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Abstract

We study the action of the inertia operator on the motivic Hall algebra and prove that it
is diagonalizable. This leads to a filtration of the Hall algebra, whose associated graded
algebra is commutative. In particular, the degree 1 subspace forms a Lie algebra, which
we call the Lie algebra of virtually indecomposable elements, following Joyce. We prove
that the integral of virtually indecomposable elements admits an Euler characteristic
specialization. In order to take advantage of the fact that our inertia groups are unit
groups in algebras, we introduce the notion of algebroid.
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Introduction

For simplicity, let us work over a field k. (Later, k will be replaced by a noetherian ring R.)
Let M be an abelian k-linear algebraic stack. Roughly, this means that M is at the same time

a k-linear abelian category with finite-dimensional hom-spaces, and an algebraic stack, locally of
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The inertia operator on the motivic Hall algebra

finite type over k. (The precise definition of linear algebraic stack is Definition 1.9. In the body
of the paper we work with exact, instead of abelian, categories; see the beginning of § 3.)

Examples we are interested in include:

(i) M = CohY , the moduli stack of coherent OY -modules, for a projective k-variety Y ;

(ii) M = RepQ, the moduli stack of representations of a quiver Q on finite-dimensional k-vector
spaces;

(iii) (the case Y = Q = Spec k) M = Vect, the stack of finite-dimensional k-vector spaces. In this
case, Vect(S), for a k-scheme S, is the exact O(S)-linear category of vector bundles over
S, and Vect(k) is the abelian k-linear category of finite-dimensional k-vector spaces. As an
algebraic stack, Vect is

Vect = Spec k q BGL1 q BGL2 q . . . .
Algebroids. There is a canonical sheaf of algebras A → M over M. The set of sections of A

over the S-valued point x of M is the O(S)-algebra Ax = End(x). For M = Vect, the point x is
a vector bundle over S, and End(x) is the O(S)-module of endomorphisms of x.

There is also a canonical isomorphism of group sheaves A× → IM over M, where IM is
the inertia stack of M. (Recall that the sections of IM over the S-valued point x of M are the
automorphisms of x, in other words, the units in the algebra of endomorphisms.)

We call a triple (X,AX , ι) an algebroid (see Definition 1.38 and Remark 1.44) if X is an
algebraic stack, AX → X is a representable sheaf of finite O-algebras over X (or finite type
algebras, as we call them; see Definition 1.18), and ι : A×X → IX is an open immersion of relative
group schemes over X, making the canonical diagram

A×X
ι //

%%

IX

��
AutX(AX)

commute.
So, M with its canonical sheaf of algebras A is an example of an algebroid. In this case, ι is

an isomorphism, yielding what we call a strict algebroid.
Algebroids are generalizations of linear algebraic stacks (they are linear over their coarse

moduli spaces, if they are strict). They are slightly more flexible. For example, schemes can be
considered as algebroids in a canonical way. If the algebraic stack X is the base of an algebroid,
then the connected component I◦X of its inertia stack IX is the group of units in an algebra. This
is the main significance of algebroids for us.

Just like algebraic stacks, algebroids form a 2-category, in which 2-fibred products exist.
Whenever (X,AX) is an algebroid, and Y → X is an inert morphism of algebraic stacks, i.e.,
I◦Y = I◦X |Y (see Definition 1.47), the stack Y is endowed with a natural structure of an algebroid
via AX |Y . Examples of inert morphisms include monomorphisms and projections Z ×X → X,
for schemes Z. A locally closed immersion of algebroids (Y,AY ) → (X,AX) is a morphism where
Y → X is a locally closed immersion of algebraic stacks, such that AY = AX |Y . Every scheme
Z is an algebroid via the definition AZ = 0Z .

A key observation is that if (X,A) is an algebroid, then (IX , IA) is another algebroid. In
fact, IA, the inertia stack of the stack A (the total ‘space’ of the sheaf of algebras A), is equal to
the subalgebra of A|IX fixed under its tautological automorphism. We call (IX , IA) the inertia
algebroid of (X,A). It comes with a canonical morphism to (X,A). There is also a semi-simple
connected version of the algebroid inertia, denoted by I◦,ss.
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The motivic Hall algebra. We define stack functions to be representable morphisms of
algebroids (X,AX) → (M,A), where X is of finite type. The Hall algebra K(M) of M is
the Q-vector space on the isomorphism classes of stack functions modulo the scissor relations
relative M:

[X → M] = [Z → X → M] + [X\Z → X → M]

and the inert bundle relations relative M:

[Y → X → M] = [F ×X → X → M].

Here, [X → M] denotes the Hall algebra element defined by a stack function with base X. Also,
Z → X is a closed immersion of algebroids, with open complement X\Z, and Y → X is an inert
fibre bundle (Definition 1.53) with special structure group and fibre F , all endowed with their
canonical algebroid structure. (Examples of inert fibre bundles are étale locally trivial ones.)

We have the following structures on the Hall algebra.

(i) Module structure. Let K(Var) denote the Grothendieck ring of varieties over k. We denote
the motivic weight of the affine line by q = [A1] ∈K(Var). By [Z] · [X → M] = [Z×X → M]
we define a K(Var)-module structure on K(M).

(ii) Multiplication. By [X → M]·[Y → M] = [X×Y → M×M ⊕−→ M] we define a commutative
multiplication on K(M), and K(M) is a K(Var)-algebra with this multiplication.

(iii) Hall product. Using the stack of short exact sequences in M, we can define a Hall algebra
product [X → M] ∗ [Y → M] on K(M). For details, see § 3. The module K(M) is a
K(Var)-algebra also with respect to the Hall product.

(iv) Unit. The unit with respect to both products is represented by 1 = [Spec k
0−→ M].

(v) Inertia endomorphism. The algebroid inertia defines an operator I : K(M) → K(M) via
I[X → M] = [IX →X → M]. This inertia operator is linear over K(Var) and multiplicative,
I(x · y) = I(x) · I(y), with respect to the commutative multiplication. The same facts hold
for the connected semi-simple inertia operator I◦,ss : K(M) → K(M).

There is also a ‘non-representable’ version of the Hall algebra, where we drop the
representability requirement for stack functions and simply define a stack function to be a
morphism of algebroids X → M, with X of finite type. The representable Hall algebra is
a subalgebra (with respect to both products) of the non-representable one. Our results on the
diagonalizability of the various operators I, I◦,ss, En hold true also in the non-representable Hall
algebra, but the algebraic results on the structure of the Hall algebra need representability. For
simplicity, we restrict ourselves therefore to the representable case from the beginning.

Usually, when defining the Hall algebra of M, one requires the bundle relations also for
non-inert morphisms. The connected inertia operator does not respect such relations, and we
therefore do not include them.

Example. A stack function X → Vect is the same thing as an algebroid (X,A) together
with a faithful representation, i.e., a vector bundle V over X together with a monomorphism of
algebras A → End(V ), making the canonical diagram

A×X
ι //

##

IX

��
GL(V )

commute.
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Examples of stack functions with values in Vect include subalgebras A ⊂Mn×n. (The induced
morphism of algebroids is (BA×, A×\A) → (BGLn,GLn \Mn×n).) The elements of K(Vect)
defined by A ⊂Mn×n and B ⊂Mn×n are equal if and only if A and B are conjugate in Mn×n.

The subalgebra U of K(Vect) with respect to the Hall product, generated by the [n] =
[BGLn → Vect], is free on these elements [n], for n > 0, as a unitary Q-algebra. In the
literature, U is known as the Hopf algebra of non-commutative symmetric functions; see [Car07,
Example 4.1(F)].

(If we add the (non-inert) vector bundle relations relative to Vect, see, e.g., [Bri12], we get

[λ1] ∗ . . . ∗ [λr] =
[GLn]

[P (λ)]
[n] =

(
n

λ1 . . . λn

)
q

[n].

Here n =
∑
λi, and

(
n

λ1...λn

)
q

denotes the q-deformed multinomial coefficient, which gives the

motivic weight of the flag variety of type λ. We have also denoted the parabolic subgroup of GLn
of type λ by P (λ). Hence, the Q-algebra obtained by dividing U by the vector bundle relations
is the commutative polynomial algebra over Q, on the symbols [1], [2], [3], . . . . This is the Hopf
algebra of symmetric functions.)

The spectrum of semi-simple inertia. The main point of this work is to study the spectral
theory of the semi-simple inertia operator I◦,ss on K(M).

Before announcing our results, let us do a few sample calculations. They contain some of the
central ideas of this paper. Only strict algebroids will occur, so we write Iss instead of I◦,ss.

We consider M = Vect. The linear stack of line bundles defines the stack function [BGL1 →

Vect] ∈ K(Vect). We have

Iss[BGL1 → Vect] = [GLss
1 ×BGL1 → Vect]

= [GL1×BGL1 → Vect]

= (q − 1)[BGL1 → Vect].

This proves that [BGL1 → Vect] is an eigenvector of Iss, with corresponding eigenvalue (q−1) ∈
K(Var).

Because Iss is an algebra morphism with respect to the commutative product, it immediately
follows that every (q − 1)r for r > 0 is an eigenvalue of Iss, with corresponding eigenvector
[BGLr1 → BGLn → Vect] ∈ K(Vect).

These are not the only eigenvalues of Iss. In fact, let us consider the stack function of all
rank 2 vector bundles [BGL2 → Vect]. Recall that the inertia stack of BGL2 is the quotient
stack GL2 /ad GL2, where GL2 acts on itself by the adjoint action. The semi-simple part of GL2

decomposes as GLeq
2 tGLneq

2 , according to whether the two eigenvalues of an element of GL2 are
equal or not equal. By the scissor relations, we have

Iss[BGL2] = [GLeq
2 /ad GL2] + [GLneq

2 /ad GL2]

= [∆×BGL2] + [T ∗/adN ]

= (q − 1)[BGL2] + x.

Here, ∆ is the one-parameter subgroup of scalar matrices, and T is the maximal torus of diagonal
matrices in GL2. Further notation: T ∗ = T\∆,N is the normalizer of T in GL2, and x= [T ∗/adN ].

Next, we calculate Issx. In fact, we have Iss
T ∗/N = IT ∗/N = (T ∗ × T )/N , by the ‘stabilizer

formula’ for the inertia stack of a quotient stack

IY/G = {(y, g) ∈ Y ×G | yg = y}/G.
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We note that N = T o Z2 acts on T ∗ × T diagonally, via its quotient Z2, by swapping the
entries of T . We embed T into A2 equivariantly with respect to Z2 and then decompose A2 as
T t (GL1×0) t (0×GL1) t (0, 0). This gives

[(T ∗ × A2)/N ] = [(T ∗ × T )/N ] + [T ∗ × (GL1× 0 t 0×GL1)/N ] + [T ∗ × (0, 0)/N ]. (1)

We have a pullback diagram of algebroids.

(T ∗ × A2)/N //

��

T ∗/N

��
(T ∗ × A2)/Z2

// T ∗/Z2

It shows that the vector bundle (T ∗ × A2)/N → T ∗/N is a pullback of the vector bundle
(T ∗ × A2)/Z2 → T ∗/Z2. The latter is a vector bundle over a scheme, and is therefore Zariski-
locally trivial by Hilbert’s Theorem 90. The same is then true for any pullback bundle. Hence,
we conclude that

[(T ∗ × A2)/N ] = q2[T ∗/N ],

using the scissor relations, or the inert bundle relations. So, from (1), we conclude that

q2x = Issx+ (q − 1)[T ∗/T ] + x,

which we solve for Issx to get

Issx = (q2 − 1)x− (q − 1)2(q − 2)[BT ].

We already know that Iss[BT ] = (q − 1)2[BT ], and so we conclude that [BGL2], x, and [BT ]
generate an Iss-invariant subspace of K(Vect), and the matrix of Iss on this subspace isq − 1 0 0

1 q2 − 1 0

0 −(q − 1)2(q − 2) (q − 1)2

 .

This matrix is lower triangular, with distinct scalars on the diagonal, and is therefore
diagonalizable over the field Q(q). So, on this subspace, Iss is diagonalizable, with eigenvalues
(q − 1), (q2 − 1), and (q − 1)2. If we decompose [BGL2] as a sum of eigenvectors, we get the
eigenvectors

[BGL2]− 1

q(q − 1)
x− 1

q
[BT ] with eigenvalue (q − 1),

1

q(q − 1)
x− q − 2

2q
[BT ] with eigenvalue (q2 − 1),

1
2 [BT ] with eigenvalue (q − 1)2.

A very important observation is that when we add together the eigencomponents whose
eigenvalues have the same order of vanishing at q = 1, we get coefficients in Q, instead of
Q(q). In the above example, we add together the components of [BGL2] with eigenvalues (q−1)
and (q2 − 1) to obtain [BGL2]− 1

2 [BT ].
Another important observation is that diagonalizing Iss does not, despite appearances,

require us to invert (q− 1). In fact, the algebroid x appearing in the above argument is divisible
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by (q − 1), although the quotient is not a strict algebroid any longer. To see this, consider the
action of Gm on T ∗ by left multiplication. It commutes with the adjoint action by N . Let us
denote the quotient Gm\T ∗ by T̃ ∗. We can endow the stack T̃ ∗/N with the structure of an
algebroid, making the quotient map T ∗/N → T̃ ∗/N into an inert morphism of algebroids with
fibre Gm. (For the details, see Proposition 1.61.) The inert bundle relations then imply that
x = [T ∗/N ] is indeed divisible by (q − 1).

The matrices in T̃ ∗ of trace zero have the full group N as stabilizer. Decomposing T̃ ∗ into
matrices of trace zero, and matrices of non-zero trace, we see that

T̃ ∗/N = BN t (Gm\{1})×BT.

Hence, T̃ ∗/N is not a strict algebroid, as N is not connected, and is not the group of units in
any algebra. This is, in fact, the reason for considering non-strict algebroids at all. (For more on
this, see Example 2.18.)

(In the above calculations, we have suppressed the algebra part A of the various algebroids
(X,A). We leave it to the reader to supply the natural algebra for each algebroid mentioned.)

Results. We now summarize the main results of this paper.

Theorem 1 (Diagonalizability of I◦,ss). The operator I◦,ss on

K(M)(q) = K(M)⊗Q[q] Q(q)

is diagonalizable, the eigenvalues are indexed by partitions λ, and the eigenvalue corresponding
to the partition λ is the cyclotomic polynomial

Q(λ) =
∏

(qλi − 1).

In other words, we have a direct sum decomposition

K(M)(q) =
⊕
λ

Kλ(M)

into subspaces invariant under I◦,ss, and I◦,ss|Kλ(M) is multiplication by Q(λ).

The same theorem holds for the operator Iss in the context of strict algebroids. We also prove
a stronger version avoiding denominators divisible by (q − 1), but this version only works for
algebroids.

The proof of this theorem is a generalization of the above sample calculation for the stack of
rank 2 vector bundles. One goal of § 1 is to set up the necessary notation.

Theorem 2 (Graded structure of K(M)). There is a direct sum decomposition

K(M) =
⊕
r>0

Kr(M) (2)

such that
Kr(M)(q) =

⊕
ordq=1 Q(λ)=r

Kλ(M).

Moreover, the commutative product is graded with respect to (2).
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Again, the same theorem holds in the context of strict algebroids.
The fact about the gradedness of the commutative product is expected from the fact that

the semi-simple inertia respects the commutative product (it follows from this fact over Q(q),
but is true over Q).

Geometrically, the descending filtration K>r(M) induced by the grading (2) can be described
as follows: K>r(M) is the Q-span of all stack functions [X → M], for which the algebra of global
sections Γ(X,AX) admits at least r orthogonal non-zero central idempotents, where AX is the
algebra of the algebroid (X,AX).

The direct summands Kr(M) are the common eigenspaces of the family of commuting
operators (En)n>0, where En(X) is the stack of decompositions of 1 ∈ AX into a sum of n
orthogonal labelled idempotents. The eigenvalues of the operators En are integers, and the whole
family of operators (En) is diagonalizable over Q. The proof of this fact proceeds by proving
that the (En) preserve the descending filtration described geometrically above and have distinct
integer diagonal entries.

It turns out that the ascending filtration K6n(M) associated with the grading in the above
theorem can be described as

K6n(M) = kerEn+1.

Let us also point out that
K0(M) = K(DM),

where K(DM) is the Grothendieck Q-algebra of Deligne–Mumford stacks (see § 2). For this
reason,K(DM) is a more natural ring of scalars thanK(Var), and we will useK(DM) throughout.
(On the other hand, in the context of strict algebroids, we have K0(M) = K(Var).)

If we denote by πr : K(M) → K(M) the projection operator onto the summand Kr(M) and
form the generating series πt =

∑
r>0 πrt

r, then we have

πt =
∑
n>0

(
t

n

)
En. (3)

All the above results could be proved for pairs (X,A) of algebraic stacks X endowed with
finite type algebras A, instead of algebroids or strict algebroids. One simply replaces I◦,ss by
A×,ss.

Theorem 3 (Filtered nature of the Hall algebra). The Hall product is filtered with respect to
the filtration K6r(M) induced by the grading (2). Moreover, for the associated graded algebra,
we have

gr(K(M), ∗) = (K(M), ·).

In other words, if x ∈ K6r(M) and y ∈ K6s(M), then x ∗ y ∈ K6r+s(M), and

x ∗ y ≡ x · y mod K6r+s−1(M).

The proof of this theorem uses not much more than some simple combinatorics involving
relabelling of direct sum decompositions, and compatibilities between direct sum decompositions
of short exact sequences and splittings of short exact sequences.

The theorem implies that the one parameter family of algebras (K(M), ∗) given by the Rees
construction

K(M) =
⊕
n>0

tnK6n(M)
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is a deformation quantization of (i.e., a one-parameter flat family of algebras with special fibre)
the commutative algebra (K(M), ·). Hence, the graded algebra (K(M), ·) inherits a Poisson
bracket {, } of degree −1. In particular, K1(M) is a Lie algebra, and it turns out that the Lie
bracket on K1(M) is equal to the commutator bracket associated to ∗.

The filtered algebra (K(M), ∗) is a filtered quantization of the Poisson algebra (K(M), ·, {, }),
as defined in [Sch16]. Of course, we have more structure here, as our filtration comes from a
natural grading, but it is not clear to us what this additional structure on our filtered quantization
is useful for.

Following Joyce [Joy07a], we call K1(M) the Lie algebra of virtually indecomposable elements
of K(M), with the notation Kvir(M) = K1(M).

We denote the projection onto Kvir(M) by πvir. With this notation, we have, as a special
case of (3),

πvir =
∑
n>0

(−1)n+1

n
En.

In terms of eigenspaces of semi-simple inertia, we have

Kvir(M)(q) = K(q−1)(M)⊕K(q2−1)(M)⊕K(q3−1)(M)⊕ . . . .

Theorem 4 (Hall algebra logarithms). Let N ⊂M be a ‘small enough’ substack, closed under

extensions and direct summands, and not intersecting Spec k
0−→ M. Then

εt[N] =
∑
n>0

(
t

n

)
[N]∗n ∈ K̂(M)+.

In particular, the ∗-logarithm

ε[N] =
∑
n>1

(−1)n+1

n
[N]∗n ∈ K̂vir(M)+

is virtually indecomposable.

For the precise definition of ‘small enough’, see § 3.3. For example, if M = CohY for a curve
Y , we could take N to consist of all non-zero semi-stable vector bundles of a fixed slope. Since
N is typically not of finite type, to make sense of [N] we have to pass to a certain completion
K̂(M)+ of K(M). See § 3.3 for details.

Theorem 5 (No poles). Let K(St) be the Grothendieck Q-algebra of algebraic stacks, modulo
all bundle relations with special structure group (inert or not). Consider the map∫

: K(M) −→ K(St)

[(X,A) → (M,A)] 7−→ [X],

which forgets the structure map to (M,A), and the algebroid structure over the stack X. If
x ∈ K6r(M), then (q − 1)r

∫
x is a regular element of K(St); i.e., under the identification

K(St) = K(Var)

[
1

q
,

1

q − 1
,

1

q2 − 1
, . . .

]
,

it can be written with a denominator that does not vanish at q = 1.
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Moreover, suppose we have a grading monoid Γ for M:

M =
∐
γ∈Γ

Mγ .

We say that x has ‘degree’ γ if x ∈Mγ . We need Γ to be endowed with a Z-valued bilinear form
χ such that for every object x in Mγ and y in Mβ:

(i) every extension of y by x is in Mβ+γ ;

(ii) the stack of extensions of y by x is the quotient of a vector space E1 by another vector
space E0, acting trivially, such that dimE0 − dimE1 = χ(β, γ).

For the precise assumptions, see § 4.2. They are satisfied if M = RepQ, or if M = CohY and Y is
a smooth curve, or, more generally, if M is hereditary.

Then we have a commutative diagram as follows.

(K(M), ∗) t7−→0 //

∫
t7→(q−1)

��

(K(M), · )∫
q 7→1

��
K(St)reg[Γ]

q 7−→1 // K(St)reg/(q − 1)[Γ]

Here we use the Γ-graded integral, which is essentially a generating function, indexed by Γ, of
the integrals of the components of degree γ ∈ Γ of a given stack function.

The upper horizontal arrow in this diagram is the specialization map, which exists because
of Theorem 3. The left vertical arrow exists by the ‘no poles’ theorem (Theorem 5). It is a
standard fact that this map is an algebra morphism, i.e., it respects the ∗-product, if the target
K(St)reg[Γ] is endowed with its q-deformed product twisted by χ. It is a formal consequence of
the commutativity of this diagram that the right vertical map is a morphism of Poisson algebras
if the target K(St)reg/(q − 1)[Γ] is endowed with its bracket induced by χ. We call the right
vertical map the semi-classical motivic integral.

In particular, we deduce that∫
q=1

: Kvir(M) −→ K(St)reg/(q − 1)[Γ]

xγ 7−→
(

(q − 1)

∫
xγ

)∣∣∣∣
q=1

uγ = resq=1

(∫
xγ

)
uγ (4)

is a morphism of Lie algebras. The target K(St)reg/(q − 1) of the semi-classical motivic integral
is equal to K(Var)/((q − 1) + Ann(q − 1)).

The proof of the no poles theorem combines the above results about the diagonalizability of
I◦,ss, especially in its form avoiding denominators divisible by (q − 1), with the result that for
an algebroid (X,A), the stack I◦,ssX has regular motivic weight, i.e.,

[I◦,ssX ] ∈ K(St)reg.

We think of this as a motivic version of Burnside’s lemma. The more natural-looking conjecture
that for an algebraic stack X, the motivic weight of IX is contained in K(Var) ⊂ K(St) is most
likely false.

Discussion. To produce counting invariants for M, we need to look for subcategories N ⊂M,
to which we can apply Theorem 4, giving us virtually indecomposable elements ε[N], to which
we can apply the integral (4), yielding generating functions with coefficients in K(St)reg/(q− 1).
(See Remark 4.12 for details.) We can apply the Euler characteristic to these elements of
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K(St)reg/(q − 1) to obtain rational numbers. In the hereditary case, the fact that (4) is a

morphism of Lie algebras gives the relations among generating functions one is interested in.

This leads to wall-crossing formulas, and other results. For details we refer to the works of Joyce,

Joyce–Song, and many others.

To deal with the Calabi–Yau 3 case, one needs to insert the correct motivic vanishing cycle

weights, to define the integral. This is done by Joyce and Song in [JS12]. We leave it to future

work to supply the details in our context.

