla)] = g' () fle)-Fla)] ,
g'(e)ifle)-Fla)] = f' (e)lgle)-gla)] ,
which implies

(11) g'(e)fle)-fla)]

fiellgle)-gla)]l

(One, of course, arrives at this conclusion, too, if inequalities reverse
to (3) and (U4) hold.) This is precisely the conclusion of Theorem 2 in
[9], except that there ¢ could conceivably be b , which is excluded

here. It should also be mentioned that the hypothesis

f'la)  fb)-fla) ) ) N
o) [F{g - LA (100)-g(a)15" () - (£B)-la)lg" (8] = 0

in Theorem 2 of [9] can be shown to imply hypothesis (Zii) in the present
Theorem 1, except in the trivial case, when

[g(B)-g(a)1f'(b) = [Ff(b)~fla)lg'(b) . If g' never vanishes, then (11)
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can be written in the form
fle)-fla) _ f'(e)

(13) gle)-gla) ~ g'(e) ’

and this explains why a theorem of this sort is called a "fractional mean
value theorem". As soon as a fractional mean value theorem is established,
one can prove Taylor like theorems with various forms of the remainder

(for example, lLagrange's, Cauchy's or Schlomilch's form). See [9], [4],

[5]. This order of ideas will not be pursued further here.

REMARK 5. Assuming that only g is differentiable, one obtains from

Theorem 1 (similarly as in Remark 2), that either

(14) p*fle) < %ﬁ% g'(e) = b flo) ,

or

1A

(15) vf(e) = HE0al 1 (0) = 0 5(0) -

This is the conclusion of Theorem 2 in [8], except that in [8], ¢ could
be conceivably b , which is excluded here. Hypothesis (12) appears also
in Theorem 2 of [§], and hence, as pointed out in Remark U4, the hypothesis
of the present Theorem 1 is actually weaker, except in the trivial case,

when [g(b)-g(a)lf'(b) = [f(b)-fla)lg'(b) .

REMARK 6. The usual Cauchy fractional mean value theorem reads: If
f and g are real valued functions continuous on [a, b] , differentiable
on (a, b) , then there exists a number ¢ such that
[FB)-Ffla)lg' (c) = [g(b)-gla)lFf'(c) . A generalization of the Cauchy
Theorem, concerning Dini derivates, appears in the work of W.H. and CGrace
Chisholm Young [10, pp. 19-247; roughly speaking, this generalization is
related to Cauchy's Theorem in a similar way as inequalities (14) and (15)
are related to equation (13). A further generalization of Cauchy's Theorem
can be given as follows [4, Remark 4]: If fF and g are real valued
continuous functions on [a, b] , then there exists a number ¢ such that,

et ther

A

[F(b)-Ffla)llgle)-gle-h)] = [g(b)-gla)llfle)-f(e-R)] ,

(16)
[g(B)-g(a) )l fletk)-Fle)] = [F(B)-fla)]lg(etk)-g(e)]

1A

hold for all positive % and k such that e-kh € [a, b) , otk € [a, b] ,
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or both inequalities (16) are valid with inequality sign reversed, with the
same restriction on k4 and %k . The conclusion of this generalized mean
value theorem bears the same relation to the conclusion of the Cauchy mean
value theorem as the conclusion of the Theorem 1 of this paper bears to the
conclusion of Theorem 2 of [9] [roughly speaking, to equation (11)], except
that, in the generalization to Cauchy's theorem, the numbers % and k-

are only restricted by inequalities 0 < h Zc¢-a , 0 <k =b-c .

3. Partial converse

In considering the possibility of a converse of Theorem 1, only the
case when g(x) = x will be taken into account. A natural converse of
Theorem 1 would state that, if f 1is continuous, and there exists a number
e , with a < ¢ <b , and positive numbers &, &> such that either

fletk)-fle) _ fle)-Fla) _ fle)-fle-h)
Q7) k - c-a - h
"hold for 0 <h =68, , and 0 < k =8, , or the reverse inequalities are
valid with the same restrictions on A and k , then the graph of f
intersects its chord. However, this proposition is not true, as examples

in Figure 1 and Figure 2 show. Nevertheless, the following theorem holds.

Figure 1
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a=c-—8 b=c +s,

Figure 2

THEOREM 2. Let f be a real valued continuous function on l[a, b] .
If there is a number c € (a, b) such that either the inequalities (17),
or the reverse inequalities, hold for all positive h and k , with
a=<ch, c+k =b , then, either f is linear on [a, e¢] , or there is «a

number d € (e, b] and a number z , with a <z < d , such that

(18) 1(;)—,1 (a) = 1§dd2—z(a} .
= —a
x-a

(Thus, if (18) holds, then the graph of f intersects its chord
(internally) between the points (a, f(a)) and (d, f£(d)} .)