The work of Joyce on configurations in abelian categories contains results which correspond

to ours, but his definitions are more ad hoc. In fact, one reason for writing the present article

was to give a more conceptual treatment of Joyce’s results. We do not prove that our notion

of ‘virtual indecomposable object’ coincides with Joyce’s (except for in the case of M = Vect,

see the appendix), but instead prove that our notion has the same properties as Joyce’s and is

just as useful. (Of course, the counting invariants we obtain are the same as the ones obtained

by Joyce: the formula
∫
q=1 log∗(1 + [N]), see (39), does not involve explicitly the definition of

virtually indecomposable object.)

We think of the Lie algebra Kvir(M) as an analogue of the Lie algebra of primitive elements

in a cocommutative Hopf algebra. In fact, one may ask whether (K(M), ∗) is equal to the

universal enveloping algebra of the Lie algebra Kvir(M). To deduce such a statement from

structure theorems for Hopf algebras, one would need to enhance K(M) to a cocommutative

Hopf algebra. We have not been able to construct the necessary coproduct. We view the family

of operators (En) as something of a replacement. It lets us prove at least some of the results

expected of a cocommutative Hopf algebra, in particular Theorems 3 and 4.

1. Linear algebraic stacks and algebroids

1.1 Algebraic stacks

Let us briefly summarize our conventions about algebraic stacks.

We choose a noetherian base ring R (commutative and with unit), and we fix our base

category S to be the category of R-schemes, endowed with the étale topology. Over S we have

a canonical sheaf of R-algebras OS; it is represented by A1 = A1
SpecR and called the structure

sheaf.

We will assume our algebraic stacks to be locally of finite type. Thus, an algebraic stack is a

stack over the site S that admits a presentation by a groupoid X1 ⇒ X0, where X0 and X1 are

algebraic spaces, locally of finite type over R, the source and target morphisms s, t : X1 → X0

are smooth, and the diagonal X1 → X0 × X0 is of finite type. In fact, all algebraic stacks we

encounter will have affine diagonal.

By a stratification of an algebraic stack X, we mean a morphism of algebraic stacks X ′ → X

that is a surjective monomorphism and that admits a finite decomposition X ′ =
∐
iXi such that

every Xi → X is a locally closed embedding of algebraic stacks.

If G is an algebraic group acting on the algebraic space X, we will denote the quotient stack

by X/G, because we fear the more common notation [X/G] would lead to confusion with the

notation for elements of various K-groups of schemes and stacks.

Suppose G → X is a relative group scheme over the stack X. The connected component of

G, denoted by G◦, is the subsheaf of G defined by requiring a section g ∈ G(S) to factor through

G◦(S) if and only if for all points (equivalently geometric points) s of S, we have g(s) ∈ G◦s.
If G → X is smooth, the connected component G◦ ⊂ G is represented by an open substack of
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G, which is a smooth group scheme with geometrically connected fibres over X. (See [SGA3,
Exposé VIB, Théoreme 3.10].)

If the inertia stack IX of an algebraic stack X is smooth over X, the connected component
I◦X is an algebraic stack. We can apply the rigidification construction (see, for example, [AOV08,
Appendix]) to I◦X ⊂ IX and obtain a (uniquely determined) Deligne–Mumford stack X, together
with a morphism X → X, making X a connected gerbe over X (which means that the relative
inertia of X over X has connected fibres). The structure morphism X → X is smooth.

A gerbe X → X is an isotrivial gerbe if it admits a section over a finite étale X-stack. If
X → X is a smooth gerbe over a Deligne–Mumford stack, there exists a stratification X

′
→ X

such that the restriction of the gerbe X to X
′

is isotrivial. (This follows from the fact that a
quasi-finite morphism of Deligne–Mumford stacks is generically finite. This, in turn, follows from
Zariski’s main theorem [LMB00, § 16].)

Let us also remark that every Deligne–Mumford stack admits a stratification by integral
normal Deligne–Mumford stacks, although we do not use this fact.

Sheaves on algebraic stacks. We need to clarify the notions of vector bundle, coherent sheaf,
and representable sheaf of OX -modules, and how they relate to each other.

An algebraic stack X is a fibred category X → S. The category X inherits a topology
from S, called the étale topology, and X endowed with this topology is the big étale site of X.
Sheaves over X are by definition sheaves on this big étale site. For example, OS induces a sheaf
of R-algebras on X, which is denoted by OX and called the structure sheaf of X. It is represented
by A1

X .
A sheaf F over X induces, for every object x of X lying over the object U of S, a sheaf

on the usual (small) étale site Uét of the scheme U , denoted FU . Moreover, for every morphism
α : y → x lying over f : V → U , we obtain a morphism of sheaves α∗ : f−1(FU ) → FV . (The α∗

satisfy an obvious cocycle condition and the condition that they are isomorphisms if f is étale.)
For example, the structure sheaf OX induces the structure sheaf on Uét, for every such x/U . The
data of the small étale sheaves FU , together with the compatibility morphisms α∗, satisfying
the two parenthetical conditions, is equivalent to the data defining F (see [SGA4, Exp. IV,
4.10]). The functor F 7→ FU is the sheaf pullback morphism of a morphism of sites Uét → X,
from the small étale site of U to the big étale site of X. In particular, F 7→ FU is exact. Both Uét

and X are ringed sites, and F 7→ FU is also the sheaf of modules pullback of the morphism of
ringed sites Uét → X. Therefore, the functor F → FU is also exact when considered as a functor
from the category of big sheaves of OX -modules to the category of small sheaves of OUét

-modules.
If F and G are sheaves of OX -modules, then Hom(F, G) is again a sheaf of OX -modules. In

particular, for a sheaf of OX -modules, we have the dual F∨ = Hom(F,OX).
Note that, in general, the natural homomorphism Hom(F, G)U → Hom(FU , GU ) is not an

isomorphism; see Example 1.6.

Coherent sheaves. A sheaf F of OX -modules is locally coherent if for every x/U , the sheaf
FU is a coherent sheaf of OUét

-modules. (This terminology is inspired by [Sta15, Tag 06WJ].)
It is cartesian if all compatibility morphisms α∗ : f∗FU → FV are isomorphisms of sheaves of
OVét

-modules. A sheaf that is both locally coherent and cartesian is coherent. The coherent sheaf
F is said to be locally free coherent if every FU is locally free. (This is equivalent to F being
locally free.)

For example, a groupoid presentation X1⇒X0 of X and a coherent sheaf F0 on X0, together
with an isomorphism s∗F0 → t∗F0, satisfying the usual cocycle condition on X2 = X1 ×X0 X1,
give rise to a coherent sheaf F on X. If F0 is locally free, then F is locally free.
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A vector bundle over X is a representable morphism E → X endowed with an addition

operation and a compatible Gm-action such that the pullback of E → X to any scheme U → X

is a vector bundle on U .

The sheaf of sections of a vector bundle over X is a coherent sheaf. In fact, the notions of

vector bundle and locally free coherent sheaf are equivalent, and we will use them interchangeably.

(The inverse functor is given by E 7→ SpecX SymOX E∨.) The cokernel of a homomorphism of

vector bundles is coherent. In fact, every cokernel of a homomorphism of coherent sheaves is

coherent.

If the cokernel of a homomorphism of vector bundles is locally free, we call the homomorphism

a strict homomorphism of vector bundles. For a strict homomorphism of vector bundles, the

image and the kernel, as well as the cokernel, are locally free.

A strict monomorphism of vector bundles is a strict homomorphism whose kernel is zero.

A homomorphism of vector bundles is a strict monomorphism/an epimorphism if and only if over

every geometric point of X, the induced linear map is injective/surjective. A homomorphism of

vector bundles, which is a monomorphism of sheaves, is a strict monomorphism of bundles.

Let ϕ : E → F be a homomorphism of vector bundles over the algebraic stack X. The

flattening stratification X ′ → X of cokϕ serves also as a strictening stratification for ϕ. This

means that an object of X(S) lifts to X ′(S) if and only if ϕS is strict.

In general, the kernel (in the category of big sheaves of OX -modules) of a homomorphism of

vector bundles is locally coherent, but not coherent.

By [Sta15, Tag 06WK], a sheaf of OX -modules F is coherent if and only if there exists

a smooth covering Xi → X of X by finite type affine schemes Xi such that for every i, the

restriction Fi of F to the big étale site of Xi is isomorphic to the cokernel of a homomorphism

of vector bundles.

Proposition 1.1. Suppose that F is a coherent sheaf on the algebraic stack X. Then:

(i) for every x/U , we have (F∨)U = (FU )∨;

(ii) F∨ is locally coherent;

(iii) F∨ is represented by a an algebraic stack, which is of finite type and affine over X, namely,

SpecX SymOX F;

(iv) the canonical homomorphism F → F∨∨ is an isomorphism of sheaves of OX -modules;

(v) if F is locally free coherent, then F∨ is a vector bundle.

Moreover, the functor F 7→ F∨ is a fully faithful functor from the category of coherent

sheaves to the category of locally coherent sheaves of OX -modules. It maps right exact sequences

of coherent sheaves to left exact sequences of locally coherent sheaves.

Proof. The canonical homomorphism Hom(F, G)U → Hom(FU , GU ) is an isomorphism for all

U in S, if F is cartesian. This implies the first claim.

The second claim follows from the first (see also [Sta15, Tag 06WM]).

For the third claim, see [LMB00, (14.2.6)].

For the fourth claim, notice that both F∨ and OX are representable and affine over X, namely,

F∨ = SpecX SymOX F and OX = A1
X . They are also both endowed with Gm-actions, via scalar

multiplication. We consider the big sheaf of Gm-equivariant X-morphisms from SpecX SymOX F
to A1

X , denoted by HomGm(F∨,A1). The sections of HomGm(F∨,A1) over S → X are the

Gm-equivariant S-morphisms SpecS SymOS FS → A1
S or, equivalently, the morphisms of sheaves
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of OS-algebras OS [t] → SymOS FS of degree 1. These are the same as the sections of FS over S.
This proves that HomGm(F∨,A1) = F.

On the other hand, the sections of Hom(F∨,O) over S →X are the O-linear homomorphisms
SpecS SymOS FS → A1

S , which are, in particular, Gm-equivariant. Thus we have a natural map
Hom(F∨,O) → HomGm(F∨,A1). In total, we have a canonical map

F∨∨ = Hom(F∨,O) −→ HomGm(F∨,A1) = F,

which is inverse to the tautological map F → F∨∨.
The fifth claim is clear.
The ‘moreover’ follows from the fact that we can reconstruct F from F∨ = SpecX SymOX F,

as the degree 1 part of the graded sheaf of OX -modules π∗(OF∨), where π : F∨ → X is the
projection morphism. 2

Representable sheaves of modules. If ϕ : E → F is a homomorphism of vector bundles over
X, then kerϕ, constructed in the category of big sheaves, is a representable sheaf of OX -modules.
In fact, kerϕ is equal to the fibred product of stacks as shown in the following diagram.

kerϕ //

��

X

0
��

E
ϕ // F

Sheaves such as kerϕ belong to a class of OX -modules dual to coherent sheaves.

Proposition 1.2. Let F be a sheaf of OX -modules. The following are equivalent.

(i) There exists a coherent sheaf N such that F is isomorphic to N∨.

(ii) There exists a smooth cover Xi → X of X by finite type affine schemes Xi such that, for
every i, the restriction Fi of F to the big étale site of Xi is isomorphic to the kernel of a
homomorphism of vector bundles over Xi.

Proof. The fact that (i) implies (ii) follows from the results proved above. So let us indicate how
to prove that (ii) implies (i).

Let us first assume that F is isomorphic to the kernel of a homomorphism of vector bundles
E0 → E1. One checks that F is then represented by SpecX SymOX cok(E∨1 → E∨0 ). Thus, F is
isomorphic to the dual of the coherent sheaf cok(E∨1 → E∨0 ).

Now suppose that F is locally isomorphic to the kernel of a homomorphism of vector bundles.
It suffices to prove that F∨ is coherent and that F → F∨∨ is an isomorphism. Both claims can
be checked locally and are true for duals of coherent sheaves. 2

Definition 1.3. We say a sheaf of OX -modules is locally coherent representable if any of
the two equivalent conditions of Proposition 1.2 is satisfied. The terminology is justified by
Proposition 1.4 below.

In other words, the category of locally coherent representable sheaves over X is the essential
image of the fully faithful functor mentioned in Proposition 1.1. We therefore have an equivalence
of categories

(coh. sheaves over X) −→ (loc. coh. repr. sheaves over X)

F 7−→ F∨. (5)
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The following proposition summarizes facts about locally coherent representable sheaves,
which all follow easily from facts mentioned above.

Proposition 1.4. Let F be a locally coherent representable sheaf over the algebraic stack X.
Then:

(i) the sheaf F is locally coherent;

(ii) the sheaf F∨ is coherent;

(iii) the canonical homomorphism F → F∨∨ is an isomorphism of sheaves of OX -modules;

(iv) the sheaf F is representable by an algebraic stack F → X, which is of finite type and affine
over X;

(v) in fact, F = SpecX SymOX F∨.

Moreover, the functor F 7→ F∨ is an essential inverse to the functor (5). It maps left exact
sequences of locally coherent representable sheaves to right exact sequences of coherent sheaves.

Proposition 1.5. Let F be a locally coherent representable sheaf over the finite type algebraic
stack X. There is a unique stratification X ′ → X with the property that an X-scheme S factors
through X ′ if and only if F|S is a vector bundle. More precisely, X ′ =

∐
n>0Xn, and Xn → X

is a locally closed immersion of algebraic stacks with the property that S → X factors through
Xn if and only if F|S is a vector bundle of rank n.

Proof. The sought-after stratification is the flattening stratification of the coherent sheaf F∨. 2

Example 1.6. Consider X = A1, with coordinate t, and let C be the cokernel of the
homomorphism of vector bundles t : A1

X → A1
X . It is the skyscraper sheaf of the origin, considered

as a coherent sheaf on X and extended to a big sheaf over X in the usual way. The sheaf C is
an example of a coherent sheaf which is not representable.

Let K be the kernel of t : A1
X → A1

X . This is locally coherent representable, but not cartesian,
and hence not coherent.

Note that C∨ = K. This shows that F∨ may not be coherent, even if F is.
Note also that K∨ = C, which shows that F∨ may not be representable, even if F is.
Finally, note that (KX)∨ = 0∨ = 0, but (K∨)X = CX is the structure sheaf of the origin

in X, considered as a skyscraper sheaf on Xét, which is not zero. This gives an example where
(F∨)U 6= (FU )∨.

Remark 1.7. Of course, the category of coherent sheaves on an algebraic stack X has kernels
and internal homs, but they do not agree with those in the category of big sheaves, which we
considered above. It is therefore important to specify the context when dealing with kernels or
duals in the category of coherent sheaves. Unless specified otherwise, we will always consider
sheaves of OX -modules as big sheaves.

1.2 Linear algebraic stacks
We will review the definition of linear algebraic stacks and some basic constructions. For
definitions and basic properties of fibred categories we refer the reader to [SGA1, Exposé VI].
The material here is presumably known, but we could not find a suitable reference.

Suppose X → S is a category over S. We write X(S) for the fibre of X over the object S of
S. If f : S′ → S is a morphism in S, and x′ ∈ X(S′) and x ∈ X(S) are X-objects lying over S′

and S, respectively, we write Homf (x′, x) for the set of morphisms from x′ to x in X, lying over
f . For S′ = S and f = idS , we write HomS(x′, x).
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Recall that a morphism α : x′ → x lying over f : S′ → S is cartesian if for every object x′′ of

X(S), composition with α induces a bijection HomS(x′′, x′)
'−→ Homf (x′′, x). Recall further that

X → S is a fibred category if every composition of cartesian morphisms is cartesian and if for
every f : S′ → S in S and every x over S, there exists a cartesian morphism over f with target
x. A cartesian functor between categories over S is one that preserves cartesian morphisms.

If X is a fibred category over S, the subcategory of X consisting of the same objects and all
cartesian morphisms is a category fibred in groupoids over S. We denote it by Xcfg and call it
the underlying category fibred in groupoids.

Definition 1.8. A category X over S is an O-linear category over S if for every f : S′ → S
in S and all x′ ∈ X(S′), x ∈ X(S), the set Homf (x′, x) is endowed with the structure of an
O(S′)-module in such a way that for every pair of morphisms g : S′′ → S′, f : S′ → S and every
triple of objects x′′ ∈ X(S′′), x′ ∈ X(S′), x ∈ X(S), the composition

Homf (x′, x)×Homg(x
′′, x′) −→ Homf◦g(x

′′, x)

is O(S′)-bilinear.
An O-linear functor F : X → Y between O-linear categories is a functor of categories over S

such that for every f : S′ → S and all x′ ∈ X(S′), x ∈ X(S), the map Homf (x′, x) → Homf (F (x′),
F (x)) is O(S′)-linear.

Assume given an O-linear fibred category X over S. Pullback in X is O-linear, i.e., if f : S′→ S
is a morphism in S and x, y ∈ X(S) are objects with pullbacks x′, y′ ∈ X(S′), the pullback map
f∗ : HomS(x, y) → HomS′(x

′, y′) is O(S)-linear.
So, if we fix objects x, y ∈ X(S), the presheaf HomS(x, y) over the usual small étale site of S,

defined by HomS(x, y)(T ) = HomT (x|T , y|T ) for every étale T → S, is a presheaf of OSét
-modules.

Moreover, for any morphism f : S′ → S in S, we have a natural homomorphism of presheaves
of OS-modules HomS(x, y) → f∗HomS′(x

′, y′). Put together, the small presheaves HomT (x, y),
as T → S varies over the big étale site of the scheme S, form a big presheaf, which we denote
by Hom(x, y).

Definition 1.9. A linear algebraic stack is an O-linear fibred category X over S, such that:

(i) for every object S ∈ S and every pair x, y ∈ X(S), the presheaf Hom(x, y) on the big étale
site of the scheme S is a locally coherent representable sheaf of OS-modules;

(ii) the underlying category fibred in groupoids Xcfg → S is an algebraic stack over R (locally
of finite type).

A morphism of linear algebraic stacks is an O-linear cartesian functor over S.

Remark 1.10. If X is a linear algebraic stack with underling algebraic stack X = Xcfg, there
exists a locally coherent representable sheaf H over X×X that represents the sheaf over X×X
whose set of sections over the pair x, y ∈ X(S) is the O(S)-module HomS(x, y). The sheaf H
is the universal sheaf of homomorphisms. The subsheaf I ⊂ H representing isomorphisms is
naturally identified with X and the projection to X ×X with the diagonal.

Pulling back H via the diagonal to X, we obtain the universal sheaf of endomorphisms
E → X, which represents the sheaf whose set of sections over x ∈ X(S) is the O(S)-algebra
EndS(x). Let us emphasize that E → X is a representable morphism of algebraic stacks, which
is at the same time a sheaf of algebras and a locally coherent representable sheaf of OX -modules.
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The linear algebraic stack X can be reconstructed from its underlying algebraic stack X and
the representable sheaf of OX×X -algebras H. We leave it to the reader to write down axioms for
the pair (X,H) that ensure that (X,H) comes from a linear algebraic stack.

Examples.

Example 1.11. Let X be a projective R-scheme. The linear stack CohX has as objects lying over
the R-scheme S the coherent sheaves on X × S, which are flat over S. For a morphism of R-
schemes f : S′ → S, and F′ ∈ CohX(S′) and F ∈ CohX(S), we set Homf (F′,F) = HomOX×S′

(F′,
f∗F). A morphism F′ → F in CohX over f in S is cartesian if it induces an isomorphism
F′ ∼= f∗F.

The linear stack CohX is algebraic.
To see this, suppose F and G are coherent sheaves on X × S, flat over S. The fact that

Hom(F, G) is a locally coherent representable sheaf of OX -modules follows from the fact that
there exists a coherent sheaf N on the big étale site of S such that Hom(F, G) = N∨ (see [GD67,
EGA III 7.7.8, 7.7.9]). In fact, for a morphism of schemes T → S, we have HomT (F, G) =
πT ∗Hom(FX×T , GX×T ). The fact that pushforward does not commute with arbitrary pullbacks
means that Hom(F, G) is not in general cartesian and hence not in general coherent. On the
other hand, by [GD67, EGA III 7.7.8, 7.7.9], we have πT ∗Hom(FX×T , GX×T ) = (NT )∨, which
proves that, indeed, Hom(F, G) = N∨.

The fact that (CohX)cfg is algebraic and locally of finite type is proved in [LMB00, 4.6.2.1].

Example 1.12. As a special case of the previous example, consider the case X = SpecR. Then
the linear algebraic stack CohSpecR is the linear stack of vector bundles, denoted by Vect. The
underlying algebraic stack Vectcfg is the disjoint union

∐
n>0BGLn. The sheaf H over∐

n>0

BGLn×
∐
n>0

BGLn =
∐

n,m>0

B(GLn×GLm)

is given by the natural representation M(m× n) of GLn×GLm over B(GLn×GLm).

Example 1.13. A generalization of Vect in a different direction is given by quiver representations.
Let Q be a quiver. The stack of representations of Q, denoted by RepQ, has as RepQ(S) the

set of diagrams (F) in the shape of Q of locally free finite rank OS-modules. For a morphism
f : S′ → S of R-schemes, we have that Homf (F′,F) is the O(S′)-module of homomorphisms
F′ → f∗F of diagrams of locally free OS′-modules.

Example 1.14. As a toy example, let A be a vector bundle over SpecR, endowed with the
structure of a sheaf of OSpecR-modules, with smooth group scheme of units A×, also of finite
type. Then we define the linear stack of A×-torsors to have as objects over the R-scheme S the
right A×-torsors over S, and for f : S′ → S and A×-torsors P ′ over S′ and P over S, we set
Homf (P ′, P ) = HomS′(P

′, f∗P ) = P ′×A× A×A× f∗P . In this example, the underlying algebraic
stack is BA× and we have H = A×\A/A×.

The case A = 0 is not excluded. The associated linear stack is id : S → S. All Homf (x, y)
are singletons, endowed with their unique module structure. This stack is represented by SpecR.
It can also be thought of as the stack of zero-dimensional vector bundles.

Substacks. Let X be a linear algebraic stack with underlying algebraic stack X = Xcfg. If
Y ⊂ X is a locally closed algebraic substack, there is a canonical linear algebraic stack Y with
underlying algebraic stack Ycfg = Y . In fact, we can define Y to be the full subcategory of X
consisting of objects which are in Y .
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In this situation, we call Y → X a locally closed linear substack of X.

Fibred products. Let F : X → Z and G : Y → Z be cartesian morphisms of O-linear fibred
categories. We define a new O-linear fibred category W as follows: objects of W over the object
T of S are triples (x, α, y), where x is an X-object over T , y is a Y-object over T , and α is an
isomorphism α : F (x) → G(y) over T . A morphism from (x′, α′, y′) to (x, α, y) over T ′ → T is
a pair of morphisms f : x′ → x over T ′ → T and g : y′ → y over T ′ → T such that α ◦ F (f) =
G(g) ◦ α′.

In other words, we can write the set of morphisms from (x′, α′, y′) to (x, α, y) over ϕ : T ′ → T
as the fibred product

Homϕ(x′, x)×Homϕ(F (x′),G(y)) Homϕ(y′, y),

and as each of the sets in this fibred product is an O(T ′)-module, and the maps are linear, this
fibred product is also an O(T ′)-module. We leave it to the reader to verify that composition is
bilinear.

Let us verify that W is a fibred category. Suppose that (x, α, y) is a triple over T and
ϕ : T ′ → T a morphism in S. We construct a triple (x′, α′, y′) over T ′ by taking as x′ a pullback
of x via ϕ and as y′ a pullback of y via ϕ. Then, as G is cartesian, G(y′) is a pullback of
G(y) via ϕ. Hence, there exists a unique morphism α′ : F (x′) → G(y′) covering T ′ such that
α ◦ F (x′ → x) = G(y′ → y) ◦ α′. Then α′ is cartesian, because cartesian morphisms satisfy
the necessary ‘two out of three’ property. Then α′ is invertible, because cartesian morphisms
covering an identity are invertible. The triple (x′, α′, y′) comes with a given morphism to (x, α, y)
that covers ϕ. It is easily verified that this morphism is cartesian.

Therefore, W is an O-linear fibred category. By construction, the two projections W → X
and W → Y are cartesian. We call W the fibred product of X and Y over Z.

Suppose X, Y, and Z are algebraic, with underlying algebraic stacksX, Y , and Z, respectively.
For triples (x′, α′, y′) and (x, α, y) over S, the presheaf Hom((x′, α′, y′), (x, α, y)) is equal to the
fibred product

Hom(x′, x)×Hom(Fx′,Gy) Hom(y′, y)

and is therefore a locally coherent representable sheaf of OS-modules. We see that W is again
a linear algebraic stack. Moreover, the underlying algebraic stack of W is the fibred product
X ×Z Y .

Lack of locality.

Remark 1.15. Suppose X and Y are linear algebraic stacks with underlying algebraic stacks X
and Y . We can construct a disjoint union linear algebraic stack XqY whose underlying algebraic
stack is X q Y by declaring all homomorphisms between objects of X and objects of Y to be
zero. This concept of disjoint union is not useful for our purposes. For the linear algebraic stacks
we are interested in, the underlying algebraic stack often decomposes into a disjoint union, even
though the linear algebraic stack does not. An example is given by the linear stack of vector
bundles Vect, Example 1.12.

Thus, linear algebraic stacks exhibit less local behaviour than algebraic stacks and are
therefore less geometrical. This is one of the reasons we prefer to work with algebroids, rather
than linear algebraic stacks.

Special linear stacks. For a linear algebraic stack M, every fibre category M(S) is an R-linear
category. By putting special requirements on these linear categories, we get stronger notions of
linear algebraic stack.
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For a linear algebraic stack M, we denote the universal sheaf of endomorphisms by A → M.

Definition 1.16. A linear algebraic stack M has a zero object if the R-linear category M(R)
admits a zero object.

If M admits a zero object, then for every R-scheme S, the R-linear category M(S) admits
a zero object, namely, the pullback of the zero object in M(SpecR) via the unique morphism
S → SpecR.

A zero object for M defines a section SpecR
0−→ M, which is an isomorphism onto the closed

substack of M defined by the condition 1 = 0 inside A.
If M admits a zero object, we denote the complement of the zero object in M by M∗. It is

a linear open substack of M.

Definition 1.17. The linear algebraic stack M admits direct sums if for every R-scheme S, the
R-linear category M(S) admits all (finite) direct sums.

The pullback functor M(S) → M(S′) for a morphism of R-schemes S′ → S commutes with
direct sums. Hence, if M admits direct sums, there is a canonical morphism of linear stacks

M×M −→ M

(x, y) 7−→ x⊕ y.

See also Remark 1.63.

1.3 Finite type algebras
None of our algebras are assumed to be commutative, but they are all assumed to be unital.

Definition 1.18. Let X be an algebraic stack. By an algebra over X, we mean a sheaf of
OX -algebras over X. If the algebra A over the algebraic stack X is an algebraic stack itself, i.e.,
if the structure morphism A → X is a representable morphism of stacks, then we say that A is
representable. If A is represented by a finite type affine stack of the form SpecX SymOX F for a
coherent sheaf F over X, we call A a finite type algebra over X.

For an automorphism ϕ of an algebra A, we denote the subalgebra of fixed sections by Aϕ.
For a section a of A we denote by Aa the subalgebra of sections commuting with a.

The sheaf of OX -modules underlying a finite type algebra is locally coherent representable.
For an automorphism ϕ of a finite type algebra A, the fixed algebra Aϕ is again a finite type

algebra, because the underlying sheaf of modules is the kernel of A
1−ϕ−→ A.

If X is a linear algebraic stack with underlying algebraic stack X, then the universal sheaf of
endomorphisms E → X is a finite type algebra.

Note that finite type algebras need not have a coherent underlying sheaf of OX -modules. For
example, let X = A1, with coordinate t, and let A → X be the centralizer in (M2×2)X of the
matrix

(
t 0
0 0

)
. In this case, the big sheaf underlying A is not cartesian.

Remark 1.19. Dually, a finite type algebra A over X corresponds to a coherent sheaf M over X
that is endowed with a coalgebra structure (∆, ε), where ∆ : M → M ⊗OX M is an associative
comultiplication with counit ε : M → OX . For any X-scheme U , we have AU = M∨U .

Inertia representation. Whenever A → X is an algebra over the algebraic stack X, we have
a tautological morphism of sheaves of groups over X,

IX −→ Aut(A). (6)
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Here, IX is the inertia stack of X, i.e., the stack of pairs (x, ϕ) where x is an object of X and ϕ an
automorphism of x, and Aut(A) is the sheaf of automorphisms of the sheaf of algebras A over X.
To construct (6), consider the stack of sheaves of algebras Alg over S, which has as objects over
the scheme S the sheaves of OS-algebras on the usual (small) étale site of S. A morphism from
the sheaf of OS′-algebras A′ over S′, covering the morphism of schemes f : S′ → S to the sheaf
of OS-algebras A over S, is, by definition, an isomorphism of sheaves of OS′-algebras A′ → f∗A.
The sheaf of algebras A → X gives rise to a morphism of S-stacks a : X → Alg. We get an
induced morphism on inertia stacks IX → IAlg and notice that a∗IAlg = Aut(A).

With this definition, an automorphism ϕ of the object x of the stack X is mapped to the
inverse of the restriction morphism ϕ∗ : A(x) → A(x).

Lemma 1.20. Suppose X is a gerbe over the algebraic space Y and A → X is an algebra. Then
there exists a sheaf of OY -algebras B and an isomorphism A ∼= B|X if and only if the inertia
representation IX → AutX(A) is trivial.

Similarly, if X is a connected gerbe over the Deligne–Mumford stack Y , then an algebra
A over X descends to B over Y if and only if the inertia representation restricts to a trivial
homomorphism I◦X → AutX(A).

In either case, A is representable or of finite type if and only if B is.

We can pull back the sheaf of algebras A over X, via the structure morphism IX → X,
to obtain the sheaf of algebras A|IX . This sheaf of algebras is endowed with a tautological
automorphism, induced from (6). We shall denote the algebra of invariants for this automorphism
by Afix

IX
.

The following statement is somewhat tautological and holds more generally than for algebras.

Proposition 1.21. Suppose that A is a representable algebra over the algebraic stack X. Then
the inertia stack of A is naturally identified with Afix

IX
. In particular, IA is a representable algebra

over IX .

Proof. We have a commutative diagram of algebraic stacks

IA //

��

A

��
IX // X

which identifies IA with a substack of A|IX . The algebra A|IX is the stack of triples (x, ϕ, a),
where x is an object of X, ϕ is an automorphism of x, and a ∈ A(x) is an object of A lying over
x. Such a triple is in IA if and only if ϕ ∈ Aut(x) is in the subgroup Aut(a) ⊂ Aut(x). This is
equivalent to ϕ fixing a under the action of Aut(x) on A(x). This is the claim. 2

In fact, the fibre of IA over the object x of X is equal to

IA(x) = {(ϕ, a) ∈ Aut(x)×A(x) | ϕ∗(a) = a}.

The fibre of IA(x) over ϕ ∈ Aut(x) is the subalgebra A(x)ϕ ⊂ A(x), and the fibre of IA(x) over
a ∈ A(x) is the subgroup StabAut(x)(a) ⊂ Aut(x).

Algebra bundles.

Definition 1.22. We call a finite type algebra A → X an algebra bundle if the underlying
OX -module is locally free (necessarily of finite rank).
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When studying finite type algebras over finite type stacks X, we may, after passing to a
locally closed stratification of X, assume that the finite type algebra is an algebra bundle.

Definition 1.23. Let A → X be a finite type algebra over the algebraic stack X. The
stratification X ′ ⊂ X of Proposition 1.5 is characterized by the property that an X-scheme
S factors through X ′ if and only if A|S is an algebra bundle. The pullback A′ = A|X′ is an
algebra bundle, and the induced stratification A′ → A of A is called the rank stratification of A.

Remark 1.24. By considering the representation of A on itself by left multiplication, we see that
every algebra bundle is a sheaf of subalgebras of the algebra End(V ) of endomorphisms of a
vector bundle V over the stack X.

Central idempotents.

Lemma 1.25. The centre of an algebra bundle is a finite type algebra.

Proof. The centre of A is the kernel of the OX -linear homomorphism of vector bundles A →

EndOX (A), given by a 7→ [a, · ]. As such, it is a locally coherent representable sheaf. 2

Thus, if A → X is a finite type algebra over a finite type stack, after passing to a locally
closed stratification of X, we may assume that A is an algebra bundle whose centre is an algebra
bundle.

If A → X is a commutative algebra bundle, then π : Y = SpecX A → X is a finite flat
representable morphism and A = π∗OY . In fact, the category of commutative algebra bundles
over X is equivalent to the category of finite flat representable stacks over X.

For a commutative finite type algebra A → X, we denote the stack of idempotents in A by
E(A).

Lemma 1.26. Suppose A is a commutative algebra bundle over the algebraic stack X. Then the
structure morphism E(A) → X is affine, of finite type, and étale. In particular, there exists a
non-empty open substack U ⊂ X such that E(A)|U = E(A|U ) is finite étale over U .

Proof. We reduce to the case where X is a scheme and then quote Lemme 18.5.3 from [GD67,
EGA IV]. 2

By this lemma, when studying finite type algebras over the finite type stack X, we may,
after passing to a stratification of X, assume that the stack of central idempotents is finite étale
over X.

Primitive idempotents. Recall that a non-zero idempotent e is called primitive if whenever
e = e1 + e2 for orthogonal idempotents e1, e2, then necessarily e1 = 0 or e2 = 0.

In a finite-dimensional commutative algebra over a field, the following are true.

(i) Every idempotent is in a unique way (up to order of the summands) a sum of orthogonal
primitive idempotents; this is the primitive decomposition.

(ii) Orthogonal idempotents have disjoint primitive decompositions.

(iii) Distinct primitive idempotents are orthogonal to each other.

(iv) The primitive idempotents add up to 1.

Thus, the idempotents are in bijection with the subsets of the (finite) set of primitive idempotents.
Let A → X be a finite type algebra.
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Definition 1.27. An idempotent local section e : U → A of A → X is primitive if it gives rise
to a primitive idempotent in the fibre of A over every geometric point of U .

Suppose A = π∗OY is a commutative algebra bundle and e an idempotent global section. Let
Y1 ⊂ Y be the open and closed substack defined by the equation e = 1. Then e is primitive if and
only if the geometric fibres of Y1 → X are connected. As the function counting the number of
connected components of the fibres is lower semi-continuous, the subset of X where e is primitive
is closed. In general, this subset is not open. Therefore, when studying primitive idempotents,
we assume that E(A) → X is finite étale.

Lemma 1.28. Let A→X be a commutative algebra bundle with finite étale stack of idempotents
E(A) → X. There is an open and closed substack PE(A) ⊂ E(A) such that an idempotent local
section factors through PE(A) if and only if it is primitive.

Proof. We may assume that E(A) → X is constant. Then the multiplication operation and the
partially defined addition operation on E(A) are also constant. The claim follows. 2

Definition 1.29. Let A → X be an algebra bundle with centre Z → X. Let ZE(A) be the
stack of idempotents in Z, in other words, the stack of central idempotents in A. Assume that
ZE(A) → X is finite étale. The substack of primitive idempotents in ZE(A) is denoted by
PZE(A) and called the stack of primitive central idempotents of A. It is finite étale over X. The
degree of PZE(A) → X is called the central rank of A.

If X is connected, the number of connected components of PZE(A) is the split central rank
of A. More precisely, the partition of the central rank given by the degrees of the connected
components of PZE(A) is called the central type of A. (So the split central rank is the length
of the type.)

Remark 1.30. Let X be connected, and let A → X be a commutative finite type algebra with
finite étale stack of idempotents E(A) → X. Then there is a one-to-one correspondence between
the connected components of PE(A) and the primitive idempotents in the algebra of global
sections Γ(X,A).

The degree stratification. Let k be a field and A a finite-dimensional k-algebra. The rank r
of A is the dimension of A as a k-vector space. For an element a ∈ A, we define its degree to be
the dimension of the commutative subalgebra k[a] ⊂ A. It is equal to the degree of the minimal
polynomial of a, i.e., the monic generator of the kernel of the algebra map k[x] → A, defined by
x 7→ a.

Now let A be an algebra bundle of rank r over the algebraic stack X, and a ∈ A(S) a local
section of A over an X-scheme S.

Definition 1.31. If the cokernel (as a homomorphism of OS-modules) of the morphism of OS-
algebras OS [x] → AS defined by x 7→ a is flat over OS , we say that a is strict, and we call the
rank of the image of OS [x] → A the degree of a.

If f(x) ∈ OS [x] is the characteristic polynomial of a, the morphism OS [x] → A factors through
OS [x]/(f), by the theorem of Caley–Hamilton. Hence, the cokernel of OS [x] → A is actually
a cokernel of a homomorphism of vector bundles and hence coherent. The condition that this
cokernel be flat is equivalent to it being locally free. It implies that forming the image of OS [x] →

A commutes with base change, and that this image, denoted by OS [a], is also locally free.
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Proposition 1.32. For every n = 1, . . . , r, there exists a locally closed substack An ⊂ A with
the property that a local section a ∈ A(S) factors through An(S) if and only if a is strict of
degree n. The An are pairwise disjoint and their disjoint union

Astrat =

r∐
n=1

An

maps surjectively to A. The section a ∈ A(S) factors through Astrat
→ A if and only if it is strict.

Proof. Consider the tautological section ∆ of the pullback of A via the structure map A → X.
It gives rise to a morphism of OA-algebras OA[x] → AA. Then Astrat is given by the flattening
stratification of its cokernel, and An ⊂ Astrat is the component where the cokernel has rank
r − n. 2

We call the stratification Astrat
→ A the degree stratification of A.

Semi-simple elements. Let k be an algebraically closed field and A a finite-dimensional
k-algebra. Recall that an element a ∈ A is semi-simple if the following equivalent conditions are
satisfied.

(i) The map A → A given by left multiplication by a is diagonalizable.

(ii) The minimal polynomial f ∈ k[x] of a is separable, i.e., satisfies (f, f ′) = 1.

(iii) The commutative subalgebra k[a] ⊂ A is reduced, or, equivalently, étale over k.

Definition 1.33. Let A → X be an algebra bundle. A local section a ∈ A(S), for an X-scheme
S, is called semi-simple if it is strict and for every geometric point s ∈ S, the element induced
by a in A(s) is semi-simple.

For example, an idempotent section e ∈ A(S) is semi-simple over the open subset of S, where
e is neither 0 nor 1 (in a commutative algebra bundle, this subset is also closed).

Assuming a ∈ A(S) is strict, a is semi-simple if and only if the geometric fibres of the
finite flat S-scheme SpecS OS [a] are unramified. This condition is equivalent to SpecS OS [a] being
unramified and hence étale over S.

The semi-simple sections of A form a subsheaf Ass ⊂ A.

Proposition 1.34. Let A → X be an algebra bundle over the algebraic stack X. Then Ass is
an algebraic stack with a representable structure morphism of finite type Ass

→ X.

Proof. In fact, Ass ⊂ Astrat is the open substack defined by the condition that the finite flat
representable morphism SpecA OA[∆] → A is unramified. (The section ∆ is the tautological one,
as in the proof of Proposition 1.32.) Thus, we have a factorization of the monomorphism Ass

→ A
as

Ass open immersion// Astrat stratification // A.

Thus, Ass ⊂ A is a constructible substack. 2

The semi-simple centre. For a commutative finite-dimensional algebra over an algebraically
closed field, we have the following facts.

(i) The primitive idempotents are linearly independent.

(ii) An element is semi-simple if and only if it is a linear combination of primitive idempotents.

We need a version of this statement for algebra bundles.
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Proposition 1.35. Let A → X be a commutative algebra bundle whose stack of idempotents
is finite étale, and let Y → X be the finite flat cover corresponding to A. There is a canonical
finite flat morphism of X-stacks Y → PE(A). Over every geometric point x of X, this morphism
maps each point in the fibre Yx to the characteristic function of its connected component in Yx
(which is a primitive idempotent in A|x). Dually, we obtain a strict monomorphism of algebra
bundles

π∗OPE(A) −→ A,

where π : PE(A) → X is the structure map.
The induced morphism

(π∗OPE(A))
strat −→ Astrat

factors through the open substack Ass ⊂ Astrat and induces a surjective closed immersion of
algebraic stacks (π∗OPE(A))

strat
→ Ass.

Proof. Consider the finite étale cover of primitive idempotents π : PE(A) → X. We have a
tautological global section e of A|PE(A), and a 7→ ae defines a homomorphism of OPE(A)-modules
OPE(A) → A|PE(A). Pushing forward with π and composing with the trace map π∗(A|PE(A)) → A
defines the morphism of algebra bundles over X,

π∗OPE(A) −→ A.

It is a strict monomorphism of vector bundles, because it is injective over every geometric point,
by fact (i), above. Dually, we obtain a morphism of X-stacks Y → PE(A), which is the morphism
described in the statement of the proposition. It is flat, because PE(A) is étale over X, and
flatness can be checked étale locally.

Passing to the degree stratification commutes with strict monomorphisms of algebra bundles,
so we have a cartesian diagram of X-stacks

(π∗OPE(A))
strat //

��

Astrat

��
π∗OPE(A)

// A

which shows that (π∗OPE(A))
strat

→ Astrat is a closed immersion. That this closed immersion
factors through Ass ⊂ Astrat and is surjective onto Ass can be checked over the geometric points
of X, where it follows from fact (ii), above. 2

Permanence of rank and split rank.

Proposition 1.36. Let A ↪→ A′ be a monomorphism of commutative finite type algebras with
finite étale stacks of idempotents over the connected stack X. Denote the ranks of A and A′ by
n and n′, and the split ranks by k and k′, respectively. Then n 6 n′ and k 6 k′. Moreover:

(i) if A′ admits a semi-simple global section that does not factor through the fibre A|x for all
points of x, then n < n′;

(ii) if A′ admits an idempotent global section that is not in A, then k < k′.

Proof. The monomorphism A ↪→ A′ induces an open and closed embedding of finite étale X-
stacks E(A) ↪→ E(A′). Every idempotent e in A can be decomposed uniquely into a sum of
orthogonal primitive idempotents in A′. Let us call this the primitive decomposition of e in A′.
Consider the correspondence Q ⊂ PE(A)×X PE(A′) defined by
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(e, e′) ∈ Q⇐⇒ e′partakes in the primitive decomposition of e in A′

⇐⇒ ee′ = e′.

One shows that Q is a finite étale cover of X locally in the étale topology of X, reducing to the
case where both E(A) and E(A′) are trivial covers. By properties of the primitive decomposition,
the projection Q → PE(A) is surjective and the projection Q → PE(A′) is injective. Thus, we
have

n = degPE(A) 6 degQ 6 degPE(A′) = n′.

If n = n′, then both Q → PE(A) and Q → PE(A′) are isomorphisms, showing that PE(A) =
PE(A′). By Proposition 1.35, this implies that the morphism Ass

→ (A′)ss is surjective. This
proves (i).

We can repeat the argument for the algebras of global sections Γ(X,A) ↪→ Γ(X,A′). We
deduce that k 6 k′, and if k = k′, every primitive idempotent in Γ(X,A) remains primitive in
Γ(X,A′) and every primitive idempotent of Γ(X,A′) is in Γ(X,A). We deduce that Γ(X,A) and
Γ(X,A′) have the same idempotents, which proves (ii). 2

Families of idempotents.

Definition 1.37. For a finite type algebra A → X, we denote by En(A) → X the stack of
n-tuples of non-zero idempotents in A that are pairwise orthogonal and add up to unity. We call
sections of En(A) also complete sets of orthogonal idempotents.

Note that the family members of the sections of En(A) need not be central.
The stack En(A) is algebraic and of finite type over X.
For n = 0, the stack E0(A) is empty, unless A = 0, in which case it is identified with X. For

n = 1, the stack E1(A) contains exactly the unit in A (so is identified with X), unless A = 0, in
which case E1(A) is empty.

Group of units. Let A→X be a finite type algebra over the algebraic stack X. The subsheaf
of units A× ⊂ A is defined by

A×(x) = {a ∈ A(x) | ∃b ∈ A(x) : ab = ba = 1}

for every object x of X. We can see that A× is a (relative) affine group scheme over X by writing
it as the fibred product, as shown in the following diagram.

A× //

u7→(u,u−1)
��

X

(1,1)
��

A×A
(a,b)7→(ab,ba) // A×A

If A is an algebra bundle, the subsheaf A× ⊂ A is represented by an open substack, because
in this case, a local section a is invertible if and only if the determinants of left and right
multiplication by a on A do not vanish. We conclude that if A is an algebra bundle, A× is
smooth over X with geometrically connected fibres. For the general case, this still implies that
the fibres of A× → X are smooth and geometrically connected, as the fibres do not change when
passing to a stratification of X.

A similar argument using the determinant proves that if A → B is a strict monomorphism
of algebra bundles, we have A× = A∩B×. Also, if A is an algebra bundle, any morphism A → B
to another algebra bundle is determined by its restriction to A×.
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1.4 Algebroids
Definition 1.38. An algebroid is a triple (X,A, ι), where X is an algebraic stack, A is a finite
type algebra over X, and ι : A× → IX is a homomorphism of sheaves of groups over X, which
identifies A× with an open substack of IX . Moreover, we require that the diagram

A×
ι //

##

IX

��
Aut(A)

(7)

of groups over X commutes. Here, the map A× → AutX(A) associates to a unit u of A the inner
automorphism x 7→ uxu−1. The vertical map IX → AutX(A) is the inertia representation (6).
If ι is an isomorphism, we call (X,A, ι) a strict algebroid.

We will usually abbreviate the triple (X,A, ι) to X and write AX for A if we need to specify
the algebra. We call the commutativity of (7) the algebroid property.

For an explanation of the terminology, see Remark 1.44.
The condition that ι is an open immersion implies that A× represents the subsheaf I◦X ⊂ IX

of connected components of the identity. (Over a field, A× is connected, and A× → IX being
an open immersion implies that IX/A

× is étale. These conditions characterize the connected
component over a field.) In particular, if X is a connected gerbe over a Deligne–Mumford stack
S, then the relative inertia IX/S is necessarily equal to I◦X , and hence A× is identified with IX/S .

If A is an algebra bundle, A×, and therefore also I◦X , is an affine smooth (relative) group
scheme over X. Hence, X admits a coarse Deligne–Mumford stack X → X, which is uniquely
determined by being a Deligne–Mumford stack and X → X being a connected gerbe. Moreover,
A× is then identified with the relative inertia group IX/X ⊂ IX , and we have a short exact
sequence of relative group schemes

1 // A×
ι // IX // IX |X // 1

over X. In the case where (X,A) is a strict algebroid, I◦X = IX and X is an algebraic space, in
fact the coarse moduli space of X.