Proof. Suppose, first, that (17) holds. Then

(19) fz)-fla) _ fle)-f(a)

x-a c-a

holds, for a < x =b . Two cases arise. In the first case, the equality
sign holds for all « , with a <x < ¢ . In this case, f 1is linear on
[a, ¢] . In the second case, there is a number xy , with a < zxy < e,
such that strict inequality holds, in (19), for x = zg . There are two

subcases; etther,

https://doi.org/10.1017/50004972700047109 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700047109

Mean value theorems 235

£(b)-fla) . flag)-f(a)
(20) b-a - xp-a ’
or
f(xo)—f(a)
f(b)-f(a)
(21) b-a 2 < Xo-a

If (20) holds, then the continuous function H , defined by

H(JC) = ,1 (.’L‘)—J (a)

x-a
has a value less than or equal to (bg:a(a) at x =2x¢ , by (20), and has,

in view of (19), with x = b , a value greater than or equal to

(bg:a(a) at x = ¢ . Therefore, there exists a number z € [zg, e] such

that

(z)-f(a) . £b)-fla)

- b-a

k)

that is, the equation (18) is satisfied for d =5/ . If (21) holds, then

flzxg)-fla)
the continuous function H has a value less than g at x=5b ,
0~
flxg)-fla)
by (21), and has a value greater than — at x=¢ , in view of
0=

(19) with « = xy . Therefore, there exists a number d , with

e <d<b , such that

f(d)—f(a) f(xo)—f(a)
d-a =T zp-a

Xo-a

that is, equation (18) is satisfied, with &« = xy . If the inequalities
reverse to (17) hold, then (17) holds with f replaced by -f , and,

therefore, the desired conclusion follows in this case also.

4. Vector valued functions

THEOREM 3. Let the functions F and g satisfy the following

conditions:

(i) the vector valued function F 1is continuous on [a, b} , and

its values are in a linear normed space B &oﬂth the norm
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denoted by || H); the real valued function g 1is continuous

on [a, b1,
(it) glx) > gla) , for a<zxz=b,
(iii) either there exists a number =z such that

P(z)-F(a)]
9(@)-g(a)|

’Zf—ﬁﬁ%ﬂl exists, and

Then, there exists a nwmber c € (a, b) and a positive number § ,

|F(b)-F(a)|
lg(B)-g(a)]

E

or, the limit 1lim
gt

1lim
xrat+

such that, either

(22) 1F(e)-F(a)lilgle)-gle=h)] = [gle)-g(a)lliF(e)-Fle-R)|| ,

1A

for 0 <h<§, or

1A

(23) F(e)-F(a)li{g(ern)-g(e)] = [g(e)-g(a) MIF(c+h)-F(c) ,
for 0 <h<§.

Proof. Using Theorem 1 for f , where f(x) = ||F(x)-F(a)|ll , one
obtains: If inequalities (3) and (4) hold, then one obtains, from (3),
that

(24) [IF(e)-F(a)lllg(e)-g(e-h)] = [g(e)-g(a)1[liF(e)-F(a)l-lIF(e-h)-F(a)l] .
for 0 <h =86 = min(8;, 85) , and, by the triangle inequality, that
(25) NF(e)-F(a)ll - IF(e-h)~F(a)ll = [[F(e)-F(c-R)I .

Inequality (22) now follows, using (ZZ) with x = ¢ , from (24) and (25).
If, on the other hand, the inequalities reverse to (3) and (L4) hold, then

one obtains, from the inequality reverse to (4), that

(26) [lIF(e+h)-F(a)li-liF(e)-F(a)li]lg(e)-g(a)] = [gle+th)-g(e)iF(e)-F(a)ll ,
for 0 <h =6 =min(8§;, 8,) , and, by the triangle inequality, that
(27) IF(eth)-F(a)l| - |IF(e)-F(a)ll = |IF(c+h)-F(e)| .

Inequality (23) now follows, using (¢4) with x = ¢ , from (26) and (27).

THEOREM 4. Let the functions F and g satisfy conditions (i) and
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(i1i) of Theorem 3, and let g be strictly monotonic. Then, there exists
a number c € (a, b) and a positive number & , such that either

(28) F(e)-F(a)l| . ||F{eth)~F(e)|
gle)-gla)ll = ligleth)~gle)ll °

for 6 <h<=4§, or

F(e)-F(a)|l
gle)-g(alll

1A

(29)

|E(e)=F(c-h)||
lg(e)-g(e-h)| *

for 0 <h=2¢6.

If, further, F 1is strongly differentiable on (a, b) , and g 1is
differentiable on (a, b) , then

seazsten = el -

Proof. If g is strictly increasing, then hypothesis (Zi) of Theorem
3 holds, and (29) and (28) follow directly from (22) and (23),

respectively. If g 1is strietly decreasing, one considers -g , instead

(30)

of g . If F and g are differentiasble, then, passing to the limit, as
h » 0+ , in either (28) or (29), one obtains (30).

REMARK 7. Theorem 4 is a sort of a "fractional Flett-Trahan mean
value theorem for vector valued functions". Using the Hahn-Banach
extension theorem, it is not difficult to extend Theorem 4 to the case

when F is only weakly differentiasble (see, for example, [1]).
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