In many cases, the algebroid property is automatic.

Proposition 1.39. Consider a triple (X,A, ι), where X is an algebraic stack, A is an algebra
bundle over X, and ι : A× → IX is a homomorphism of sheaves of groups over X that identifies
A× with an open substack of IX . Then (7) commutes, so (X,A, ι) is an algebroid.

Proof. As ι : A× → IX is defined over X, the homomorphism ι is equivariant with respect to
the inertia action. The proof now combines the facts that ι is a monomorphism, that the inertia
action on IX is the inner action, and that a morphism of algebra bundles is determined by its
restriction to units.

In fact, let a ∈ A×. To show that a(·) = ι(a)·, as automorphism of A, it suffices to show
that for all b ∈ A× we have ab = ι(a) · b. We can check this after applying ι, so it suffices that
ι(ab) = ι(ι(a) · b), or ι(a)ι(b) = ι(a) · ι(b), which is true. 2

Example 1.40 (Algebroid underlying a linear stack). Let X be a linear algebraic stack with
underlying algebraic stack X, and let A → X be the universal sheaf of endomorphisms of
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Remark 1.10. Then automorphisms are invertible endomorphisms, so we use for ι the tautological
identification A× = IX .

The inertia representation being the inverse of the pullback action, it is, indeed, given by
(left) inner automorphisms.

We call (X,A) the algebroid underlying the linear algebraic stack X. It is a strict algebroid.

Example 1.41. Consider the linear stack of vector bundles Vect, as in Example 1.12. The
underlying algebroid consists of the disjoint union of the quotient stacks GLn \Mn×n, given by
the adjoint representations, for n > 0. Thus, in passing from the linear stack to the underlying
algebroid, we discard all Mm×n for m 6= n, and for m = n we restrict the left-right bi-action of
GLn on Mn×n to the (left only) adjoint action. Thus, we remove exactly the information which
we consider non-local, see Remark 1.15.

Example 1.42 (Classifying algebroid). Let A→X be an algebra bundle over a Deligne–Mumford
stack X. Let A× act on A from the left by inner automorphisms. Then A×\A is an algebra bundle
over the relative classifying stack Y = BXA

×. We have an exact sequence of group schemes
over Y ,

1 // IY/X // IY // IX |Y // 1,

where IY/X = A×\A×. As IX → X is unramified, IY/X → IY is an open embedding, and so
(Y,A×\A) is an algebroid. If X is a space, (Y,A×\A) is a strict algebroid.

Remark 1.43 (Algebroids which are trivial gerbes are classifying algebroids). Let (X,A) be an
algebroid such that A is an algebra bundle over X, and therefore X is a connected gerbe over
the Deligne–Mumford stack S, with A× = IX/S . Suppose the gerbe X → S admits a section
x : S → X. Via x, we pull back A to a bundle of algebras C over S. We claim that (X,A) is
canonically isomorphic to (BC×, C×\C).

In fact, because X is a gerbe over S, the section x : S → X is a universal principal x∗IX/S-
bundle. The pullback diagram

C

��

// S

x
��

A // X

shows that C is an x∗IX/S-bundle over A. Hence, A = C/x∗IX/S . Via the isomorphism
ι : C× → x∗IX/S , the action of x∗IX/S on C is identified with the action by left inner
automorphisms. This follows from the algebroid property of (X,A) and proves the claim.

Remark 1.44. If X → SpecR is a gerbe, any strict algebroid over X can be promoted to a linear
algebraic stack whose underlying algebraic stack is X.

More generally, there exists a notion of relative linear algebraic stack, where the base R is
replaced by an arbitrary scheme (or algebraic space). Then every strict algebroid (X,A) where
X is a gerbe over a space S becomes naturally a linear algebraic stack over S. These types of
linear algebraic stacks occur naturally in the theory of deformation quantization, where they
were introduced by Kontsevich under the name of ‘stack of algebroids’, see [Kon01]. In [Kon01],
one can also find a description of these stacks of algebroids in terms of cocycles (compare also
[DP05]).

Thus, our notion of algebroid is a natural generalization of Kontsevich’s notion of a stack of
algebroids. This justifies our terminology.
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Loosely speaking, algebroids are stacks which are linear over their coarse Deligne–Mumford
stack.

Example 1.45 (Schemes as algebroids). Every Deligne–Mumford stack Z is an algebroid via the
definition AZ = 0Z . There is no natural way to enhance the algebroid (Z, 0Z) to a linear algebraic
stack, unless Z = SpecR is the final scheme. This exhibits one way in which algebroids are more
flexible than linear algebraic stacks.

Example 1.46 (Algebroids over quotient stacks). Let X = G\Y be a quotient stack. A finite type
algebra A over X is given by a finite type algebra B over Y , together with a lift of the G-action on
X to an action on B by algebra automorphisms. The inertia stack of X is naturally identified with
G\StabG Y . Thus, (X,A) becomes an algebroid if we specify a G-equivariant open embedding
of Y -group schemes ι : B× → StabG Y . If B is not an algebra bundle, we also need to require
that ub = ι(u) · b, for all u ∈ B×, b ∈ B.

Morphisms of algebroids.

Definition 1.47. We call a morphism of algebraic stacks f : X → Y inert, if the diagram of
stacks

I◦X
//

��

I◦Y

��
X // Y

is cartesian. If IX → IY |X is an isomorphism, we call f strictly inert.

The connected component I◦Y is not necessarily an algebraic stack, but if it is, then so is
I◦X , if X → Y is inert. We will only apply this concept when Y is an algebroid, so that I◦Y is
representable over Y .

The basic facts about inert morphisms are as follows.

(i) Every inert morphism of algebraic stacks is Deligne–Mumford representable, because its
relative inertia group scheme is unramified.

(ii) Every base change of an inert morphism of algebraic stacks is inert.

(iii) Every monomorphism of algebraic stacks (in particular, every locally closed immersion and
every stratification) is (strictly) inert.

(iv) Being inert is local in the étale topology of the target.

(v) Every morphism of Deligne–Mumford stacks is inert.

Base changes of morphisms of Deligne–Mumford stacks are, in fact, the only inert morphisms,
at least up to stratifications.

Proposition 1.48. Suppose X → Y is an inert morphism of algebraic stacks, and suppose I◦Y
(and hence also I◦X) is smooth and representable overX, so that we have coarse Deligne–Mumford
stacks X, Y and an induced morphism X → Y . Then the diagram

X //

��

Y

��
X // Y

is cartesian.
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Proof. To prove that the morphism of gerbes X → Y |X over X is an isomorphism, we may pass

to an étale cover X
′

of X and assume that the gerbe X is trivial. Then X = BXG, where G
is the pullback of I◦X to X via a trivializing section. Moreover, Y |X = BXH, where H is the

pullback of I◦Y |X to X via the same trivializing section. Since I◦X → I◦Y |X is an isomorphism, so
is G → H, and hence X → Y |X . 2

Definition 1.49. A morphism of algebroids X → Y is a pair (f, ϕ) where f : X → Y is a
morphism of algebraic stacks and ϕ : AX → AY is a morphism of algebras over f such that the
diagram

A×X
ϕ //

ι

��

A×Y

ι

��
IX

If // IY

(8)

commutes.
The morphism (f, ϕ) is a representable morphism of algebroids if ϕ : AX → AY |X is

a monomorphism of sheaves of algebras over X. (This implies that f is Deligne–Mumford
representable.)

The morphism (f, ϕ) is inert if ϕ : AX → AY |X is an isomorphism of finite type algebras.
(This implies that f is inert.)

There is a natural notion of 2-morphism of algebroid, which makes algebroids into a 2-
category.

Remark 1.50 (Inert morphisms in the case of algebra bundles). Suppose (X,AX) → (Y,AY ) is
a morphism of algebroids, where AX and AY are algebra bundles. If X → Y is an inert morphism
of algebraic stacks, then we automatically have A×X = A×Y |X and hence AX = AY |X , and so
(X,AX) → (Y,AY ) is an inert morphism of algebroids.

Remark 1.51 (Strict algebroids and representable morphisms). Suppose (X,A) is a strict
algebroid and f : Y →X a representable morphism of algebraic stacks. If B ⊂ A|Y is a finite type
subalgebra such that ι(B×) = IY ∩ ι(A×|Y ) inside IX |Y , then (Y,B) is a strict algebroid with a
representable morphism (Y,B) → (X,A). (The algebroid condition for (Y,B) is automatic.)

Every strict algebroid over f : Y → X and (X,A) comes about in this way.

Remark 1.52 (Pullbacks). Suppose (X,AX) is an algebroid and Y → X an inert morphism of
algebraic stacks. In this case, Y admits a unique algebroid AY endowed with an inert morphism
of algebroids (Y,AY ) → (X,AX). In fact, AY = AX |Y .

If (X,AX) is a strict algebroid, then the morphism Y → X is necessarily strictly inert, and
(Y,AY ) is necessarily a strict algebroid. We call (Y,AY ) → (X,AX) a strictly inert morphism of
strict algebroids.

Definition 1.53. We call a morphism of algebroids (X,AX) → (Y,AY )

(i) a vector bundle,

(ii) a principal homogeneous G-bundle, for an algebraic group G,

(iii) a fibre bundle with group G and fibre F ,

(iv) a locally closed immersion,

(v) a stratification,

if it is inert and the underlying morphism of algebraic stacks X → Y has the indicated property.
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Remark 1.54 (Fibred products). Fibred products of algebroids exist and commute with fibred
products of underlying stacks and underlying algebras. Fibred products of strict algebroids are
strict algebroids. The algebroid underlying a fibred product of linear algebraic stacks is equal to
the fibred product of the underlying algebroids.

Proposition 1.55. Suppose (X,A) → (Y,B) is a morphism of algebroids where X → Y is a
stratification of algebraic stacks. Then there exists a stratification of algebroids (X ′, A′) → (X,A)
such that the composition (X ′, A′) → (Y,B) is also a stratification of algebroids.

If (Y,B) is strict, then (X ′, A′) → (X,A) and (X ′, A′) → (Y,B) are stratifications of strict
algebroids.

Proof. Passing to the rank stratifications of A and B, we obtain a commutative diagram of
algebroids.

(X ′, A′) //

��

(Y ′, B′)

��
(X,A) // (Y,B)

The upper horizontal morphism is an inert morphism of algebroids, because A′ and B′ are algebra
bundles, by Remark 1.50. The claim follows. 2

Algebroid inertia.

Remark 1.56 (Inertia). Let (X,A) be an algebroid. Then (IX , IA) is another algebroid, which
we call the algebroid inertia of (X,A). In fact, IA = (A|IX )fix, the subalgebra of A|IX of elements
invariant under the tautological automorphism induced by the inertia action of IX on A. The
subgroup of units is (A×|IX )fix, and we have the following cartesian diagram.

(A×|IX )fix //

��

A×

ι

��
IIX

// IX

If (X,A) is a strict algebroid, then so is (IX , IA).

Remark 1.57 (Induced algebroid structure on the algebra). Let (X,A) be an algebroid. Let
(A|A)fix be the subalgebra of the pullback A|A of elements commuting with the tautological
section of A|A. (This is equal to the space of commuting pairs in A×XA). The subgroup of units
is (A×|A)fix, and we have the following cartesian diagram.

(A×|A)fix //

��

A×

ι

��
IA // IX

This proves that (A, (A|A)fix) is an algebroid over A.
In fact, we have a commutative diagram of algebroids.

(A×, (A|A×)fix)
ι //

��

(IX , IA)

��
(A, (A|A)fix) // (X,A)
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If (X,A) is a strict algebroid, this is a diagram of strict algebroids.

Remark 1.58 (Semi-simple algebroid inertia). There is also a semi-simple version of the
algebroid inertia. To define it, let (X,A) be an algebroid, and consider the following diagram of
algebroids.

A×,ss //

��

A×
ι //

��

IX

��
Ass // A // X

(9)

The square on the right was constructed in Remark 1.57. The morphism Ass
→ A is the

composition of a stratification and an open immersion (see Proposition 1.34); in particular,
it is inert. Hence, we get an induced algebroid structure on Ass. Requiring the square on the
left to be a cartesian diagram of algebroids defines the algebraic stack A×,ss and the algebroid
structure over it.

If (X,A) is a strict algebroid, all objects in Diagram (9) are strict, and ι is an isomorphism.
We are then justified in defining Iss

X = A×,ss and calling it the semi-simple algebroid inertia of
X. In the general case we define I◦,ssX = A×,ss and also call it the semi-simple algebroid inertia,
by a slight abuse of language.

Idempotents and algebroids.

Lemma 1.59. Let a ∈ A×,ss be a semi-simple invertible global section of an algebra bundle
A → X. Let Ã×,ss = A×,ss/Gm be the quotient of A×,ss by the subgroup of scalars. Consider the
action of the group A× on A×,ss → Ã×,ss by conjugation. The induced group homomorphism

StabA×(a) −→ StabA× [a],

where [a] is the class of a in Ã×,ss, is an open immersion.

Proof. Let Ya be the relative spectrum of OX [a] over X. The epimorphism of commutative
algebras OX [x] → OX [a] gives rise to a closed immersion ϕ : Ya → (Gm)X , because a is invertible.
We get an induced proper morphism

Ya ×X Ya −→ (Gm)X

(λ, µ) 7−→ ϕ(λ)/ϕ(µ). (10)

As Ya → X is unramified, the diagonal Ya → Ya×X Ya is an open immersion, so the complement,
denoted by (Ya × Ya)

6=, is closed in Ya × Ya and hence proper over X. Hence, the image of
(Ya×Ya) 6= in (Gm)X , denoted by Z, is closed. The complement of Z in (Gm)X is hence an open
neighbourhood U of the identity section.

We have the following cartesian diagram.

StabA×(a) //

��

U

��
StabA× [a] //

��

(Gm)X

��
A×

b 7→bab−1a−1
// A×
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The lower square is cartesian by the definition of StabA× [a]. The fact that the upper square is
cartesian follows from the fact that the image of StabA× [a] in (Gm)X is contained in the image
of (10). The latter claim follows from the fact that if ba = λa, for a scalar λ ∈ (Gm)X , then λ is
necessarily a quotient of eigenvalues of a. (Use Remark 1.24 to assume that a is a matrix. Then
ba = λa implies that a and ba are simultaneously diagonalizable. Once we have diagonalized, a
and ba are the same up to permutation of the diagonal entries.) 2

Remark 1.60. Let (X,A) be an algebroid, and let Y = Ek(A) be the stack of complete labelled
sets of k orthogonal idempotents in A. Let us write B = (A|Y )e1,...,ek for the subalgebra of
A|Y consisting of elements commuting with each of the k tautological idempotents in A|Y . The
homomorphism ι : A× → IX restricts to a homomorphism B× → IY and defines an algebroid
structure over Y . The algebra B is endowed with a canonical complete set of orthogonal central
idempotents and hence decomposes as a product B = B1 × · · · ×Bk.

Let (X,A) be an algebroid, where A is an algebra bundle, and let e1, . . . , ek be orthogonal
central idempotents in A, decomposing A into a product of algebra bundles A = A1 × · · · ×Ak.
We get an induced decomposition

A×,ss = A×,ss1 × · · · ×A×,ssk ⊂ A,

and the algebroid structure on A×,ss is the fibred product over X of the algebroid structures on
the A×,ssi , i = 1, . . . , k.

We obtain an embedding of algebras α : AkX → A mapping (a1, . . . , ak) to
∑
aiei ∈ A. Via α,

the torus Gk
m acts on A by left multiplication. The action of Gk

m on A preserves the semi-simple
units, and the restricted action of Gk

m on A×,ss is fibrewise free, so the quotient

Ã×,ss = A×,ss/Gk
m = A×,ss1 /Gm × · · · ×A×,ssk /Gm

is representable over X.

Proposition 1.61. We claim that Ã×,ss has a canonical algebroid structure, and we get an
induced commutative diagram

A×,ss //

$$

Ã×,ss

��
X

of algebroids where the horizontal map is inert, and hence a principal Gk
m-bundle of algebroids.

Proof. Because inert morphisms of algebroids are stable under composition and pullback, this
claim reduces to the case k = 1 and e1 = 1, which we will now consider.

Let us denote the tautological section of A× over A×,ss by a. Then the algebra over A×,ss is
given by the centralizer algebra (A|A×,ss)a. This algebra descends to the quotient Ã×,ss, because
the centralizer of an algebra element does not depend on its equivalence class. Let us denote this
descended algebra by (A|

Ã×,ss)
[a]. The units in this algebra are identified with

(A×|
Ã×,ss)

[a] = Stab(A×|
Ã×,ss )(a),

which is an open subgroup of
Stab(A×|

Ã×,ss )[a],
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by Lemma 1.59. We also have a cartesian diagram

Stab(A×|
Ã×,ss )[a] //

��

A×|
Ã×,ss

ι

��
I
Ã×,ss

// IX |Ã×,ss
because the inertia stack I

Ã×,ss can be identified as

I
Ã×,ss = {([a], ϕ) ∈ Ã×,ss ×X IX | ϕ[a] = [a]}.

This proves that Stab(A×|
Ã×,ss )[a] is an open subgroup of I

Ã×,ss . Composing our two open

immersions, we obtain an open immersion of groups over Ã×,ss from (A×|
Ã×,ss)

[a] to I
Ã×,ss ,

endowing Ã×,ss with the structure of an algebroid, as required.
We get an induced morphism of algebroids A×,ss → Ã×,ss, which is inert, by construction. 2

Remark 1.62. Even if (X,A) is strict, Ã×,ss is not necessarily strict. It is this construction, in
fact, which makes it impossible for us to restrict attention to strict algebroids.

Remark 1.63. Let (M,A) be the algebroid underlying a linear algebraic stack. Suppose that M
admits direct sums. Let M∗ be the complement of the zero object in M. We obtain a canonical
morphism of algebroids

M∗ × · · · ×M∗︸ ︷︷ ︸
n times

−→ En(A)

(x1, . . . , xn) 7−→ (x1 ⊕ · · · ⊕ xn;π1, . . . , πn), (11)

where π1, . . . , πn are the projectors corresponding to the factors x1, . . . , xn of x1⊕· · ·⊕xn. Over
every R-scheme S, this morphism is fully faithful. The underlying morphism of algebraic stacks
(11) is a monomorphism.

If we require all fibres M(S) to be Karoubian, i.e., we require all idempotents to admit the
corresponding direct summands, (11) is an isomorphism of algebroids.

We say a linear algebraic stack M is Karoubian if it admits direct sums and all fibres are
Karoubian.

Algebroid representations.

Definition 1.64. Let X be an algebroid. A representation of X is a morphism of algebroids
ρ : X → Vect to the algebroid underlying the linear stack Vect of vector bundles. If ρ factors
through vector bundles of rank n, i.e., defines a morphism X → BGLn with its natural algebroid
structure (see Example 1.41), we say that ρ has rank n.

If the algebroid morphism X → BGLn is representable, we say the representation ρ is
faithful.

To give a representation of the algebroid (X,A) is equivalent to specifying a vector bundle
V over X together with a morphism of algebras A → End(V ) such that the induced morphism
on unit groups A× → GL(V ) makes the diagram

A×X
ι //

##

IX

��
GL(V )

commute, where IX → GL(V ) is the inertia representation given by the vector bundle V/X.
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The representation V of rank n is faithful if and only if A → End(V ) is a monomorphism of

algebras over X. If this is the case, the underlying morphism of stacks X → BGLn is Deligne–

Mumford representable, and the GLn-bundle of frames Y = Isom(V,On) is represented by a

Deligne–Mumford stack.

So, a faithful representation identifies X as a quotient stack X = GLn\Y , where Y is

a Deligne–Mumford stack. The algebroid structure on X is then given by a GLn-invariant

subalgebra B ↪→ Mn×n × Y such that the subgroup B× ↪→ GLn×Y is equal to the subgroup

StabGLn Y ↪→ GLn × Y .

Remark 1.65. Every algebroid (X,A), with A an algebra bundle, admits the tautological adjoint

representation given by the adjoint representation of the algebra A on itself. By contrast, the

representation of A on itself by left multiplication is not an algebroid representation, unless

A = 0.

Proposition 1.66. Every algebroid (X,A) admits a stratification X ′ ⊂ X such that the

restricted algebroid (X ′, A|X′) admits a faithful representation.

Proof. Without loss of generality, assume that A is an algebra bundle with smooth unit group

A× and that X is a connected isotrivial gerbe over the Deligne–Mumford stack S. Thus, X → S

admits a section over a finite étale cover S′ → S.

To begin with, we consider the case where S′ = S, i.e., the case where X is a trivial gerbe

over S. By Remark 1.43, we can assume that A descends to S and that we are dealing with

the algebroid (BA×, A×\A). Then we can consider the representation of A on itself by left

multiplication ` : A → End(A). It restricts to a representation of S-group schemes ` : A× →

GL(A). We get an induced morphism of algebraic stacks BA× → BGL(A), which is covered by

the morphism of algebras A×\A → BGL(A)\End(A). Since ` : A → End(A) is injective, this

gives the required faithful representation of (BA×, A×\A).

(Note that this construction does not contradict Remark 1.65. The vector bundle over X

defined by the left representation of A× on itself is different from the vector bundle underlying

the algebroid A over X, which is given by the adjoint representation of A× on itself.)

Now consider the general case. The pullback (X ′, A′) of (X,A) to S′ is again an algebroid,

as X ′ → X is inert. Since X ′ → S′ is a trivial gerbe, (X ′, A′) admits a faithful representation

A′ → End(V ) on a vector bundle V over X ′. Let π : X ′ → X be the projection. Then, π∗V is a

faithful representation of A. In fact, by adjunction, the embedding π∗A → End(V ) gives rise to

an embedding A → π∗ End(V ) → End(π∗V ). 2

Clear algebroids. Suppose that (X,A) is an algebroid and that X is a connected gerbe over

the Deligne–Mumford stack X. Then the centre Z(A) descends to a commutative finite type

algebra over X, by Lemma 1.20.

Definition 1.67. We say an algebroid (X,A) is clear, if:

(i) A and Z(A) are algebra bundles over X;

(ii) X is a connected isotrivial gerbe over X;

(iii) the Deligne–Mumford stack X is connected;

(iv) ZE(A) → X is finite étale.
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For a clear algebroid, ZE(A) and PZE(A) descend to finite étale X-schemes. The definitions
of central rank, split central rank, and central type apply to clear algebroids.

For every algebroid (X,A) over a finite type algebraic stack X, there exists a stratification
of X such that the restricted algebroids over the pieces of the stratification are all clear. This
follows from Proposition 1.5 and Lemma 1.26.

2. The spectrum of semi-simple inertia

Let K(DM) be the Q-vector space on (isomorphism classes of) finite type Deligne–Mumford
stacks, modulo scissor relations and bundle relations, i.e., equations of the form [Y ] = [F ×X],
whenever Y → X is a fibre bundle with special structure group and fibre F . The product over
the base scheme SpecR makes K(DM) a Q-algebra. We write q for the class of the affine line in
K(DM).

Let M be a linear algebraic stack and A → M its universal endomorphism algebra. Recall
that (M,A) is an algebroid (cf. Example 1.40).

Stack functions.

Definition 2.1. A stack function is a representable morphism of algebroids (X,A) → (M,A)
such that X is of finite type.

TheK-module of M, denoted byK(M), is the free Q-vector space on (isomorphism classes of)
stack functions, modulo the scissor and bundle relations relative to (M,A). The class in K(M)
defined by a stack function X → M will be denoted by [X → M].

A scissor relation relative to M is

[X → M] = [Z → X → M] + [X\Z → X → M],

for any closed immersion of algebroids Z ↪→ X and any stack function X → M. The substacks
Z and X\Z are endowed with their respective pullback algebroids.

A bundle relation relative to M is

[Y → X → M] = [F ×X → X → M],

for any fibre bundle Y → X of algebroids with special structure group and fibre F , see
Definition 1.53.

There is an action of K(DM) on K(M), given by

[Z] · [X → M] = [Z ×X → X → M].

This action makes K(M) into a K(DM)-module.
The additive zero in K(M) is given by the empty algebroid

0 = [∅ → M].

If M admits a zero object (Definition 1.16), we denote the corresponding stack function by

1 = [SpecR
0−→ M]. We can use it to embed K(DM) into K(M) via [X] 7→ [X] · 1 = [X →

SpecR
0−→ M]. We will always assume that M admits a zero object.

Remark 2.2. In the definition of K(M), one can restrict to stack functions X → M, where X is
an algebroid bundle (by which we mean that AX is an algebra bundle). For algebroid bundles,
the definitions of locally closed immersion and fibre bundle simplify, because ‘inert’ is then a
property of the underlying morphism of stacks (Remark 1.50), namely, that it pulls back from
a morphism of Deligne–Mumford stacks (Proposition 1.48). Even the definition of algebroid itself
simplifies in the case of algebroid bundles (Proposition 1.39).
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The filtration by split central rank. We say a stack function X → M is clear if X is a clear
algebroid (Definition 1.67).

Definition 2.3. We introduce the filtration by split central rank K>k(M) on K(M) by declaring
K>k(M) to be generated as a Q-vector space by clear stack functions [X → M] such that AX
admits k orthogonal central non-zero idempotents (globally).

Alternatively, K>k(M) is generated by [X → M], where X is a clear algebroid such that
PZE(AX) has at least k components.

Each filtered piece K>k(M) is stable under scalar multiplication by K(DM). Let us introduce
the abbreviation

K>k/K>k(M) = K>k(M)/K>k(M).

Remark 2.4. Trying to define a direct sum decomposition of K(M) by split central rank would
not work, because a clear algebroid X of split central rank k may very well admit a closed
substack Z ⊂ X whose restricted algebroid is again clear, but of split central rank larger than k.
Similarly, the bundle relations do not respect split central rank.

The zero ring has no non-zero central idempotents, but any non-zero ring has at least one
(namely, 1). For every stack function X → M, we have the closed substack Z ⊂ X defined as
the locus where 1 ∈ AX vanishes. Then, [X → M] = [Z → M] + [X\Z → M], and [Z → M] ∈
K(DM) ⊂ K(M) and [X\Z → M] ∈ K>0(M). Therefore, K(DM) ⊂ K(M) is a complement for
K>0(M) in K(M) = K>0(M), i.e., K(M) = K(DM)⊕K>0(M). In particular, we have

K>0(M)/K>0(M) = K(DM).

2.1 The idempotent operators Er

Let Er denote the operator on K(M) which maps a stack function [X → M] to [Er(X) →

X → M], where Er(X) = Er(AX) is the stack of r-tuples of non-zero orthogonal idempotents
adding to unity in AX , see Definition 1.37. The algebroid structure on Er(X) is described in
Remark 1.60.

The operators Er are well defined, because applying Er to a stratification or a fibre bundle
of algebroids gives rise to another inert morphism of algebroids of the same type. The operators
Er : K(M) → K(M) are K(DM)-linear.

This definition applies also to r = 0. The stack E0(X) is empty if AX 6= 0, and E0(X) =X ifX
is a Deligne–Mumford stack. Hence, E0 is diagonalizable and has eigenvalues 0 and 1. The kernel
(0-eigenspaces) is K>0(M) ⊂ K(M); the image (1-eigenspaces) is denoted by K0(M) ⊂ K(M)
and is generated by all stack functions [X → M], where X is a Deligne–Mumford stack. In fact,
K0(M) = K(DM) ⊂ K(M).

For r = 1, the operator E1 vanishes on stack functions [X → M], where X is a Deligne–
Mumford stack, and acts as identity on stack functions for which AX 6= 0. Hence, E1 is also
diagonalizable with eigenvalues 0 and 1. The kernel of E1 is K0(M) and the image is K>0(M).
Hence, E0 and E1 are complementary idempotent operators on K(M), i.e., they are orthogonal
to each other and add up to the identity.

Recall the Stirling number of the second kind, S(k, r), which is defined in such a way that
r!S(k, r) is the number of surjections from k to r. Here, and elsewhere, we write n = {1, . . . , n}.

Theorem 2.5. The operators Er, for all r > 0, preserve the filtration K>k(M) by split central
rank. On the subquotient K>k/K>k(M), the operator Er acts as multiplication by r!S(k, r).
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Proof. Consider a clear algebroid (X,A) with a morphism X → M defining the stack function
[X → M] in K(M). Let n be the central rank of X and k the split central rank of X. The filtered
piece K>k(M) is generated by such [X → M].

Denote by X → X the coarse Deligne–Mumford stack of X. By assumption, both X and X
are connected and hence admit Grothendieck-style Galois theories (see [Noo04, § 4]).

Let X̃ →X be a connected Galois cover with Galois group Γ, which trivializes PZE(A) →X.
As PZE(A) descends to X, this Galois cover can be constructed as a pullback from X. Therefore,
the morphism X̃ → X is inert, and hence X̃ inherits, via pullback, the structure of an algebroid,
and hence [X̃ → X → M] is a stack function.

Recall that the degree of the cover PZE(A) → X is n, and the number of components of
PZE(A) is k.

By labelling the components of the pullback of PZE(A) to X̃, we obtain an action of Γ on
the set n = {1, . . . , n} and an isomorphism of finite étale covers of X

X̃ ×Γ n
'−→ PZE(A)

[x, ν] 7−→ e[x,ν].

Both source and target of this isomorphism support natural algebroids and the isomorphism
preserves them. The number of orbits of Γ on n is k.

Then we also have an isomorphism

X̃ ×Γ Epi(n, r)
'−→ ZEr(A)

[x, ϕ] 7−→
( ∑
ϕ(ν)=ρ

e[x,ν]

)
ρ=1,...,r

,

where ZEr denotes the stack of labelled complete sets of r orthogonal central idempotents.
Again, both stacks involved are in fact algebroids, and this isomorphism is an isomorphism of
algebroids.

Hence, we may calculate as follows (all stacks involved are endowed with their natural
algebroid structures):

ZEr[X → M] = [X̃ ×Γ Epi(n, r) → M]

=

[
X̃ ×Γ

∐
ϕ∈Epi(n,r)/Γ

Γ/ StabΓ ϕ → M

]
=

∑
ϕ∈Epi(n,r)/Γ

[X̃/ StabΓ ϕ → M]

=
∑

ϕ∈Epi(n,r)Γ

[X → M] +
∑

ϕ∈Epi(n,r)/Γ
StabΓ ϕ6=Γ

[X̃/ StabΓ ϕ → M].

Now, we have Epi(n, r)Γ = Epi(n/Γ, r), and hence

# Epi(n, r)Γ = r!S(k, r).

Thus, we conclude,

ZEr[X → M] = r!S(k, r) [X → M] +
∑

ϕ∈Epi(n,r)/Γ
StabΓ ϕ 6=Γ

[X̃/ StabΓ ϕ → M].
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For any proper subgroup Γ′ ⊂ Γ, the quotient X ′ = X̃/Γ′ is an intermediate cover X̃ → X ′ → X
such that X ′ 6= X. The pullback of PZE(A) to X ′ has more than k components, because the
number of orbits of Γ′ on n is larger than k. Thus, we have proved the theorem for ZEr, instead
of Er.

Now, observe that ZEr(A) ⊂ Er(A) is a closed substack, because ZEr(A) → X is proper
and Er(A) → X is separated. So we can write

Er[X → M] = ZEr[X → M] + [NZEr(A) → X → M],

where NZEr(A) is the complement of ZEr(A) in Er(A). To prove that [NZEr(A) → M] ∈
K>k(M), let Y ↪→ NZEr(A) be a locally closed embedding such that (Er(A), Afix)|Y is a clear
algebroid.

Consider the embedding of algebras Afix|Y ↪→ A|Y . It induces an embedding of commutative
algebras Z(A|Y ) ↪→ Z(Afix|Y ), because Z(A|Y ) ⊂ Afix|Y . The algebra A|Y comes with r
tautological idempotent sections, all of which are contained in Z(Afix|Y ), but at least one of
which is not contained in Z(A|Y ). So, by Proposition 1.36(ii), the split central rank of Afix|Y
is strictly larger than the split central rank of A|Y . The latter is at least as big as k, the split
central rank of A, because the split central rank cannot decrease under base extension. This
shows that [Y → M] ∈ K>k(M) and finishes the proof. 2

Corollary 2.6. The operators Er, for r > 0 are simultaneously diagonalizable. The common
eigenspaces form a family Kk(M) of subspaces of K(M) indexed by non-negative integers k > 0,
and

K(M) =
⊕
k>0

Kk(M). (12)

Moreover, for every r > 0,

K>r(M) =
⊕
k>r

Kk(M).

Let πk denote the projection onto Kk(M). We have

Erπk = r!S(k, r)πk,

for all r > 0, k > 0.

Proof. First remark that for given r, the numbers r!S(k, r) form a monotone increasing sequence
of integers.

Then note that the operators Er pairwise commute: the composition Er ◦Er′ associates to an
algebroid (X,A) the stack of pairs (e, e′), where both e and e′ are complete families of non-zero
orthogonal idempotents in A, the length of e being r, the length of e′ being r′, and the members
of e commuting with the members of e′.

Finally, let us prove that for every k and every r, the Q-vector space K>k(M) is a union of
finite-dimensional subspaces invariant by Er.

For this, define K(M)6N to be generated as a Q-vector space by stack functions [X → M],
where X is a clear algebroid, such that the rank of the vector bundle underlying the algebra
AX → X is bounded above by N . This is an ascending filtration of K(M), which is preserved
by Er. Set

K>k(M) ∩K(M)6N = K>k(M)6N .
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Suppose x = [X → M] is a stack function with X a clear algebroid of split central rank
k, and let N be the rank of the vector bundle underlying AX . Note that k 6 N , because for
a commutative algebra, the number of primitive idempotents is bounded by the rank of the
underlying vector bundle. We deduce that for k > N , we have K>k(M)6N = 0.

On the other hand, Theorem 2.5 implies by induction that

Eir(x) ∈ Qx+ QEr(x) + · · ·+ QEi−1
r (x) +K>k+i(M).

Applying this for i = N − k + 1, we see that

Er(E
N−k
r (x)) ∈ Qx+ QEr(x) + · · ·+ QEN−kr (x)

and hence that Qx+ QEr(x) + · · ·+ QEN−kr (x) is invariant under Er.
This proves that any x ∈ K>k(M) is contained in a finite-dimensional subspace invariant

under Er. Standard techniques from finite-dimensional linear algebra over Q now imply the
result. 2

Remark 2.7. The proof of Theorem 2.5 and its corollary show that the central versions ZEr of
the Er are also diagonalizable. On the other hand, the ZEr do not commute with each other,
and so are less useful.

Corollary 2.8. For r > 1, we have

kerEr =
⊕
k<r

Kk(M).

In particular, for any x ∈ K(M), we have Erx = 0 for r � 0.

Corollary 2.9. For every k > 0, we have

πk =
∞∑
r=k

s(r, k)

r!
Er,

where the s(n, k) are the Stirling numbers of the first kind. In particular, π0 = E0, and

π1 =
∞∑
r=1

(−1)r+1

r
Er.

Proof. We have

id =
∑
`>0

π`,

and hence
Er =

∑
`>0

Erπ` =
∑
`>0

r!S(`, r)π`,

and therefore ∑
r>0

s(r, k)

r!
Er =

∑
r>0

s(r, k)

r!

∑
`>0

r!S(`, r)π`

=
∑
`>0

(∑
r>0

S(`, r)s(r, k)

)
π` =

∑
`>0

δ`,k π` = πk,

by the inverse relationship between the Stirling numbers of the first and second kind. 2
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Remark 2.10. The Stirling numbers of the first kind appear in the Taylor expansions of the
powers of the logarithm:

∞∑
r=k

s(r, k)

r!
tr =

1

k!
log(1 + t)k.

Definition 2.11. Let t be a formal variable. We define the operator

πt : K(M)[t] −→ K(M)[t]

by the formula

πt(ξ) =
∑
k

πk(ξ) t
k

and extending K(DM)[t]-linearly. We can write, formally,

πt =
∑
k

πk t
k.

Remark 2.12. We have the following convenient formula:

πt =
∑
n

(
t

n

)
En.

It follows from Corollary 2.9, using the identity∑
k

s(n, k)

n!
tk =

(
t

n

)
.

Example 2.13. The universal rank 2 vector bundle GL2 \A2
→ BGL2 and its classifying

morphism to Vect define a Hall algebra element [BGL2 → Vect] ∈ K(Vect), which we will
abbreviate to [BGL2]. To decompose [BGL2] into its pieces according to (12), we consider the
action of E2, as we have Er[BGL2] = 0 for all r > 2. In fact,

E2[BGL2] = [BT ] and E2[BT ] = 2[BT ],

where T is a maximal torus in GL2. Thus, Q[BGL2]+Q[BT ] is a subspace of K(Vect) invariant
under E2, and the matrix of E2 acting on this subspace is(

0 0
1 2

)
. (13)

This matrix is lower triangular, with different numbers on the diagonal, and hence diagonalizable
over Q. In fact, the diagonal entries are 2S(1, 2) = 0 and 2S(2, 2) = 2, as predicted by
Theorem 2.5, with r = 2 and k = 1, 2. Diagonalizing (13) gives the eigenvectors

(i) v1 = [BGL2]− 1
2 [BT ] with eigenvalue 0,

(ii) v2 = 1
2 [BT ] with eigenvalue 2.

Therefore, we have v1 ∈ K1(Vect) and v2 ∈ K2(Vect), and since [BGL2] = v1 + v2, we have
found the required decomposition of [BGL2], as noted in Corollary 2.9.
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2.2 The spectrum of semi-simple inertia
The connected semi-simple inertia operator on K(M) is the Q-linear endomorphism

I◦,ss : K(M) −→ K(M)

[X → M] 7−→ [I◦,ssX → X → M].

Here, I◦,ssX = A×,ssX denotes the semi-simple algebroid inertia of the algebroid X, see Remark 1.58.
Note that I◦,ss respects the scissor and bundle relations defining K(M) and is linear over K(DM),
because passing to connected inertia commutes with inert pullbacks.

Note that I◦,ss commutes with Er for every r. Both compositions Er ◦ I◦,ss and I◦,ss ◦ Er
associate to an algebroid (X,A) the stack of pairs (e, a), where a is a semi-simple unit in A and e
is a labelled complete set of r orthogonal idempotents in A, all commuting with a. In particular,
I◦,ss preserves the filtration of K(M) by split central rank.

In the following, we will need an auxiliary construction. Fix k > 0. For an algebroid (X,A),
let Y = Ek(A) and (Y,B) be the algebroid structure on Y (see 1.60). The algebra B comes with
a complete set of k orthogonal idempotents, and we divide B×,ss by the induced action of Gk

m,
as treated in Proposition 1.61, to get B̃×,ss. Let us write

Ĩ◦,ssk X = B̃×,ss.

We may think of Ĩ◦,ssk X as the stack of triples (x, e, [a]), where x is a point of X, e = (e1, . . . , ek)
is a labelled complete set of orthogonal idempotents in Ax, and [a] is an equivalence class of
semi-simple units in Ae1,...,ekx , where a ∼

∑k
i=1 λiei a, for λi ∈ OX |x (although this neglects the

sheafification inherent in the quotient construction). We have structure morphisms

Ĩ◦,ssk X −→ EkX −→ X.

This construction gives rise to a K(DM)-linear operator

Ĩ◦,ssk : K(M) −→ K(M).

Recall that q = [A1]. The composition I◦,ss ◦ Er is divisible by (q − 1)r, as shown by the
following proposition.

Proposition 2.14. For every k > 0, we have

I◦,ss ◦ Ek = (q − 1)k Ĩ◦,ssk ,

as K(DM)-linear operators on K(M).

Proof. We have
[B×,ss] = (q − 1)k[B̃×,ss],

because of the bundle relations in K(M), see Proposition 1.61. 2

Corollary 2.15. The map which I◦,ss induces on the subquotient K>k/K>k(M) is divisible
by (q − 1)k:

I◦,ss|K>k/K>k(M) =
1

k!
(q − 1)k Ĩ◦,ssk |K>k/K>k(M).

Proof. This is because on K>k/K>k(M), the operator Ek acts as multiplication by k!. 2
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We will use as scalars the localization of Q[q] at the maximal ideal (q − 1), denoted by
Q[q](q−1), thus inverting all rational polynomials in q that do not vanish at q = 1. We extend
scalars on K(M) as well, and consider

K(M)(q−1) = Q[q](q−1) ·K(M) ⊂ K(M)(q) = K(M)⊗Q[q] Q(q).

Note that this definition ensures that K(M)(q−1) is (q − 1)-torsion free. The direct sum
decomposition (12) extends to K(M)(q−1), and the operator I◦,ss extends to a Q[q](q−1)-linear
operator

I◦,ss : K(M)(q−1) −→ K(M)(q−1).

For a partition λ ` n, we denote its length (i.e., the number of its parts) by `(λ). We define

Qλ =
∏
i∈λ

(qi − 1).

This is a polynomial in q of degree n that vanishes to order `(λ) at q = 1. We also define

Q̃λ = k!
∏
i∈λ

qi − 1

q − 1
.

This is a polynomial in q that is invertible in Q[q](q−1).

Theorem 2.16. The operator

Ĩ◦,ssk : K>k/K>k(M)(q−1) −→ K>k/K>k(M)(q−1)

is diagonalizable. Its eigenvalue spectrum consists of all Q̃λ, for partitions λ of length `(λ) = k.

Proof. We will fix k and work throughout in the subquotient K>k/K>k(M)(q−1), restricting all

operators tacitly to this subquotient. Note that, as a Q[q](q−1)-module, K>k/K>k(M)(q−1) is

isomorphic to Kk(M)(q−1) and is hence (q − 1)-torsion free.
We order partitions of length k by divisibility. If λ and µ are partitions with `(λ) = k and

`(µ) = k, we write λ | µ if there exists a permutation σ of k such that λi | µσ(i) for all i = 1, . . . , k.
This is a partial ordering on the partitions of length k. We write

K>λ(M)(q−1) (14)

for the Q[q](q−1)-subspace of K>k/K>k(M)(q−1) generated by clear stack functions of central
type divisible by λ.

We will prove the following.

(i) The operator Ĩ◦,ssk preserves the filtration (14) by divisibility of partitions.

(ii) On the quotient K>λ(M)(q−1)/K
>λ(M)(q−1), the operator Ĩ◦,ssk acts as multiplication by

Q̃λ.

(iii) The operator Ĩ◦,ssk is locally finite.

These facts will imply the claims concerning diagonalizability of Ĩ◦,ssk . This is because for a lower
triangular matrix with distinct diagonal entries over a discrete valuation ring to be diagonalizable,
it suffices that the differences between the diagonal entries are units. The latter condition is
satisfied, because if λ | µ, then Q̃µ− Q̃λ does not vanish at q = 1. (This argument does not apply
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directly, because our eigenvalues are not linearly ordered, but only partially. Nevertheless, the
conclusion remains true in this larger generality.)

Let us fix a partition λ of length k and consider a clear stack function X → M of central
type λ with algebra A → X. Abbreviate the induced element of K>k/K>k(M) by [X]. Denote
the central rank of X by n, so that λ ` n. As A has k central idempotents, EkX → X has k!
canonical sections, each given by a labelling σ of these k idempotents. Denote the images of these
sections by {Xσ}. By the proof of Theorem 2.5, the algebroid EkX can be stratified as

EkX =
⊔
σ

Xσ t
⊔
τ

Yτ ,

where the Yτ are clear algebroids of split central rank larger than k. The part of Ĩ◦,ssk X → EkX

lying over Yτ then also has split central rank larger than k. Hence, when calculating Ĩ◦,ssk [X], we
can discard all Yτ . Every Xσ is isomorphic to X, and so we will fix a labelling σ and replace Xσ

by X in the following arguments, remembering to multiply the final result by k!.
We need to consider A×,ss and its quotient Ã×,ss. We write

A×,ss = Z×,ss tNZ×,ss, (15)

where Z ⊂ A is the centre of A (which is a strict subbundle and hence a closed substack) and
NZ is its complement. We start by examining Z×,ss and its quotient Z̃×,ss = Z×,ss/Gk

m. Note
that Z×,ss and Z̃×,ss are pullbacks from the coarse Deligne–Mumford stack X of X and hence
are inert over X, and their algebroid structures are hence the canonical algebroid structures as
inert X-stacks.

Claim. In K>k/K>k(M), we have

[Z̃×,ss] =
1

k!
Q̃λ(q) [X].

As in the proof of Theorem 2.5, let X̃ → X be a connected Galois cover with Galois group
Γ acting on the set n such that

X̃ ×Γ n
'−→ PZE(A).

We get induced isomorphisms

X̃ ×Γ An '−→ π∗OPZE(A)

and
X̃ ×Γ Gn

m
'−→ (π∗OPZE(A))

×.

By Proposition 1.35, we have a surjective closed immersion

(π∗OPZE(A))
×,strat −→ Z×,ss.

It follows that we have a surjective closed immersion

(X̃ ×Γ Gn
m)strat −→ Z×,ss,

and by passing to the quotient, another surjective closed immersion

((X̃ ×Γ Gn
m)/Gk

m)strat −→ Z̃×,ss.

So, in K>k/K>k(M), we can replace Z̃×,ss by (X̃ ×Γ Gn
m)/Gk

m.
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Our labelling σ of the central idempotents in AX corresponds to a labelling of the orbits of
Γ on n and a labelling of the parts of λ ` n. Let us denote these orbits by I1, . . . , Ik and λ by
(λ1, . . . , λk) such that λi = |Ii| for i = 1, . . . , k. We write P(Aλ) for the product of projective
spaces P(Aλ1)×· · ·×P(Aλk). Moreover, for a sequence of subsets Ji ⊂ Ii, we write P∗(J1, . . . , Jk)
⊂ P(Aλ) for the locally closed subspace defined by the entries in J1∪ · · ·∪Jk being non-zero and
all others being zero. We have

P(Aλ) =
⊔

(J1,...,Jk)∈
P(I1)×···×P(Ik)

P∗(J1, . . . , Jk),

where the disjoint union is over all sequences of subsets Ji ⊂ Ii.
The group Γ acts linearly on P(Aλ), respecting this stratification (although not the individual

strata), and we have

(X̃ ×Γ Gn
m)/Gk

m = X̃ ×Γ P∗(I1, . . . , Ik).

Moreover,

X̃ ×Γ P(Aλ) = X̃ ×Γ

⊔
P(I1)×···×P(Ik)

P∗(J1, . . . , Jk)

=
⊔

P(I1)×···×P(Ik)/Γ

X̃ ×Stab(J1,...,Jn) P∗(J1, . . . , Jk)

= X̃ ×Γ P∗(I1, . . . , Ik)

t
⊔

P(I1)×···×P(Ik)/Γ
Stab(J1,...,Jn)(Γ

X̃ ×Stab(J1,...,Jn) P∗(J1, . . . , Jk).

Every subgroup Γ′ ( Γ that is the stabilizer of a sequence (J1, . . . , Jk) has more than k orbits
on n. As in the proof of Theorem 2.5, this implies that X̃/Γ′ is in K>k(M). The same is then
true for X̃ ×Γ′ P∗(J1, . . . , Jk), as the projection X̃ ×Γ′ P∗(J1, . . . , Jk) → X̃/Γ′ is inert (being the
pullback of a corresponding morphism of course Deligne–Mumford stacks). We deduce that in
K>k/K>k(M), we have

[Z̃×,ss] = [(X̃ ×Γ Gn
m)/Gk

m] = [X̃ ×Γ P∗(I1, . . . , Ik)] = [X̃ ×Γ P(Aλ)]

= [P(Aλ)] [X] =
1

k!
Q̃λ(q) [X]. (16)

In the last step, we used the bundle relations in K(M). The bundle X̃ ×Γ P(Aλ) is a product of
projective bundles associated to vector bundles, whose structure groups are special (as they are
general linear groups). This finishes the proof of this claim.

Now consider a locally closed embedding Y ↪→ NZ×,ss/Gk
m such that Y is a clear algebroid.

Claim. The central type of Y strictly divides λ.

Over Y , we then consider the inclusion of commutative algebra bundles ZAX |Y ↪→ ZAY .
By Proposition 1.36, the split rank of ZAY (which is the split central rank of Y ) is at least as
large as the split rank of ZAX |Y , which, in turn, is at least as large as the split rank of ZAX ,
which is k. Since we are working modulo K>k(M), we may assume that the split central rank
of Y is k and hence that the split rank of ZAY and of ZAX |Y are both equal to k. Consider the
correspondence Q which we used in the proof of Proposition 1.36:
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Q

����

� � // PZE(AY )

PZE(AX |Y ).

All three stacks in this diagram are representable finite étale covers of Y . By assumption,
both PZE(AY ) and PZE(AX |Y ) have k connected components. This implies that the horizontal
inclusion in the diagram is an isomorphism and that we have a surjective representable finite
étale cover

PZE(AY ) // // PZE(AX |Y ). (17)

Since PZE(AX |Y ) and PZE(AX) have the same number of components, the degrees of these
components are equal as well, which means that the central type of AX |Y is equal to the central
type of AX , which is λ. The existence of (17) then implies that λ divides the central type of AY .

The surjection (17) is not an isomorphism, because otherwise, by Proposition 1.36, we would
have a surjection ZA×,ssY → ZA×,ssX |Y ; but this would force the tautological section class of

ZA×,ssY , given by the structure map Y → A×,ssX /Gk
m, to be central in AX (at least pointwise),

which it is not.
This shows that the central type of Y strictly divides λ and proves our second claim.
We have thus completed the proof of (i) and (ii). For the local finiteness of Ĩ◦,ssk , we proceed

as in the proof of Corollary 2.6. Every time we apply Ĩ◦,ssk , we produce only clear algebroids
whose central type is a multiple of λ, but as we can bound the central rank by the rank, which
does not increase by applying Ĩ◦,ssk , after finitely many steps, this process stops. 2

Corollary 2.17. The operator I◦,ss : K(M)(q−1) →K(M)(q−1) is diagonalizable. Its eigenvalue
spectrum consists of the Qλ ∈ Q[q], for all partitions λ. Denote the eigenspace corresponding to
the eigenvalue Qλ by Kλ(M)(q−1). We have

Kk(M)(q−1) =
⊕
`(λ)=k

Kλ(M)(q−1).

Example 2.18. Consider, as in Example 2.13, the stack function of rank 2 vector bundles.
It defines an element [BGL2] of K>1/K>1(Vect), which we are going to decompose into its
eigencomponents with respect to the operator Ĩ◦,ss1 .

The stack function [BGL2] is clear; its central rank is 1. The decomposition (15) is given in
this case as

I◦,ssBGL2
= ∆/GL2 tT ∗/N,

where ∆ is the central torus of GL2 and T ∗ = T\∆. Also, N is the normalizer of T in GL2.
We get the corresponding decomposition

Ĩ◦,ss1 BGL2 = (∆/Gm)/GL2 t (T ∗/Gm)/N

= BGL2 t T̃ ∗/N,

where T̃ ∗ = T ∗/Gm, and we have

Ĩ◦,ss1 [BGL2] = [BGL2] + [T̃ ∗/N ].

Note that T̃ ∗/N is not a strict algebroid. In fact, let T ′ ⊂ T ∗ be the closed subscheme consisting of
elements of trace zero and write T ∗ = T ′tT ∗∗. Then (at least if 2 ∈R×) we have T ′/Gm = SpecR,
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and [T̃ ∗/N ] = [BN ] + [T̃ ∗∗/N ], and BN is not a strict algebroid, as N is not connected. But
T̃ ∗/N is a clear algebroid. Its connected inertia stack is T̃ ∗ × T/N , and its associated coarse
Deligne–Mumford stack is T̃ ∗/Z2, which is only generically a scheme. The central rank of T̃ ∗/N
is 2, and the split central rank 1.

Now we consider Ĩ◦,ss1 [T̃ ∗/N ]. We start by noting that all connected inertia of T̃ ∗/N is central.
Hence, modulo K>1(Vect), we have

Ĩ◦,ss1 [T̃ ∗/N ] = (q + 1)[T̃ ∗/N ],

by (16).
We see that Q[q](q−1)[BGL2] + Q[q](q−1)[T̃

∗/N ] is invariant under Ĩ◦,ss1 , and the matrix of

Ĩ◦,ss1 on this subspace is (
1 0
1 q + 1

)
.

This matrix is lower triangular, and the differences between the scalars on the diagonal are all
invertible in Q[q](q−1). Therefore, it is diagonalizable over Q[q](q−1). Diagonalizing, we get the
following eigenvectors modulo K>1(Vect)(q−1):

(i) v(1) = [BGL2]− (1/q)[T̃ ∗/N ];

(ii) v(2) = (1/q)[T̃ ∗/N ].

To get the actual eigenvectors, we project into K1(Vect)(q−1). We have:

(i) π1[BGL2] = [BGL2]− 1
2 [BT ];

(ii) π1[T̃ ∗/N ] = [T̃ ∗/N ]− 1
2(q − 2)[BT ]

and hence

(i) v(1) = [BGL2]− (1/q)[T̃ ∗/N ]− (1/q)[BT ];

(ii) v(2) = (1/q)[T̃ ∗/N ]− ((q − 2)/2q)[BT ].

If we add

(iii) v(1,1) = 1
2 [BGL2]

we get the spectral decomposition [BGL2] = v(1) + v(2) + v(1,1) of [BGL2], with respect to the
operator I◦,ss. This is, of course, the same as the spectral decomposition with respect to Iss,
which we computed in the introduction (after applying the bundle relations).

Remark 2.19. If we are willing to invert (q− 1), we can prove the diagonalizability of I◦,ss = Iss

entirely within the context of strict algebroids. In fact, we can generalize the calculation in the
introduction to accomplish this.

2.3 Graded structure of multiplication
We will now assume that M admits all direct sums. Then we can define a commutative product
on K(M) by

[X → M] · [Y → M] = [X × Y → M×M
⊕−→ M].

With this product,K(M) becomes a commutativeK(DM)-algebra with unit 1 = [SpecR
0−→ M].

Proposition 2.20. For x, y ∈ K(M), we have

I◦,ss(x · y) = I◦,ss(x) · I◦,ss(y).
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Proof. This follows immediately from the fact that, for any two algebroidsX, Y , we haveA×,ssX×Y =

A×,ssX ×A×,ssY as algebroids over X × Y . 2

Denote the disjoint union of two partitions λ and µ by λ+ µ.

Corollary 2.21. We have Kλ(M)(q−1) · Kµ(M)(q−1) ⊂ Kλ+µ(M)(q−1) and therefore also

Kk(M)(q−1) ·K`(M)(q−1) ⊂ Kk+`(M)(q−1).

So the Q[q](q−1)-module

K(M)(q−1) =
⊕
k>0

Kk(M)(q−1)

is a graded Q[q](q−1)-algebra with respect to the commutative product on K(M)(q−1). We will
prove next that this fact is true for K(M) itself.

Proposition 2.22. For any x, y ∈ K(M) and any p > 0, we have

Ep(x · y) =
∑
n,m

[
p

n,m

]
En(x) · Em(y).

Here
[
p
n,m

]
is the number of ways the set p can bewritten as the union of a subset of order n

and a subset of order m.

Proof. Consider stack functions X → M and Y → M. Then Ep(X × Y ) is the stack of pairs
(e, f), where e = (eρ)ρ∈p is a complete set of orthogonal idempotents in AX and f = (fρ)ρ∈p is
a complete set of orthogonal idempotents in AY such that for every ρ = 1, . . . , p, at least one of
the two idempotents eρ, fρ is non-zero.

For every pair of strictly monotone maps n ↪→ p, m ↪→ p whose images cover p, we get a
morphism of stack functions En(X) × Em(Y ) → Ep(X × Y ) by mapping a pair of complete
sets of orthogonal idempotents (e′, f ′), where e′ = (e′ν)ν∈n and f ′ = (f ′µ)µ∈m, to the pair (e, f),
defined by

eρ =
∑
ν 7→ρ

e′ν and fρ =
∑
µ7→ρ

f ′µ.

(As the maps n → p and m → p are injective, all these sums have either zero or one summand.)
Each of the morphisms En(X)×Em(X) → Ep(X×Y ) is an isomorphism onto a locally closed

substack, because the locus of vanishing for an idempotent is closed. Moreover, the images of
these morphisms are disjoint and from a cover. There are

[
p
n,m

]
of them. 2

Corollary 2.23. If x ∈ Kk(M) and y ∈ K`(M), then x · y ∈ Kk+`(M).

Proof. We have

πt(x · y) =
∑
p

(
t

p

)
Ep(x · y)

=
∑
p

(
t

p

)∑
n,m

[
p

n,m

]
En(x) · Em(y)
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=
∑
n,m

(∑
p

[
p

n,m

](
t

p

))
En(x) · Em(y)

=
∑
n,m

(
t

n

)(
t

m

)
En(x) · Em(x)

= πt(x) · πt(y).

The step from line 3 to line 4 uses Proposition 2.24, below. 2

A combinatorial lemma. Let p > 0.
For a non-negative integer n and a p-tuple of non-negative integers λ = (λ1, . . . , λp), we define[

n

λ

]
=

[
n

λ1, . . . , λp

]
(18)

to be the number of indexed covers of n by subsets S1, . . . , Sp of cardinalities λ1, . . . , λp. The non-
negative integer

[
n
λ

]
vanishes, unless λρ 6 n, for allρ = 1, . . . , p and n 6 |λ|, where |λ| =

∑
ρ λρ.

We could not find the following combinatorial property in the literature.

Proposition 2.24. For every p-tuple of non-negative integers λ = (λ1, . . . , λp), we have(
t

λ1

)
. . .

(
t

λp

)
=
∑
n

[
n

λ

](
t

n

)
.

Proof. Let x1, . . . , xp be formal variables. We will prove that∑
λ

(
t

λ1

)
. . .

(
t

λp

)
xλ1

1 . . . x
λp
p =

∑
λ

∑
n

[
n

λ

](
t

n

)
xλ1

1 . . . x
λp
p ,

by proving that both sides of this equation are equal to

p∏
i=1

(1 + xi)
t.

On the one hand, we have

p∏
i=1

(1 + xi)
t =

p∏
i=1

∑
n

(
t

n

)
xni

=
∑

λ1,...,λp

(
t

λ1

)
. . .

(
t

λp

)
xλ1

1 . . . x
λp
p .

On the other hand, we have

p∏
i=1

(1 + xi)
t =

(
1 +

p∏
i=1

(1 + xi)− 1

)t

=
∑
n

(
t

n

)( p∏
i=1

(1 + xi)− 1

)n
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=
∑
n

(
t

n

)∑
j

(−1)j
(
n

j

) p∏
i=1

(1 + xi)
n−j

=
∑
n

(
t

n

)∑
j

(−1)j
(
n

j

) p∏
i=1

∑
`

(
n− j
`

)
x`i

=
∑
n

(
t

n

)∑
j

(−1)j
(
n

j

) ∑
λ1,...,λp

(
n− j
λi

)
xλ1

1 . . . x
λp
p

=
∑
n

(
t

n

)∑
λ

(∑
j

(−1)j
(
n

j

)(
n− j
λi

))
xλ

=
∑
n

(
t

n

)∑
λ

[
n

λ1, . . . , λp

]
xλ

=
∑
λ

∑
n

[
n

λ

](
t

n

)
xλ.

Here we have used the obvious inclusion–exclusion property satisfied by the covering numbers.
2

3. The order filtration

The Hall algebra. Let M be a linear algebraic stack admitting direct sums and direct
summands, i.e., assume that M is Karoubian (Remark 1.63). To define the Hall product, we
need an additional structure on M. This is a linear algebraic substack M(2) of the stack of all
sequences M ′ → M → M ′′ in M such that for every R-scheme S, the fibre M(2)(S) defines the
structure of an exact category on M(S). The stack M(2) comes with a diagram of morphisms of
linear algebraic stacks

M(2) b //

a1×a2

��

M

M×M

where a1, a2, b : M(2)
→ M are the projections of the sequence M ′ → M → M ′′ onto the objects

M ′,M ′′,M , respectively. We require further that the morphism a1 × a2 : M(2)
→ M ×M is of

finite type. Note that the morphism b : M(2)
→ M is a representable morphism of algebroids, by

the properties of exact categories.
We call such an M an exact linear algebraic stack.

Example 3.1. The linear stacks CohX , Vect, and RepQ of Examples 1.11, 1.12, and 1.13 satisfy
these axioms. For CohX , see [Bri12, § 4.1].

In each case, the exact structure is given by all short exact sequences. Note that the categories
M(S) are not abelian, as the cokernel of a homomorphisms of flat sheaves is not necessarily flat.

Throughout the following discussion, we fix an exact linear algebraic stack M and let A → M
be its universal endomorphism algebra, as in § 2.

We have the following structures on K(M).
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(i) Module structure. The action of K(DM) on K(M), given by [Z] · [X → M] = [Z × X →

X → M], which turns K(M) into a K(DM)-module.

(ii) Multiplication. The commutative multiplication given by

[X → M] · [Y → M] = [X × Y → M×M
⊕−→ M].

(iii) Hall product. The Hall product of the stack functions [X → M] and [Y → M], which is
defined by first constructing the fibred product

X ∗ Y

��

//M(2)

a1×a2

��
X × Y //M×M

and then setting

[X → M] ∗ [Y → M] = [X ∗ Y −→ M(2) b−→ M].

The multiplication is associative and commutative; the Hall product is associative. The unit
with respect to both multiplications is given by the 0-object of M:

1 = [SpecR
0−→ M].

We will refer to K(M) as the Hall algebra of M.
We define, inductively, M(n), for n > 3, by the following cartesian diagram.

M(n) p2 //

p1

��

M(2)

a1

��
M(n−1) b //M

The stack M(n) comes with structure maps a1, . . . , an, b : M(n)
→ M, defined recursively by

ai = ai ◦ p1, for i < n, and an = a2 ◦ p2, and b = b ◦ p2. The stack M(n) is the stack of objects in
M endowed with filtrations of length n. The subquotients are given by the maps a1, . . . , an, and
the ‘total object’ by b.

It follows from the axioms for exact categories that there is also the following cartesian
diagram.

M(n) //

��

M(n−1)

b
��

M(2) a2 //M

The case n = 3 is known as Noether’s isomorphism (see, for example, [Büh10, Lemma 3.5]) and
is responsible for the associativity of the Hall product.

3.1 Filtered structure of the Hall algebra
Definition 3.2. For n > 0, we define

K6n(M) = kerEn+1 =
⊕
k6n

Kk(M).

This is an ascending filtration on K(M), called the filtration by the order of vanishing of inertia
at q = 1, or simply the order filtration of K(M).
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This is a slight abuse of language, because only the space obtained by extension of scalars
K6n(M)(q−1) is the direct sum of all eigenspaces of I◦,ss whose corresponding eigenvalues Q ∈
Q[q] have order of vanishing at q = 1 less than or equal to n.

Theorem 3.3. Suppose that ξ ∈ K6n(M) and χ ∈ K6m(M). Then, ξ ∗ χ ∈ K6n+m(M).
Moreover, we have

ξ ∗ χ ≡ ξ · χ mod K<n+m.

To prove this theorem we will prove the following lemma.

Lemma 3.4. For any two stack functions ξ, χ ∈ K(M) and for any integer p > 0, we have

1

p!
Ep(πt(ξ) ∗ πt(χ)) ≡

∑
i+j=p

πi(ξ)πj(χ) tp mod tp+1 (19)

as an equation in K(M)[t].

Before proving the lemma, let us indicate how the lemma implies the theorem. For this,
suppose that ξ ∈ K6k(M) and χ ∈ K6`(M). Then the degree of πt(ξ) in t is at most k and the
degree of πt(χ) is at most `. So the degree of Ep(πt(ξ) ∗ πt(χ)) is at most k + `. So we see that
if p > k+ `, then Ep(πt(ξ) ∗ πt(χ)) = 0, which implies that ξ ∗ χ ∈ K6k+`(M), by Corollary 2.8.

Now set p = k + `. The left-hand side of (19) has degree at most k + `, the right-hand side
has degree exactly k+ `, which implies that both sides are homogeneous of degree k+ `, and we
have

1

(k + `)!
Ek+`(πt(ξ) ∗ πt(χ)) = πk(ξ)π`(χ) tk+`.

Now notice that if x ∈ K6n(M), we have πn(x) = (1/n!)En(x). Hence, we can rewrite our
equation as

πk+`(πt(ξ) ∗ πt(χ)) = πk(ξ)t
k π`(χ)t`.

This proves the theorem.

Analysis of Ep(En ∗ Em). Suppose ξ = (X → M) and χ = (Y → M) are stack functions.
The stack function ξ ∗ χ is defined by the following cartesian diagram.

X ∗ Y

��

//M(2)

��

//M

X × Y //M×M

Explicitly, X ∗ Y is the stack of triples (x,M, y)

x

��

y

��
M ′ //M //M ′′

(20)

where x and y are objects of X and Y , respectively, M is an object of M(2), i.e., a short exact
sequence M ′ → M → M ′′ of objects in M, and x → M ′ and y → M ′′ are isomorphisms from
the images of x and y in M to M ′ and M ′′, respectively. (We omit these isomorphisms from the
triple to simplify the notation.)
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The stack function En(ξ) ∗ Em(χ) is defined by the following enlarged diagram.

En(X) ∗ Em(Y ) //

��

X ∗ Y

��

//M(2)

��

//M

En(X)× Em(Y ) // X × Y //M×M

Explicitly, En(X)∗Em(Y ) is the stack of 5-tuples (x, (eν),M, y, (fµ)), where (x,M, y) represents
a diagram (20), (eν) = (e1, . . . , en) is a complete set of non-zero orthogonal idempotents in A(x),
and (fµ) = (f1, . . . , fm) is a complete set of non-zero orthogonal idempotents in A(y).

Finally, the stack Ep(En(X) ∗ Em(Y )) is the stack of objects of En(X) ∗ Em(Y ) endowed
with a complete set of p non-zero labelled idempotents. Explicitly, it consists of 6-tuples

(x, (eν,ρ),M, (gρ), y, (fµ,ρ)), (21)

where (x,M, y) is as in (20) and (gρ)ρ∈p is a complete set of non-zero orthogonal idempotent
endomorphisms of the short exact sequence M ′→M →M ′′. Moreover, (eρ,ν)ρ∈p,ν∈n is a pn-tuple
of orthogonal idempotents in A(x) and (fρ,µ)ρ∈p,µ∈m is a pm-tuple of orthogonal idempotents
in A(y) such that for every ρ = 1, . . . , p we have

∑n
ν=1 eρ,ν = gρ|M ′ and

∑m
µ=1 fρ,µ = gρ|M ′′ .

Finally, we require for all ν = 1, . . . , n that eν =
∑p

ρ=1 eρ,ν 6= 0 and for all µ = 1, . . . ,m that
fµ =

∑p
ρ=1 fρ,µ 6= 0.

Decomposing Ep(En ∗ Em). Given p-tuples of non-negative integers ϕ = (ϕ1, . . . , ϕp) and
ψ = (ψ1, . . . , ψp), we define a new stack function (X ∗ Y )ϕ,ψ → M, denoted by (ξ ∗ χ)ϕ,ψ, as
follows.

Let (X ∗ Y )ϕ,ψ be the algebraic stack of 6-tuples

(x, (eρ),M, (gρ), y, (fρ)), (22)

where (x,M, y) is as in (20) and (gρ)ρ=1,...,p is a complete set of non-zero orthogonal idempotent
endomorphisms of the short exact M . Moreover, for every ρ = 1, . . . , p, we require that
eρ = (e1, . . . , eϕρ) and fρ = (f1, . . . , fψρ) are families of non-zero orthogonal idempotents for
x and y, respectively, such that for all ρ = 1, . . . , p,

gρ|M ′ =

ϕρ∑
ω=1

eω and gρ|M ′′ =

ψρ∑
η=1

fη. (23)

It follows that the union of e1, . . . , ep is a complete set of orthogonal idempotents for x and the
union of f1, . . . , fp is a complete set of orthogonal idempotents for y.

There is a natural algebroid structure on (X ∗Y )ϕ,ψ. The morphism to M given by mapping
the 6-tuple (22) to the middle object b(M) of the short exact sequence M makes (X ∗Y )ϕ,ψ into
a stack function.

Note that if for some ρ = 1, . . . , p, both integers ϕρ and ψρ vanish, then (X ∗ Y )ϕ,ψ = ∅,
because all gρ are required to be non-zero.

Let us write |ϕ| =
∑

ρ ϕρ and |ψ| =
∑

ρ ψρ. Let us assume that for every ρ = 1, . . . , p, at least
one of the two integers ϕρ, ψρ is non-zero. Then we have a morphism

E|ϕ|(X)× E|ψ|(Y ) −→ (X ∗ Y )ϕ,ψ (24)
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which maps a quadruple (x, (eω), y, (fη)) to the 6-tuple (22) where M = M ′ ⊕M ′′, with M ′

denoting the image of x in M and M ′′ the image of y in M. To define (24), we break up the
complete family of orthogonal idempotents e1, . . . , e|ϕ| for x into p subfamilies, where the ρth
subfamily has ϕρ members. Similarly, we break up f1, . . . , f|ψ| into p subfamilies whose sizes are
ψ1, . . . , ψp. Then the family of idempotents (gρ) on M is defined by formulas (23). Note that we
need to make our assumption on the p-tuples ϕ, ψ, in order for every family member gρ to be
non-zero.

Lemma 3.5. If for every ρ = 1, . . . , p, exactly one of the two integers ϕρ, ψρ is non-zero, (24) is
an isomorphism. Hence, we have the equality

(ξ ∗ χ)ϕ,ψ = E|ϕ|(ξ)E|ψ|(χ)

for stack functions.

Proof. Given an object (22) of (X ∗ Y )ϕ,ψ, the short exact sequence M is split into a direct
sum of p short exact sequences. Each one of these sequences is canonically split, because either
the subobject or the quotient object vanishes, by the assumption on ϕ and ψ. Therefore, the
sequence M is split, canonically, too. 2

Now suppose we are given strictly monotone maps

Φρ : ϕρ ↪−→ n and Ψρ : ψρ ↪−→ m,

for all ρ = 1, . . . , p such that the images of the Φρ cover n and the images of the Ψρ cover m.
The choice of these injections determines a morphism of algebraic stacks

(X ∗ Y )ϕ,ψ −→ Ep(En(X) ∗ Em(Y )) (25)

by mapping the 6-tuple (22) to the 6-tuple (21) by defining

eν,ρ =
∑

Φρ(ω)=ν

(eρ)ω and fµ,ρ =
∑

Ψ(η)=µ

(fρ)η.

By our assumptions, these sums are either empty or consist of a single summand, so the eν,ρ and
the fµ,ρ are obtained from the (eρ)ω and the (fρ)η essentially by relabelling.

Note that the requirements
⋃
ρ Φρ(ϕρ) = n and

⋃
ρ Ψρ(ψρ) = m are needed to assure that∑

ρ eν,ρ and
∑

ρ fµ,ρ are non-zero, for all ν = 1, . . . , n and µ = 1, . . . ,m.

Lemma 3.6. The morphism (25) gives rise to a morphism of stack functions (ξ ∗ χ)ϕ,ψ →

Ep(En(ξ) ∗ Em(χ)), which is both an open and a closed immersion.
If we change any of ϕ, ψ, or Φ, Ψ, we get a morphism with disjoint image. The images of all

morphisms (25) cover Ep(En(X) ∗ Em(Y )).

Proof. This follows from the fact that the source and target of (25) differ only in the way the
idempotents in Ax and Ay are indexed. 2

Corollary 3.7. Using the notation introduced in (18), we have the following equation inK(M):

Ep(En(ξ) ∗ Em(χ)) =
∑
ϕ,ψ

∑
Φ,Ψ

(ξ ∗ η)ϕ,ψ =
∑
ϕ,ψ

[
n

ϕ

][
m

ψ

]
(ξ ∗ η)ϕ,ψ,

where ϕ and ψ run over all p-tuples of non-negative integers.
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For example, consider χ = 1 and m = 0. If any of the ψρ is non-zero, (X ∗ Y )ϕ,ψ is empty.
Hence,

EpEn(ξ) =
∑

ϕ1,...,ϕp>0

[
n

ϕ

]
E|ϕ|(ξ),

where the sum is over all p-tuples of positive integers.

Proof of the main lemma. Using Proposition 2.24, we can now calculate as follows:

Ep(πt(ξ) ∗ πt(χ)) = Ep

(∑
n

(
t

n

)
En(ξ) ∗

∑
m

(
t

m

)
Em(χ)

)
=
∑
n,m

(
t

n

)(
t

m

)∑
ϕ,ψ

[
n

ϕ

][
m

ψ

]
(ξ ∗ χ)ϕ,ψ

=
∑
ϕ,ψ

(∑
n

(
t

n

)[
n

ϕ

])(∑
m

(
t

m

)[
m

ψ

])
(ξ ∗ χ)ϕ,ψ

=
∑
ϕ,ψ

(
t

ϕ1

)
. . .

(
t

ϕp

)(
t

ψ1

)
. . .

(
t

ψp

)
(ξ ∗ χ)ϕ,ψ. (26)

For example, if χ = 1, we get

Epπt(ξ) =
∑

ϕ1,...,ϕp>0

(
t

ϕ1

)
. . .

(
t

ϕp

)
E|ϕ|(ξ). (27)

The lowest order term in (26) has degree p, since for (ξ ∗ χ)ϕ,ψ not to vanish, we need, for
every ρ = 1, . . . , p, at least one of ϕρ, ψρ to be non-zero.

Modulo (tp+1), only terms corresponding to pairs (ϕ,ψ), with the property that for every
ρ = 1, . . . , p exactly one of ϕρ, ψρ is non-zero, contribute to (26). These are exactly the terms to
which Lemma 3.5 applies, and we deduce that, modulo tp+1, we have:

Ep(πt(ξ) ∗ πt(χ)) ≡
∑
ϕ,ψ

(
t

ϕ1

)
. . .

(
t

ϕp

)(
t

ψ1

)
. . .

(
t

ψp

)
E|ϕ|(ξ)E|ψ|(χ),

where the sum is over all (ϕ,ψ), where the supports of ϕ and ψ form a partition of p. By grouping
terms corresponding to partitions of the same size together, we can rewrite this as∑

i+j=p

(
p

i

) ∑
ϕ1,...,ϕi>0

(
t

ϕ1

)
. . .

(
t

ϕi

)
E|ϕ|(ξ)

∑
ψ1,...,ψj>0

(
t

ψ1

)
. . .

(
t

ψj

)
E|ψ|(χ),

which is equal to ∑
i+j=p

(
p

i

)
Eiπt(ξ)Ejπt(χ),

by (27). Modulo tp+1, this term is congruent to∑
i+j=p

(
p

i

)
Eiπi(ξ)Ejπj(χ) = p!

∑
i+j=p

πi(ξ)πj(χ) tp.

We conclude that
1

p!
Ep(πt(ξ) ∗ πt(χ)) ≡

∑
i+j=p

πi(ξ)πj(χ) tp mod tp+1,

which proves Lemma 3.4.
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3.2 The semi-classical Hall algebra
By Theorem 3.3, the submodule

K(M) =
⊕
n>0

tnK6n(M)

of K(M)[t] is a K(DM)[t]-subalgebra with respect to the Hall product. The algebra K(M) is a
one-parameter flat family of algebras. The special fibre at t = 0 is canonically isomorphic to the
graded algebra associated to the filtered algebra (K(M), ∗). The quotient map K → K/tK is
identified with the map

∑
n xnt

n 7→
∑

n πn(xn).
The graded algebra associated to the filtered algebra (K(M), ∗) is canonically isomorphic to

the commutative graded algebra (K(M), · ), by Theorem 3.3. The special fibre inherits therefore
a Poisson bracket, which encodes the Hall product to second order. This Poisson bracket has
degree −1 and is given by the formula

{x, y} = πk+`−1(x ∗ y − y ∗ x) for x ∈ Kk(M), y ∈ K`(M). (28)

Corollary 3.8. The graded K(DM)-algebra (K(M), · ) is endowed with a Poisson bracket of
degree −1, given by (28).

Corollary 3.9. In particular, K1(M) is a Lie algebra with respect to the Poisson bracket (28).
In fact, for x, y ∈K1(M), we have that x∗y−y ∗x ∈K1(M), so in this case, the Poisson bracket
is equal to the Lie bracket. Thus, K1(M) is a Lie algebra over the ring of scalars K(DM).

Proof. Equation (26) for p = 0, together with Lemma 3.5, says

E0(πt(x) ∗ πt(y)) = E0(x)E0(y).

This proves that E0(x) = 0 or E0(y) = 0 implies that E0(x ∗ y) = 0. 2

Definition 3.10. We call K1(M) the Lie algebra of virtually indecomposable stack functions.
We will usually write Kvir(M) for K1(M).

This terminology is used in analogy with that of [Joy07a]. In Appendix A, we check that our
notion of virtually indecomposable agrees with that of [Joy07a] in a special case.

3.3 Epsilon functions
We will prove that replacing direct sum decompositions by filtrations, in the formula

πk =
∑
n>k

s(n, k)

n!
En,

will give rise to an operator mapping K(M) into K6k(M). In particular, we will be able to
construct virtually indecomposable stack functions as ‘Hall algebra logarithms’.

Fix an algebraic substack N ↪→ M with the following properties:

(i) N avoids the image of SpecR
0−→ M;

(ii) N is closed under direct sums and direct summands, i.e., it is Karoubian (Remark 1.63) if

we add SpecR
0−→ M to it;
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(iii) for every positive integer n, the morphism b|N(n) : N(n)
→ M, illustrated in the diagram

N(n) //

��

M(n) b //

a1×···×an
��

M

Nn //Mn,

(29)

where the square is cartesian, is of finite type;

(iv) the disjoint union over all these morphisms
∐
n>0 N

(n)
→ M is still of finite type. This

means that if X → M is a morphism with X of finite type, there exists an N > 0 such that
for all n > N , the image of b|N(n) : N(n)

→ M does not intersect the image of X in M.

Example 3.11. If M is the stack of coherent sheaves on a projective curve, then the substack
of non-zero semi-stable vector bundles of fixed slope is an example of a substack N satisfying
our conditions. More generally, we can take for N the stack of all vector bundles whose Harder–
Narasimhan slopes are contained in a fixed interval.

Example 3.12. If M is the stack of representations of a quiver Q, then we can take N = M∗.

Consider an arbitrary stack function X → M, and denote by FnX, for n > 1, the stack

FnX = N(n) ×M X.

It fits into the following cartesian diagram.

FnX //

��

X(n) //

��

X

M
��

N(n) //M(n) b //M

Note that FnX is of finite type, by our assumption on N, and also representable over M (as an
algebroid), because b is. Therefore, FnX is another stack function.

The objects of FnX are pairs (x, F ), where x is an object of X and F = (F1 → · · ·→ Fn)
is a flag in Fn = M , where M is the image of x in M such that all subquotients Fν/Fν−1, for
ν = 1, . . . , n, are in N.

We now consider Ek(FnX), for k > 0. This is the stack of triples

(x, (eκ), F ),

where the pair (x, F ) is an object of FnX and (eκ) = (e1, . . . , ek) is a complete set of non-zero
orthogonal idempotents in A(X) such that for every κ= 1, . . . , k the endomorphism of M induced
by eκ respects the flag F . For every ν = 1, . . . , n, we therefore get an induced idempotent operator

fκ,ν = eκ|Fν/Fν−1
.

These idempotents have the properties:

(i)
∑

κ fκ,ν = 1, for all ν;

(ii) for every κ, at least one of the fκ,ν does not vanish.
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The stack Ek(FnX) decomposes into a disjoint union of substacks according to which of the
idempotents (fκ,ν) vanish.

To make this decomposition precise, consider a sequence of positive integers (α1, . . . , αk).
Define FαX to be the stack of triples

(x, (eκ), (Fκ)).

Here, x is an object of X, with image M in M, and (eκ) is a complete set of orthogonal non-zero
idempotents for x that decomposes M into a direct sum M =

⊕
κMκ. Moreover, Fκ is a flag of

length ακ on Mκ, with subquotients in N, for every κ = 1, . . . , k.
For every k-tuple of strictly monotone maps Φκ : ακ ↪→ n, we define a morphism

FαX −→ Ek(FnX) (30)

by defining the flag F on M in terms of the k-tuple of flags (Fκ) by

Fν =
⊕
κ

∑
Φκ(ρ)6ν

Fρ.

Note that the sum for fixed κ is not really a sum, it is just the largest of the subobjects Fρ of
Mκ making up the flag F1 → · · ·→ Fακ such that Φκ(ρ) 6 ν.

Lemma 3.13. The morphism (30) given by (Φκ)κ∈k is an isomorphism onto the locus in Ek(FnX),
defined by fκ,ν 6= 0 if and only if ν ∈ Φκ(ακ), for all κ = 1, . . . , k.

Corollary 3.14. If ξ denotes the element of K(M) defined by X → M, we have

Ek(Fnξ) =
∑
α

[
n

α

]
Fα(ξ),

where the sum is taken over all k-tuples of positive integers.
If we set F0(ξ) = 1 and F∅(ξ) = 1, this equality also holds for n = 0.

Definition 3.15. Define, for every ξ ∈ K(M),

εt(ξ) =
∑
n>0

(
t

n

)
Fn(ξ),

where for n = 0, we set F0(ξ) = 1. This definition is justified, because by our assumptions on N,
this sum is actually finite.

Expanding in powers of t defines the εk(ξ) for k > 0:

εt(ξ) =
∑
k>0

εk(ξ)t
k.

For example, ε0 = 1, and

ε1(ξ) =
∑
n>0

(−1)n+1

n
Fn(ξ).

In general,

εk(ξ) =
∑
n>k

s(n, k)

n!
Fn(ξ).
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Corollary 3.16. For every k > 0, we have εk(ξ) ∈ K6k(M). Hence, εt(ξ) ∈ K(M). In
particular, ε1(ξ) is virtually indecomposable for all ξ ∈ K(M).

Proof. It suffices to prove that Ek(εt(ξ)) ≡ 0 mod (tk) for all k. In fact,

Ek(εt(ξ)) =
∑
n>0

(
t

n

)
EkFn(ξ)

=
∑
n>0

(
t

n

) ∑
α1,...,αk>0

[
n

α

]
Fα(ξ)

=
∑

α1,...,αk>0

(
t

α1

)
. . .

(
t

αk

)
Fα(ξ)

is, indeed, divisible by tk, if all α1, . . . , αk are positive. 2

Remark 3.17. The operator Fn : K(M) → K(M) respects strict algebroids. The same is true for
all εk.

Epsilons as logarithms. Suppose there exists an abelian group Γ and a decomposition of M
(as an algebroid, not a linear stack) into a disjoint union

M =
∐
γ∈Γ

Mγ .

We require that if Eγ,β is defined by the cartesian diagram

Eγ,β //

��

M(2)

a1×a2

��
Mγ ×Mβ

//M×M

then the composition

Eγ,β −→ M(2) b−→ M

factors through Mγ+β ⊂M.
We call such Γ a grading group for M.
The grading group Γ decomposes K(M) into a direct sum

K(M) =
⊕
γ∈Γ

K(M)γ , (31)

where K(M)γ is the submodule of K(M) generated by stack functions X → M that factor
through Mγ . The Hall product, as well as the commutative product, are graded with respect
to (31). For x ∈ K(M), we denote the projection of x into the component K(M)γ by xγ .

Let N ⊂M be a linear algebraic substack avoiding SpecR
0−→ M, with the properties:

(i) every intersection Nγ = N ∩Mγ is of finite type;

(ii) N is closed under direct summands and extensions in M, the latter meaning that if N(2) is

defined as in (29), then the composition N(2)
→ M(2) b−→ M factors through N ⊂M;
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(iii) there is a submonoid Γ+ ⊂ Γ such that Nγ 6= ∅ implies that γ ∈ Γ+\{0}. The monoid Γ+ is
required to have the property that every γ ∈ Γ+ admits only finitely many decompositions
γ = α+ β such that both α, β ∈ Γ+. We will further assume that Γ+ has the property that
the intersection of all cofinite ideals is empty.

If these axioms hold, N satisfies the finiteness conditions above, so that the εk(ξ) are defined for
all ξ ∈ K(M).

Remark 3.18. If M is the stack of coherent sheaves on a projective curve, then we can take Γ = Z2

and define M(d,r), for (d, r) ∈ Z2 to be the stack of sheaves of rank r and degree d. Suppose N is
the stack of bundles whose Harder–Narasimhan slopes are contained in the interval (a, b) ⊂ R.
Then we can take

Γ+ = {(0, 0)} ∪
{

(d, r) ∈ Z2

∣∣∣∣ r > 0 and a <
d

r
< b

}
,

and the above requirements will be satisfied.

Remark 3.19. If M is the stack of representations of a quiver Q, we can take Γ = ZQ0 , where
Q0 is the set of vertices of Q, and then set Mγ , for γ ∈ Γ, equal to the stack of representations

with dimension vector γ. If we take N = M∗, we can take Γ+ = ZQ0
>0.

Let us also define
K(M)S =

⊕
γ∈S

K(M)γ ⊂ K(M)

for any cofinite ideal S ⊂ Γ+. For every such S, the group K(M)S is an ideal (with respect to
both multiplications) in the ring K(M)+ = K(M)Γ+ , and we may complete K(M)+ with respect

to this collection of ideals to obtain K̂(M)+. The morphism K(M)+ → K̂(M)+ is injective and
both multiplications extend to K̂(M)+.

In K̂(M)+, the sum

[N] =
∑
γ∈Γ+

[Nγ → M]

converges.
The idempotent operators commute with the Γ-grading, and so everything defined in terms

of them does too. In particular, K̂(M)+ is a graded Poisson algebra, and the Lie algebra of
degree +1 elements in K̂(M)+, which we will denote K̂vir(M)+, is equal to the completion of
Kvir(M)+ =

⊕
γ∈Γ+

Kvir(M)γ .

Proposition 3.20. In K̂(M)+[[t]], we have

εt[N] =
∑
n>0

(
t

n

)
[N]∗n.

Hence, we can write
εt[N] = (1 + [N])∗t = exp∗(t log∗(1 + [N])),

where exponential and logarithm are defined by their power series using the Hall product. In
particular,

ε1[N] = log∗(1 + [N]) ∈ K̂vir(M)+

and

εk[N] =
1

k!
log(1 + [N])∗k =

1

k!
(ε1[N])∗k.
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Proof. Using the formula

Fn[N] = [N(n) b−→ M] = [N] ∗ · · · ∗ [N]︸ ︷︷ ︸
n times

,

the result follows. 2

Remark 3.21. Compare the two formulas

εt[N] = (1 + [N])∗t,

πt[N] = (1 + [N])t.

Remark 3.22. Let us write K̂(M)+ for the subspace of K̂(M)+[[t]] defined by requiring the

coefficient of tk to be contained in K̂6k(M)+, for all k. Then

εt[N] = (1 + [N])∗t ∈ K̂(M)+.

Remark 3.23. Setting t = 1, we also get that 1 + [N] = exp∗(ε1[N]). One should think of 1 + [N]

as group-like.

Hopf algebra. We make a brief remark, without striving for generality.

Let us fix N ⊂M and Γ+ ⊂ Γ as before. Assume for simplicity that Γ is free. In particular,

α+ β = 0, for α, β ∈ Γ+, implies α = β = 0.

For 0 6= γ ∈ Γ+, abbreviate the element [Nγ → M] ∈ K(M) by [γ].

For a finite sequence (γ) = γ1, . . . , γn of non-zero elements of Γ+, write

[(γ)] = [γ1, . . . , γn] = [γ1] ∗ · · · ∗ [γn].

In particular, for n = 0, we have [∅] = 1.

In many cases of interest, the Hall algebra elements [(γ)], as (γ) runs over all finite sequences

of non-zero elements of Γ+, are linearly independent over Q. Let us assume that this is the case.

Then the Q-span of all [(γ)] is a Q-subalgebra of K(M) that is free on the generators [γ], for

γ ∈ Γ+\{0}, as a unitary Q-algebra. Let us denote this algebra by U . Let us further assume that

the morphism induced by the commutative product U ⊗ U → K(M) is injective. (Again, this

will hold in many cases of interest.)

We will now define a comultiplication ∆ on U , making a U a cocommutative Hopf algebra

over Q.
To define ∆, it is convenient to extend the notation [(γ)] to finite sequences of elements of

Γ+, which may be zero. This is done by setting [0] = 1. Thus, [(γ)] is unchanged by ‘crossing off
its zeros’. We then define

∆ : U −→ U ⊗ U
[(γ)] 7−→

∑
(α)+(β)=(γ)

[(α)]⊗ [(β)],

where the sum is over all pairs of sequences of the same length as γ, but allowing zeros.

This defines on U the structure of a cocommutative Hopf algebra.
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Lemma 3.24. The diagram

U∗
x 7−→∆(x)−1⊗x−x⊗1//

E2 ))

U ⊗ U

comm. mult.
��

K(M)

is commutative, where U∗ ⊂ U is the augmentation ideal.

It follows that the virtual indecomposables in U are equal to the primitives with respect to
the Hopf algebra structure:

Uprim = Uvir.

As U is a cocommutative Hopf algebra, it is isomorphic to the universal enveloping algebra of
Uprim, by the Cartier–Gabriel theorem [Car07, Theorem 3.8.2].

The Lie algebra Uvir is free, as a Lie algebra over Q, on the elements

ε[γ] =
∑
n>0

(−1)n+1

n

∑
γ=γ1+···+γn
γ1,...,γn>0

[γ1] ∗ · · · ∗ [γn],

for γ ∈ Γ+\{0}.

Remark 3.25. Suppose N = M = Vect is the stack of vector bundles. We take Γ = Z and
Γ+ = Z>0. Then the [(γ)] are, indeed, linearly independent over Q, at least if our ground ring R
is a field. Moreover, U⊗U → K(M) is injective. The Hopf algebra we obtain is the Hopf algebra
of non-commutative symmetric functions, see [Car07, Example 4.1 (F)].

Remark 3.26. It is doubtful that it is possible to extend the coproduct to all of K(M) in such a
way that Kvir(M) = K(M)prim. By the above considerations, we consider the family of operators
(En) as a substitute, which allows us to prove at least some of the result one would expect in a
cocommutative Hopf algebra. In particular, we find it unlikely that, in general, K(M) would be
isomorphic to the universal enveloping algebra of Kvir(M).

4. Integration

The integral of a stack function (X,A) → (M,A) does three things: it forgets the structure map
to (M,A), it forgets the algebroid structure, mapping (X,A) to X, and it introduces the bundle
relations in K(St), for non-inert bundles of algebraic stacks.

The vector bundle relations. Let K(St) be the Grothendieck K(DM)-algebra of algebraic
stacks (finite type, with affine diagonal), modulo the scissor and the bundle relations. A bundle
relation is any equation of the form

[Y ] = [F ×X]

for a fibre bundle Y → X of algebraic stacks with special structure group and fibre F .
It is well known that

K(St) = K(Var)

[
1

q

][
1

qn − 1

]
n>1

.
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A proof can be found, for example in [Bri12]. Along the same lines, one proves that

K(St) = K(DM)

[
1

q

][
1

qn − 1

]
n>1

.

Note that the (connected, semi-simple) inertia operator does not preserve non-inert bundle
relations. Therefore, in K(St), we cannot talk about I◦,ss[X], only about [I◦,ssX ].

Regular motivic weights.

Definition 4.1. We say an element of K(St) is regular if it can be written with a denominator
which does not vanish at q = 1. Thus, the subalgebra of regular motivic weights K(St)reg ⊂K(St)
is by definition the image of the morphism of K(Var)-algebras:

K(Var)

[
1

q

][
1

qn + · · ·+ 1

]
n>1

−→ K(Var)

[
1

q

][
1

qn − 1

]
n>1

= K(St).

The image of K(DM) in K(St) is contained in K(St)reg. Hence, we can also think of K(St)reg

as a K(DM)-algebra. This follows from the following lemma.

Lemma 4.2. Every finite type stack with quasi-finite stabilizer has regular motivic weight in
K(St).

Proof. Let Z be a stack with quasi-finite stabilizer (meaning that its inertia IZ is quasi-finite
over Z). By stratifying Z, if necessary, we may assume that the inertia stack of Z is in fact
finite. By [Kre99, Proposition 3.5.7], Z is stratified by global quotient stacks, so we may assume
that Z = Y/GLm, for an algebraic space Y , such that GLm acts on Y with finite stabilizer. The
maximal torus T ⊂ GLm then also acts with finite stabilizer on Y . The flattening stratification∐
Yi → Y of the stabilizer StabT Y is then T -equivariant, so that T acts on each Yi, and by

passing to open and closed subspaces of the Yi, we may assume that the action of T on Yi has
constant stabilizer (see [Oes14, I, 5.4]). Then T acts on Yi freely through a quotient Ti by a finite
subgroup. We conclude

[Z] =
1

[GLm]

∑
i

[Yi] =
1

[GLm]

∑
i

[Ti][Yi/Ti] =
[T ]

[GLm]

∑
i

[Yi/Ti], (32)

because each quotient Ti of T is isomorphic to T . The last term in (32) is regular, because each
Yi/Ti is an algebraic space, and

[T ]

[GLm]
= q−(1/2)m(m−1)

m∏
i=1

1

qi + · · ·+ 1

does not vanish at q = 1. 2

The integral. Mapping a stack function (X,A) → (M,A) to the class [X] ∈ K(St) gives
rise to a well-defined homomorphism K(M) → K(St) of K(DM)-modules. We denote this
homomorphism by ∫

: K(M) → K(St).
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4.1 The ‘no poles’ theorem
Theorem 4.3. The composition

∫
◦ I◦,ss factors through the algebra of regular motivic weights.

K(M)
I◦,ss //

∫
◦I◦,ss

��

K(M)∫
��

K(St)reg
� � // K(St)

(33)

Proof. It suffices to prove that [A×,ss] ∈ K(St) is regular for every clear algebroid (X,A)
admitting a faithful representation. This will suffice, by Proposition 1.66. If (X,A) is such
an algebroid, there exists a Deligne–Mumford stack Y with a left GLn-action together with
a strict GLn-equivariant algebra subbundle B ↪→ Mn×n|Y such that B× = StabGLn Y and
(X,A) = (GLn \Y,GLn \B).

Let Dn ⊂ Mn×n be the diagonal subalgebra and T = D×n the standard maximal torus of
GLn. As GLn acts on B ⊂Mn×n|Y , so does the torus T . We will now stratify B by the stabilizer
with respect to the action of T . For this stratification to be canonical, we need StabT B to be
the units in a finite type algebra over B.

In fact, such an algebra C ⊂ Dn|B is given as the intersection of Dn|B with (B|B)fix inside
Mn×n|B. Here, (B|B)fix is the centralizer of the tautological section of B|B, or, under the
identification B|B = B ×Y B, the stack of commuting pairs. Thus, a section (u, b, y) ∈ Dn|B
is in C if and only if u ∈ ZB(y)(b).

We have, indeed, an equality

C× = StabT B

of relative group schemes over B, because for t ∈ T and (b, y) ∈ B ⊂Mn×n|Y ,

t ∈ StabT (b, y)⇐⇒ tb = b and ty = y

⇐⇒ tb = bt and t ∈ StabGLn(y)

⇐⇒ tb = bt and t ∈ B×(y)

⇐⇒ t ∈ ZB×(y)(b)

⇐⇒ t ∈ C×(b, y).

The subalgebras of Dn are in one-to-one correspondence with partitions I = {I1, . . . , Ir} of
the set n = {1, . . . , n}. The partition n = I1 t · · · t Ir corresponds to the subalgebra DI whose
primitive idempotents are the eIρ =

∑
i∈Iρ ei, for ρ = 1, . . . , r. Let us write TI = D×I for the torus

of units in DI .
Now there is a unique stratification ∐

I

BI −→ B, (34)

such that a section (b, y) of B factors through BI if and only if the pullback of C ⊂Dn|B via (b, y)
is equal to DI . The existence of this stratification is proved by passing to the rank stratification
(see Definition 1.23) of C and observing that a subalgebra bundle C ⊂ Dn|S , for any stack S,
decomposes S into a disjoint union of open and closed substacks such that C is constant over these
components. We may reformulate the defining property of BI by saying that (b, y) ∈ BI if and
only if ZB(y)(b)∩Dn = DI . We also have, for (b, y) ∈ BI , that StabT (b, y) = C×(b, y) = D×I = TI .
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The stratification (34) is T -equivariant, because for t ∈ T and (b, y) ∈ B, we have

(b, y) ∈ BI ⇐⇒ ZB(y)(b) ∩Dn = DI

⇐⇒ ZB(ty)(
tb) ∩ tDn = tDI

⇐⇒ ZB(ty)(
tb) ∩Dn = DI

⇐⇒ (tb, ty) ∈ BI ,

as T ⊂ Dn and Dn is commutative.
(Let us remark that we were not able to prove that for a general action of T on a Deligne–

Mumford stack Y , the stabilizer stratifies Y equivariantly. The fact that the stabilizer is equal
to the units in an algebra helps. Note also that we did not prove a defining property for (34) in
terms of stabilizers in T .)

So, for every partition I of n, the torus T acts on BI ⊂ B, with stabilizer TI . We therefore
get an induced action of T/TI on BI . Matrix conjugation preserves units, so we get an induced
action of T/TI on

B×I = BI ∩B×.

In fact, this action even respects B×,ssI = BI ∩B×,ss, but the following modification does not.
Consider the action of TI ⊂ T on BI by left multiplication:

t(b, y) = (tb, y).

This is a well-defined action, because t ∈ TI and (b, y) ∈ BI implies that t ∈ ZB(y)(b). In
particular, t ∈ B(y), so that (t, y) ∈ B, and the product (t, y)(b, y) = (tb, y) in B exists. Moreover,
(tb, y) ∈ BI , because ZB(y)(tb)∩Dn = ZB(y)(b)∩Dn. This action of TI on BI preserves B×I . Over
fields, it also preserves sections which are semi-simple, because the product of two semi-simple
commuting matrices is again a semi-simple matrix. (Note that this does not imply that TI acts
on Bss

I , because even if (b, y) is a strict section of B, the product (tb, y) may not be strict.)
We finally consider the action of T (I) = TI × T/TI on B×I , defined by

(t′, t) ∗ (b, y) = (t′ tb, ty). (35)

The quotient stack ZI = B×I /T (I) is a finite type scheme over R, so its Zariski topological
space |ZI | is a Zariski space (see [LMB00, ch. 5]). By Chevalley’s theorem (see [LMB00]), the
image of |B×,ssI | in |ZI | is constructible, so we can find disjoint, locally closed (reduced) algebraic
substacks Z1, . . . , Zn ⊂ ZI such that this image is equal to |Z1| t · · · t |Zn| ⊂ |ZI |. Let

Z̃I = Z1 q · · · q Zn.

This is a finite type algebraic stack endowed with a representable monomorphism Z̃I → ZI .
We claim that Z̃I is an algebraic stack with quasi-finite stabilizer. This will follow from the

fact that, for field-valued points, the action of T (I) on B×,ssI has finite stabilizers. To see this,
assume that

(t′ tb, ty) = (b, y),

for (t′, t) ∈ TI × T/TI and (b, y) ∈ B×,ssI . This implies that ty = y, and hence conjugation by t
preserves the fibre B(y) of B over y. We have

t′ tb = b,
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where t′ commutes with b. Rewriting as tb = t′−1b, we see that tb commutes with b. Changing
basis, if necessary, we can diagonalize the three matrices b, tb, and t′ simultaneously. Since b and
tb have the same eigenvalues, we see that the entries of the diagonal matrix tb are obtained from
those of b by a permutation. Hence, there are at most n! possible values for tb, and hence also for
t′ = b tb−1. For every one of these possible values of t′, there is at most one t ∈ T/TI such that
tb = t′−1b. Thus, the action (35) has finite stabilizers, at least on field-valued points of B×,ssI , as
required.

Consider the cartesian diagram

B̃×,ssI

β̃ //

α′

��

B̃×I
π̃ //

��

Z̃I

α

��
B×,ssI

β // B×I
π // ZI

obtained by pulling back B×,ssI → B×I → ZI via Z̃I → ZI . The morphisms α and β are disjoint

unions of isomorphisms onto locally closed substacks, so the same is true for α′ and β̃. But both
α′ and β̃ are surjective on underlying Zariski topological spaces, so by the scissor relations, we
have

[B×,ssI ] = [B̃×,ssI ] = [B̃×I ]

in K(St). The morphism π is a principal T (I)-bundle, so the same is true for π̃, and so by the
bundle relations, we have

[B×,ssI ] = [B̃×I ] = [T (I)][Z̃I ] = (q − 1)n[Z̃I ]

in K(St). It follows that we have

[A×,ss] = [GLn \B×,ss] =
[B×,ss]

[GLn]
=

1

[GLn]

∑
I

[B×,ssI ]

=
1

[GLn]

∑
I

(q − 1)n[Z̃I ] = q−(1/2)n(n−1)
n−1∏
i=1

1

qi + · · ·+ 1

∑
I

[Z̃I ].

The claim now follows from Lemma 4.2. 2

Corollary 4.4. The multiple (q − 1)k
∫

of the integral takes regular values on K6k(M), for
every k > 0.

K6k(M)
(q−1)k

∫
%%��

K(St)reg
� � // K(St)

Proof. Consider the following diagram.

Kk(M)
(q−1)k

∫
++

�� ))⊕
`(λ)=kK

λ(M)(q−1)

⊕
`(λ)=k (k!/Q̃λ(q))

∫
◦Iss ))

K(St)reg
� � //

��

K(St)

��
K(Var)(q−1)

� � // K(St)(q)
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The dotted arrow exists because the square in the lower right of this diagram is cartesian, and
the outer part of the diagram commutes. (Here we have identified the localization K(Var)(q−1)

with its image in K(St)(q) = K(St)⊗Q[q] Q(q).) 2

Corollary 4.5. Defining
∫
t = q − 1 extends the integral to a K(DM)-linear homomorphism∫

: K(M) −→ K(St)reg.

4.2 The integral versus the Hall product
The Γ-indexed integral. Let Γ be a grading group for M, as in § 3.3. We assume, in addition,

that Γ is endowed with a Z-valued bilinear form χ.

Definition 4.6. We say M is hereditary if for every γ, β ∈ Γ, the morphism Eγ,β → Mγ ×Mβ

is a vector bundle stack [BF97, Definition 1.9] of rank −χ(β, γ).

Let us assume henceforth that M is hereditary.
We define K(St)[Γ] to be the free K(St)-module on the symbols uγ , for γ ∈ Γ, and introduce

an associative product on K(St)[Γ] by the formula

uγ ∗ uβ = q−χ(β,γ)uγ+β

and extend it linearly to make K(St)[Γ] a K(St)-algebra. Regular coefficients form a subalgebra
K(St)reg[Γ].

We define the Γ-indexed integral∫
: K(M) −→ K(St)reg[Γ]∑
γ∈Γ

xγ 7−→
∑
γ∈Γ

uγ
∫
xγ . (36)

Proposition 4.7. If M is hereditary, the Γ-indexed integral preserves the star product. In fact,
for x, y ∈ K(M) we have ∫

x ∗ y =

∫
x ∗
∫
y ∈ K(St)reg[Γ].

Proof. This is a straightforward calculation. One uses the fact that for X → Mγ and Y → Mβ,
the morphism X ∗ Y → X × Y is a vector bundle stack of rank −χ(γ, β), and hence, in K(St),
we have [X ∗ Y ] = q−χ(γ,β)[X][Y ]. 2

Semi-classical limit. We will pass to the semi-classical limit of the integral
∫

: K(M) →

K(St)reg[Γ] by setting t = 0 (in the source) and hence q = 1 (in the target). As
∫

respects the
∗-product, the semi-classical limit will be a morphism of Poisson algebras.

Modulo (q − 1), the star product on K(St)reg[Γ] is commutative; in fact, modulo (q − 1) it
is given by the commutative product uγ · uβ = uγ+β. Hence, the quotient K(St)reg[Γ]/(q − 1)
inherits a Poisson bracket, defined by

x ∗ y − y ∗ x ≡ {x, y}(q − 1) mod (q − 1)2.

Explicitly, it is given by
{uγ , uβ} = −χ̃(β, γ)uγ+β, (37)

where χ̃ is (twice) the anti-symmetrization of χ:

χ̃(β, γ) = χ(β, γ)− χ(γ, β).
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We conclude the following result.

Theorem 4.8. If M is hereditary, we have a morphism of Poisson algebras∫
q=1

: K(M) −→ K(St)reg/(q − 1)[Γ]. (38)

The Poisson structure on K(M) is described in § 3.2; the one on K(St)reg/(q − 1)[Γ], above,
see (37). The uγ coefficient of the integral

∫
q=1 may be expressed as∫

q=1
x =

(∫
πq−1(x)

)∣∣∣∣
q=1

=

∞∑
n=0

(
q − 1

n

)∫
En(x)

∣∣∣∣
q=1

for x ∈ K(M)γ . Here we have used the operator πt of Definition 2.11 and substituted t = q − 1.

Proof. The homomorphism (38) is obtained by setting t = 0 in (36). Note that the deformation
parameter t is mapped to the deformation parameter (q− 1), so that the Poisson bracket (which
depends on the choice of the deformation parameter) is preserved.

To calculate
∫
q=1, note that x 7→ πt(x) is a section of the quotient map K(M) → K(M),

obtained by setting t = 0. This gives rise to the displayed formula. 2

Remark 4.9. Note that the diagram

K(M)⊗Q[t, 1/t]∫
��

K(M)
invert too t 7−→ 0 //

∫
��

K(M)∫
q=1

��
K(St)[Γ] K(St)reg[Γ]oo q 7−→ 1 // K(St)reg/(q − 1)[Γ]

commutes. The central column is a morphism of one-parameter families of non-commutative
algebras. The left-hand column is the general fibre and a morphism of non-commutativeK(DM)⊗
Q[t, 1/t]-algebras; the right-hand column is the semi-classical limit and hence a morphism of
Poisson algebras.

Restricting the theorem to the virtually indecomposable elements, we obtain the following
result.

Corollary 4.10. The semi-classical limit of the integral defines a morphism of Lie algebras
over K(DM): ∫

q=1
: Kvir(M) −→ K(St)reg/(q − 1)[Γ].

The bracket in Kvir(M) is the commutator bracket of the Hall product, and the bracket in
K(St)reg/(q − 1)[Γ] is given in (37). The integral

∫
q=1 is given by the formula∫

q=1
x =

∑
γ∈Γ

uγ
(

(q − 1)

∫
xγ

)∣∣∣∣
q=1

for a virtually indecomposable Hall algebra element x ∈ Kvir(M).

Remark 4.11. We have a surjective morphism of K(Var)-algebras

K(Var)/(q − 1)−→K(St)reg/(q − 1)
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and an isomorphism

K(Var)/((q − 1) + Ann(q − 1))
∼−→ K(St)reg/(q − 1).

The former morphism is (most likely) not injective, because there is no (obvious) reason why
elements in Ann(q−1) ⊂ K(Var) should map to zero in K(Var)/(q−1), although they certainly
map to zero in K(St)reg/(q − 1).

Without too much more effort, it is possible to prove that the semi-classical limit of the
integral lifts to a K(Var)-linear homomorphism∫

q=1
: K(M) −→ K(Var)/(q − 1)[Γ].

Unfortunately, we cannot, at the moment, prove that this lift is a morphism of Poisson algebras.

Remark 4.12. Let Γ+ ⊂ Γ be a submonoid as above, i.e., having the property that every γ ∈ Γ+

admits only finitely many decompositions γ = α + β, with both α, β ∈ Γ+, and such that the
intersection of all cofinite ideals is empty.

For every ideal S ⊂ Γ+, the group K(St)reg/(q − 1)[ΓS ] is an ideal in K(St)reg/(q − 1)[Γ+],
and we let K(St)reg/(q− 1)[Γ+]∧ be the completion of K(St)reg/(q− 1)[Γ+] with respect to this
collection of ideals.

The restriction of the semi-classical integral∫
q=1

: K(M)+ −→ K(St)reg/(q − 1)[Γ+]

is continuous with respect to the filtrations induced by the cofinite ideals in Γ+ and hence extends
to the completions, giving rise to a morphism of Poisson-algebras∫

q=1
: K̂(M)+ −→ K(St)reg/(q − 1)[Γ+]∧,

and a morphism of Lie algebras∫
q=1

: K̂vir(M)+ −→ K(St)reg/(q − 1)[Γ+]∧.

If we now have a substack N⊂M as above, i.e., every Nγ = N∩Mγ is of finite type, N
is closed under direct sums and extensions in M, and Nγ 6= ∅ only if γ ∈ Γ+, we can form
ε1[N] ∈ K̂vir(M)+ and apply to it the semi-classical integral

∫
q=1 to obtain the Joyce-type

invariant ∫
q=1

ε1[N] =

∫
q=1

log∗(1 + [N])

=

(
(q − 1)

∑
n>1

γ1 ...,γn∈Γ+

(−1)n+1

n
[Nγ1 ] ∗ · · · ∗ [Nγn ]

)∣∣∣∣
q=1

(39)

in K(St)reg/(q − 1)[Γ+]∧.
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Appendix. Comparison with Joyce’s virtual projections in an example

Let us write [n] = [BGLn → Vect] ∈ K(Vect). We have (cf. Remark 3.21)

Er[n] =
∑

`1+···+`r=n
`1...`r>0

[`1] . . . [`r].

This gives us

πk[n] =
∑
r

s(r, k)

r!
Er[n]

=
∑
r

s(r, k)

r!

∑
`1+···+`r=n
`1...`r>0

[`1] · · · [`r]

=
∑
λ`n

s(`(λ), k)

|Autλ|
∏
i

[λi].

We remark also that the formula of Remark 2.12 gives us

πt

(∑
n>0

[n]un
)

=

(∑
n>0

[n]un
)t
,

which contains the above formulas for πk[n].
In [Joy07b, § 5.2], Joyce defines projection operators Πvi

n : K(M) → K(M), which pairwise
commute and add up to the identity (although he works with bare algebraic stacks, not
algebroids). We expect that modulo this difference, we have

πk = Πvi
k .

We will prove that these operators take the same values on the elements [n] ∈ K(Vect).

Proposition A.1. We have
πk[n] = Πvi

k [n],

for all k and n.

Proof. Let Tn be the n-dimensional torus of diagonal matrices inside GLn.
Joyce’s P set [Joy07b, Definition 5.3] is trivial in this case because as a quotient stack

BGLn = ∗/GLn where ∗ is a point, so P(∗, Tn) = {Tn}. The Q set Q(GLn, Tn) is computed in
[Joy07b, Example 5.7] to be the set of all tori

Tϕ := {diag(z1, . . . , zn) : zi ∈ Gm, zi = zj if ϕ(i) = ϕ(j), ∀i, j},

where ϕ ranges over all surjection maps ϕ : n → r. Finally, the R set coincides with Q. Joyce’s
definition then needs computation of MX

G (P,Q,R), where P , Q, and R are selected respectively
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from P, Q, and R. In our case, this is

M∗GLn(Tn, Q,R) =

∣∣∣∣ NGLn(Tn)

CGLn(Q) ∩NGLn(Tn)

∣∣∣∣−1

nGLn
Tn

(R,Q)

for all choices of R,Q ∈ Q(GLn, Tn) such that R ⊆ Q. Now we unwind the definition of
nGLn
Tn

(R,Q).

n(R,Q) =
∑

B⊆{Q̂∈Q:Q̂⊆Q}
Q∈B,

⋂
Q̂∈B Q̂=R

(−1)|B|−1.

We can finally define the virtual projections of BGLn as

Πvi
k (BGLn) =

∑
R:dimR=k

∑
Q:R⊆Q

M∗GLn(Tn, Q,R)[BCG(Q)].

We say Q ∈ Q(GLn, Tn) is of ‘type σ’ if the corresponding surjection ϕ : {1, . . . , n}→ {1, . . . , r}
induces the partition σ ` n. Note that there are n!/σ1! · · ·σn!(1!)σ1 · · · (n!)σn of them. Also,
CGLnQ depends only on the type of Q and is isomorphic to

∏n
i=1[GLi]

σi . The normalizer of Tn
is Sn n Tn, and therefore

CGLn(Tϕ) ∩NGLn(Tn) =

n∏
i=1

[Si n Ti]
σi

and ∣∣∣∣ NGLn(Tn)

CGLn(Q) ∩NGLn(Tn)

∣∣∣∣−1

=
(1!)σ1 · · · (n!)σn

n!
.

We have

Πvi
k (BGLn) =

∑
R:dimR=k

∑
Q:R⊆Q

M∗GLn(Tn, Q,R)[BCG(Q)]

=
∑
Q

∣∣∣∣ NGLn(Tn)

CGLn(Q) ∩NGLn(Tn)

∣∣∣∣−1( ∑
R⊆Q

dimR=k

nGLn
Tn

(R,Q)

)
[BCG(Q)]

=
∑
σ

(#Q of type σ).
(1!)σ1 · · · (n!)σn

n!
s(`(σ), k)

n∏
i=1

[BGLi]
σi

=
∑
σ

1

σ1! · · ·σn!
s(`(σ), k)

n∏
i=1

[BGLi]
σi ,

where the third line follows from the lemma below. We conclude that Joyce’s virtual projections
of BGLn are identical to our eigenprojections. 2

Lemma A.2. For a Q of type σ, we have∑
R:dimR=k

n(R,Q) = s(`(σ), k).

Proof. We let m = dimQ = `(σ) in this proof. Obviously, if `(σ) < k, there is no possible choice
of

B ⊆ {Q̂ : Q̂ ⊆ Q} : Q ∈ B,
⋂
Q̂∈B

Q̂ = R,
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therefore proving ∑
R:dimR=k

n(R,Q) = s(`(σ), k) if `(σ) < k.

In the case that `(σ) = k, the only choice of R is Q itself and the only choice of B is the set
B = {Q}. This proves ∑

R:dimR=k

n(R,Q) = s(`(σ), k) if `(σ) = k.

All other values of s(`(σ), k) are defined recursively by

s(m, k) = s(m− 1, k − 1)− (m− 1)s(m− 1, k).

So it suffices to show that
∑

R:dimR=k n(R,Q) satisfies the same recursive relation.
For any choice of R,

n(R,Q) =
∑

B⊆{Q̂∈Q:Q̂⊆Q}
Q∈B,

⋂
Q̂∈B Q̂=R

(−1)|B|−1

can also be computed by choosing only those Q̂ that are codimension 1 inside Q. This is because
for every Q̂ of codimension > 2, the number t of intermediate subtori Q′

Q̂ ⊂ Q′ ⊆ Q

is positive, and therefore B containing Q̂ is included in 2t possible choices of B with cancelling
size parities.

Let us write the points of Q as m-tuples (x1, . . . , xm) with xi ∈ Gm. Let W be the (m− 1)-
dimensional torus consisting of points (x1, . . . , xm−1). Any R with dimR = k is given by a set
of defining equations

xi1 = · · · = xiki , i = 1, 2, . . . .

In the defining equation of R with dimR = k, either xm does not appear, in which case R|W
is (k − 1)-dimensional, or xm does appear, in which case R|W is k-dimensional and any choice
of B consisting of only codimension 1 elements satisfying

⋂
Q̂∈B Q̂ = R loses one of its elements

after restriction to R|W . This shows that∑
B⊆{Q̂∈Q:Q̂⊆Q}

Q∈B,dim
⋂
Q̂∈B Q̂=k

(−1)|B|−1 =
∑

B⊆{Q̂∈Q:Q̂⊆W}
W∈B,dim

⋂
Q̂∈B Q̂=k−1

(−1)|B|−1

− (m− 1)
∑

B⊆{Q̂∈Q:Q̂⊆W}
W∈B,dim

⋂
Q̂∈B Q̂=k

(−1)|B|−1

which completes the proof. 2
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271–294; EuroConférence Moshé Flato 2000, Part III (Dijon); MR 1855264 (2002j:53117).

Kre99 A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), 495–536.

LMB00 G. Laumon and L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik und ihrer
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